

Provenance of Baker River sediments (Chile, 48°S): Implications for the identification of flood deposits in fjord sediments

1 **Abstract**

2 Floods are among the most destructive natural hazards on Earth. In paleohydrology,
3 sediments are generally considered as one of the best archives to extend flood
4 records to pre-historical timescales. Doing so requires being able to identify flood
5 deposits from sediment archives and decipher between flood types. The latter is
6 particularly important in glacierized regions, where meteorological floods frequently
7 co-occur with Glacial Lake Outburst Floods (GLOFs). In Patagonia, results from a
8 recent study suggest that GLOFs are recorded in downstream fjord sediments as
9 fine-grained and organic-poor layers, representing the high amount of glacier rock
10 flour transported during lake outbursts, whereas meteorological floods are
11 represented by coarser and more organic deposits. However, not all fine-grained
12 organic-poor deposits could be associated with historical GLOFs. Here, we
13 reconstruct the provenance of these Baker River flood deposits using $^{87}\text{Sr}/^{86}\text{Sr}$ and
14 ϵNd , taking advantage of the clear lithological differences that exist between both
15 sides of the watershed. Our results show that both $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵNd are suited to
16 reconstruct sediment provenance in the Baker River watershed but that ϵNd is the
17 most effective and the least affected by grain-size variations. Our provenance results
18 confirm that the 21st century fine-grained and organic-poor deposits represent GLOFs
19 and that the largest winter meteorological flood on record has a distinct coarse and

20 organic-rich signature. However, our results show that rain-on-snow events that
21 occur in summer, and therefore primarily affect the western glacierized part of the
22 watershed, have the same fine-grained organic-poor signature as GLOFs. Therefore,
23 this study shows that the sedimentary signature of rain-on-snow floods in partially
24 glacierized watersheds depends on the season during which they occur. We
25 anticipate that our findings will contribute to a better interpretation of flood records
26 from partially glacierized watersheds.

27

28 **Keywords:** Glacial Lake Outburst Floods, rain-on-snow floods, Patagonia,
29 paleohydrology, grain size, Nd isotopes, Sr isotopes

30

31 **1. Introduction**

32 Floods are arguably one of the most catastrophic hydrological hazards on
33 Earth. These ubiquitous events can cause enormous economic loss and casualties
34 (e.g., Hirabayashi et al., 2013) and the ongoing intensification of the hydrological
35 cycle is expected to result in an increase in both their frequency and magnitude at
36 various locations globally (Kundzewicz et al., 2014; Breugem et al., 2020). In
37 glacierized regions, meteorological floods frequently co-occur with Glacial Lake
38 Outburst Floods (GLOFs), i.e., floods caused by the sudden emptying of ice- or
39 moraine-dammed lakes (e.g., Carrivick & Tweed, 2016). As the number and size of
40 glacial lakes are currently increasing worldwide (Shugar et al., 2020), it is urgent to

41 understand how GLOFs respond to climate change to assess how their frequency
42 and magnitude will evolve in a future warmer world.

43 The lower Baker River watershed (47–48°S) in Chilean Patagonia is
44 particularly vulnerable to both meteorological floods and GLOFs (Dussaillant et al.,
45 2010, 2012; Iribarren Anacona et al., 2014; Jacquet et al., 2017; Vandekerkhove et
46 al., 2020b; Benito et al., 2021). This results from the hyperhumid climate that is
47 typical of Chilean Patagonia (Garreaud et al., 2013), and from the abundance of
48 glacial lakes formed by the recession of outlet glaciers, primarily from the Northern
49 Patagonian Icefield (NPI) (Davies & Glasser, 2012; Wilson et al., 2018). Until
50 recently, most of the historical GLOFs that occurred in the lower Baker River
51 watershed were thought to have originated from the Colonia River, due to the abrupt
52 draining of either Cachet II or Arco lakes (e.g., Harrison & Winchester, 2000;
53 Dussaillant et al., 2010; Jacquet et al., 2017). However, recent studies indicate that
54 at least one historical GLOF within the Baker River watershed originated from a
55 smaller moraine-dammed lake not related to the NPI (Iribarren Anacona et al., 2014;
56 Vandekerkhove et al., 2021).

57 One of the best archives of Baker River floods are the sediments deposited in
58 the fjord immediately downstream of the Baker River (Martínez Channel). Based on a
59 comparison of sedimentological data with historical chronicles, Vandekerkhove et al.
60 (2021) showed that the 21st century GLOFs originating from Lake Cachet II were
61 recorded in the fjord's sediments as fine-grained and organic-poor deposits. This is in
62 contrast with the common idea that floods are consistently recorded in sediments as

63 turbidites (e.g., Schillereff et al., 2014; Wilhelm et al., 2015) but it accurately reflects
64 the release of large amounts of glacier rock flour in Baker River during GLOFs. Older
65 Martínez Channel sediments also contain fine-grained organic-poor deposits and
66 turbidites relatively rich in organic matter, which were tentatively attributed to GLOFs
67 and meteorological floods, respectively, by Vandekerkhove et al. (2021). However,
68 based on sedimentological and chronological criteria only, several of these flood
69 layers could not be attributed to historical flood events, rendering the conclusions
70 about the exact signature of GLOFs and meteorological floods relatively uncertain.

71 Properly interpreting flood deposits in terms of specific flood type is crucial to
72 generate independent records of meteorological floods and GLOFs, and therefore
73 use these records to acquire a mechanistic understanding of the factors affecting
74 flood occurrence. Such an objective calls for a detailed investigation of sediment
75 provenance. Being able to track sediment provenance is also of prime importance to
76 understand the lake or icefield at the origin of each GLOF. This is particularly
77 relevant in Patagonia, where glaciers may respond differently to climate according to
78 their longitudinal position (precipitation-driven vs ablation-driven; e.g., Bertrand et al.,
79 2012a).

80 With this in mind, this study aims to reconstruct the provenance of Baker
81 River flood deposits preserved in the sediments of Martínez Channel using Sr and
82 Nd isotopes. These two geochemical tracers reflect the type and age of the source
83 rocks (Faure and Mensing 2004) and they are particularly suited for fine-grained
84 siliciclastic sediments (Jonell et al., 2018). They are also known to accurately reflect

85 the differences in the bedrock lithologies that occur in western Patagonia (Liu et al.,
86 2020). To achieve this goal, we first compare the isotopic signature of suspended
87 sediments from the largest tributaries to the lithology of the bedrock in their
88 respective watersheds, and we use these results to define the sediment end-
89 members. We then investigate the influence of grain size on Sr and Nd isotopes
90 using measurements obtained on eight grain-size fractions separated from a bulk
91 river sediment sample from the Baker River mouth. Finally, we use Sr and Nd
92 isotopes to reconstruct the provenance of historical (1975–2017) flood deposits of
93 known and unknown origin identified in a sediment core from the head of Martínez
94 Channel. The provenance results are then compared with historical data to refine the
95 sedimentological interpretation of the deposits. We anticipate that our results will
96 constitute a strong basis for future paleohydrological research in glacierized regions,
97 including the generation of independent meteorological flood and GLOF proxy
98 records.

99 **2. Setting**

100 **2.1 Study area**

101 Baker River is the largest river in Chile in terms of mean annual discharge
102 (Dussaillant et al., 2012). It originates at Lake Bertrand and it discharges in Martínez
103 Channel near the town of Tortel (Figure 1), where it forms a large subaqueous delta
104 incised by submarine channels (Vandekerkhove et al., 2020a). The Baker River
105 watershed is relatively large (29,202 km²) and it comprises numerous icefields and

106 glaciers, including several outlet glaciers of the Northern Patagonian Icefield (NPI) in
107 the west, the San Lorenzo icefield in the southeast, and smaller mountain glaciers,
108 including those of the Cordon de los Ñadis (Figure 1). Due to the input of large
109 amounts of glacial meltwater in summer, Baker River shows sizeable variations in
110 discharge with seasons, ranging from 600 m³/s in winter to 1200 m³/s in summer
111 (Dussaillant et al., 2012). Baker River is fed by several large proglacial rivers
112 originating from NPI outlet glaciers on the western side of the watershed, such as
113 Colonia River, and by smaller rivers from the east, some of which are proglacial in
114 nature (e.g., the del Salto and los Ñadis rivers).

115 In addition to Baker River, three other large rivers discharge at the head of
116 the Baker-Martínez fjord system: Huemules River, which originates from Steffen
117 Glacier at the southern end of the NPI; Bravo River, which drains a relatively small
118 watershed to the east of the fjord complex, and Pascua River, which is the outflow of
119 Lake O'Higgins and is fed by meltwater from the Southern Patagonian Icefield (SPI)
120 (Figure 1).

121 The Baker River watershed presents a wide range of environments that
122 mostly reflect the strong west-to-east gradients in precipitation and, to a lesser
123 extent, elevation and therefore surface temperature. The western part of the
124 watershed is characterized by a cold and hyperhumid climate, with annual
125 precipitation reaching 3000–4000 mm/yr, whereas its eastern part across the border
126 with Argentina is warmer and semi-arid, with precipitation dropping below 500 mm/yr
127 (Garreaud et al., 2013; Fick & Hijmans, 2017).

128 The sediment budget of Baker River is dominated by particles originating from
129 its lower watershed, i.e., downstream of Bertrand and Cochrane lakes (Figure 1).
130 This sub-division in upper and lower watersheds (Figure 1) mostly reflects the ability
131 of lakes General Carrera and Cochrane to trap most of the sediment produced in the
132 upper watershed. The main sources of sediment to Baker River are therefore located
133 in the lower watershed, which is composed of two main lithological units (Figure 1)
134 (SEGEMAR, 1998; SERNAGEOMIN, 2003; Gómez et al., 2019): the Patagonian
135 Batholith (PB), which is located to the west and is composed of Cretaceous to
136 Miocene granitoids, and the Eastern Andean Metamorphic Complex (EAMC) to the
137 east. Although the PB and EAMC are each composed of lithologies of distinct ages,
138 the exact distribution of the sub-units is not reported in the literature (e.g., Pankhurst
139 et al., 1999; Augustsson & Bahlburg, 2003). Volcanic rock formations crop out in the
140 eastern part of the watershed and thick fluvioglacial deposits marking the maximum
141 Quaternary extent of the Patagonian Ice Sheet occur in the easternmost part of the
142 watershed in Argentina (Boex et al., 2013; Kaplan et al., 2005). It is worth noting that
143 the location of Baker River roughly corresponds to the limit between the PB and
144 EAMC lithologies (Figure 1). Therefore, all proglacial rivers originating from NPI
145 outlet glaciers (e.g., Huemules and Colonia rivers) predominantly drain the PB,
146 whereas those to the east, including Chacabuco, del Salto, and los Ñadis, mostly
147 drain the EAMC (Figure 1; Table 1). To the south, the Bravo River watershed and the
148 lower Pascua River watershed, i.e., downstream of the large Lake O'Higgins, are
149 almost entirely composed of EAMC (Figure 1; Table 1).

150 2.2 Flood history

151 Historical Baker River floods consist of GLOFs and meteorological floods.

152 According to historical and instrumental information, most recent GLOFs originated

153 from the Colonia River and were due to the drainage of either Lake Arco (until the

154 1960s) (e.g., Harrison & Winchester, 2000; Dussaillant et al., 2010), or Lake Cachet

155 II (from 2008 onwards) (e.g., Jacquet et al., 2017; Vandekerkhove et al., 2021).

156 Between 2008–2017, a sequence of 21 GLOFs caused by the sudden emptying of

157 Lake Cachet II occurred (Dussaillant et al., 2010, 2012; Jacquet et al., 2017). During

158 these events, the Baker River tripled in discharge (Dussaillant et al., 2010), and its

159 suspended sediment concentration increased 8-fold, transporting considerable

160 amounts of sediments ($1.0\text{--}1.5 \times 10^5$ tons per GLOF event) to the head of Martínez

161 Channel (Quiroga et al., 2012). Local testimonies and satellite images also indicate

162 the existence of a GLOF from proglacial lake Las Lengas, in the los Ñadis valley

163 (Figure 1), in March 1988 (Iribarren Anacona et al., 2014; Vandekerkhove et al.,

164 2021). This event resulted in a significant increase in the discharge of los Ñadis River

165 (Iribarren Anacona et al., 2014), but its signature in the Baker River hydrographs is

166 unclear, possibly due to their low temporal resolution (one measurement daily;

167 Vandekerkhove et al., 2021).

168 Due to relatively high year-round precipitation and the presence of large

169 icefields and mountain glaciers, this region is also prone to meteorological floods

170 driven by extreme precipitation, high seasonal meltwater discharge, and rain-on-

171 snow events (Dussaillant et al., 2012; Vandekerkhove et al., 2021). Two particularly

172 large rain-on-snow events occurred in December 1976 and December 1989
173 (Dussaillant et al., 2012). Another large meteorological flood, possibly also
174 corresponding to a rain-on-snow event, was identified in August 1992
175 (Vandekerkhove et al., 2020b). During those events, the discharge of Baker River
176 (2000–3000 m³/s) reaches values similar to peak discharge during GLOFs (2000–
177 4000 m³/s; Dussaillant et al., 2012; Vandekerkhove et al., 2021).

178 **3. Material and Methods**

179 3.1. Material

180 3.1.1 River suspended sediments

181 Water samples were collected at the mouths of (a) the two largest NPI
182 proglacial rivers (i.e., Huemules and Colonia rivers), (b) four rivers mainly draining
183 the EAMC (i.e., del Salto, los Ñadis, Bravo and Pascua rivers), and (c) Baker River,
184 in Jan–Feb 2019 (Figure 1). To obtain a sufficient amount of suspended sediment
185 (>100 mg) for analysis, around 100 L of water was collected at the center of each
186 river ~20 cm below the surface, either using a telescopic rod with a 2L beaker from a
187 riverbank (Colonia River), or using a bucket from a bridge (del Salto and los Ñadis
188 rivers) or from a boat (Huemules, Baker, Bravo, and Pascua rivers).

189 All water samples were filtered through a 0.22 µm PES membrane using a
190 pre-rinsed pressurized filtration system. The suspended sediments were kept frozen
191 until processing in the laboratory. They were then separated from the filters by
192 repeated washing with Milli-Q water and ultrasonic bathing. Subsequently, the

193 suspended sediments were freeze-dried and stored in glass vials. The volume of
194 filtered water and the weight of dry suspended sediment were used to calculate
195 suspended sediment concentrations (SSC).

196 3.1.2 Bulk river sediments

197 Bulk river sediment sample RS11-05 was collected from a recently
198 abandoned meander near the mouth of Baker River in November 2011 (Figure 1)
199 and separated into eight grain-size fractions. The fractions coarser than 32 μm (i.e.,
200 32–45, 45–63, 63–90, and 90–125 μm) were separated by dry sieving, whereas the
201 finer fractions (0–4, 4–8, 8–16 and 16–32 μm) were obtained after sedimentation in
202 Atterberg columns following Stokes' law. Sediments coarser than 125 μm were not
203 investigated since they are not representative of the fraction that reaches the fjord
204 (Bertrand et al., 2012b; Vandekerkhove et al., 2020a).

205 3.1.3 Fjord sediments

206 A 106.8 cm-long sediment core (FC17-08) collected at the head of Martínez
207 Channel approximately 5 km off the Baker River mouth (Figure 1) was subsampled
208 for this study. This sediment core was obtained on the delta slope at a depth of 207
209 m using a gravity corer operated from the R/V Sur Austral in February 2017. It is the
210 most representative of a set of ten sediments cores collected at the fjord head
211 (Vandekerkhove et al., 2021). An age-depth model was constructed based on ^{210}Pb
212 measurements made at a 10 cm interval on the turbidite-free sediments (i.e., after
213 removing the turbidite at 66–70 cm). A Constant Flux-Constant Sedimentation

214 (CFCS) model was used to generate the core chronology (Vandekerkhove et al.,
215 2021). According to the age-depth model, FC17-08 covers the period 1982–2017,
216 with sedimentation rates ranging between 2.88 and 3.03 cm/yr (Figure 2). Prior to
217 this study, the sediment core was described, scanned on a Geotek multisensor core
218 logger and on an XRF core scanner, and analyzed for grain size and total organic
219 carbon (TOC) content (Vandekerkhove et al., 2021).

220 Sediment core FC17-08 is mostly composed of homogeneous silt-sized
221 particles, with intercalations of fine mud layers between 0–27.5 cm and at 82–83 cm,
222 and of a fine-grained turbidite at 66–70 cm (Figure 2). The fine mud layers are
223 typically finer (mean grain size: $5.98 \pm 0.82 \mu\text{m}$) and less organic (TOC: $0.31 \pm$
224 0.06%) than the background sediment (mean grain size: $7.32 \pm 0.65 \mu\text{m}$, TOC:
225 $0.36\% \pm 0.04 \%$). The turbidite, however, is relatively rich in organic matter ($0.57 \pm$
226 0.10%). The mud deposits that occur between 0–27.5 cm have a modeled age of
227 2008–2017 and were interpreted as the signature of the 21st century Cachet II
228 GLOFs (Vandekerkhove et al., 2021). The turbidite between 66–70 cm (modeled age
229 1990–2000) was tentatively interpreted as the signature of the 1992 rain-on-snow
230 event, mostly based on its age, but it could also correspond to the 1988 Las Lengas
231 GLOF (Vandekerkhove et al., 2021). The fine mud deposit at 82–83 cm (modeled
232 age 1984–1997) was however associated with more certainty with the 1988 Las
233 Lengas GLOF by Vandekerkhove et al. (2021).

234 To investigate the provenance of these deposits, a total of seven subsamples
235 were taken from sediment core FC17-08 (Figure 2): two representing background

236 sediments at 51.0–51.5 and 75.0–75.5 cm; three corresponding to the fine-grained
237 2008–2017 Cachet II GLOF deposits at 17.0–17.5, 24.0–24.5 and 26.0–26.5 cm; and
238 two in unknown event deposits: one near the base of the turbidite at 69.0–69.5 cm;
239 and one in the fine mud layer at 82.0–82.5 cm.

240 3.2 Methods

241 3.2.1 Sr and Nd isotopes

242 The seven river suspended sediment samples, the eight grain-size fractions
243 of Baker River sediment sample RS11-05, and the seven subsamples from sediment
244 core FC17-08 were analyzed for Sr and Nd isotope ratios at the University of
245 Missouri Research Reactor (MURR), Columbia MO, USA. About 100 mg of sample
246 was digested in 1 mL 14 N HNO₃ + 4 mL 24 N HF, and 6 mL 5–6 N HCl,
247 successively, using several cycles of heating and evaporation. Subsequently, 2 mL
248 14 N HNO₃ was added to the residues for dissolution and evaporation, followed by
249 1.5 mL 2 M HNO₃ for final dissolution. The Sr and Nd fractions were then extracted
250 following a protocol slightly modified from Míková & Denková (2007), using
251 chromatographic columns that were homemade out of Pasteur pipets with a 4 mm
252 internal diameter.

253 The Sr and Nd isotope analyses were conducted on a Nu Plasma II MC-ICP-
254 MS. Analytical conditions are reported in Supporting Information (Text S1). The Sr
255 isotopic results obtained on reference material SRM987 (0.710256 ± 24 [2 sd]) were
256 in agreement with recommended values (Thirlwall, 1991; De Muynck et al., 2009).

257 The average value obtained for the Nd isotopic standard JNd-1 was 0.512087 ± 11
258 (2 sd).

259 The Nd isotopic compositions were expressed as ε Nd, which is defined as:

260
$$\varepsilon\text{Nd} = [(\text{Nd}^{143}/\text{Nd}^{144})_{\text{sample}}/(\text{Nd}^{143}/\text{Nd}^{144})_{\text{CHUR}} - 1] \times 10^4$$

261 where $(\text{Nd}^{143}/\text{Nd}^{144})_{\text{CHUR}}$ is the value of the Chondritic Uniform Reservoir (0.512638;
262 Jacobsen & Wasserburg, 1980).

263 The isotopic composition of the sediment samples was compared to the
264 composition of the main bedrock lithologies occurring in their watersheds. These
265 values were collated from the literature, i.e., Pankhurst et al. (1999) for the PB and
266 Weaver et al. (1990) for the EAMC.

267 3.2.2 Grain-size analysis

268 Grain size was measured on the river suspended sediment samples and on
269 the eight grain-size fractions of RS11-05 using a Malvern Mastersizer 3000 at Ghent
270 University. The grain size of the suspended sediment sample from Bravo River was
271 not measured due to limited sample amount. Organic matter, carbonate, and
272 biogenic silica were removed by sequentially boiling the sample suspended in 10 mL
273 DI water with 2 mL 30% H_2O_2 , 1 mL 10% HCl and 1 mL 2 N NaOH, respectively.

274 Each sample was then boiled with 1 mL 2% sodium hexametaphosphate for
275 complete disaggregation before analysis. Sample amount was adjusted to reach a
276 laser beam obscuration between 5 and 15%. The geometric mean of the grain size
277 distributions was calculated with GRADISTAT v.8 (Blott & Pye, 2001). The same

278 procedure was used by Vandekerkhove et al. (2021) to measure the grain size of the
279 FC17-08 subsamples.

280 3.2.3 Statistical analysis

281 To investigate the possible influence of sediment grain-size on the Sr and Nd
282 isotopic composition of the river and fjord sediment samples, the relations between
283 grain size, Sr and Nd isotopes, and bulk mineralogy (measured by XRD and semi-
284 quantified using RockJock v.11; Liu et al., 2019) of the eight grain-size fractions of
285 river sediment sample RS11-05 were examined by PCA using XLSTAT 2019. To
286 overcome the close-sum effect and the non-negative nature of compositional data
287 (Aitchison, 1986, 1990), grain-size mean was expressed in phi units, and
288 mineralogical data were transformed to centered log-ratios.

289 **4. Results**

290 4.1 River suspended sediments

291 The seven river suspended sediment samples display $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵNd
292 values that are distinctive from each other (Figure 3a). The suspended sediment
293 samples obtained from the proglacial rivers mainly draining the PB lithology (i.e.,
294 Huemules and Colonia rivers) show relatively low $^{87}\text{Sr}/^{86}\text{Sr}$ and high ϵNd values
295 (Figure 3a). By comparison, the river suspended sediments from watersheds
296 dominated by the EAMC (i.e., del Salto, los Ñadis, Bravo, and Pascua rivers) are
297 more radiogenic in Sr, but their ϵNd values are generally lower (Figure 3a). The
298 Baker River suspended sediment sample displays $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵNd values in-

299 between those of the Colonia and Huemules samples. The $^{87}\text{Sr}/^{86}\text{Sr}$ values are
300 negatively correlated to the areal proportion of PB in the river's watersheds ($r = -0.67$,
301 $p < 0.1$), whereas the ϵNd values show a stronger and positive correlation with PB
302 proportions ($r = 0.80$, $p < 0.05$; Figure 3b).

303 In terms of grain size, all river suspended sediment samples are composed of
304 clay and silt, with a mean grain size varying between 3.27 μm for the Colonia River
305 and 7.58 μm for del Salto (Figure 4a). Overall, samples from NPI proglacial rivers
306 (Colonia and Huemules) are finer (mean: 3.27 and 3.67 μm) than those from the
307 eastern part of the lower Baker River watershed (del Salto and los Ñadis; mean: 7.58
308 and 5.54 μm). The Baker River suspended sediment sample is intermediate (mean:
309 4.53 μm), and its grain-size distribution is similar to that of Pascua River (mean: 4.41
310 μm).

311 4.2 Baker River sediment grain-size fractions

312 The eight grain-size fractions of Baker River sediment sample RS11-05 show
313 an overall decrease in $^{87}\text{Sr}/^{86}\text{Sr}$ as grain size increases (Figures 4b, 5a). The relation
314 between ϵNd and grain size is not as consistent. A decrease in ϵNd values is
315 observed from clay to fine silt, followed by an increase from fine silt to sand. ϵNd
316 values are the highest in the coarsest grain-size fractions.

317 To further investigate the grain-size control on $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵNd of sediment,
318 the mean grain size of each of these fractions and their isotopic and mineralogical
319 composition was analyzed by PCA (Figure 5b). In the PCA biplot, PC1 explains

320 46.77% of the total variance. It displays strong positive loadings for $^{87}\text{Sr}/^{86}\text{Sr}$ and total
321 clay minerals, and a distinct negative loading for quartz and mean grain size,
322 providing evidence that Sr isotopes consistently covary with grain size. PC2, which
323 accounts for 30.17% of the total variance, shows strong positive loadings for ϵNd , K-
324 feldspar, and pyroxene, and distinct negative loadings for amphibole and plagioclase.
325 ϵNd is positively related to K-feldspar and pyroxene, but it is orthogonal with respect
326 to mean grain size.

327 4.3 Sediment core subsamples

328 For the FC17-08 subsamples, the background sediments show relatively low
329 $^{87}\text{Sr}/^{86}\text{Sr}$ and high ϵNd values (Figure 6a). The subsamples representing the 2008–
330 2017 Cachet II GLOF deposits at 17.0–17.5, 24.0–24.5, and 26.0–26.5 cm display
331 similar $^{87}\text{Sr}/^{86}\text{Sr}$ and slightly lower ϵNd values (Figure 6a). The sample from the 66–
332 70 cm turbidite shows very high $^{87}\text{Sr}/^{86}\text{Sr}$ and low ϵNd values, making it isotopically
333 distinct from all the other subsamples. The subsample from the fine-grained and low-
334 TOC deposit at 82–83 cm shows an isotopic composition similar to that of the 2008–
335 2017 Cachet II GLOF deposits.

336 All seven sediment core subsamples are composed of clay- and silt-sized
337 particles (Figure 4a). The background sediment samples are slightly coarser (mean:
338 $7.73 \pm 0.73 \mu\text{m}$) than the other subsamples (Figure 4a), and those corresponding to
339 the 2008–2017 Cachet II GLOFs are the finest (mean: $5.05 \pm 0.46 \mu\text{m}$). The two
340 unknown event deposits are also fine-grained, with the subsample from the base of

341 the 66–70 cm turbidite being slightly coarser (mean: 7.40 μm) than the sample from
342 the 82–83 cm event deposit (mean: 6.04 μm). Surprisingly, the subsample
343 representing the turbidite is finer than the background sediments (Figure 4a).

344 **5. Discussion**

345 5.1 River suspended sediments

346 The $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵNd composition of the river suspended sediments is
347 significantly correlated to the areal proportions of the PB and EAMC lithologies in
348 their respective watersheds (Figure 3b). The samples from the Huemules and
349 Colonia rivers, which drain a watershed predominantly composed of PB granitoids
350 (Figure 1), have $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵNd signatures that superimpose on those of the PB
351 (Figure 3a). Likewise, the isotopic composition of the suspended sediment samples
352 from del Salto, los Ñadis, Bravo, and Pascua rivers reflects the EAMC that dominates
353 in their watersheds (Figures 1, 3a; Table 1). The Baker River suspended sediment
354 sample is the only one that seem in slight disagreement with the lithology of its
355 watershed. Its isotopic composition appears similar to that of the PB (Figure 3a),
356 although 58% of its watershed is composed of EAMC (Table 1; Figure 3b). This can
357 be explained by (1) the season of sample collection (summer), which likely resulted
358 in a proportionally higher contribution of meltwater, and therefore glacial sediments
359 from NPI proglacial rivers, (2) the high amount of sediment produced by glacier
360 erosion, compared to the non-glacierized part of the watershed, and (3) the
361 significantly (~3x) higher precipitation in the western part of the watershed. This is

362 supported by the high SSC values (57–96 mg/L) that were measured in NPI
363 proglacial rivers (Colonia and Huemules) compared to those draining the weakly-
364 glacierized sub-watersheds to the east of Baker River (4–32 mg/L; del Salto and los
365 Ñadis; Supplementary Information Figure S1).

366 Differences in $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵNd compositions also exist between the river
367 suspended sediments that drain watersheds of apparently similar lithology. This is
368 particularly marked in ϵNd for the rivers draining the PB (Huemules and Colonia), but
369 it is also clearly expressed in the $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵNd signatures of the four rivers that
370 drain EAMC-dominated watersheds (del Salto, Pascua, Bravo, los Ñadis) (Figure 3).

371 For the Huemules and Colonia rivers, this isotopic difference most likely results from
372 the relatively large age, and therefore isotopic, variations that occur within the PB.

373 The PB is indeed composed of granitoids formed throughout the Cretaceous
374 (Pankhurst et al., 1999), which covers a timespan of almost 100 Ma. However, the
375 clear isotopic difference between the Colonia and Huemules rivers could also be
376 explained by a non-negligible EAMC contribution for the Colonia sample since this
377 lithology accounts for 9% of its watershed but is absent from the Huemules River
378 watershed (Table 1). This EAMC influence is however considered minimal since most
379 of the sediment transported by Colonia River is of glacial origin, especially in
380 summer, and that glaciers only occur in the western part of the Colonia River
381 watershed, which is entirely composed of PB granitoids (Figure 1).

382 Likewise, there are two possible explanations for the isotopic differences
383 between the four rivers that drain EAMC-dominated watersheds. One is that the

384 isotopic composition of the EAMC, which was formed during the Paleozoic (Weaver
385 et al., 1990; Augustsson & Bahlburg, 2003; Moreno & Gibbons, 2007), varies across
386 watersheds. This is however unlikely given that the samples that plot the most apart
387 in the ϵ Nd vs. $^{87}\text{Sr}/^{86}\text{Sr}$ diagram (del Salto and los $\tilde{\text{N}}$ adis; Figure 3a) are from rivers
388 that drain watersheds that are adjacent (Figure 1) and that their bedrock was formed
389 between 320–330 Ma (e.g., Augustsson & Bahlburg, 2008). The second and more
390 likely explanation is that the suspended sediments from the del Salto and Pascua
391 rivers receive a significant PB contribution. Indeed, the glacierized regions at the
392 head of del Salto River and in the upper Pascua River watershed are underlain by
393 the PB (Figure 1), and glaciers are known to significantly enhance erosion (Quinteros
394 et al., 2004; Carretier et al., 2013), resulting in a disproportionate contribution from
395 ice-covered lithologies (Liu et al., 2020). Therefore, the PB contribution is likely much
396 higher than suggested by its low areal proportion, especially in summer when the
397 suspended sediment samples were collected. The isotopic difference that exists
398 between the del Salto and Pascua river suspended sediment samples likely results
399 from the trapping of large amounts of glacial sediment of PB origin in Lake O'Higgins,
400 since PB in the Pascua watershed only occurs in the upper sub-watershed (Figure
401 1).

402 5.2 End-member definition

403 The clear distribution of the PB and EAMC lithologies in the Baker River
404 watershed and the overall agreement between the isotopic composition of the river
405 suspended sediments and that of the bedrock lithologies allow us to use $^{87}\text{Sr}/^{86}\text{Sr}$

406 and ϵ Nd to define the sources of the fjord sediments preserved at the head of
407 Martínez Channel. The isotopic composition of the Huemules and Colonia River
408 suspended sediments were used to represent sediment originating from the western
409 side of Baker River. The del Salto, los Ñadis, Bravo, and Pascua River suspended
410 sediments were selected to define the isotopic composition of sediments originating
411 from the eastern part of the watershed (Figure 3a). The Baker River suspended
412 sediment sample was not used for end-member characterization since it is composed
413 of a mixture of sediment originating from both the PB and EAMC. Although this
414 selection makes use of samples from rivers that do not flow into Baker River to define
415 the end-members of sediments transported by Baker River, this choice is justified by
416 the clear distribution of the bedrock lithologies (Figure 1), and the higher number of
417 datapoints allows us to better reflect the possible spatial and temporal variations in
418 the nature of the sediment sources. To account for the variable $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵ Nd
419 signatures of the individual river suspended sediment samples, the range (min–max)
420 of isotopic values was used to define the source end-members (Figure 3a).

421 5.3 Grain-size influence on Sr and Nd isotopes

422 In addition to provenance, the Sr and Nd isotopic composition of sediments is
423 also known to be influenced by grain size (Revel-Rolland et al., 2005; Bouchez et al.,
424 2011; Meyer et al., 2011; Jonell et al., 2018). Being able to estimate the extent of the
425 grain-size influence on the Sr and Nd isotopic composition of sediment samples is
426 particularly important in paleohydrology since flood deposits are typically identified by
427 their distinctive grain-size signature (e.g., Schillereff et al., 2014; Xu et al., 2014;

428 Wilhelm et al., 2015). This also applies to the deposits interpreted as representing
429 GLOFs in the sediments of the Martínez Channel since these event deposits are
430 systematically finer than the background sediments (Vandekerkhove et al., 2021)
431 (Figure 2).

432 The $^{87}\text{Sr}/^{86}\text{Sr}$ values of the Baker River sediment subsamples almost
433 systematically decrease with grain size (Figure 5a). This trend is also visible in the
434 PCA biplot (Figure 5b), where $^{87}\text{Sr}/^{86}\text{Sr}$ negatively covaries with mean grain size. A
435 similar relation has been observed in other environments (e.g., Feng et al., 2009;
436 Bouchez et al., 2011; Gili et al., 2017; Jonell et al., 2018), where it was explained by
437 one or a combination of the following reasons: (1) mineralogical sorting during
438 sediment transport (e.g., Garçon et al., 2013, 2014), (2) chemical weathering (e.g.,
439 Feng et al., 2009), and/or (3) differences in the provenance of the different grain-size
440 fractions (e.g., Singh et al., 2008). For the Baker River sediments, the most plausible
441 hypothesis is mineralogical sorting. This is supported by the covariance between
442 $^{87}\text{Sr}/^{86}\text{Sr}$ and total clays (Figure 5b). As Rb is preferentially associated with clay
443 minerals, the decay product of ^{87}Rb , i.e., ^{87}Sr , tends to be enriched in clays (e.g.,
444 Wedepohl, 1978), leading to high $^{87}\text{Sr}/^{86}\text{Sr}$ values in fine-grained sediments. It is also
445 possible that the relation between $^{87}\text{Sr}/^{86}\text{Sr}$ and grain size reflects changes in the
446 provenance of the different grain-size fractions. As shown in Figure 4b, finer
447 sediments seem to be enriched in particles from the metamorphic complex. This
448 hypothesis, however, is not supported by the grain size of the river suspended
449 sediment samples, as the finest particles transported by Baker River tend to be

450 produced by glacial erosion of the PB. Chemical weathering is the least likely reason
451 since northwestern Patagonia has experienced limited chemical weathering, due to
452 the cold climate and the relatively recent deglaciation (e.g., Bertrand et al., 2012b).

453 By comparison, the highest ε Nd values occur in the finest (0–4 μ m) and
454 coarsest (63–90 and 90–125 μ m) fractions, with lower values in-between (Figure 5a).

455 This trend is also reflected in the PCA biplot, which shows a weak positive
456 covariance between ε Nd and mean grain size (Figure 5b). In sediments, most of the
457 Nd isotopic budget is thought to originate from monazite/allanite (e.g., Garçon et al.,

458 2014; Jonell et al., 2018). These two dense accessory minerals commonly occur in
459 granites but are rare in low-grade metamorphic rocks (Anthony et al., 2000). In Baker

460 River sediments, these two minerals therefore most likely originate from the PB. The
461 rest of the Nd isotopic budget is generally associated with clay minerals, mostly mica

462 (Nelson, 1988; Pankhurst et al., 1999), which is also abundant in the granitoids of the
463 PB (Hervé et al., 1993). Therefore, the high ε Nd value in the finest grain-size fraction

464 of RS11-05 likely reflects the predominant PB origin of this fraction, mostly produced
465 by glacial erosion (cf. the grain-size distribution of the Colonia River suspended

466 sediment sample in Figure 4a). As the grains become coarser, the dense

467 monazite/allanite originating from the PB tend to enrich, resulting in higher ε Nd

468 values in the coarsest grain-size fractions. In-between these two extremes, the

469 sediment is likely dominated by minerals of EAMC origin, explaining the lower ε Nd

470 values of the intermediate grain-size fractions. This relation is also visible in the PCA

471 biplot, in which ε Nd positively covaries with K-feldspar and pyroxene, i.e., two

472 minerals that are more abundant in the PB than in the EAMC (Güettner Oportus,
473 2017; Liu et al., 2020). It is also in agreement with the isotopic signatures of the
474 lithological end-members, which show that the finest and coarsest grain-size
475 fractions of RS11-05 are isotopically similar to the PB-dominated “West of Baker
476 River” end-member (Figure 4b). Interestingly, the higher PB contribution in the finest
477 grain-size fraction is not observed in $^{87}\text{Sr}/^{86}\text{Sr}$, implying that the influence of
478 mineralogical sorting on $^{87}\text{Sr}/^{86}\text{Sr}$ overwhelms that of provenance of the individual
479 grain-size fractions. This suggests that ϵNd is a better provenance indicator than
480 $^{87}\text{Sr}/^{86}\text{Sr}$, in agreement with previous results obtained in different sedimentological
481 settings (e.g., Meyer et al., 2011; Gili et al., 2017; Awasthi et al., 2018; Jonell et al.,
482 2018). Those studies indeed indicate that $^{87}\text{Sr}/^{86}\text{Sr}$ is relatively sensitive to grain size
483 whereas ϵNd is not and is therefore better suited to investigate sediment provenance.

484 An important observation is that the influence of grain size on the $^{87}\text{Sr}/^{86}\text{Sr}$
485 and ϵNd compositions of the Baker River bulk sediments is relatively limited
486 compared to the isotopic differences between the two end-members (Figure 4b).

487 According to the standard deviation of (a) the eight RS11-05 grain-size fractions, and
488 (b) the end-members, the isotopic differences between the grain-size fractions of
489 sample RS11-05 only account for 15% of the isotopic differences between the end-
490 members. The real influence of grain size on the isotopic composition of the fjord
491 sediment samples is probably lower than that since the mean grain size of the FC17-
492 08 subsamples varies between 4.55 and 8.25 μm , which only covers the finest RS11-
493 05 subsamples. The influence of grain-size on the isotopic composition of these

494 samples mostly corresponds to the two finest RS11-05 subsamples (Figure 4b),
495 which reduces the influence of grain size to 8 and 14% of the provenance signal for
496 Sr and Nd isotopes, respectively. With this in mind, we consider that the isotopic
497 composition of the fjord sediment samples mostly represents provenance.

498 5.4 Reconstructing the provenance of flood deposits

499 The two subsamples representing the background sediment of core FC17-08
500 have Sr and Nd isotopic signatures that correspond to the “West of Baker River” end-
501 member (Figure 6). This suggests that the western part of the lower Baker River
502 watershed constitutes the main source of sediments to the fjord, in agreement with
503 the observation that glacierized sub-watersheds contribute relatively more to
504 sediment budgets than their non-glacierized counterparts, due to efficient bedrock
505 erosion by glaciers (Liu et al., 2020). For the Baker watershed, this is supported by
506 the sediment budgets of Vandekerkhove et al. (2020b), which suggests that the rivers
507 draining the western part of the watershed contribute roughly 15 times more to the
508 Baker River sediment load than the eastern rivers.

509 The $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵNd signatures of the three samples corresponding to the
510 2008–2017 GLOF deposits at 0–27.5 cm confirm that these deposits represent the
511 abrupt drainage events that have affected Lake Cachet II, as they almost perfectly
512 correspond to the isotopic signature of the Colonia River (Figure 6b). More
513 importantly, these results confirm that Sr and Nd isotopes can be used to reconstruct
514 the provenance of GLOF deposits, despite the minor influence of grain-size on the

515 isotope results.

516 The sample representing the 66–70 cm turbidite that was deposited between
517 1990–2000 displays an isotopic signature that is clearly distinct from all the other
518 samples (Figure 6b). Both isotopes plot in the “East of Baker River” end-member
519 area, which suggests that this turbidite is predominately composed of sediment
520 originating from the eastern side of Baker River. This result is in agreement with the
521 hypothesis of Vandekerkhove et al. (2021) that this turbidite represents a rain-on-
522 snow event that occurred in August 1992. In this case, the rain-on-snow event would
523 have primarily affected the eastern part of the watershed since it happened in winter,
524 when precipitation most likely fell as snow in the western part of the watershed, but
525 as rain in the east (Figure 7a).

526 The isotopic signature of the fine-grained and organic-poor deposit at 82–83
527 cm undoubtedly shows that it originated from the western side of the Baker River
528 watershed (Figure 6b). This contradicts the hypothesis of Vandekerkhove et al.
529 (2021) that it represents the 1988 Las Lengas GLOF, which would have a clear
530 EAMC signature (Figure 1). A more likely candidate is the rain-on-snow event that
531 happened in December 1989 (Dussaillant et al., 2012). Since this rain-on-snow event
532 happened in early summer, snow cover, and therefore erosion, predominantly
533 occurred in the western part of the watershed (Figure 7b). As a result, this intense
534 rain-on-snow event reworked glacier rock flour of PB origin, resulting in the
535 deposition of fine-grained sediments with a PB geochemical signature in Martínez
536 Channel. This interpretation is additionally supported by the association of a similar

537 fine-grained low-TOC layer occurring deeper in two other sediment cores from the
538 same fjord with a flood caused by an intense rain-on-snow event in December 1976
539 (Vandekerkhove et al., 2021).

540 The association of the 82–83 cm fine-grained deposit and 66–70 cm turbidite
541 with the December 1989 and August 1992 rain-on-snow events, respectively,
542 validates the ^{210}Pb chronology of sediment core FC17-08 made by Vandekerkhove et
543 al. (2021) since both events are within the error bars of their modeled age (Figure 2).
544 The real age of the events is consistently older (1–2 years) than their modeled age.
545 This slight overestimation is confirmed by the modeled age (1980) of the December
546 1976 rain-on-snow event that was observed in the deepest sediments of the deepest
547 cores (Vandekerkhove et al., 2021), resulting in a 3-year offset. This offset does not
548 represent the delay between flood occurrence and formation of flood deposits since
549 signal propagation in the Baker River system is typically in the order of days (Amann
550 et al., submitted). This implies a slight (<10%) overestimation of the sedimentation
551 rates by the CFCS model.

552 5.5 Implications for the sedimentary signature of GLOFs vs. meteorological floods

553 The striking similarities between the sedimentary and isotopic signatures of
554 the early summer 1989 and 1976 rain-on-snow flood deposits with those of the
555 2008–2017 Cachet II GLOF deposits suggest that deposits due to GLOFs and rain-
556 on-snow events occurring in summer may be difficult to differentiate based on their
557 sedimentological characteristics. Although our results confirm that all Cachet II

558 GLOFs are recorded as fine-grained and organic-poor deposits and that none of
559 them was able to trigger a turbidite at site FC17-08, they also suggest that not all
560 fine-grained and organic-poor deposits can be interpreted as GLOFs. They can also
561 represent rain-on-snow events occurring in (early) summer, i.e., when the only snow
562 left in the watershed is over its mostly-glacierized western side (Figure 7b).
563 Differentiating between these two types of floods remains challenging based on the
564 existing sedimentological and isotopic criteria.

565 The association of the 66–70 cm organic-rich turbidite with the winter 1992
566 rain-on-snow event additionally shows that seasonality plays an important role in
567 controlling how rain-on-snow events are recorded in fjord sediments. This issue
568 probably affects all sedimentary basins receiving sediments from partially-glacierized
569 watersheds, or at least watersheds with highly variable snow cover. Locations in the
570 watershed where rain falls on snow produces more sediment than locations where
571 rain falls directly on the ground.

572 Finally, our results also imply that the 1988 Las Lengas GLOF was not
573 recorded at site FC17-08. This observation is supported by the lack of a discharge
574 peak in the Baker River hydrographs, which was explained by Vandekerkhove et al.
575 (2021) by the low (daily) resolution of the hydrographs, despite the 1301 m³/sec
576 discharge peak that was estimated for los Ñadis River (Iribarren Anacona et al.,
577 2014). Both the water discharge and sediment yield of the 1988 Las Lengas GLOF
578 were likely too low to significantly affect Baker River and therefore be recorded in the
579 fjord's sediments.

580 **6. Conclusions**

581 This study confirms the ability of Sr and Nd isotopes to reconstruct sediment
582 provenance in the Baker River watershed. Both isotopes can successfully
583 differentiate sediments originating from the western and eastern sides of the
584 watershed, suggesting that either isotope is powerful enough for provenance
585 reconstruction in the Baker region. This excellent discrimination potential reflects the
586 clear distribution of rocks of different age (Mesozoic granitoids and Paleozoic
587 metamorphic complex) within the Baker River watershed. In addition, our results
588 suggest that ϵ Nd is less affected by grain size than $^{87}\text{Sr}/^{86}\text{Sr}$. Despite a minor
589 influence of grain size on the isotopic results (<15% of the provenance signal),
590 $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵ Nd can reliably be applied to flood deposits, whether they are mud
591 layers or turbidites.

592 The provenance results indicate that the background sediments deposited at
593 the head of Martínez Channel mostly originate from the western, glacierized, part of
594 the watershed, reflecting the high erosion capacity of glaciers. In terms of event
595 deposits, our results confirm the Cachet II origin of the fine-grained and organic-poor
596 deposits preserved in the upper 27.5 cm of the sediment core. They also provide
597 evidence that a similar deposit previously associated with the 1988 Las Lengas
598 GLOF instead represents a rain-on-snow event that occurred in early summer 1989.
599 In addition, our provenance analysis demonstrates that the turbidite at 66–70 cm
600 originated from the eastern part of the watershed, allowing us to associate it with a
601 rain-on-snow event that occurred in winter 1992.

602 These results have important implications for the sedimentary signature of
603 GLOFs vs. meteorological floods. They confirm that GLOFs are systematically
604 recorded as fine-grained organic-poor layers, as shown by Vandekerkhove et al.
605 (2021), but they suggest that rain-on-snow flood events occurring in (early) summer
606 may have the same signature, which reflects the glacial origin of the sediment
607 transported by both flood types. Rain-on-snow floods occurring in winter, on the other
608 hand, are recorded as regular meteorological floods (organic turbidites) since they
609 only affect warmer (non-glacierized) sub-watersheds. In other words, the
610 sedimentological signature of rain-on-snow events depends on snow cover
611 distribution, and therefore on the season during which the flood occurs. Our results
612 also suggest that GLOFs from smaller glacial lakes, such as Las Lengas, may not be
613 recorded in downstream fjord sediments. We anticipate that these results will
614 constitute a strong basis for the interpretation of flood deposits from sediment
615 archives located in partially glacierized watersheds.

616 **7. References**

617 Aitchison J. 1986. *The Statistical Analysis of Compositional Data*. Chapman Hall,
618 Ltd.: London, 416 p.

619 Aitchison J. 1990. Relative Variation Diagrams for Describing Patterns of
620 Compositional Variability. *Mathematical Geology* 22: 487–511. DOI:
621 10.1007/BF00890330

622 Amann B, Bertrand S, Alvarez Garretón C, Reid B. submitted. Seasonal variations in
623 fjord sediment grain size: A pre-requisite for hydrological and climate reconstructions
624 in partially glacierized watersheds (Baker River, Patagonia). *Journal of Geophysical*
625 *Research: Earth Surface*

626 Anthony JW, Bideaux RA, Bladh KW, Nichols MC. 2000. *Handbook of Mineralogy*,
627 Volume 4. Anthony JW, Bideaux RA, Bladh KW, and Nichols MC (eds). *Mineralogical*
628 *Society of America: Chantilly, Virginia, USA*, 680 p.

629 Augustsson C, Bahlburg H. 2003. Active or passive continental margin?
630 Geochemical and Nd isotope constraints of metasediments in the backstop of a pre-
631 Andean accretionary wedge in southernmost Chile (46°30'–48°30'S). In *Tracing*
632 *Tectonic Deformation Using the Sedimentary Record*, McCann T and Saintot A (eds).
633 *Geological Society, London, Special Publications*; 253–268.

634 Augustsson C, Bahlburg H. 2008. Provenance of late Palaeozoic metasediments of
635 the Patagonian proto-Pacific margin (southernmost Chile and Argentina).
636 *International Journal of Earth Sciences* 97: 71–88. DOI: 10.1007/s00531-006-0158-7

637 Awasthi N, Ray E, Paul D. 2018. Sr and Nd isotope compositions of alluvial
638 sediments from the Ganga Basin and their use as potential proxies for source
639 identification and apportionment. *Chemical Geology* 476: 327–339. DOI:
640 10.1016/j.chemgeo.2017.11.029

641 Benito G, Thorndycraft VR, Medialdea A, Machado MJ, Sancho C, Dussaillant A.
642 2021. Declining discharge of glacial lake outburst floods through the Holocene in
643 central Patagonia. *Quaternary Science Reviews* 265: 106810. DOI:
644 10.1016/j.quascirev.2021.106810

645 Bertrand S, Hughen K, Lamy F, Stuut J-BW, Torrejón F, Lange CB. 2012a.
646 Precipitation as the main driver of Neoglacial fluctuations of Gualas glacier, Northern
647 Patagonian Icefield. *Climate of the Past* 8: 519–534. DOI: 10.5194/cp-8-519-2012

648 Bertrand S, Hughen K, Sepúlveda J, Pantoja S. 2012b. Geochemistry of surface
649 sediments from the fjords of Northern Chilean Patagonia (44–47°S): Spatial variability
650 and implications for paleoclimate reconstructions. *Geochimica et Cosmochimica Acta*
651 76: 125–146. DOI: 10.1016/j.gca.2011.10.028

652 Blott SJ, Pye K. 2001. Gradistat: A grain size distribution and statistics package for
653 the analysis of unconsolidated sediments. *Earth Surface Processes and Landforms*
654 26: 1237–1248. DOI: 10.1002/esp.261

655 Boex J, Fogwill CJ, Harrison SP, Glasser NF, Hein AS, Schnabel C, Xu S. 2013.
656 Rapid thinning of the Late Pleistocene Patagonian Ice Sheet followed migration of
657 the Southern Westerlies. *Scientific Reports* 3: 1–6. DOI: 10.1038/srep02118

658 Bouchez J, Gaillardet J, France-Lanord C, Maurice L, Dutra-Maia P. 2011. Grain size
659 control of river suspended sediment geochemistry: Clues from Amazon River depth
660 profiles. *Geochemistry, Geophysics, Geosystems* 12: 1–24. DOI:
661 10.1029/2010GC003380

662 Breugem AJ, Wesseling JG, Oostindie K, Ritsema CJ. 2020. Meteorological aspects
663 of heavy precipitation in relation to floods – An overview. *Earth-Science Reviews*
664 204: 103171. DOI: 10.1016/j.earscirev.2020.103171

665 Carretier S, Regard V, Vassallo R, Aguilar G, Martinod, J, Riquelme R, Pepin E,
666 Charrier R, Héral G, Farías M, Guyot J-L, Vargas G, Lagane C. 2013. Slope and
667 climate variability control of erosion in the Andes of central Chile. *Geology* 41: 195–
668 198. DOI: 10.1130/G33735.1

669 Carrivick JL, Tweed FS. 2016. A global assessment of the societal impacts of glacier
670 outburst floods. *Global and Planetary Change* 144: 1–16. DOI:
671 10.1016/j.gloplacha.2016.07.001

672 Davies BJ, Glasser NF. 2012. Accelerating shrinkage of Patagonian glaciers from the
673 Little Ice Age (~AD 1870) to 2011. *Journal of Glaciology* 58: 1063–1084. DOI:
674 10.3189/2012JoG12J026

675 De Muynck D, Huelga-Suarez G, Van Heghe L, Degryse P, Vanhaecke F. 2009.
676 Systematic evaluation of a strontium-specific extraction chromatographic resin for
677 obtaining a purified Sr fraction with quantitative recovery from complex and Ca-rich
678 matrices. *Journal of Analytical Atomic Spectrometry* 24: 1498–1510. DOI:

679 10.1039/B908645E

680 Dussaillant A, Benito G, Buytaert W, Carling P, Meier C, Espinoza F. 2010. Repeated
681 glacial-lake outburst floods in Patagonia: An increasing hazard? *Natural Hazards* 54:
682 469–481. DOI: 10.1007/s11069-009-9479-8

683 Dussaillant A, Buytaert W, Meier C, Espinoza F. 2012. Hydrological regime of remote
684 catchments with extreme gradients under accelerated change: the Baker basin in
685 Patagonia. *Hydrological Sciences Journal* 57: 1530–1542. DOI:
686 10.1080/02626667.2012.726993

687 Faure G, Mensing TM. 2004. *Isotopes: principles and applications*. 3rd edition, Wiley,
688 897 p.

689 Feng J, Zhu L, Zhen X, Hu Z. 2009. Grain size effect on Sr and Nd isotopic
690 compositions in eolian dust: Implications for tracing dust provenance and Nd model
691 age. *Geochemical Journal* 43: 123–131. DOI: 10.2343/geochemj.1.0007

692 Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate
693 surfaces for global land areas. *International Journal of Climatology* 37: 4302–4315.
694 DOI: 10.1002/joc.5086

695 Garçon M, Chauvel C, France-Lanord C, Huyghe P, Lavé J. 2013. Continental
696 sedimentary processes decouple Nd and Hf isotopes. *Geochimica et Cosmochimica
697 Acta* 121: 177–195. DOI: 10.1016/j.gca.2013.07.027

698 Garçon M, Chauvel C, France-Lanord C, Limonta M, Garzanti E. 2014. Which
699 minerals control the Nd-Hf-Sr-Pb isotopic compositions of river sediments? *Chemical*

700 Geology 364: 42–55. DOI: 10.1016/j.chemgeo.2013.11.018

701 Garreaud R, Lopez P, Minvielle M, Rojas M. 2013. Large-Scale control on the

702 Patagonian climate. Journal of Climate 26: 215–230. DOI: 10.1175/JCLI-D-12-

703 00001.1

704 Gili S, Gaiero DM, Goldstein SL, Chemale F, Jweda J, Kaplan MR, Becchio RA,

705 Koester E. 2017. Glacial/interglacial changes of Southern Hemisphere wind

706 circulation from the geochemistry of South American dust. Earth and Planetary

707 Science Letters 469: 98–109. DOI: 10.1016/j.epsl.2017.04.007

708 Gómez J, Schobbenhaus C, Montes NE, Compilers. 2019. Geological Map of South

709 America 2019. Scale 1:5 000 000

710 Güettner Oportus GA. 2017. Mineralogía y Proveniencia Sedimentaria del Complejo

711 Metamórfico Andino Oriental, Mediante Conteo Modal y Modelamiento de

712 Difractogramas, En Fiordo Jorge Montt y Peninsula la Carmela, XI Región de Aysén,

713 Chile. MSc thesis Universidad Andrés Bello, 186 p.

714 Harrison S, Winchester V. 2000. Nineteenth- and Twentieth-Century Glacier

715 Fluctuations and Climatic Implications in the Arco and Colonia Valleys, Hielo

716 Patagónico Norte, Chile. Arctic, Antarctic, and Alpine Research 32: 55–63. DOI:

717 10.1080/15230430.2000.12003339

718 Hervé F, Pankhurst R, Suárez M, Cruz R. 1993. Basic magmatism in a mid-tertiary

719 transtensional basin, Isla Magdalena, Aysen, Chile. Second ISAG symposium,

720 Oxford (UK), 367–369 pp.

721 Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S,

722 Kim H, Kanae S. 2013. Global flood risk under climate change. *Nature Climate*

723 *Change* 3: 816–821. DOI: 10.1038/nclimate1911

724 Iribarren Anacona P, Norton KP, Mackintosh A. 2014. Moraine-dammed lake failures

725 in Patagonia and assessment of outburst susceptibility in the Baker Basin. *Natural*

726 *Hazards and Earth System Sciences* 14: 3243–3259. DOI: 10.5194/nhess-14-3243-

727 2014

728 Jacobsen SB, Wasserburg GJ. 1980. Sm-Nd isotopic evolution of chondrites. *Earth*

729 and *Planetary Science Letters* 50: 139–155. DOI: [https://doi.org/10.1016/0012-821X\(80\)90125-9](https://doi.org/10.1016/0012-821X(80)90125-9)

731 Jacquet J, McCoy SW, McGrath D, Nimick DA, Fahey M, O'kuinghttons J, Friesen

732 BA, Leidich J. 2017. Hydrologic and geomorphic changes resulting from episodic

733 glacial lake outburst floods: Rio Colonia, Patagonia, Chile. *Geophysical Research*

734 *Letters* 44: 854–864. DOI: 10.1002/2016GL071374

735 Jonell TN, Li Y, Blusztajn J, Giosan L, Clift PD. 2018. Signal or noise? Isolating grain

736 size effects on Nd and Sr isotope variability in Indus delta sediment provenance.

737 *Chemical Geology* 485: 56–73. DOI: 10.1016/j.chemgeo.2018.03.036

738 Kaplan MR, Douglass DC, Singer BS, Ackert RP, Caffee MW. 2005. Cosmogenic

739 nuclide chronology of pre-last glacial maximum moraines at Lago Buenos Aires,

740 46°S, Argentina. *Quaternary Research* 63: 301–315. DOI:

741 10.1016/j.yqres.2004.12.003

742 Kundzewicz ZW et al. 2014. Flood risk and climate change: global and regional
743 perspectives. *Hydrological Sciences Journal* 59: 1–28. DOI:
744 10.1080/02626667.2013.857411

745 Liu D, Bertrand S, Villaseñor T, Van Dijck T, Fagel N, Mattielli N. 2020. Provenance
746 of northwestern Patagonian river sediments (44–48°S): A critical evaluation of
747 mineralogical, geochemical and isotopic tracers. *Sedimentary Geology* 408: 105744.
748 DOI: 10.1016/j.sedgeo.2020.105744

749 Liu D, Bertrand S, Weltje GJ. 2019. An Empirical Method to Predict Sediment Grain
750 Size from Inorganic Geochemical Measurements. *Geochemistry, Geophysics,
751 Geosystems* 20: 3690–3704. DOI: 10.1029/2018GC008154

752 Meyer I, Davies GR, Stuut JWB. 2011. Grain size control on Sr-Nd isotope
753 provenance studies and impact on paleoclimate reconstructions: An example from
754 deep-sea sediments offshore NW Africa. *Geochemistry, Geophysics, Geosystems*
755 12: Q03005. DOI: 10.1029/2010GC003355

756 Míková J, Denková P. 2007. Modified chromatographic separation scheme for Sr and
757 Nd isotope analysis in geological silicate samples. *Journal of Geosciences* 52: 221–
758 226. DOI: 10.3190/jgeosci.015

759 Moreno T, Gibbons W. 2007. *The Geology of Chile*. The Geological Society: London,
760 440 p.

761 Nelson E, Bruce B, Elthon D, Kammer D, Weaver S. 1988. Regional lithologic
762 variations in the Patagonian batholith. *Journal of South American Earth Sciences* 1:

763 239–247. DOI: 10.1016/0895-9811(88)90002-8

764 Palmer J. 2017. Chile's glacial lakes pose newly recognized flood threat. *Science*
765 355: 1004–1005. DOI: 10.1126/science.355.6329.1004

766 Pankhurst RJ, Weaver SD, Hervé F, Larrondo P. 1999. Mesozoic–Cenozoic
767 evolution of the North Patagonian Batholith in Aysén, southern Chile. *Journal of the*
768 *Geological Society, London* 156: 673–694. DOI: 10.1144/gsjgs.156.4.0673

769 Quinteros J, Jacovkis PM, Ramos VA. 2004. Modelado numérico del levantamiento
770 orogénico y su potencial relación con clima y erosión. *Mecánica Computacional*
771 XXIII: 2923–2931.

772 Quiroga E, Ortiz P, Gerdes D, Reid B, Villagran S, Quiñones R. 2012. Organic
773 enrichment and structure of macrobenthic communities in the glacial Baker Fjord,
774 Northern Patagonia, Chile. *Journal of the Marine Biological Association of the United*
775 *Kingdom* 92: 73–83. DOI: 10.1017/S0025315411000385

776 Revel-Rolland M, Arnaud F, Chapron E, Desmet M, Givelet N, Alibert C, McCulloch
777 M. 2005. Sr and Nd isotopes as tracers of clastic sources in Lake Le Bourget
778 sediment (NW Alps, France) during the Little Ice Age: Palaeohydrology implications.
779 *Chemical Geology* 224: 183–200. DOI: 10.1016/j.chemgeo.2005.04.014

780 Schillereff DN, Chiverrell RC, Macdonald N, Hooke JM. 2014. Flood stratigraphies in
781 lake sediments: A review. *Earth-Science Reviews* 135: 17–37. DOI:
782 10.1016/j.earscirev.2014.03.011

783 SEGEMAR. 1998. Mapa Geológico de la República Argentina, escala 1:2.500.000.

784 SERNAGEOMIN. 2003. Mapa Geológico de Chile, escala 1:1.000.000.

785 Singh SK, Rai SK, and Krishnaswami S. 2008. Sr and Nd isotopes in river sediments

786 from the Ganga Basin: Sediment provenance and spatial variability in physical

787 erosion. *J. Geophys. Res.*, 113, F03006. DOI:10.1029/2007JF000909

788 Shugar D.H., Burr A., Haritashya U.K., Kargel J.S., Watson C.S., Kennedy M.C.,

789 Bevington A.R., Betts R.A., Harrison S. and Strattman K. 2020. Rapid worldwide

790 growth of glacial lakes since 1990. *Nature Climate Change* 10: 939–945. DOI:

791 10.1038/s41558-020-0855-4

792 Thirlwall MF. 1991. Long-term reproducibility of multicollector Sr and Nd isotope ratio

793 analysis. *Chemical Geology* 94: 85–104. DOI: 10.1016/S0009-2541(10)80021-X

794 Vandekerkhove E, Bertrand S, Crescenzi Lanna E, Reid B, Pantoja S. 2020a.

795 Modern sedimentary processes at the heads of Martínez Channel and Steffen Fjord,

796 Chilean Patagonia. *Marine Geology* 419: 106076. DOI:

797 10.1016/j.margeo.2019.106076

798 Vandekerkhove E, Bertrand S, Mauquoy D, McWethy D, Torrejón F, Stammen S,

799 Saunders KM. 2020b. Neoglacial increase in high-magnitude Glacial Lake Outburst

800 Flood frequency, upper Baker River, Chilean Patagonia (47°S). *Quaternary Science*

801 *Reviews* 248: 106572. DOI: 10.1016/j.quascirev.2020.106572

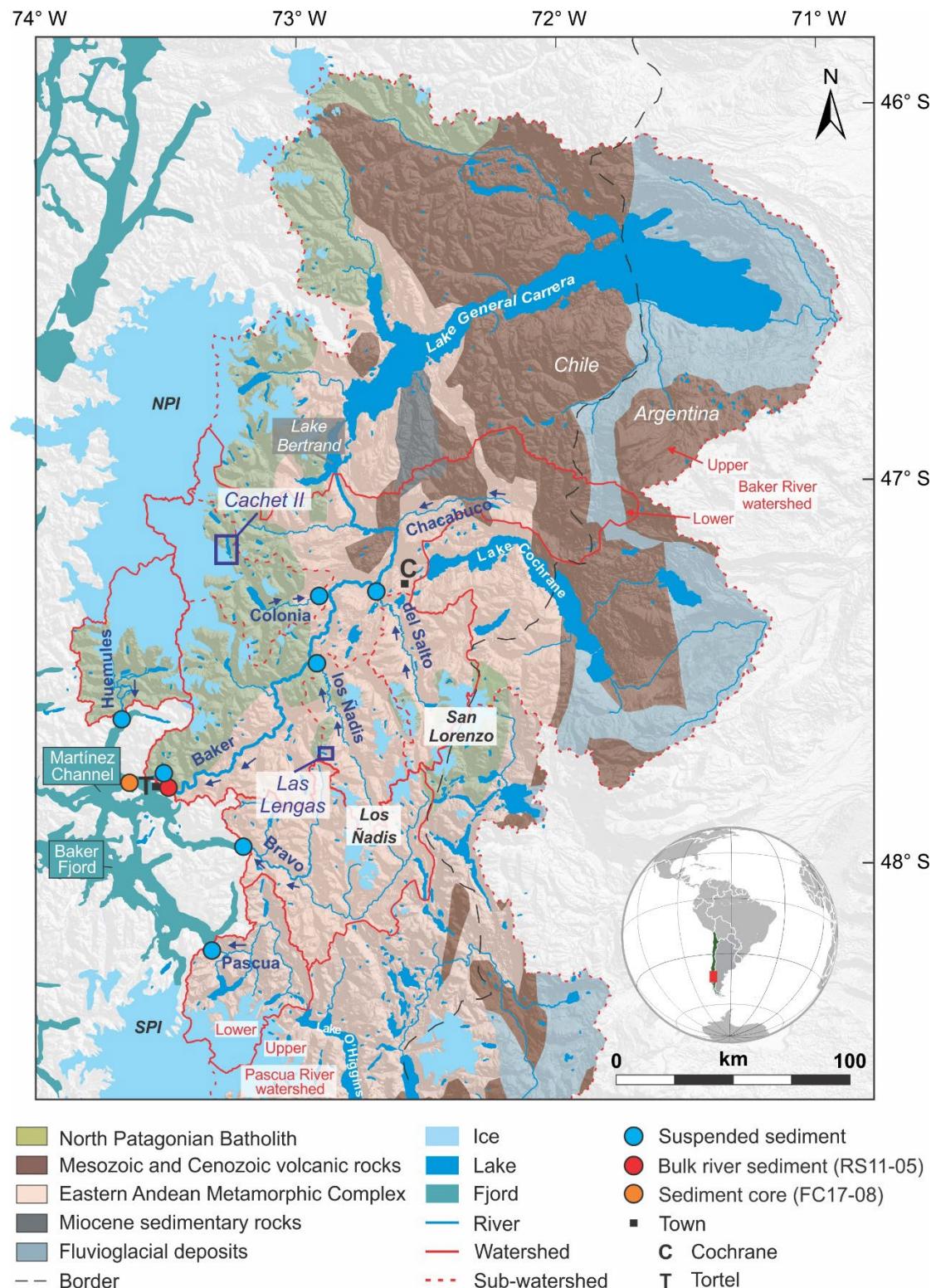
802 Vandekerkhove E, Bertrand S, Torrejón F, Kylander M, Reid, B., Saunders K. (2021).

803 Signature of modern Glacial Lake Outburst Floods in fjord sediments (Baker River,

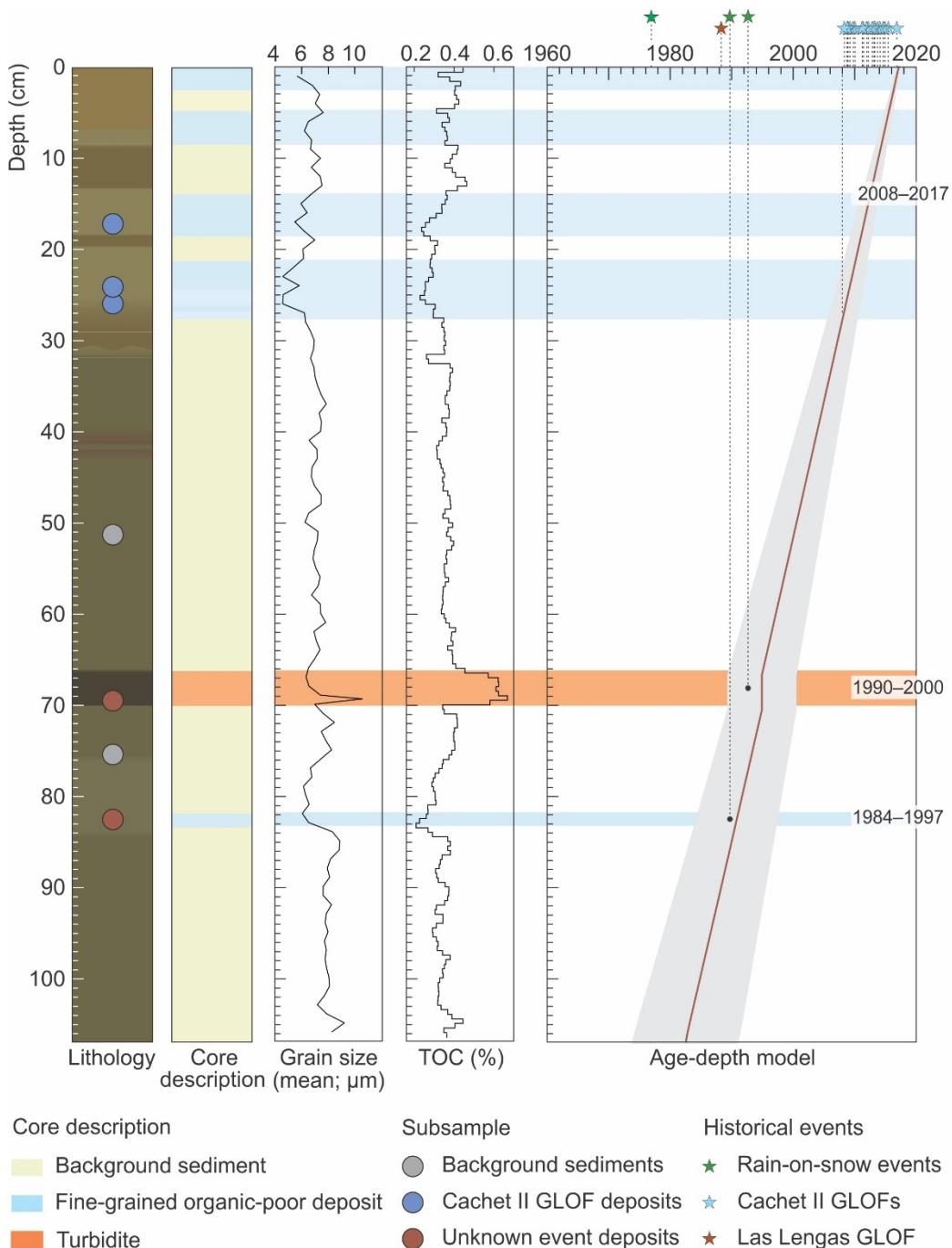
804 southern Chile). *Sedimentology* 68 (6): 2798–2819. DOI: 10.1111/sed.12874

805 Weaver SG, Bruce R, Nelson EP, Brueckner HK, LeHuray AP. 1990a. The
806 Patagonian batholith at 48°S latitude, Chile; Geochemical and isotopic variations. In
807 Plutonism from Antarctica to Alaska, Kay SM and Rapela CW (eds). Special Paper of
808 the Geological Society of America; 33–50. DOI: 10.1130/SPE241-p.33

809 Wedepohl KH. 1978. Strontium. In: Wedepohl, K H (Ed), Handbook of Geochemistry,
810 Vol. II/4 - Elements Kr(36) to Ba(56). Springer-Verlag, Chapter 38.

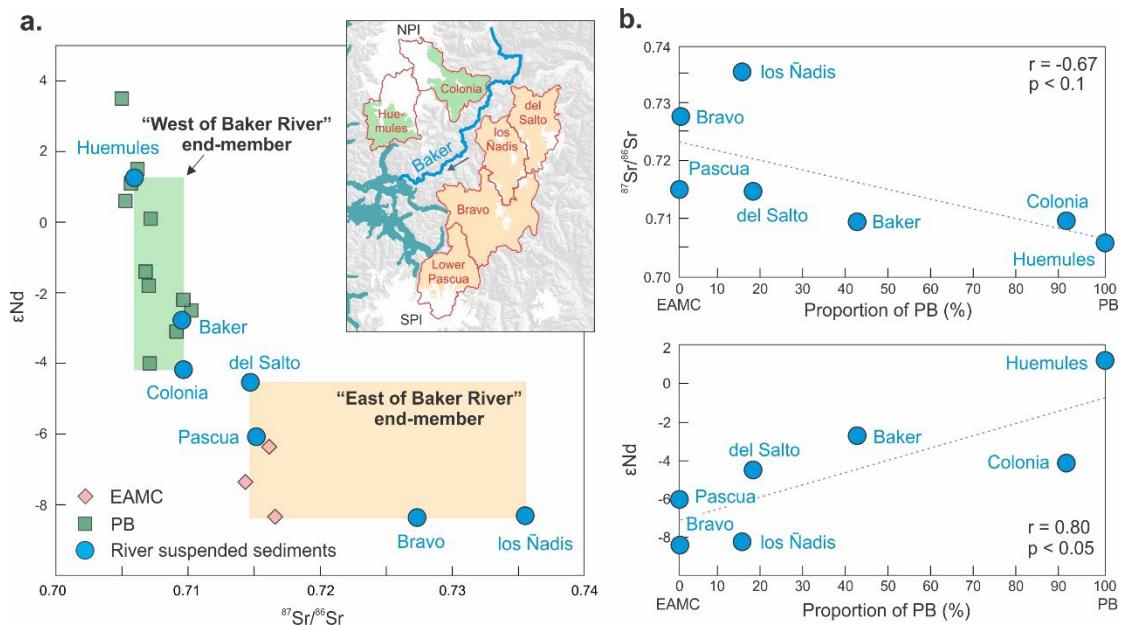

811 Wilhelm B, Sabatier P, Arnaud F. 2015. Is a regional flood signal reproducible from
812 lake sediments? *Sedimentology* 62 (4): 1103–1117. DOI: 10.1111/sed.12180

813 Wilson R, Glasser NF, Reynolds JM, Harrison S, Anacona PI, Schaefer M, Shannon
814 S. 2018. Glacial lakes of the Central and Patagonian Andes. *Global and Planetary
815 Change* 162: 275–291. DOI: 10.1016/j.gloplacha.2018.01.004

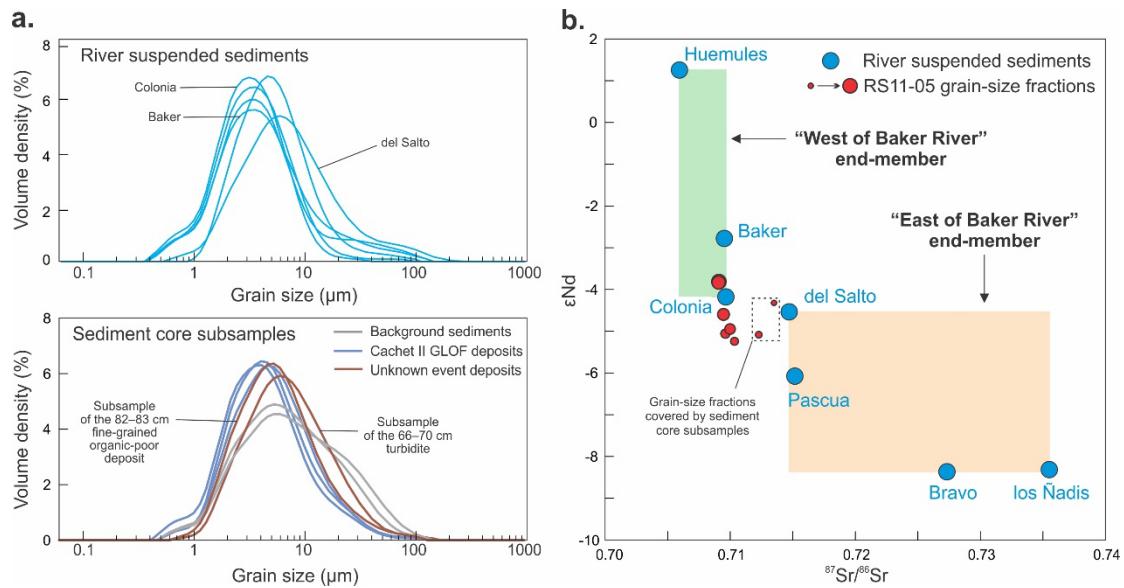

816 Xu M, Bogen J, Wang Z, Bønsnes TE, Gytri S. 2014. Pro-glacial lake sedimentation
817 from jokulhlaups (GLOF), Blamannsisen, northern Norway. *Earth Surface Processes
818 and Landforms* 40: 654–665. DOI: 10.1002/esp.3664

819

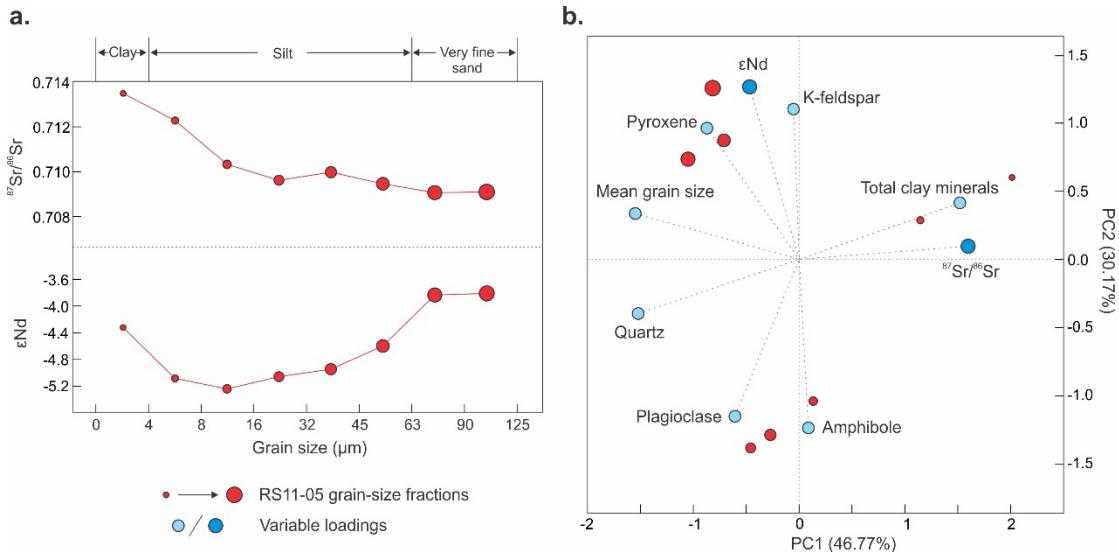
Figures and tables



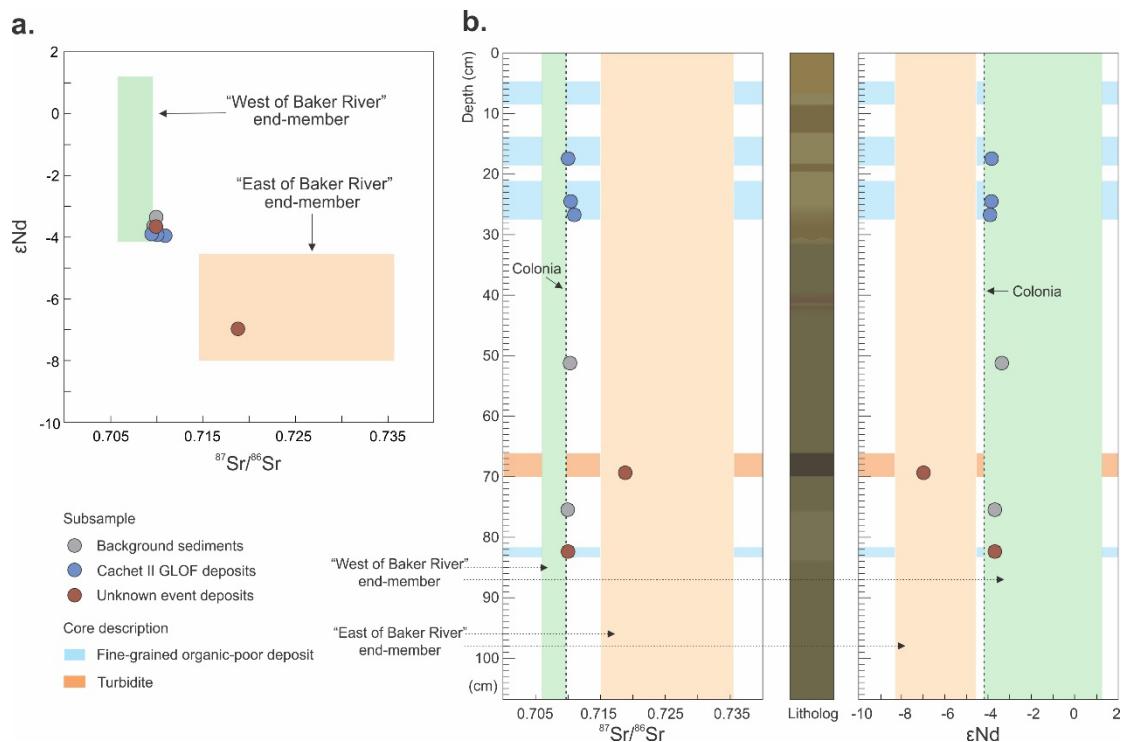
822 **Figure 1.** Geological map of the study region in Patagonia (based on SEGEMAR, 1998,
823 SERNAGEOMIN, 2003, and Gómez et al., 2019), showing the location of the Baker River, its
824 tributaries, and the fjord in which it discharges (Martínez Channel). The Northern Patagonian
825 Icefield (NPI), Southern Patagonian Icefield (SPI), San Lorenzo icefield, and Cordón de los
826 Ñadis icefield are also shown. The two proglacial lakes that are at the origin of the Baker
827 River historical GLOFs are indicated using dark blue rectangles. The location of the river bulk
828 (Baker; RS11-05) and suspended (Colonia, del Salto, los Ñadis, Huemules, Baker, Bravo and
829 Pascua River) sediment sampling sites, as well as of sediment core FC17-08, are also
830 indicated.
831


833 **Figure 2.** Lithology of sediment core FC17-08 (from Vandekerckhove et al., 2021) and location
834 of the subsamples used in this study. The downcore variations in mean grain size and total
835 organic carbon (TOC) confirm the identification of fine-grained organic-poor event deposits
836 (uppermost 27.5 cm of the core and 82–83 cm) and of a relatively organic fine-grained
837 turbidite (66–70 cm). The age-depth model (also from Vandekerckhove et al., 2021) shows that

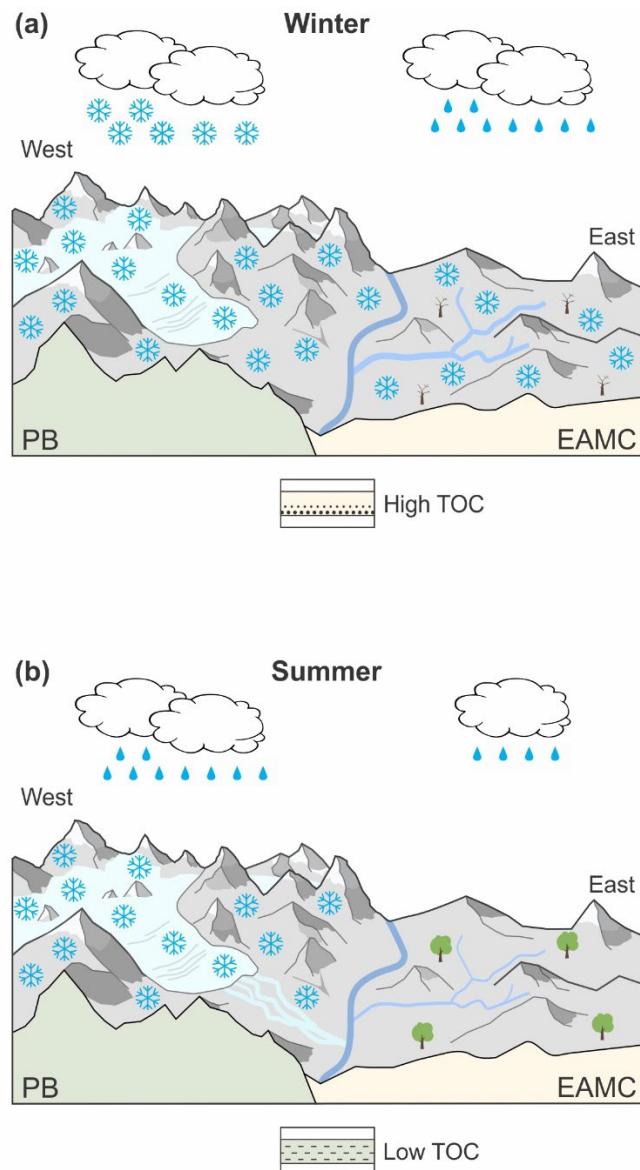
838 the sediment core covers the period 2017 to 1974–1991. The modeled ages of the event
839 deposits are shown to the right.
840


843 **Figure 3.** $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵ_{Nd} composition of the river suspended sediment samples and
 844 comparison with the isotopic signature of the dominant bedrock lithologies (cf. Table 1). **(a)**
 845 $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵ_{Nd} compositions of the river suspended sediments samples compared to those
 846 of the Patagonian Batholith (PB) (Pankhurst et al., 1999) and Eastern Andean Metamorphic
 847 Complex (EAMC) (Weaver et al., 1990). **(b)** Isotopic signatures ($^{87}\text{Sr}/^{86}\text{Sr}$ and ϵ_{Nd}) of the river
 848 suspended sediments plotted against the relative areal proportion of the two main lithologies
 849 in their respective watersheds (Table 1). In all plots, the error bars are smaller than the size of
 850 the dots. In **(a)**, the $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵ_{Nd} signatures of the Huemules and Colonia river
 851 suspended sediment samples are used to characterize the "West of Baker River" end-
 852 member, which is dominated by the PB, whereas those from Pascua, del Salto, Bravo and los
 853 Nadis rivers are used to define the "East of Baker River" end-member, which is dominated by
 854 the EAMC. The Baker River suspended sediment sample is not used to define sources since
 855 it represents a mixture of both sources. The source end-members are defined using the

856 isotopic range (min–max values; represented as colored rectangles) of the river suspended
857 sediment samples. The sub-watersheds used to define the “West of Baker River” and “East of
858 Baker River” end-members are represented on the inset map in green and peach,
859 respectively.
860


863 **Figure 4.** Evaluation of the influence of grain size on sediment provenance reconstruction. (a)

864 Grain-size distributions of the river suspended sediments and of the FC17-08 sediment core
 865 subsamples. In (b), the isotopic composition of the eight grain-size fractions (0–4, 4–8, 8–16,
 866 16–32, 32–45, 45–63, 63–90, and 90–125 μm) of river sediment sample RS11-05 (red dots)
 867 are compared to the isotopic signature of the two source end-members (West vs. East of
 868 Baker River) defined in Figure 3. The error bars are smaller than the size of the dots. Note
 869 that most of the fjord sediment samples are finer than $\sim 10 \mu\text{m}$ and therefore correspond in
 870 grain size to the two finest sub-samples from RS11-05.



873 **Figure 5.** Variations in the $^{87}\text{Sr}/^{86}\text{Sr}$, ϵ_{Nd} , and mineralogical composition of river sediment

874 sample RS11-05 (Baker River) with grain size. **(a)** $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵ_{Nd} composition of the eight
 875 RS11-05 grain-size fractions plotted vs. grain size. The error bars are smaller than the size of
 876 the dots and are therefore not visible. **(b)** PCA biplot of $^{87}\text{Sr}/^{86}\text{Sr}$, ϵ_{Nd} , grain-size mean, and
 877 mineralogy of the same eight grain-size fractions.

879 **Figure 6.** Provenance of the subsamples from sediment core FC17-08. The $^{87}\text{Sr}/^{86}\text{Sr}$ and ϵNd
 880 composition of the subsamples is **(a)** compared to the composition of the sources defined in
 881 Figure 3 (ϵNd vs. $^{87}\text{Sr}/^{86}\text{Sr}$ biplot), and **(b)** plotted against depth. The depth of the fine-grained
 882 organic-poor deposits identified by Vandekerkhove et al. (2021) is marked in blue and that of
 883 the turbidite is in orange. The isotopic values of the suspended sediment sample collected in
 884 proglacial river Colonia is indicated in **(b)** using dashed lines as this river is the outflow of
 885 proglacial lake Cachet II, which is at the origin of the 21st century Baker River GLOFs.
 886

888 **Figure 7.** Schematic models illustrating the differences between rain-on-snow flood events
889 occurring in winter vs summer. **(a)** In winter, the entire watershed is snow-covered but
890 precipitation falls as snow in its western part. Therefore, rain-on-snow events primarily affect
891 the eastern part of the watershed and are recorded in downstream fjord sediments as intense
892 rainfall events, i.e., organic-rich turbidites of Eastern Andean Metamorphic Complex (EAMC)
893 origin. **(b)** In (early) summer, only the western part of the Baker River watershed is snow-

894 covered. Rain-on-snow events are therefore recorded in downstream fjord sediments as fine-
895 grained organic-poor layers, representing glacial material of Patagonian Batholith (PB) origin.
896

897 **Table 1.** Proportions of the two main lithologies (Patagonian Batholith [PB] and Eastern
 898 Andean Metamorphic Complex [EAMC]) in the watersheds of the seven sampled rivers,
 899 based on SEGEMAR (1998), SERNAGEOMIN (2003), and Gómez et al. (2019). For the
 900 Baker and Pascua River watersheds, calculations were made for the lower parts the
 901 watersheds only since sediments derived from the upper sub-watersheds are filtered by lakes
 902 General Carrera and Cochrane, and by Lake O'Higgins, respectively (Figure 1). The lithology
 903 under the NPI was assumed to be entirely PB. Only the PB and EAMC lithologies were
 904 considered in the calculation since the other lithologies are limited to minor occurrences in the
 905 upper (drier) part of the lower Baker River sub-watershed along Chacabuco River (Fig. 1).

Watershed	Lithological proportion	
	PB (%)	EAMC (%)
Huemules	100	0
Colonia	91	9
Lower Baker	42	58
Del Salto	17	83
Los Ñadis	15	85
Bravo	1	99
Lower Pascua	0	100

906