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Abstract—With the proliferation of IoT devices, researchers
have developed a variety of IoT device identification methods with
the assistance of machine learning. Nevertheless, the security of
these identification methods mostly depends on collected training
data. In this research, we propose a novel attack strategy named
IoTGAN to manipulate an IoT device’s traffic such that it can
evade machine learning based IoT device identification. In the
development of IoTGAN, we have two major technical challenges:
(i) How to obtain the discriminative model in a black-box setting,
and (ii) How to add perturbations to IoT traffic through the
manipulative model, so as to evade the identification while not
influencing the functionality of IoT devices. To address these
challenges, a neural network based substitute model is used to
fit the target model in black-box settings, it works as a discrimi-
native model in IoTGAN. A manipulative model is trained to add
adversarial perturbations into the IoT device’s traffic to evade the
substitute model. Experimental results show that IoTGAN can
successfully achieve the attack goals. We also develop efficient
countermeasures to protect machine learning based IoT device
identification from been undermined by IoTGAN.

Index Terms—Internet of Things, Device Identification, IoT
Security, Machine Learning, Generative Adversarial Network

I. INTRODUCTION

The Internet of Things (IoT) refers to the network of phys-
ical devices that are embedded with sensors, chips, operating
systems and other technologies, collecting and exchanging
data over Internet [1]. The popularization of universal com-
puter chips and the ubiquity of wireless networks enable the
revolution to transform traditional devices into smart devices
as a part of the IoT. These IoT devices can be extensively de-
ployed for different purposes including consumer (e.g., smart
home, health care), commerce (e.g., transportation, manufac-
turing, agriculture), and military (e.g., battlefield equipment,
autonomous reconnaissance). However, the heterogeneity of
these devices also imposes security challenges to the manage-
ment of IoT networks.
For a network containing different kinds of IoT devices, it is

vital to identify the type of each IoT device before applying
fine-graded security policies. Other than managing different
kinds of IoT devices locally by the entity which the devices
belong to, knowing the type of the device can enable a global
management for security purpose from the level of the whole
network, in order to permit or prohibit IoT device’s specific
behavior. For example, in a military base, the network should
keep the geographical information confidential and forbid the
surveillance camera transferring video data to the outside.

Another example is that an organization may have different
permissions for its personnels to access different smart devices
(e.g., the maintenance staff can adjust the air conditioner unit;
the security guard can view the monitor video; and any person
should be able to control the smart bubble). More importantly,
IoT device identification can facilitate detecting vulnerable IoT
devices and preventing malicious rogue IoT devices.
Researchers have proposed various methods for IoT device

identification. A simple way is using identifiers (e.g., MAC
addresses, IP addresses, Bluetooth ID, Zigbee ID) to identify
IoT devices. However, various identifier spoofing attacks [2],
[3] have been exploited to deceive the identification. It is
necessary to develop new methods that can avoid using these
identifiers for IoT device identification. Recent progresses
including using statistical features which can reflect the be-
havior of a specific IoT device are developed for identification
[4]. However, due to the limitation of mathematical model
specific analysis, it is hard for these methods to keep a steady
accuracy rate when applying to different real-world scenarios.
Moreover, these methods usually introduce a high overhead
and fail when the traffic is encrypted.
To overcome these weaknesses, researchers have intro-

duced multiple machine learning based methods to assist
IoT device identification or network traffic fingerprinting [5]–
[14]. Specifically, these machine learning based methods can
successfully identify IoT devices even when the identifier is
spoofed, meanwhile they can achieve a high accuracy rate
no matter whether the traffic is encrypted. These methods
can be usually formalized as feature-based machine learning
classification problems. k-Nearest Neighbors (k-NN), Support
Vector Machine (SVM), Random Forest and Neural Networks
are the most frequently used approaches to build the machine
learning model. Through learning on traffic features on packets
(e.g., packet size, header information, even encrypted content
in data payload [15] ) or flows (e.g., packet interval, packet
count in a time window), these machine learning models
can achieve an accuracy rate as high as 99% in IoT device
identification.
Nevertheless, machine learning based IoT device identifica-

tion methods are designed with the aim for high performances,
but lacks any security guarantee. We discover that there exists
a subtle attack surface that can undermine the machine learn-
ing based IoT device identification. Specifically, these methods
rely on learning from the features which are obtained from



network traffics completely or partly controlled by IoT devices.
Thus, a rogue IoT device can maliciously alter its network
traffic to evade the machine learning based identification. In
this research, we aim to investigate current machine learning
based IoT device identification methods, reveal the potential
attacks, and derive corresponding countermeasures to protect
the IoT device identification from been undermined.
To this end, we develop an attack strategy, named IoTGAN,

which can efficiently disturb the machine learning based
IoT device identification. IoTGAN is inspired by Generative
Adversarial Network (GAN) [16] and it allows rouge IoT
devices to manipulate its traffic to camouflage themselves from
been identified. We implement IoTGAN as a practical system
to launch this attack. However, IoTGAN can not be simply
implemented by directly using GAN. Two major technical
challenges must to be addressed to achieve the malicious goal
of evading IoT device identification: (i) How to obtain the
discriminative model in black-box settings, and (ii) How to
add perturbations to IoT traffic through the manipulative model
(i.e., the generative model in GAN) to evade the identification
while not influencing the functionalities of IoT devices.
In addition to the attack strategy design and analysis, we de-

velop an effective defense approach, named Device Profiling,
to protect the machine learning based IoT device identification
from been undermined by IoTGAN. Device Profiling utilizes
the raw wireless signals emitted from IoT devices, which
exhibits inherent hardware features and cannot be manipulated
by IoT devices, to mitigate the effect of IoTGAN.
We conduct experiments on real-world IoT devices with

different machine learning based identification methods to
evaluate the effectiveness of IoTGAN. The experimental re-
sults show that IoTGAN can evade all the identification
methods with a successful rate higher than 90%. We also
conduct experiments to evaluate the defense approach and
observe that the attack successful rate significantly drops to
nearly zero after the deployment of Device Profiling.
The remainder of this paper is as follows. In Section II,

we introduce preliminaries. In Section III, we investigate the
existing machine learning base IoT device identification meth-
ods, and state our attack strategy of IoTGAN. In Sections IV
and V, we introduce the two core technical contributions in
the implementation of IoTGAN. We discuss potential coun-
termeasures to improve security in Section VI and present the
experiment results in Section VII. Finally, we conclude the
paper in Section VIII.

II. PRELIMINARIES

We introduce the preliminaries in this section, including the
architecture of IoT and general IoT devices.

A. IoT Architecture

Organizations like The IEEE Standards Association, Inter-
national Electrotechnical Commission, and American National
Standards Institute are working on developing the standards for
IoT. Generally, IoT follows a multi-layer architecture.

• Physical layer: This layer includes the low level hard-
ware components, such as sensors, actuators and RFIDs.
IoT relies on these essential components to perform the
fundamental functionalities (e.g., monitor the environ-
ment, collect information, manage operations).

• MAC/link layer: This layer connects different devices
to a network, thus to enable transmitting or exchange
of the data which is collected from physical layer. The
connectivity can be achieved through different kind of
protocols, including WiFi, NFC, Bluetooth, ZigBee and
cellular networking.

• Network layer and above: The network layer and above
connect IoT devices together via networking and provide
application-level services to the end user. There are more
than hundreds of applications in the IoT ecosystems, such
as smart home, smart transportation, and smart city.

B. IoT Devices
An IoT network may be connected with heterogeneous de-

vices for different applications. We introduce the mainstream
IoT products in current marketplace, with the application do-
main they belong to and the adopted communication protocols
in Table I. We can find that WiFi and bluetooth are commonly
used in smart home applications. While applications of smart
transportation and smart city prefer cellular networks for long
distance connection.

TABLE I
MAINSTREAM IOT PRODUCTS.

Name Application Communication Protocol

Google Nest

Smart Home

Bluetooth, WiFi
Apple AirTag Bluetooth, UWB, NFC
Amazon Echo Bluetooth, WiFi, Zigbee

Samsung SmartThings WiFi, Zigbee, Z-Wave
Drone Smart WiFi, Cellular, Telemetry

Smart car Transportation Bluetooth, WiFi, Cellular
Rail detector LoRa, Cellular
Smart trash

Smart City

WiFi, Zigbee
Weather station WiFi, LoRa, Cellular
Smart street light Cellular
Gunshot detector WiFi, Cellular

III. EVADING ML-BASED IOT DEVICE IDENTIFICATION

To evade identification, it is essential for the attacker to
have the knowledge of the target machine learning models.
Therefore, in this section, we first investigate existing machine
learning based IoT device identification methods, then we
introduce the attack model to achieve the adversarial goal.

A. Existing IoT Device Identification Methods
Remote service creates a subtle attack surface to infer the

identity of different IoT devices. As most IoT devices request
remote service via the RESTful APIs, which adopt the uniform
interface to improve the visibility of interactions, the attackers
are able to learn their identities by exploring unique features



extracted from uniform headers of the service request. The
work in [5] shows that the ML classifiers (i.e., SVM, and
Logistic Regression) can reach high accuracy when the header
features are considered (e.g., port numbers, domain names, and
cipher suites).
Nevertheless, modeling remote service requests may not

always yield sufficient information for accurate device identi-
fication, especially when the device is communicating with
an anonymous service provider. More information can be
gathered by learning the traffic/data flow patterns during the in-
teraction. In particular, multiple works have been done to learn
the spatial and temporal patterns of traffic/data flow to improve
the identification accuracy. The work in [6] has collected and
characterized the statistical attributes of traffic traces over 20
types of IoT devices and achieved a detection rate of 95%. The
work of [7] models the periodic communication traffic using
fingerprints extracted from frequency domain and adopts the
k-NN classifier with the detection rate of 98.2%. The authors
in [8] automate the process of feature extraction via genetic
algorithm and deploy various machine learning algorithms
(i.e., DecisionTable, J48 Decision Trees, OneR, and PART) to
increase the detection rate. The authors in [11] develop a multi-
stage meta classifier that explores the flow-level attributes
to further improve the classification accuracy based on the
network traffic analysis. Deep learning models (e.g., CNN and
RNN) have also been applied to achieve the fine-grain device
identification. The work in [12] converts the network payloads
into image representation to fully capture the traffic details and
achieves over 99% overall average detection accuracy. The
authors in [13] propose a hybrid supervised and unsupervised
deep learning approach to enable the refined classification for
both known and unknown device types.
Important Features Used in IoT Device Identification: Fea-

ture extraction is a key component in machine learning to
have an accurate device identification. Here we summarize the
most commonly used features in IoT device identification and
place them into two categories: (1) Remote service features,
including service request interval, service volume, service
type (e.g., NTP, DNS, Storage), service domain name, and
service active/sleep cycles. (2) Network packet/flow features,
including local port, remote port, local address, remote ad-
dress, encryption algorithm, packet size, packet interval, and
communication protocol.

B. Attack Model

Machine learning based IoT device identification systems
usually are hosted on the network administration side. For the
attacker, the target system is a black box without disclosing the
knowledge of the model internal structure and features used for
identification. In this research, we aim to develop a camouflage
attack that can help IoT devices to evade the machine learning
based identification in a black-box setting. Though the black-
box setting makes it more challenging to launch the attack,
it will promote the attack to be more practical for real-world
scenarios.

Specifically, we proposed a system, named IoTGAN, to
achieve this attack goal. IoTGAN is inspired by GAN [16].
GAN is comprised by two models: the discriminative model
and the generative model. The generative model is trained
to generate new samples by adding noise to the input data,
while the discriminative model is used to distinguish between
generated samples and real samples. Following a two-player
minimax game, the generative model will be continually
updated until the game achieves equilibrium.
As Figure 1 shows, IoTGAN includes the discriminative

model and the manipulative model. The discriminative model
has the same functionality as in GAN to help improve the
manipulative model until the manipulated IoT device traffic
can evade the identification. While the manipulative model
works as the generative model in GAN to manipulate the
traffic of IoT devices by adding perturbations. In next two
sections, we introduce our core technical contributions in the
implementation of IoTGAN: (i) How to obtain the discrim-
inative model in a black-box setting, and (ii) How to add
perturbations to IoT traffic through the manipulative model
to evade the identification without affecting the functionality
of IoT devices.
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Fig. 1. The architecture of IoTGAN.

IV. OBTAINING THE DISCRIMINATIVE MODEL IN A
BLACK-BOX SETTING

In this section, we introduce our design of the discriminative
model in IoTGAN. The discriminative model should have
the same population distribution as the target IoT device
identification model, i.e., for the same input, it should have the
same identification results. We aim to make it practical and
can be broadly applied to a generic situation (i.e., a black-box
setting in which the attacker has no knowledge of the target
system). In what follows, we first present a general formula
of IoT device identification. Then, we design our algorithm to
obtain the discriminative model.
According to the literature, IoT device identification algo-

rithms are either statistical or machine learning based methods
given users’ traffic features. We denote the target black-box
identification algorithm as a multi-class classifier M . The
inputs of M are K traffic features of a IoT device denoted
as H = {h1,h2, ...,hK}, where hi is the i

th traffic feature
of the device. Accordingly, the identification results S can be
written as

S = M(H). (1)



The output is the identified IoT class denoted as S = {Si}, i 2

[1, 2, ..., N ], where N is the total classes of IoT devices that
can be identified. The identifier aims to estimate the likelihood
probability P (S|H), which is the probability of the IoT class
S given the traffic input H . As shown in Figure 2, our goal
is to establish a substitute model, namely, M̂ , adapted to the
input-output relation of the target black-box model M , such
that M̂ and M have the same identification results for the
same group of IoT devices. This problem in fact falls into
the area of model transferability [17] in machine learning.
When labeled training datasets are collected from the same
population distribution of the target black-box model, it is
feasible to train a substitute model even when it has different
internal structures [18]. Without loss of the generality, we
adopt multi-layer full-connected neural network to learn the
target black-box identifier. Sigmoid function is applied at
the last layer and the class associated with the maximum
probability will be selected as the output.

A. Training Data Collection

Due to the broadcast nature of wireless communications,
we assume an attacker can eavesdrop on the traffic of IoT
devices and observe the identification results from the network
administrator. We then extract the features from the IoT traffics
and treat them as the inputs for the substitute model M̂ .
The identification results from the network administrator will
be treated as the output. As discussed, the attacker has no
knowledge of traffic features used in the black-box model. To
address the issue, we surveyed existing ML based IoT device
identification methods and build a feature pool that contains
all common traffic features used in these models. The feature
pool will be used as the start point of model training.

B. Substitute Model Training

Our model training takes two steps, 1) to obtain a substitute
model that can yield the same results as the target identifier,
2) to mitigate the performance overhead by selecting a refined
subset from the feature pool.
The process to obtain the accurate substitute model can

be stated as finding an M̂ that minimizes the empirical loss
L over the training dataset. Specifically, the process can be
formulated as

M̂ = argminL(S, Ŝ) = argmin
M̂

L(S, M̂(H)), (2)

where Ŝ is the predicted identification result yielded by the
substitute model M̂ given input H. The obtained substitute
model will work as the discriminative model in IoTGAN.
The first step focuses on building an accurate substitute

model, but it may incur considerable amount of computational
overhead as hundreds of features are used in model training.
To this end, IoTGAN carefully shrinks the parameter space
by selecting a refined subset where only features that indeed
affect accuracy will be maintained from the pool. In particular,
we adopt a weight training algorithm to obtain weights for all
features in the pool. Then, we create the subset by selecting
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Fig. 2. Obtaining a substitute model as the discriminative model in IoTGAN.

top L weighted features and retrain the labeled data. In order
to determine the optimal size of the subset, we further define
a metric Performance Gain to evaluate the prediction results
of the substitute model given different values of L.

Performance Gain =
(rc � rp)/rc � (cc � cp)/cc

(cc � cp)/cc
.

where rc and rp represent the accuracy rate for current and
previous subset size of L respectively, and cc and cp denote the
computational overheads for current and previous subset size
of L respectively. In particular, the computational overhead is
defined as the time required to identify the class of IoT device
using the substitute model. A positive Performance Gain
indicates that the accuracy grows faster than the computation
overhead with the increasing size of the subset. In IoTGAN,
L is chosen empirically according to the performance gain.
Specifically, we aim to keep a refined feature subset that
can obtain a substitute model with high accuracy rate but
at the same time impose negligible time overhead on device
identification.

V. MANIPULATING THE TRAFFIC OF IOT DEVICE TO
EVADE IDENTIFICATION

In this section, we design the manipulative model in IoT-
GAN. The manipulative model is used to manipulate IoT
device’s traffic such that the discriminative model can not
successfully identify the IoT devices. As we introduced in
aforementioned content, the discriminative model in IoTGAN
is a substitute model of the target identification model, there-
fore IoTGAN just needs to manipulate IoT device traffic to
evade the obtained substitute model. In particular, the manip-
ulate model is trained following the strategy of training the
generative model in GAN. This training procedure minimizes
the probability of correct identification in the discriminative
model. The training process of the manipulative model in
IoTGAN is shown in Algorithm 1.
The manipulative model takes IoT device traffic h and a

noise s as input. The noise is a vector of traffic features.
Specifically, we only consider to manipulate the features that
do not affect the functionality of IoT devices. For example,
the content in data payload of a packet will not be changed
to avoid disturbing the communication of IoT devices. As
most features used in IoT identification (e.g.,service request



Algorithm 1: Training process of the manipulative model in
IoTGAN.
Input : Original IoT device traffic feature vector H
Output: Trained manipulative model

1 while not satisfy (2) do
2 Learning on original traffic H;
3 Update the substitute model M̂ ;
/* Obtain the substitute model. */

4 while Not converging do
5 Initialize the multiplier factor r;
6 Set the adversarial perturbation s = rh;

/* Get the perturbation. */

7 Generate the manipulated traffic h0 = G✓(h, rh);
8 Label h0 using the substitute model M̂ ;
9 Update the manipulative model’s parameter set ✓.
/* Train the manipulative model. */

interval, service volume, local port, remote port) does not
associate with the content of a message, it is feasible to fool the
discriminative model by manipulating the traffic features. In
IoTGAN, the manipulative model G generates the manipulated
traffic h0 by

h0 = G✓(h, rh), (3)

where r = {r1, r2, ..., rn} is the multiplier factor for gen-
erating noise s, n is the number of elements in h. For
i 2 1, 2, ..., n, ri is 0 if the corresponding feature may
influence the functionality of IoT device; otherwise, ri a
random number sampled from a uniform distribution of [0,
0.1]; and ✓ is the parameter set of G. Since we consider
the discriminative model as a multi-class identifier, we cannot
simply adopt existing training procedure of GAN which only
works for the classifier with binary decisions. In this paper, we
propose a refined training process with two operation modes
1) device misidentification, 2) identity spoofing.

A. Device Misidentification
In device misidentification, the attacker aims to manipulate

the traffic features such that the discriminative model will
mislabel the given datasets. The process to achieve the purpose
is to find a manipulative model G that can maximize the
empirical loss L between the original and modified outputs
over the training dataset. Specifically, the process can be
formulated as

G✓ = argminL(Ŝ, ŜG✓ ) = argmax
G✓

L(M̂(H), M̂(G✓(h, rh))),

(4)
where ŜG✓ is the predicted identification results of M̂ given
the modified input G✓(h, rh). After training, the attacker can
hide the identify of IoT devices from been identified by the
network administrator.

B. Identity Spoofing
The misidentification can hide the identify of different IoT

devices but cannot camouflage them as any specified classes
for malicious purpose. For example, a surveillance camera
may want to pretend as a device with no sensitive data to

circumventing the rigorous export control policy. Towards
this objective, identity spoofing aims to generate modified
features that can fool the target model and yield the specified
identification outputs designated by the attacker.
The process of identify spoofing can be formulated as

finding a manipulative model G to minimize the empirical loss
L between the specified class and outputs given the modified
training dataset. Specifically, it is described as

G✓ = argmin
G✓

L(Sspoof , M̂(G✓(h, rh))), (5)

where sspoof is the class specified by the attacker. After
training, the attacker is able to deceive the discriminative
model and pretend as any type of IoT device.

VI. COUNTERMEASURES

As discussed in Section III, traffic based features can be
subtly manipulated by IoT devices to evade machine learning
based IoT device identification. To defend against IoTGAN,
we aim to identify different IoT devices using features that
cannot be easily manipulated. The proposed classifier is com-
plementary to existing IoT identification methods and can be
easily integrated with them to improve identification accuracy.
We observe that raw wireless signals emitted from different

IoT devices can exhibit inherent hardware features that cannot
be forged by common users. In particular, manufacturing
imperfection existing in IoT devices may impose a substantial
change on the transmit signal waveforms, yielding unique
features for device identification. We also note that wireless
signals experience distinct channel distortions when they travel
through different propagation paths [19]–[21]. We aim to take
advantage of these nonlinear characteristics of radio channels
to fingerprint different devices at various locations.
Specifically, we propose a method named Device Profiling

to distinguish different IoT devices. The method includes two
components: 1) feature profiling, which statistically describes
the nonlinear characteristics of the transmit signals from IoT
devices; 2) device fingerprinting, which builds a neural net-
work based multi-stage classifier to learn the feature patterns
for accurate and efficient device identification, even when the
traffic based features are manipulated.
In feature profiling, we profile different IoT devices us-

ing features extracted from radio frequency signals in four
perspectives: amplitude attenuation, phase shift, frequency
offset, and arrival angle. In particular, amplitude attenuation
and phase shift can be extracted from channel estimation at
the receiver. Both features indicate the channel distortions
caused by the internal hardware imperfection and the distinct
prorogation paths. Frequency offset can be estimated by the
maximum likelihood algorithm to derive the frequency devia-
tion caused by transmitters’s internal imperfections. The arrival
angle can be measured via the multiple-input and multiple-
output (MIMO) technique and exhibits the location-specific
information of propagation channels.
In device fingerprinting, we build a multi-stage classifier

which combines CNN and multi-class decision tree for accu-
rate and efficient device identification. The input of the clas-



TABLE II
THE IDENTIFICATION RATE FOR DIFFERENT TARGET MODELS AND TRAINED DISCRIMINATIVE MODELS.

Model Target Model Discriminative Model
Training Dataset Test Dataset Training Dataset Test Dataset

Random Forest 97.62% 97.32% 96.36% 97.10%
Decision Tree 92.20% 93.25% 92.12% 90.89%

SVM 97.89% 96.58% 96.50% 95.52%
k-NN 93.11% 92.33% 90.12% 91.56%

Neural Networks 98.56% 98.86% 98.00% 97.92%

sifier is the profiled features and the channel state information
estimated at the receiver, while the output is the mapping
results of different IoT devices (i.e., a possibility associated
with each specific device is generated to indicate how likely
the input belongs to the device). In particular, the CNN is
used to learn the subtle differences between different IoT
devices that cannot be fully captured by the features extracted
in feature profiling. The multi-class decision tree breaks down
the whole dataset into different levels and make decisions step
by step, in that way we only travel through the branches with
high possibility, reducing the unnecessary searching space.
Unlike traditional link signature based identification [22],

[23], where a location-specific metric is extracted from radio
channels to localize devices at different positions, the proposed
approach considers both internal hardware imperfection and
external location-specific features to distinguish devices with
different identities (e.g., types, locations). In addition, the deep
learning based classifier is expected to better fuse different
features and achieve a higher accuracy.
Our experiment shows that the propose Device Profiling can

achieve fast and accurate IoT device identification even in the
presence of the manipulated traffic flows.

VII. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the attack performance of
IoTGAN and the defense effectiveness of Device Profiling.

A. Experimental Setup

The dataset used in evaluation is obtained from UNSW
IoT Trace Data [24]. The dataset is collected in real-world
environment deployed with 28 different IoT devices. These
IoT devices include smart cameras (e.g., Samsung SamrtCam,
Belkin camera, TP-Link Cloud camera, and Ring door bell),
smart hubs (e.g., Amazon Echo, Samsung Smart Things),
smart switches (e.g., Belkin motion detector, and TP-Link
smart plug) and healthcare devices (e.g., Withings Smart scale,
Blipcare blood pressure meter). In the evaluation, we split the
IoT trace dataset into two parts. The first part contains 80%
of the data as the training dataset, while the remaining 20% is
used as the test dataset. In order to validate the performance of
IoTGAN, we adopt several typical machine learning based IoT
device identification models as the target black-box models,
including Random Forest [25], Decision Trees [5], SVM [5],
k-NN [7], and Neural Networks [13].

B. The Evaluation of IoTGAN

We following the references to implement the five typical
machine learning based IoT device identification models. Then
we use the UNSW IoT Trace Data to train and test these
models. We use a metric named identification rate to evaluate
the performance of IoTGAN, it is defined as

Identification Rate =
Correct Identification Count
Total Identification Count

.

The evaluation results for the five target machine learning
based IoT device identification models without the attack of
IoTGAN is shown in the left two columns of Table II. We
can observe that all these five typical identification models
can achieve a high identification rate larger than 92% for IoT
device identification. For the Neural Networks based model,
the identification rate can even achieve 98.86%.
The evaluation results of Table II indicate that the five

selected typical identification models are able to successfully
identify IoT devices when there is no malicious interference.
Therefore, they can work as good baselines to evaluate the
effectiveness of IoTGAN. If their identification rates are sig-
nificantly dropped under the attack of IoTGAN, our proposed
attack strategy will be proved effective in camouflaging IoT
devices.

Fig. 3. The identification rates for the discriminative model.

1) The Evaluation of Discriminative Model: We train dis-
criminative models and manipulative models for all five target
models with the UNSW IoT Trace Data. The same training



and test datasets are used to obtain the discriminative models.
Since discriminative models are the substitutes of the target
identifiers, they should have the similar identification rate. The
right two columns of Table II demonstrate the performance of
the discriminative models. As shown, our substitute models
can achieve similar identification rate as the target ones.
The results indicate that our proposed training process can
effectively learn the target identifiers and generate the same
identification results.
Figure 3 shows the identification rates of the discriminative

models as the number of epochs increases. As shown, the
discriminative models for all target identifiers can reach the
stability after 40 epochs and approach an identification rate
higher than 90%. In particular, the discriminative model for
random forest identifier can achieve a high identification rate
of 92.10% after 40 epochs.
2) The Evaluation of Manipulative Model: We then use

IoTGAN to attack these target models and calculate the new
identification rate for both the training dataset and test dataset.
We first mount the attack of the device misidentification
to reduce the identification rate of the target model. The
evaluation results are shown in Table III. We can observe that
IoTGAN is able to decrease the identification rates to almost
zero for all five target models. This indicates that IoTGAN
can successfully manipulate the IoT traffic to evade machine
learning based IoT device identification.

TABLE III
THE IDENTIFICATION RATE FOR DIFFERENT MACHINE LEARNING BASED
IOT DEVICES IDENTIFICATION MODELS UNDER THE ATTACK OF IOTGAN.

Model Training Dataset Test Dataset

Random Forest 0.15% 0.13%
Decision Tree 0.05% 0.06%

SVM 0.11% 0.08%
k-NN 0.21% 0.23%

Neural Networks 0.08% 0.06%

Next, we launch the attack of identity spoofing to camou-
flage IoT devices with specified types. In UNSW IoT Trace
Data, we have four main types of IoT devices (i.e., smart
cameras, smart hubs, smart switches and healthcare devices.).
We conduct an experiment of the identify spoofing among all
these types of IoT devices and evaluate their performance.
In particular, we define a metric named Spoofing Rate that
indicates the successful rate of the spoofing attack. It is
described as the ratio between the count of successful spoofing
identifications and the total count of identifications,

Spoofing Rate =
Successful Spoofing Identification Count

Total Identification Count
.

Table IV demonstrates the performance of the identify
spoofing. As shown, we can achieve more than 90% successful
rate when spoofing the IoT identify between smart camera ,

smart hub; smart camera , healthcare device; smart hub
, healthcare device; smart switch , healthcare device.
Such results indicate that the attack can effectively hide the

identity of IoT devices and designate them new specified ones.
However, we also find two exceptions (i.e., smart camera
, switch, smart hub ) switch) that can only achieve the
spoofing rate around 70%. This may because the traffic pattern
of the smart camera is quite different from the smart switch
that can hardly be spoofed. Specifically, the smart camera
usually enables a real-time video transmission that demands a
high bandwidth and privileged wireless channel. On the other
hand, the data from the smart switch is relatively static and
sparse that only occupies a very limited bandwidth. Due to
the nature difference of the traffic pattern between the camera
and switch, it’s hardly to hide some trivial features without
affecting its functionalities.

C. The Evaluation of Device Profiling

We implement the Device Profiling following the design
in Section VI. It mainly includes two components: the fea-
ture profiling, which uses the nonlinear characteristics of the
transmit RF signals for IoT device profiling; and the device
fingerprinting, which build a neural network based multi-stage
classifier to learn the feature patterns for accurate and efficient
device identification even when the traffic based features are
manipulated. The system is built with Intel WiFi Wireless
Link 5300 802.11n MIMO radio tool [26] to collect data.
Device Profiling is deployed in a real-world environment with
different IoT devices (e.g., Eufy security camera, Eufy smart
lock, and Ecobee thermostat) for evaluation. We then use
IoTGAN to attack this Device Profiling system. The evaluation
results is shown in Figure 4

Fig. 4. The identification rates for Device Profiling in the scenario: (1) without
the attack of IoTGAN, and (2) under the attack of IoTGAN.

From Figure 4, we can see when there is no attack of
IoTGAN, Device Profiling can achieve an identification rate
around 98%. When IoTGAN is deployed to launch attacks,
there is nearly no effect on the identification rate of Device
Profiling when the epoch of training the manipulative model
is less than 30. This indicates that the generative model needs
approximate 30 epochs of training to approach the stable
state. After that, the Device Profiling can still maintain an
identification rate around 95%. Therefore, we can conclude



TABLE IV
THE SPOOFING RATE FOR DIFFERENT TYPES OF IDENTITY SPOOFING ATTACK (camera , hub INDICATES THE IDENTIFY SPOOFING BETWEEN THE
SMART CAMERAS AND SMART HUBS. camera ) hub INDICATES THE ATTACKER AIMS TO CAMOUFLAGE THE IDENTIFY OF SMART CAMERA TO THE

SMART HUB.)

Identity Spoofing camera , hub camera , health camera , switch hub , health hub , switch switch , health
Model ( ) ( ) ( ) ( ) ( ) ( )

Random Forest 92.11% 91.59% 85.12% 89.13% 77.12% 68.31% 91.13% 90.12% 91.87% 75.63% 90.34% 91.31%
Decision Tree 93.19% 92.21% 90.23% 89.35% 70.79% 69.21% 89.23% 92.49% 92.85% 71.25% 91.13% 92.95%

SVM 89.17% 91.75% 89.72% 91.89% 72.65% 70.12% 92.54% 92.13% 90.15% 69.92% 93.56% 92.79%
k-NN 91.57% 91.12% 88.21% 90.92% 68.15% 69.78% 91.45% 90.68% 89.74% 70.54% 91.51% 90.36%

Neural Networks 93.67% 93.98% 89.10% 87.88% 73.64% 71.23% 91.65% 93.68% 91.20% 71.99% 92.55% 93.79%

that Device Profiling can successfully defend against the
attacks launched by IoTGAN.

VIII. CONCLUSIONS

In this paper, we investigate the security of machine learn-
ing based IoT device identification methods. We propose a
novel attack strategy named IoTGAN to manipulate the IoT
devices’ traffic such that it can evade machine learning based
IoT device identification. In IoTGAN, a substitute model is
designed to fit the target identification model in a black-box
setting, and a manipulative model is trained to add adversarial
perturbation into IoT devices’ traffic to evade the substitute
model. Experimental results show that IoTGAN can effectively
disrupt device identification. We also develop countermeasures
complementary to existing methods to further protect machine
learning based IoT device identification.
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