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ABSTRACT

Despite decades of research on mobile webpage optimizations, little
is known about how these optimizations interoperate. Moreover,
there has been little systematic work to understand the scenarios
wherein combinations of these optimizations excel. Without a com-
prehensive understanding of how these optimizations compose with
each other and under what conditions they excel, operators cannot
determine which optimizations to adopt, and, similarly, developers
do not know where to focus their efforts.

In this paper, we argue that developers should be required to
evaluate and characterize the broader interactions between their
proposed optimizations and other optimizations - this is in addition
to demonstrating the potential benefits of their approach. To aide
developers in characterizing these broader interactions, we propose
an analytical model which decomposes web optimizations into vir-
tual speedup functions that operate on well-understood browser
processing phases (e.g., processing, rendering, layout, etc., for an
object) and we present a web browser-oriented causal profiler which
empirically explores interactions between optimizations by using
their analytical models to speed up different parts of the Browser
during a page load. Our system, WebOptProfiler, identifies and ad-
dresses practical issues in extending causal profiling to the webpage
optimization domain and provides an algorithm for extracting an
analytical model from readily available browser traces.
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1 INTRODUCTION

Despite the growing ecosystem of mobile webpage optimizations [4-
8,14-18,22-25,27,28], most efforts are often designed and developed
in isolation. In particular, we have no avenues to answer the follow-
ing questions: How do mobile webpage optimizations compose with
each other? Are their interactions multiplicative or additive? Do they
interact positively? Or, do they cancel each other out? Moreover,
while we continue to churn out new mobile-centric optimizations,
it is unclear whether the current optimizations have constructive or
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destructive interactions or whether, as a community, we are getting
closer to the optimal scenario.

The most direct approach to answer these questions is to deploy
the different optimizations and empirically analyze the different
combinations. However, directly performing experiments will re-
quire the arduous task of getting many of these optimizations to
interoperate with each other — a non-trivial task. Furthermore, this
will require us to explore them on a huge corpus of websites.

A promising alternative is to analytically model the optimizations
and explore the interactions between their models. While mobile
webpage optimizations naturally lend themselves to analytical mod-
els [13, 19, 26], the browser, which ultimately loads the website and
composes the results of different optimizations, does not necessarily
lend itself to analytical modeling [26]. Specifically, while the browser
sequentially processes web objects that interact with the DOM, the
exact order is not well understood. Additionally, certain aspects are
multi-threaded. Together, these observations imply that analytically
modeling any browser is a cumbersome and error-prone endeavor.

Instead, we argue for a blend of analytical modeling with empir-
ical analysis. Our combination builds on the following insights: the
mobile webpage optimizations are generally meant to speed up the
processing of one or more objects and be extracted by analyzing
versions of a page with and without the optimizations. Given these
speedup factors, we can empirically analyze the optimizations by
using emerging causal profilers [11, 19] — tools that allow develop-
ers to reason about the impact of arbitrary speedups of specified
functions on the application’s performance.

Our system, WebOptProfiler, uses browser traces, e.g., DevLog,
from webpage loads with (and without) the optimizations to con-
struct an analytical model of the optimization. Different developers
can then use these models to systematically evaluate interactions
between various optimizations by using WebOptProfiler’s causal
profiler. Our approach allows engineers to thoroughly investigate
and understand the payoffs before undergoing the more arduous task
of re-implementing and interfacing with these optimizations with
each other. In addition to enabling engineers, our tool has an added
benefit for optimization designers; it provides them with insights
that allow them to better adapt their optimization techniques to align
with other optimizations.

Although many of the components which comprise WebOptPro-
filer are readily available (i.e., web page optimization modeling and
causal profilers), WebOptProfiler presents a unique combination of
these techniques, which introduces new challenges. For example,
while there is a growing body of work on causal profilers [11, 19],
these approaches are optimized for uniform speedups of a single
function. However, webpage optimizations impact objects differ-
ently, and when applied together, they may require speeding up
multiple functions. Additionally, traditional causal profiling focuses
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on the applications, whereas webpage optimizations speed up func-
tions within the application (i.e., the browser) and the network. Our
framework’s novelty lies in extending causal profiling to (i) con-
trol interactions over the network by embedding a web page replay
and record framework and (ii) scalably and efficiently provide fine-
grained function-level control over virtual speedups.

This paper makes three key contributions to providing perfor-
mance clarity on the growing space of web optimizations.

o First, we design a method for analytically modeling mobile
webpage optimizations as a matrix that defines speedups for
specific processing stages of loading web objects.

e Second, we develop a causal profiling framework for empir-
ically analyzing the performance (i.e., page load time (PLT)
changes) of different webpage optimizations by employing
combinations of our analytical models to virtually speedup
specific aspects of the page load process.

o Third, we create an integrated system that systematically ex-
tracts optimization models from page load traces and provides
a platform to execute them to collect performance measure-
ments.

2 BACKGROUND

In this section, we provide background on the web page loading
process (§ 2.1), present an overview on current web optimizations
(§ 2.2), and on causal profiling (§ 2.3).

2.1 Browser Workflow

InFigure 1, we present the high-level workflow of a browser and high-
light the phases involved in a typical web page processing pipeline.
The workflow is generally divided into four broad phases [13, 19, 26]:

(1) Networking phase, which includes fetching objects over the
network using the Resource Loader module.

(2) Processing phase which deals with parsing and evaluating
the objects and coordinates their interactions with the DOM
tree. Note: As a result of processing an object, the browser
may direct the ResourceLoader to fetch other web objects
(e.g., processing an HTML object may lead to fetching im-
ages). The browser includes distinct modules for parsing the
various objects.

(3) Layout phase, which consists of the construction of Render
Tree and Layout Tree from the DOM tree.

(4) The painting phase, which includes compositing different
layout layers in the Layout tree and painting them on screen.
The browser’s rendering engine generally does this.

The browser may parallelize the networking phase and portions
of the processing phase for different objects. However, to maintain
consistency and correctness, each object is processed sequentially
during the other phases that involve DOM manipulation. This com-
bination of sequential and parallel processing complicates browser
modeling and performance analysis.

2.2 Mobile Web Optimizations

Web page performance optimizations can broadly be categorized
into three categories; client-side, server-side, and network. These
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Figure 1: Browser workflow for page load process.
Highlighting the different phases and level of visibility.

No
Object
Visibility

optimizations aim to improve web performance by altering the sched-
uling [8, 15], compression [6, 23], placement/location [18,21, 22, 24],
format [5], and pre/post-processing [4, 16, 27, 28] of one or more
group of web-objects. We note that while all modern mobile webpage
optimizations target web objects, their transformations are based
on different assumptions about the critical path or the bottleneck
resources. For example, compression optimizations [6, 23] assume
the network is the bottleneck and consequently optimize network
performance (e.g., transfer time).
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Figure 2: Illustration of transformations on an abstract
webpage.

In Table 1, we present a representative list of these optimizations
and highlight the objects that they modify/transform and the specific
resource they focus on. Abstractly, we can think of each of these opti-
mizations as functions, which takes as input (1) an abstract version of
a website, (2) client conditions (e.g., network or mobile device type),
and alters the semantic or the syntactic properties of one or more
types of objects. These functions produce as output an optimized set
of web objects to be loaded by the browser.

The transformations can be classified into three types:

o Type-1 performs semantic transformations on individual ob-
jects, e.g., compression, transcoding, minification, or dupli-
cate code elimination. Figure 2 (c) presents an example of one
such transformation altering the page load performance by
reducing the processing time of a specific phase (in this case,
the painting phase).
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Table 1: Web Optimizations

Optimization Type Algorithms

Resource Optimization Sumary

Opera Mini [4], Cumulus [17], Prophecy [16], Shandian
[27], Fawkes [14], Snapshot Based Acceleration [28]
Flywheel [6], Flexiweb [23], Weblight [5]

Polaris [15], Klotski [8]

Assisted Rendering
Compression Proxy
Object Scheduling

Watchtower

Object Push Proxy [18], APPx [10], WebPro [22], Vroom [21], Nutshell [22]

Objects precomputed

on a remote server, to save CPU on client device.

All objects are compresses to save network bandwidth
Objects scheduled

in a way to minimize CPU and Network Idle times.
Dependent objects pushed to reduce network Idle times
and to eliminate dependencies between Network and CPU.

CPU Utilization
Network Utilization

CPU/Network Idle Time

Network Idle Time

e Type-2 modifies the scheduling of specific phases of an object.
The most popular alter the scheduling phase of when the
“network” processing of an object takes place, e.g., H2 server-
push, H2 priorities, client-prefetch, caching, and dependency
modifications (e.g., polaris [15],VROOM [21]). Figure 2 (d)
presents an example of one such transformation altering the
page load performance by allowing the networking phase to
overlap, increasing concurrency, and speeding up the entire
page load process.

e Type-3 is a special case of Type-1 where multiple objects are
semantically transformed together, e.g., server-side rendering
or server-side preprocessing of javascript (e.g., Prophecy [16]),
which merges the pre-computed JS with base HTML. In essence,
we can classify any mobile web optimization (client, network,
or server-side) into one of the three types mentioned above.

Takeaway: Based on the categorization of web optimizations, we
infer the following key insights about web optimizations: The impact
of any given optimization is localized to a well-defined class of ob-
jects or well-defined phases of the page load process. For example, the
compression optimizations discussed earlier impact the networking
phase and object parsing phase. Moreover, the browser’s combina-
tion of sequential and parallel processing implies that reasoning
about different optimizations’ behavior is non-trivial. In particular,
combining optimizations is not a strictly linear combination of their
speedups, and understanding the benefits of optimization may be
non-trivial.

2.3 Causal profiling

Causal profiling [11, 19] is a new form of software profiling that
differs from traditional profiler in that while conventional profilers
capture the amount of time spent in different parts of the code, causal
profilers selectively speed up different parts of code to estimate the
benefits of optimizing them. In essence, traditional profilers help
developers understand performance characteristics, while causal
profilers enable developers to speculate on the implications of op-
timizing different code pieces.

Causal profilers speed up code by employing a novel technique,
called virtual speed ups, which systematically slows down other code
snippets. Specifically, this technique identifies other code segments
or functions which run concurrently as the target code snippets but
on other threads. The technique subsequently slows down these
identified code-segments by adding pauses that are proportional
to the anticipated speedup. These slowdowns are effective because
slowing down everything else except the optimized function (or code)
has the same impact as optimizing the target function to run faster.

Our goal is to understand the broader interactions between mo-
bile webpage optimizations, which effectively speed up processing
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within specific browser functions. We believe that causal profilers
stand out as ideal candidates for correctly analyzing their impact on
the page load process. Unfortunately, causal profilers are limited in
the following ways:

First, they operate at the granularity of an entire application, e.g.,
arbitrary speedups for all objects processed by the web browser’s
target function(s); however, web optimizations, in contrast, provide
speedups for specific objects (i.e., speedups are dependent on the
inputs). Second, while traditional speeds up are constant and fixed,
the speedups for web optimizations are a function of the object’s
properties. This implies that the code we would want to speedup
is also a function of the inputs and their properties. Third, the ex-
isting profilers only operate on software (in our case, the browser)
and have no control over the network (i.e., object transfers). This
implies that causal profiling is insufficient to analyze the broader
range of optimizations that target the network. Finally, they only
speed up one function at a time; whereas, single web optimizations
may impact multiple functions.

To illustrate these limitations, consider a type-1 optimization
(specifically compression-proxy [6, 23]). While the proxy may try to
compress all objects, each object has a different compression factor,
and hence a different reduction in its network transfer time. To
faithfully analyze this with a causal profiler, we need the profiler to
support per-object speedups with varying speedup values per object.

Takeaway: In conclusion, these limitations imply a need for a
broader and finer-grained causal profiling system that provides: (1)
The flexibility to selectively speed up code phases, (2) A new virtual
speedup logic that allows potentially every piece of code to have
distinct speedup factors, and (3) A new method for controlling inter-
actions with the network to apply speedups on the networking phase.

3 WEBOPTPROFILER

In this section, we discuss WebOptProfiler our framework for scal-
able profiling and analyzing the interactions between mobile web
optimizations on arbitrary webpages. In Figure 3, we present the
workflow of our framework. WebOptProfiler operates on Chrome’s
DevTools logs [2] which Chrome generates while loading websites.
These traces provide timing information about when phases start
and end and for the subtasks within each phase. WebOptProfiler
analyzes a pair of traces from loading a website with and without
the web optimization, to extract a model ( § 3.1.2) which captures the
performance profile of the optimization. Given such models for dif-
ferent mobile web optimizations, WebOptProfiler enables operators
to analyze their cumulative impact by virtually speeding up appro-
priate sections as dictated by the model. To support client-side (i.e.,
browser) speedups, WebOptProfiler extends causal profiler to ad-
dress challenges identified in § 2.3, and to support network speedups,
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Figure 3: WebOptProfiler Architecture.

the profiler is enhanced with a proxy-based web record and replay
tool to provide network-centric speedups (§ 3.3). The novelty in our
framework are: first, the insight that optimizations can be analyzed
using a fusion of empirical and analytical modeling and second, en-
hancements to the causal profiling framework to enable selective
and arbitrary speedups of both compute (§ 3.2) and network (§ 3.3).

3.1 Model Generator

To effectively speed up a website, WebOptProfiler requires a model
(§3.1.1) for abstracting a webpage into an analytical representation
of the interactions between the different phases of the page load
process. Such a model enables WebOptProfiler to express optimiza-
tions as speedups of different phases of different objects (§3.1.2): this
abstraction naturally lends itself to WebOptProfiler’s underlying
causal profiling engine.

3.1.1  Analytical Modeling of Websites. We abstractly model a web-
site w as a directed dependency graph G =(O,E) , were 0; C O are the
objects, and an edge e; = (0;,0j) implies that 0; must be processed
first before 0 can be processed. The objects are typed: for example,
Ocss C O is the set of CSS object in w. ! Moreover, each object, 0; O,
can be characterized by four distinct functions: one for each of the
four phases in the browser page load pipeline. We define Procs ; to be
the amount of time that a phase s (e.g., network loading, processing,
rendering, or painting) uses to process object i (0;).

We construct this directed dependency graph G by analyzing
Chrome’s DevTools logs [2], which captures fine-grained tracing
information regarding the time spent by the browser to process each
object across all the page load phases. Devtools logs also specify each
object’s requestor (i.e., the object that triggers another object) - this
information can be used to construct dependencies. Note, the logs
also include the processing time for functions in each phase, and we

1Similarly, Opmi, O 75 are, respectively, the set of HTML and JS objects in w.
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can aggregate this information to determine the phase processing
times, Procs,;.

3.1.2  Modeling Web Optimizations. To create a Web optimization
model, we must capture and compare two graphs, Gpase With Gopsimized:
which are models of a page with and without the optimization of
interest. The output of this comparison is a matrix that indicates the
relative speedup for each phase of each object in the website.

3.2 CoZBrowse

CoZBrowse is an enhanced version of the traditional CoZ+ pro-

filer [19] with supportfor fine-grained profiling. In particular, CoZBrowse

enables us to selectively speed up different objects (§ 3.2.2) using
different combinations of speedup values (§ 3.2.1).

3.2.1 Different Speedups for Phases. The current architecture can
only virtually speed up one function (or code segment). In the current
setting, the slowdown factor is the same as the virtual speedup factor
just applied in reverse order — thus, (in Figure 4) to speedup function
‘a()’ by 2ms, a causal profiler slows down ‘b()’ and ‘c()’ by 2ms. To
virtually speedup multiple functions with different speedup factors
(e.g., in Figure 4 to speedup only functions ‘a()’ and ‘b()’ by 1ms and
3ms respectively), we need to redesign the slowdown calculation
function. Intuitively, virtual speedups, and by extension, slowdowns
are cumulative: we can offset the relative speedups. In Figure 4, ‘b()’
is only being sped up by a factor of two relative to ‘a()’, and, thus,
to speed up ‘b()’, ‘a()’ must be slowed down even though it is also
being sped up. The key to correctly calculating the slowdown factor
is to carefully analyze the virtual speedups, determine their relative
speedups, and convert this into slowdowns used by the profiler. We
achieve this in three steps:

(1) First, we analyze all the virtual speedups to identify the func-
tion with the max speed (in Figure 4, this is ‘a()’).

(2) Second, we determine the relative speedups of the identified
max function relative to the other functions (in Figure 4, the
relative speedup ‘a()’ relative to ‘b()’ and ‘c()’ are 2 and 3
respectively).

(3) Finally, we convert this into slowdown factors (thus, ‘b()’ and
‘c()’ are slowed down by 2 and 3, respectively Figure 4(c)).

3.2.2 Individual Object speedups. The most intuitive method to
provide selective and conditional speedups is to perform a quick
check to determine which object is being processed and only per-
form a virtual speed up if the object being processed is affected by
the optimization. For performance reasons, causal profilers operate
at a much lower level, and thus they do not have access to object
names. Alternatively, we could maintain a mapping from object
name to the memory location where the object is stored and instead
perform our checks by examining the functions’ memory addresses.
Unfortunately, this approach falls short when objects are copied.
In our design of CoZBrowse, we explore a different approach
that builds upon the web domain’s unique properties. Namely, web
replay techniques, i.e., NWCoZ, are deterministic, and the browser
sequentially processes most objects to ensure that the DOM remains
consistent. Given these insights, we record the processing order of
objects and use this recorded ordering to determine when to per-
form a speedup (and when not to), e.g., on the third call to ‘a()’, it
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Figure 4: Multiphase speedup example: By our method, max
slowdown is 3 seconds (a:1, b:3, c:0), so a is slowed down by
3—1=2seconds, b is slowed down by 3—3=0 seconds and c by
3—-0=3 seconds. After applying this slowdown, our program
executes in 11 seconds. We compute speedup by subtracting
11 from 13 which is actual runtime + MaxSlowDown.

processes ‘test.css’, thus we speed up ‘a()’ by 2ms on its third call.
While primitive, this approach is simple, efficient, and correct.

3.3 NWCoZ

To extend causal profiling into the network, WebOptProfiler needs
to virtually speed up network transfers, which requires altering a
combination of bandwidth and latency. To realize this, WebOptPro-
filer includes a proxy-based webpage record and replay framework
called NWCoZ. By recording and storing a web page on the proxy,
NWCoZ can apply arbitrary speedups or alter the network trans-
fer times during the replay process. While many webpage replay
techniques, e.g., MahiMahi [3, 9, 17], exist, they do not provide object-
level control over networking conditions during replay. On the other
hand, existing Linux network emulation tools, e.g., Linux TC, are
too fine-grained, i.e., they operate at the packet level, not the object
level. The fundamental challenge in extending existing tools to pro-
vide object-level control is to ensure efficiency and fidelity while
being flexible. Our observation is that the single largest overhead
of traffic profiling arises from per-packet traffic classification. Thus,
we avoid performing per packet classification by having the replay
tool’s network stack specify the train of packets associated with the
object. This can be done, for example, by adding special bits into pre-
existing packet headers. We observe that object-level classification
is appropriate for our purposes as the web optimizations operate on
the object level (§ 2).

4 PRELIMINARY EVALUATION

We have designed a preliminary version of WebOptProfiler for
Chrome. We implemented the part of the model generator mod-
ule in python with 300 lines of code, which constructs a matrix of
speedups for each object by comparing the run time of each stage
of each object. Similarly, we extended MahiMahi with 200 lines to
support optimization models’ ingestion and apply per object net-
work speedups. We use our partially developed system to emulate
a content minification optimization, which is a subset of standard
compression optimizations [6, 23], because we need an optimization
whose impact is strictly confined to the networking phase. We collect
our measurements on the top four websites from Scratchpad [1],
which contains a repository of publically hosted HTTP websites. We
run each website 10 times with a 100ms delay and 2Mbit bandwidth.
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We summarize our findings in Figure 5. As the figure shows, our
system can accurately represent a simple minification optimization.
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Figure 5: Analysis WebOptProfiler’s accuracy

5 RELATED WORK

The closest related work is on the causal profiling of distributed
systems [11] and web browsers [19]. The key distinctions are that
while prior work explores causal profiling at the system’s granular-
ity, we explore at a fine-granularity, namely at the granularity of the
system’s inputs (i.e., web objects). This shift in granularity requires
reifications of traditional causal profiling tools and developing a com-
posable web optimizations model, which allows us to map existing
optimizations to our enhanced causal profiling tool systematically.

Most attempts to analyze and perform “what-if” analysis within
the webspace [13, 26] explore a static analysis of the browser either
by instrumenting the browser [26] or by modeling the browser’s
traces [13]. Regardless, the browser’s multithreaded-ness and par-
allelism limits their applicability.

6 DISCUSSION AND OPEN CHALLENGES

This paper lays out a vision for providing performance clarity to the
growing jungle of mobile web optimizations by offering an initial
approach for modeling and analyzing these optimizations: In a sense,
we provide necessary mechanisms for analysis. However, to mean-
ingfully use our new mechanisms, we need to address the following is-
sues: developing carefully balanced benchmarks for comparative and
representative analysis (Section 6.1), defining policies for composing
optimizations (Section 6.2), and designing a useful model for device
speedups (Section 6.3). Next, we elaborate on these open challenges.

6.1 Representative Benchmarks

Our work’s key strength is that it allows developers to create and
share analytical models; however, such models are meaningless if
they are generated using arbitrary websites. On the one hand, gen-
erating models using arbitrary websites introduces bias, and also
the lack of standardization implies that models may be incongruent
with each other. On the other hand, generating models for every
website is wasteful and prohibitively expensive.
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We plan to generate a representative benchmark of websites, i.e.,
WebBench, that provides coverage over defining features of mod-
ern website. We envision that similar to TPC-C, our benchmarks
will capture various aspects of a webpage and provide different sub-
categories for different types of webpages, e.g., a benchmark for
progressive webpages versus a benchmark for AMP-specific pages.
The key challenge in realizing these benchmarks is defining appro-
priate features and subfeatures. While the main features, e.g., object
type and webpage structure, are obvious, the subfeatures are less
obvious. For example, while the subfeatures for images naturally
include resolution and encoding format, the obvious subfeatures
for javascript, e.g., lines of code or cyclometric complexity, are less
relevant as they do not meaningfully impact many (or any) opti-
mizations. Given appropriate features (and subfeatures), we can
determine a compact benchmark of websites that provide coverage
and representativeness by investigating and tailoring an appropriate
clustering algorithm to our domain.

6.2 Composing Optimization Models

Theoretically, we can combine, or compose, two optimizations by
merging their matrices. However, the appropriate method for merg-
ing is dependent on domain knowledge about the semantics of the
optimizations being composed. In particular, merging can be direct
and straightforward, provided that the optimization operates on non-
overlapping phases. For example, composing an image transcoding
optimization and an HTTP/2 push optimization can be as simple as
combining their matrices because they operate on different aspects;
while the former impacts transfer time, the latter impacts the start
time of the transfer. However, when the optimizations operate on
overlapping phases, we need semantic information to understand
how to combine their matrices. For example, composing an image
transcoding optimization with a compression optimization is non-
trivial as they are likely to operate on overlapping phases, and we
need additional semantic information to determine an appropriate
method for composition. We can automatically infer this semantic
information by analyzing the interactions between this composition
on our representative benchmarks (Section 6.1); however, this re-
quires the design of algorithms to detect correlations. Alternatively,
we can provide several explicit composition operators, e.g., “min(),
max(), sum()”, which the developer must select to allow our frame-
work to perform composition. We plan to begin with the more direct
approach, i.e., explicit operators, and then explore the model-based
approach upon completion of our benchmarks.

6.3 Device Models

With the growing move to extend mobile performance to develop-
ing regions [12, 20], understanding how optimizations operate on
a broad range of devices has become an important task. However,
systematically testing on such a broad range is not always feasible.
We plan to address this by developing device models that allow de-
velopers to reason about how differences in compute speed, memory
size, and specialized hardware accelerators (i.e., domain-specific
DSPs) impact an optimization’s effectiveness. While compute speed
is easy to model because it speeds up or slows down phases, memory
and specialized hardware are trickier.
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First, hardware accelerators are tailored for specific algorithms
or code patterns and thus operate on a limited set of objects, e.g.,
domain-specific DSPs are designed to accelerate pre-specified image
formats or video codecs. Thus, to model this hardware, we must de-
sign techniques first to infer the type of objects and then determine
the speedup factor. Given a robust enough benchmarking suite, we
can more directly infer models for such hardware.

Second, memory size indirectly impacts performance. On mobile
devices, e.g., on Android, the size of memory impacts the frequency
and duration of garbage collection events, and, unfortunately, during
garbage collection events, the applications, i.e., browser, are paused,
and pausing an application inflates its processing time. Thus mod-
eling device memory requires understanding events that are outside
the scope of the browser. These events are significantly harder to
model because they occur at random times, and modeling at fine-
grained to capture them can be cumbersome. We plan to investigate
the design of statistical models based on correlations that leverage
OS-level and application-level semantics to infer the relation be-
tween memory size and performance impacting events, e.g., garbage
collection.
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