
Local Extreme Learning Machines and Domain Decomposition for

Solving Linear and Nonlinear Partial Differential Equations

Suchuan Dong1∗, Zongwei Li2
1Center for Computational and Applied Mathematics

Department of Mathematics, Purdue University
West Lafayette, Indiana, USA

2Department of Mathematics, Purdue University
Fort Wayne, Indiana, USA

(April 2, 2021)

Abstract

We present a neural network-based method for solving linear and nonlinear partial differential equa-
tions, by combining the ideas of extreme learning machines (ELM), domain decomposition and local
neural networks. The field solution on each sub-domain is represented by a local feed-forward neural
network, and Ck continuity conditions are imposed on the sub-domain boundaries. Each local neural net-
work consists of a small number of hidden layers, while its last hidden layer can be wide. The weight/bias
coefficients in all the hidden layers of the local neural networks are pre-set to random values and fixed
throughout the computation, and only the weight coefficients in the output layers of the local neural
networks are training parameters. The overall neural network is trained by a linear or nonlinear least
squares computation, not by the back-propagation type algorithms. We introduce a block time-marching
scheme together with the presented method for long-time simulations of time-dependent linear/nonlinear
partial differential equations. The current method exhibits a clear sense of convergence with respect to
the degrees of freedom in the neural network. Its numerical errors typically decrease exponentially or
nearly exponentially as the number of training parameters, or the number of training data points, or
the number of sub-domains increases. Extensive numerical experiments have been performed to demon-
strate the computational performance of the presented method. We also demonstrate its capability for
long-time dynamic simulations with some test problems. We compare the presented method with the
deep Galerkin method (DGM) and the physics-informed neural network (PINN) method in terms of the
accuracy and computational cost. The current method exhibits a clear superiority, with its numerical
errors and network training time considerably smaller (typically by orders of magnitude) than those of
DGM and PINN. We also compare the current method with the classical finite element method (FEM).
The computational performance of the current method is on par with, and often exceeds, the FEM
performance in terms of the accuracy and computational cost.

Keywords: local extreme learning machine, extreme learning machine, neural network, least squares,
nonlinear least squares, domain decomposition

1 Introduction

Neural network based numerical methods, especially those based on deep learning [14], have attracted a

significant amount of research in the past few years for simulating the governing partial differential equations

(PDE) of physical phenomena. These methods provide a new way for approximating the field solutions, in

the form of deep neural networks (DNN), which is different from the ansatz space with traditional numerical

∗Author of correspondence. Email: sdong@purdue.edu

1



methods such as finite difference or finite element techniques. This can be a promising approach, potentially

more effective and more efficient than the traditional methods, for solving the governing PDEs of scientific and

engineering importance. DNN-based methods solve the PDE by transforming the solution finding problem

into an optimization problem. They typically parameterize the PDE solution by the training parameters in

a deep neural network, in light of the universal approximation property of DNNs [17, 18, 3, 30]. Then these

methods attempt to minimize a loss function that consists of the residual norms of the governing equations

and also the associated boundary and initial conditions, typically by some flavor of gradient descent type

techniques (i.e. back propagation algorithm [46, 15]). This process constitutes the predominant computations

in the DNN-based PDE solvers, commonly known as the training of the neural network. Upon convergence

of the training process, the solution is represented by the neural network, with the training parameters set

according to their converged values. Several successful DNN-based PDE solvers have emerged in the past

years, such as the deep Galerkin method (DGM) [41], the physics-informed neural network (PINN) [37], and

related approaches (see e.g. [26, 27, 39, 12, 47, 16, 48, 52, 31, 40, 49], among others). Neural network-based

PDE solutions are smooth analytical functions, provided that smooth activation functions are used therein.

The solution and its derivatives can then be computed exactly, by evaluation of the neural network or by

auto-differentiation [2].

While their computational performance is promising, DNN-based PDE solvers, in their current state,

suffer from a number of limitations that make them numerically less than satisfactory and computationally

uncompetitive. The first limitation is the solution accuracy of DNN-based methods [23]. A survey of related

literature indicates that the absolute error of the current DNN-based methods is generally on, and rarely

goes below, the level of 10−3 ∼ 10−4. Increasing the resolution or the number of training epochs/iterations

does not notably improve this error level. The accuracy of such levels is less than satisfactory for scientific

computing, especially considering that the classical numerical methods can achieve the machine accuracy

given sufficient mesh resolution and computation time. Perhaps because of such limited accuracy levels, a

sense of convergence with a certain convergence rate is generally lacking with the DNN-based PDE solvers.

For example, when the number of layers, or the number of nodes within the layers, or the number of training

data points is varied systematically, one can hardly observe a consistent improvement in the accuracy of

the obtained simulation results. Another limitation concerns the computational cost. The computational

cost of DNN-based PDE solvers is extremely high. The neural network of these solvers takes a considerable

amount of time to train, in order to reach a reasonable level of accuracy. For example, a DNN-based PDE

solver can take hours to train to reach a certain accuracy, while with a traditional numerical method such

as the finite element method it may take only a few seconds to produce a solution with the same or better

accuracy. Because of their limited accuracy and large computational cost, there seems to be a general sense

that the DNN-based PDE solvers, at least in their current state, cannot compete with classical numerical

methods, except perhaps for certain problems such as high-dimensional PDEs which can be challenging to

classical methods due to the so-called curse of dimensionality.

In the current work we concentrate on the accuracy and the computational cost of neural network-

based numerical methods. We introduce a neural network-based method for solving linear and nonlinear

2



PDEs that exhibits a disparate computational performance from the above DNN-based PDE solvers. The

current method exhibits a clear sense of convergence with respect to the degrees of freedom in the system. Its

numerical errors typically decrease exponentially or nearly exponentially as the number of degrees of freedom

(e.g. the number of training parameters, number of training data points) in the network increases. In terms of

the accuracy and computational cost, it exhibits a clear superiority to the often-used DNN-based PDE solvers.

Extensive comparisons with the deep Galerkin method [41] and the physics-informed neural network [37]

are presented in this paper. The numerical errors, and the network training time, of the current method

are typically orders of magnitude smaller than those of DGM and PINN. The computational performance

of the current method is competitive compared with traditional numerical methods. Extensive comparisons

with the classical finite element method (FEM) are provided. The performance of the current method is

on par with, and often exceeds, the performance of FEM with regard to the accuracy and computational

cost. For example, to achieve the same accuracy, the network training time of the current method is

comparable to, and oftentimes smaller than, the FEM computation time. With the same computational cost

(training/computation time), the numerical errors of the current method are comparable to, and oftentimes

markedly smaller than, those of the FEM.

The superior computational performance of the current method can be attributed to several of its algo-

rithmic characteristics:

• Network architecture and training parameters. The current method is based on shallow feed-forward

neural networks. Here “shallow” refers to the configuration that the network contains only a small num-

ber (e.g. one, two or three) of hidden layers, while the last hidden layer can be wide. The weight/bias

coefficients in all the hidden layers are pre-set to random values and are fixed, and they are not training

parameters. The training parameters consist of the weight coefficients of the output layer.

• Training method. The network is trained and the values for the training parameters are determined

by a least squares computation, not by the back propagation (gradient descent-type) algorithm. For

linear PDEs, training the neural network involves a linear least squares computation. For nonlinear

PDEs, the network training involves a nonlinear least squares computation.

• Domain decomposition and local neural networks. We partition the overall domain into sub-domains,

and represent the solution on each sub-domain locally by a shallow feed-forward neural network. Ck

continuity conditions, where k > 0 is an integer related to the PDE order, are enforced across sub-

domain boundaries. The local neural networks collectively form a multi-input multi-output logical

network model, and are trained in a coupled way with the linear or nonlinear least squares computation.

• Block time marching. For long-time simulations of time-dependent PDEs, the current method adopts

a block time-marching strategy. The overall spatial-temporal domain is first divided into a number of

windows in time, referred to as time blocks. The PDE is then solved on the spatial-temporal domain of

each time block, individually and successively. Block time marching is crucial to long-time simulations,

especially for nonlinear time-dependent PDEs.

3



The idea of random weight/bias coefficients in the network and the use of linear least squares method for

network training stem from the so-called extreme learning machines (ELM) [20, 19]. ELM was developed

for single-hidden layer feed-forward neural networks (SLFN), and for linear problems. It transforms the

linear classification or regression problem into a system of linear algebraic equations, which is then solved

by a linear least squares method or by using the pseudo-inverse (Moore-Penrose inverse) of the coefficient

matrix [13]. ELM is one example of the so-called randomized neural networks (see e.g. [36, 21, 33, 22, 53]),

which can be traced to Turing’s unorganized machine and Rosenblatt’s perceptron [45, 38] and have witnessed

a revival in neuro-computations in recent years. The application of ELM to function approximations and

linear differential equations have been considered in several recent works [1, 50, 43, 35, 32, 11]. Domain

decomposition has found widespread applications in classical numerical methods [42, 44, 5, 9, 6]. Its use in

neural network-based methods, however, has been very limited and is very recent (see e.g. [29, 23, 11]).

The contribution of the current work lies in several aspects. A main contribution of this work is the

introduction of an ELM-like method for nonlinear differential equations, based on domain decomposition

and local neural networks. In contrast, existing ELM-based methods for differential equations have been

confined to linear problems, and the neural network is limited to a single hidden layer. For nonlinear

problems, to solve the nonlinear system for the training parameters, we have adopted two methods: (i)

a nonlinear least squares method with perturbations (referred to as NLSQ-perturb), and (ii) a combined

Newton/linear least squares method (referred to as Newton-LLSQ). We find that the random perturbation

in the NLSQ-perturb method is crucial to preventing the method from being trapped to local minima with

cost values exceeding some given tolerance, especially in under-resolved cases and in long-time simulations.

We present an algorithm for effective generation of the random perturbations for the nonlinear least squares

method.

Another contribution of the current work is the aforementioned block time-marching scheme for long-time

simulations of time-dependent linear/nonlinear PDEs. When the temporal dimension of the spatial-temporal

domain is large, if the PDE is solved on the entire domain all at once, we find that the neural network becomes

very hard to train with the ELM algorithm (and also with the back propagation-based algorithms), in the

sense that the obtained solution can contain pronounced errors, especially toward later time instants in

the spatial-temporal domain. On the other hand, by using the block time-marching strategy and with a

moderate time block size, the problem becomes much easier to solve and the neural network is much easier

to train with the ELM algorithm. Accurate results can be attained with the block time-marching scheme for

very long-time simulations. The block time marching strategy is often crucial to the simulations of nonlinear

time-dependent PDEs when the temporal dimension becomes even moderately large.

We would also like to emphasize that, with the current method, each local neural network is not limited

to a single hidden layer, which is another notable difference from existing ELM-type methods. Up to three

hidden layers in the local neural networks have been tested in the current paper. We observe that with one

or a small number (more than one) of hidden layers in the local neural networks, the current method can

produce accurate simulation results.

Since the current method is a combination of the ideas of ELM, domain decomposition, and local neural

4



networks, we refer to this method as locELM (local extreme learning machines) in the current paper.

We have performed extensive numerical experiments with linear and nonlinear, stationary and time-

dependent, partial differential equations to test the performance of the locELM method, and to study the

effects of the simulation parameters involved therein. For certain test problems (e.g. the advection equation)

we present very long-time simulations to demonstrate the capability and accuracy of the locELM method

together with the block time-marching scheme. We compare extensively the current locELM method with

the deep Galerkin method [41] and the physics-informed neural network method [37], and demonstrate the

superiority of the current method in terms of both accuracy and the computational cost. We also compare

the current method with the classical finite element method, and show that the computational performance

of the locELM method is comparable to, and often exceeds, the FEM performance. The current locELM

method, DGM and PINN have all been implemented in Python, using the Tensorflow (www.tensorflow.org)

and Keras (keras.io) libraries. The finite element method is also implemented in Python, by using the

FEniCS library (fenicsproject.org).

The rest of this paper is structured as follows. In Section 2 we outline the locELM representation of

field functions based on domain decomposition and local extreme learning machines, and then discuss how

to solve linear and nonlinear differential equations using the locELM representation and how to train the

overall neural network by the linear or nonlinear least squares method. We discuss the NLSQ-perturb

method and the Newton-LLSQ method for solving the nonlinear differential equations. We present the block

time-marching scheme, and discuss how to use it for long-time dynamic simulations. In Section 3 we present

extensive numerical experiments with several linear and nonlinear PDEs to test the performance of locELM.

We compare locELM with DGM and PINN, and demonstrate its superiority in terms of the accuracy and

computational cost. We also compare locELM with the classical FEM, and show that locELM is on par with

and often outperforms the FEM. Section 4 concludes the main presentation with a number of comments

on the characteristics and properties of the current method. Appendix A provides more details about the

Newton-LLSQ method for solving nonlinear PDEs. Appendix B summarizes further locELM tests with the

classical Poisson equation, and further comparisons between locELM and FEM.

2 Domain Decomposition and Local Extreme Learning Machines

2.1 Local Extreme Learning Machines (locELM) for Representing Functions

Consider the domain Ω in d (d = 1, 2 or 3) dimensions, where one of the dimensions may denote time and so

Ω in general can be a spatial-temporal domain. We consider a function f(x) (x ∈ Ω) defined on this domain,

and would like to represent this function using neural networks.

We partition Ω into Ne (Ne > 1) non-overlapping sub-domains,

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩNe ,

where Ωi denotes the i-th sub-domain. If Ωi and Ωj (1 6 i, j 6 Ne) share a common boundary, we will

denote this common boundary by Γij .

5



We will represent f(x), in a spirit analogous to the finite elements or spectral elements [24, 51, 54, 10, 8],

locally on the sub-domains by local neural networks. More specifically, on each sub-domain Ωi (1 6 i 6 Ne)

we represent f(x) by a shallow feed-forward neural network [14]. Here “shallow” refers to the configuration

that each local neural network has only a small number (e.g. one, two or perhaps three) of hidden layers,

apart from the input layer (representing x) and the output layer (representing f(x), restricted to Ωi).

Let fi(x) (1 6 i 6 Ne) denote the function f(x) restricted to Ωi. On any common boundary Γij

between Ωi and Ωj (for all 1 6 i, j 6 Ne), we impose the requirement that fi(x) and fj(x) satisfy the Ck

continuity conditions with an appropriate k = (k1, k2, . . . , kd). In other words, their function values and

partial derivatives up to the order ks (1 6 s 6 d) should be continuous across the sub-domain boundary in

the s-th direction. The order k in the Ck continuity is a user-defined parameter. When solving differential

equations, one can determine k for a specific coordinate direction based on the order of the differential

equation along that direction. For example, if the highest derivative with respect to the coordinate xs

(1 6 s 6 d) involved in the equation is m, one would typically impose Cm−1 continuity to the solution

on the sub-domain boundary along the s-th direction. Thanks to these Ck continuity conditions, the local

neural networks for the sub-domains, while physically separated, are coupled with one another logically,

and need to be trained together in a coupled fashion. The local neural networks collectively constitute the

representation of the function f(x) on the overall domain Ω.

We impose further requirements on the local neural networks. Suppose a particular layer in the local

neural network contains n nodes, and the previous layer contains m nodes. Let φi(x) (1 6 i 6 m) denote

the output of the previous layer, and ϕi(x) (1 6 i 6 n) denote the output of this layer. Then the logic of

this layer is represented by [14],

ϕi(x) = σ

 m∑
j=1

φj(x)wji + bi

 , 1 6 i 6 n, (1)

where the constants wji and bi (1 6 i 6 n, 1 6 j 6 m) are the weight and bias coefficients associated

with this layer, and σ(·) is the activation function of this layer and is in general nonlinear. We assume the

following for the local neural networks:

• The weight and bias coefficients for all the hidden layers are pre-set to uniform random values generated

on the interval [−Rm, Rm], where Rm > 0 is a user-defined constant parameter. Once these coefficients

are set randomly, they are fixed throughout the training and computation. These weight/bias coeffi-

cients are not adjustable, and they are not training parameters of the neural network. We hereafter

refer to Rm as the maximum magnitude of the random coefficients of the neural network.

• The last hidden layer, i.e. the layer before the output layer, can be wide. In other words, this layer

may contain a large number of nodes. We use M to denote the number of nodes in the last hidden

layer of each local neural network.

• The output layer contains no bias (i.e. bi = 0) and no activation function. In other words, the output

layer is linear, i.e. σ(x) = x. The weight coefficients in the output layers of the local neural networks

6



are adjustable. The collection of these weight coefficients constitutes the training parameters of the

overall neural network. Therefore, the number of training parameters in each local neural network

equals M , the number of nodes in the last hidden layer of the local neural network.

• The set of training parameters for the overall neural network is to be determined and set by a linear

or nonlinear least squares computation, not by the back propagation-type algorithm.

Remark 2.1. When a subset of the above requirements is imposed on a single global neural network, con-

taining a single hidden layer, for the entire domain, the resultant network, when trained with a linear least

squares method, is known as an extreme learning machine (ELM) [20]. In the current work we follow this

terminology, and will refer to the local neural networks presented here as local extreme learning machines (or

locELM).

Let N (N > 1) denote the number of nodes in the output layer of the local neural networks. Based on

the above assumptions, on the sub-domain Ωs (1 6 s 6 Ne) we have the relation,

usi (x) =
M∑
j=1

V s
j (x)ws

ji, x ∈ Ωs, 1 6 i 6 N, (2)

where V s
j (x) (1 6 j 6 M) denote the output of the last hidden layer, usi (x) denote the the components of

output function of the network, ws
ji are the training parameters on Ωs, and M denotes the number of nodes

in the last hidden layer. The function

fs(x) = (us1, u
s
2, . . . , u

s
N ) (3)

is the local representation of f(x) on the sub-domain Ωs.

It should be noted that the set of output functions of the last hidden layer, V s
j (x) (1 6 j 6 M), are

known functions and they are fixed throughout the computation. Since the weight/bias coefficients in the

hidden layers are pre-set to random values on [−Rm, Rm] and are fixed, V s
j (x) can be pre-computed by a

forward evaluation of the local neural network (up to the last hidden layer) against the input x data. The

first, second, and higher-order derivatives of V s
j (x) with respect to the input x can then be computed by

auto-differentiations.

The collection of local representations fs(x) (1 6 s 6 Ne), with Ck continuity imposed on the sub-

domain boundaries and with ws
ij (1 6 i 6 M , 1 6 j 6 N , 1 6 s 6 Ne) as the training parameters, form

the set of trial functions for representing the function f(x). Hereafter, we will refer to this representation

as the locELM representation of a function. Once the data for f(x) or the data for the governing equations

that describe f(x) are given, the adjustable parameters ws
ij can be trained and determined by a linear or

nonlinear least squares computation.

Remark 2.2. In the locELM representation, the hyper-parameters for the local neural networks associated

with different sub-domains (e.g. depths, widths and activation functions of the hidden layers) can in principle

assume different values. This can allow one to place more degrees of freedom locally in regions where the

field function may be more complicated and thus require more resolution. For simplicity of implementation,

7



however, in the current work we will employ the same hyper-parameters for all the local neural networks for

different sub-domains.

In the following sub-sections we focus on how to use local extreme learning machines to represent the

solutions to ordinary or partial differential equations (ODE/PDE), and discuss how to train the overall neural

network by least squares computations. We consider two cases: (i) linear differential equations, and (ii)

nonlinear differential equations, and discuss how to treat them individually. Apart from the basic algorithm,

we develop a block time-marching scheme for long-time simulations of time-dependent linear/nonlinear PDEs.

In the presentations we use two spatial dimensions, and plus time if the problem is time-dependent, as

examples. The formulations can be reduced to one spatial dimension or extended to higher spatial dimensions

in a straightforward fashion. For simplicity we concentrate on rectangular spatial-temporal domains in the

current work.

2.2 Linear Differential Equations

2.2.1 Time-Independent Linear Differential Equations

Let us first consider the boundary value problem involving linear partial differential equations together with

Dirichlet boundary conditions, and discuss how to solve the problem by using the locELM representation

for the solution. To make the discussion concrete, we concentrate on two dimensions (d = 2, with the

coordinates x and y), and consider second-order partial differential equations with respect to both x and

y (i.e. highest partial derivatives with respect to x and to y are both two). The procedure outlined below

can be extended to higher dimensions or to higher-order differential equations, with appropriate boundary

conditions and Ck continuity conditions taken into account.

Let us consider the following generic second-order linear partial differential equation

Lu = f(x, y), (4a)

u(x, y) = g(x, y), on ∂Ω, (4b)

where L is a linear second-order operator with respect to both x and y, u(x, y) is the scalar unknown field

function to be solved for, f(x, y) and g(x, y) are prescribed source terms for the equation and the Dirichlet

boundary condition, and ∂Ω denotes the boundary of Ω. We assume that this boundary value problem is

well-posed. Our goal here is to illustrate the procedure for numerically solving this problem by approximating

its solution using local extreme learning machines.

Here is the general idea for the solution process. We partition the overall domain into a number of

sub-domains, and represent the field solution using the locELM representation described in Section 2.1.

We next choose a set of points (collocation points) within each sub-domain, which can have a regular or

random distribution. We enforce the governing equations on the collocation points within each sub-domain,

and enforce the boundary conditions on those collocation points in those sub-domains that reside on ∂Ω.

We further enforce the Ck continuity conditions on those collocation points that reside on the sub-domain

boundaries. Auto-differentiations are employed to compute the first or higher-order derivatives involved

in the above operations. These operations result in a system of algebraic equations, which may be linear

8



or nonlinear depending on the boundary value problem, about the training parameters in the locELM

representation. We seek a least squares solution to this algebraic system, and compute the solution by either

a linear least squares method or a nonlinear least squares method. The training parameters of the local

neural networks are then determined by the least squares computation.

For simplicity of implementation, we concentrate on the case with Ω being a rectangular domain, i.e. Ω =

[a1, b1] × [a2, b2]. Let Nx (Nx > 1) and Ny (Ny > 1) denote the number of sub-domains along the x

and y directions, respectively, with a total number of Ne = NxNy sub-domains in Ω. Let the two vectors

[X0, X1, . . . , XNx ] and [Y0, Y1, . . . , YNy ] denote the coordinates of the sub-domain boundaries along the x

and y directions, where (X0, Y0) = (a1, a2) and (XNx
, YNy

) = (b1, b2). Let Ωemn
= [Xm, Xm+1]× [Yn, Yn+1]

denote the region occupied by the sub-domain emn, for 0 6 m 6 Nx − 1 and 0 6 n 6 Ny − 1. Here emn

represents the linear index of the sub-domain associated with the 2D index (m,n), with emn = mNy +n+ 1,

and so 1 6 emn 6 Ne.

We approximate the unknown field function u(x, y) using the locELM representation as discussed in

Section 2.1. On each sub-domain emn we represent the solution by a shallow neural network, which consists

of an input layer with two nodes (representing the coordinates x and y), one or a small number of hidden

layers, and an output layer with one node (representing the solution uemn). Let V emn
j (x, y) (1 6 j 6 M)

denote the output of the last hidden layer, where M is the number of nodes in this layer. Then equation (2)

becomes

uemn(x, y) =
M∑
j=1

V emn
j (x, y)wemn

j , (x, y) ∈ Ωemn
, 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1, (5)

where wemn
j (1 6 j 6 M) are the training parameters in the sub-domain emn. Again note that V emn

j (x, y)

is known, once the weight/bias coefficients in the hidden layers have been pre-set to random values on

[−Rm, Rm].

Remark 2.3. Apart from the above logical operations, in the implementation we incorporate an additional

normalization layer immediately behind the input layer in each of the local neural networks. For each sub-

domain emn, the normalization layer performs an affine mapping and normalizes the input data, (x, y) ∈
Ωemn

= [Xm, Xm+1] × [Yn, Yn+1], such that the output data of the normalization layer fall into the domain

[−1, 1]× [−1, 1]. This extra normalization layer contains no adjustable (training) parameters.

On the sub-domain emn (0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1), let (xemn
p , yemn

q ) (0 6 p 6 Qx − 1,

0 6 q 6 Qy − 1) denote a set of distinct collocation points, where xemn
p (0 6 p 6 Qx − 1) denote a set of Qx

collocation points on the interval [Xm, Xm+1] and yemn
q denote a set of Qy collocation points on the interval

[Yn, Yn+1]. The total number of collocation points is Q = QxQy within each sub-domain emn. In the current

work we primarily consider the following uniform distribution for the collocation points:

• Uniform distribution: xemn
p forms a set of Qx uniform grid points on [Xm, Xm+1], with both end points

included, i.e. xemn
0 = Xm and xemn

Qx−1 = Xm+1. yemn
q forms a set of Qy uniform grid points on [Yn, Yn+1],

with both end points included, i.e. yemn
0 = Yn and yemn

Qy−1 = Yn+1.

9



Remark 2.4. Besides the uniform distribution, we also consider a quadrature-point distribution and a ran-

dom distribution for the collocation points. With the quadrature-point distribution, xemn
p are taken to be

a set of Qx Gauss-Lobatto-Legendre quadrature points on the interval [Xm, Xm+1], and yemn
q are taken to

be a set of Qy Gauss-Lobatto-Legendre quadrature points on the interval [Yn, Yn+1]. With the random dis-

tribution, the collocation points in the sub-domain emn are taken to be uniformly generated random points

(xemn

l , yemn

l ) ∈ Ωemn (0 6 l 6 Q − 1), where Q is the total number of collocation points in the sub-domain,

among which a certain number of points are generated on the sub-domain boundaries and the rest are located

inside the sub-domain. Numerical experiments indicate that, with the same number of collocation points,

the result with the quadrature-point distribution is generally more accurate than that with the uniform dis-

tribution, which in turn is more accurate than that with the random distribution of collocation points. The

quadrature-point distribution however poses some practical issues in the current implementation. When the

number of quadrature points exceeds 100, the library on which the current implementation is based cannot

compute the Gaussian quadrature points accurately. This is the reason why in the current work we predomi-

nantly employ the uniform distribution of collocation points in the numerical tests of Section 3.

With the above setup, we solve the boundary value problem consisting of equations (4a) and (4b) as

follows. On each sub-domain emn we enforce the equation (4a) on all the collocation points (xemn
p , yemn

q ),

M∑
j=1

[
LV emn

j

(
xemn
p , yemn

q

)]
wemn

j = f(xemn
p , yemn

q ),

for 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1, 0 6 p 6 Qx − 1, 0 6 q 6 Qy − 1,

(6)

where we have used equation (5). We enforce equation (4b) on the four boundaries of the domain Ω,

M∑
j=1

V e0n
j

(
a1, y

e0n
q

)
we0n

j = g
(
a1, y

e0n
q

)
, 0 6 n 6 Ny − 1, 0 6 q 6 Qy − 1; (7a)

M∑
j=1

V emn
j

(
b1, y

emn
q

)
wemn

j = g
(
b1, y

emn
q

)
, m = Nx − 1, 0 6 n 6 Ny − 1, 0 6 q 6 Qy − 1; (7b)

M∑
j=1

V em0
j

(
xem0
p , a2

)
wem0

j = g
(
xem0
p , a2

)
, 0 6 m 6 Nx − 1, 0 6 p 6 Qx − 1; (7c)

M∑
j=1

V emn
j

(
xemn
p , b2

)
wemn

j = g
(
xemn
p , b2

)
, n = Ny − 1, 0 6 m 6 Nx − 1, 0 6 p 6 Qx − 1, (7d)

where equation (5) has again been used.

The local representations of the field solution are coupled together by the Ck continuity conditions. Since

the equation (4a) is assumed to be of second order with respect to both x and y, we impose C1 continuity

conditions across the sub-domain boundaries in both the x and y directions. On the vertical sub-domain

10



boundaries x = Xm+1 (0 6 m 6 Nx − 2), the C1 conditions are reduced to,

M∑
j=1

V emn
j

(
Xm+1, y

emn
q

)
wemn

j −
M∑
j=1

V
em+1,n

j

(
Xm+1, y

em+1,n
q

)
w

em+1,n

j = 0, (8a)

M∑
j=1

∂V emn
j

∂x

∣∣∣∣
(Xm+1,y

emn
q )

wemn
j −

M∑
j=1

∂V
em+1,n

j

∂x

∣∣∣∣∣
(Xm+1,y

em+1,n
q )

w
em+1,n

j = 0, (8b)

for 0 6 m 6 Nx − 2, 0 6 n 6 Ny − 1, 0 6 q 6 Qy − 1,

where it should be noted that yemn
q = y

em+1,n
q . On the horizontal sub-domain boundaries y = Yn+1 (0 6 n 6

Ny − 2), the C1 continuity conditions are reduced to,

M∑
j=1

V emn
j

(
xemn
p , Yn+1

)
wemn

j −
M∑
j=1

V
em,n+1

j

(
xem,n+1
p , Yn+1

)
w

em,n+1

j = 0, (9a)

M∑
j=1

∂V emn
j

∂y

∣∣∣∣
(xemn

p ,Yn+1)

wemn
j −

M∑
j=1

∂V
em,n+1

j

∂y

∣∣∣∣∣
(x

emn+1
p ,Yn+1)

w
em,n+1

j = 0, (9b)

for 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 2, 0 6 p 6 Qx − 1,

where it should be noted that xemn
p = x

em,n+1
p .

Remark 2.5. It should be noted that in the current work we have enforced the Ck continuity conditions only

on the collocation points of the sub-domain boundaries, and the enforcement is only in the least squares sense.

Therefore, the resultant locELM solution does not exactly satisfy the Ck continuity across the sub-domain

boundaries.

The set of equations consisting of (6)–(9b) is a system of linear algebraic equations about the training

parameters wemn
j (0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1, 1 6 j 6 M). In these equations, V emn

j (x, y),

LV emn
j (x, y),

∂V emn
j

∂x and
∂V emn

j

∂y are all known functions, once the weight/bias coefficients in the hidden

layers are randomly set. These functions can be evaluated on the collocation points, including those on

the domain boundaries and the sub-domain boundaries. The derivatives involved in these functions can be

computed by auto-differentiation.

This linear algebraic system consists of NxNy(QxQy + 2Qx + 2Qy) equations, and NxNyM unknown

variables of wemn
j . We seek the least squares solution to this system with the minimum norm. Linear least

squares routines are available in a number of scientific libraries, and we take advantage of these numeri-

cal libraries in our implementation. In the current work we employ the linear least squares routine from

LAPACK, available through wrapper functions in the scipy package in Python. Therefore, the adjustable

parameters wemn
j in the neural network are trained by this linear least squares computation.

In the current work we have employed Tensorflow and Keras to implement the neural network architecture

as outlined above. Each local neural network consists of several “dense” Keras layers. The set of Ne = NxNy

local neural networks collectively forms an overall logical neural network, in the form of a multi-input multi-

output Keras model. The input data to the model consist of the coordinates of the collocation points for

all sub-domains, (xemn
p , yemn

q ), for 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1, 0 6 p 6 Qx − 1 and 0 6 q 6 Qy − 1.

11



The output of the Keras model consists of the solution uemn(x, y) on the collocation points for all the sub-

domains. The output of the last hidden layer of each sub-domain, V emn
j (x, y), are obtained by creating a

Keras sub-model using the Keras functional APIs (application programming interface). The derivatives of

V emn
j (x, y), and those involved in LV emn

j (x, y), are computed using auto-differentiation with these Keras

sub-models. After the parameters wemn
j are obtained by the linear least squares computation, the weight

coefficients in the output layer of the Keras model are then set based on these parameter values.

Remark 2.6. We observe from numerical experiments that the simulation result obtained using the current

method is considerably more accurate, typically by orders of magnitude, than those obtained using DNN-

based PDE solvers, trained using gradient descent-type algorithms. Furthermore, the current method is

computationally fast. Its computational cost is essentially the cost of the linear least squares computation.

We observe that the network training time of the current method is considerably lower, typically by orders of

magnitude, than those of the DNN-based PDE solvers trained with gradient descent-type algorithms. These

points will be demonstrated by extensive numerical experiments in Section 3, in which we compare the current

method with the deep Galerkin method [41] and the Physics-Informed Neural Network [37].

Remark 2.7. The computational performance of the current locELM method, in terms of the accuracy and

the computational cost, is comparable to, and oftentimes exceeds, that of the classical finite element method.

These points will be demonstrated by extensive numerical experiments in Section 3 with time-independent

and time-dependent problems. We observe that, with the same training/computation time, the accuracy of

the current method is comparable, and oftentimes considerably superior, to that of the finite element method.

To achieve the same accuracy, the training time of the current method is comparable to, and oftentimes

markedly smaller than, the computation time of the classical finite element method.

2.2.2 Time-Dependent Linear Differential Equations

We next consider initial-boundary value problems involving time-dependent linear differential equations

together with Dirichlet boundary conditions, and discuss how to solve such problems using the locELM

method. We again concentrate on two spatial dimensions (with coordinates x and y) plus time (t), and

assume second spatial orders in the differential equation with respect to both x and y.

Basic Method We consider the following generic time-dependent second-order linear PDE, together with

the Dirichlet boundary condition and the initial condition,

∂u

∂t
= Lu+ f(x, y, t), (10a)

u(x, y, t) = g(x, y, t), for (x, y) on spatial domain boundary, (10b)

u(x, y, 0) = h(x, y), (10c)

where u(x, y, t) is the unknown field function to be solved for, L is a second-order linear differential operator

with respect to both x and y, f(x, y, t) is a prescribed source term, g(x, y, t) is the Dirichlet boundary data,

and h(x, y) denotes the initial field distribution. We assume that this initial-boundary value problem is well

posed, and would like to solve this problem by approximating u(x, y, t) using the locELM representation.

12



We seek the solution on a rectangular spatial-temporal domain, Ω = {(x, y, t) | x ∈ [a1, b1], y ∈
[a2, b2], t ∈ [0,Γ]}, where ai, bi (i = 1, 2) and Γ are prescribed constants. The solution procedure is

analogous to that discussed in Section 2.2.1. We partition Ω into Nx (Nx > 1) sub-domains along the x

direction, Ny (Ny > 1) sub-domains along the y direction, and Nt (Nt > 1) sub-domains in time, lead-

ing to a total of Ne = NxNyNt sub-domains in Ω. Let the vectors [X0, X1, . . . , XNx
], [Y0, Y1, . . . , YNy

]

and [T0, T1, . . . , TNt ] denote the coordinates of the sub-domain boundaries along the x, y and tempo-

ral directions, respectively, where (X0, Y0, T0) = (a1, a2, 0) and (XNx
, YNy

, TNt
) = (b1, b2,Γ). We use

Ωemnl
= [Xm, Xm+1] × [Yn, Yn+1] × [Tl, Tl+1] to denote the spatial-temporal region occupied by the sub-

domain with the index emnl = mNyNt +nNt + l+1, for 0 6 m 6 Nx−1, 0 6 n 6 Ny−1 and 0 6 l 6 Nt−1.

We approximate u(x, y, t) using the locELM representation from Section 2.1. More specifically, we employ

a local shallow feed-forward neural network for the solution on each sub-domain emnl. The local neural

network consists of an input layer with three nodes, representing the coordinates x, y and t, respectively,

a small number of hidden layers, and an output layer consisting of one node, representing the solution

uemnl(x, y, t) on this sub-domain. The output layer is linear and contains no bias. The weight/bias coefficients

in all the hidden layers are pre-set to uniform random values generated on [−Rm, Rm] and are fixed, as

discussed in Section 2.1. Additionally, in the implementation, we incorporate an affine mapping operation

right behind the input layer to normalize the input data, (x, y, t) ∈ Ωemnl
, to the interval [−1, 1]× [−1, 1]×

[−1, 1]. Let V emnl
j (1 6 j 6M) denote the output of the last hidden layer, where M denotes the number of

nodes in this layer. Then we have, in accordance with equation (5),

uemnl(x, y, t) =

M∑
j=1

V emnl
j (x, y, t)wemnl

j ,

for 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1, 0 6 l 6 Nt − 1,

(11)

where the coefficients wemnl
j (1 6 j 6M) are the training parameters of the local neural network. Note that

V emnl
j (x, y, t) and its derivatives are all known functions, since the weight/bias coefficients of all the hidden

layers are pre-set and fixed.

On each sub-domain emnl, let (xemnl
p , yemnl

q , temnl
r ) (0 6 p 6 Qx− 1, 0 6 q 6 Qy − 1, and 0 6 r 6 Qt− 1)

denote a set of distinct collocation points, where xemnl
p (0 6 p 6 Qx − 1) denotes a set of Qx collocation

points on [Xm, Xm+1] with xemnl
0 = Xm and xemnl

Qx−1 = Xm+1, yemnl
q (0 6 q 6 Qy − 1) denotes a set of Qy

collocation points on [Yn, Yn+1] with yemnl
0 = Yn and yemnl

Qy−1 = Yn+1, and temnl
r (0 6 r 6 Qt−1) denotes a set

of Qt collocation points on [Tl, Tl+1] with temnl
0 = Tl and temnl

Qt−1 = Tl+1. We primarily consider the uniform

distribution of regular grid points as the collocation points, analogous to that in Section 2.2.1.

With these setup, we next enforce the equations (10a)–(10c) on the collocation points inside each sub-

domain and on the domain boundaries. On the sub-domain emnl, equation (10a) is reduced to

M∑
j=1

(
∂V emnl

j

∂t
− LV emnl

j

)∣∣∣∣
(x

emnl
p ,y

emnl
q ,t

emnl
r )

wemnl
j = f

(
xemnl
p , yemnl

q , temnl
r

)
,

for 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1, 0 6 l 6 Nt − 1,

0 6 p 6 Qx − 1, 0 6 q 6 Qy − 1, 0 6 r 6 Qt − 1,

(12)

13



where
(
xemnl
p , yemnl

q , temnl
r

)
are the collocation points. The boundary condition (10b), when enforced on the

spatial domain boundaries corresponding to x = a1 or b1 and y = a2 or b2, is reduced to

M∑
j=1

V e0nl
j (a1, y

e0nl
q , te0nl

r )we0nl
j − g(a1, y

e0nl
q , te0nl

r ) = 0,

for 0 6 n 6 Ny − 1, 0 6 l 6 Nt − 1, 0 6 q 6 Qy − 1, 0 6 r 6 Qt − 1;

(13a)

M∑
j=1

V emnl
j (b1, y

emnl
q , temnl

r )wemnl
j − g(b1, y

emnl
q , temnl

r ) = 0,

for m = Nx − 1, 0 6 n 6 Ny − 1, 0 6 l 6 Nt − 1, 0 6 q 6 Qy − 1, 0 6 r 6 Qt − 1;

(13b)

M∑
j=1

V em0l
j (xem0l

p , a2, t
em0l
r )wem0l

j − g(xem0l
p , a2, t

em0l
r ) = 0,

for 0 6 m 6 Nx − 1, 0 6 l 6 Nt − 1, 0 6 p 6 Qx − 1, 0 6 r 6 Qt − 1;

(13c)

M∑
j=1

V emnl
j (xemnl

p , b2, t
emnl
r )wemnl

j − g(xemnl
p , b2, t

emnl
r ) = 0,

for n = Ny − 1, 0 6 m 6 Nx − 1, 0 6 l 6 Nt − 1, 0 6 p 6 Qx − 1, 0 6 r 6 Qt − 1.

(13d)

On the boundary t = 0 of the spatial-temporal domain, the initial condition (10c) is reduced to

M∑
j=1

V emn0
j (xemn0

p , yemn0
q , 0)wemn0

j − h(xemn0
p , yemn0

q ) = 0,

for 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1, 0 6 p 6 Qx − 1, 0 6 q 6 Qy − 1.

(14)

Since L is assumed to be a second-order operator with respect to both x and y, we impose C1 continuity

conditions across the sub-domain boundaries in both the x and y directions. Because equation (10a) is of first

order in time, we impose the C0 continuity condition across the sub-domain boundaries along the temporal

direction. On the sub-domain boundaries x = Xm+1 (0 6 m 6 Nx − 2), the C1 conditions become,

M∑
j=1

V emnl
j (Xm+1, y

emnl
q , temnl

r )wemnl
j −

M∑
j=1

V
em+1,nl

j (Xm+1, y
em+1,nl
q , t

em+1,nl
r )w

em+1,nl

j = 0,

0 6 m 6 Nx − 2, 0 6 n 6 Ny − 1, 0 6 l 6 Nt − 1, 0 6 q 6 Qy − 1, 0 6 r 6 Qt − 1;

(15a)

M∑
j=1

∂V emnl
j

∂x

∣∣∣∣
(Xm+1,y

emnl
q ,t

emnl
r )

wemnl
j −

M∑
j=1

∂V
em+1,nl

j

∂x

∣∣∣∣∣
(Xm+1,y

em+1,nl
q ,t

em+1,nl
r )

w
em+1,nl

j = 0,

0 6 m 6 Nx − 2, 0 6 n 6 Ny − 1, 0 6 l 6 Nt − 1, 0 6 q 6 Qy − 1, 0 6 r 6 Qt − 1.

(15b)

On the sub-domain boundaries y = Yn+1 (0 6 n 6 Ny − 2) the C1 continuity conditions become,

M∑
j=1

V emnl
j (xemnl

p , Yn+1, t
emnl
r )wemnl

j −
M∑
j=1

V
em,n+1,l

j (x
em,n+1,l
p , Yn+1, t

em,n+1,l
r )w

em,n+1,l

j = 0,

0 6 m 6 Nx − 1, 0 6 n 6 Ny − 2, 0 6 l 6 Nt − 1, 0 6 p 6 Qx − 1, 0 6 r 6 Qt − 1;

(16a)

M∑
j=1

∂V emnl
j

∂y

∣∣∣∣
(x

emnl
p ,Yn+1,t

emnl
r )

wemnl
j −

M∑
j=1

∂V
em,n+1,l

j

∂y

∣∣∣∣∣
(x

em,n+1,l
p ,Yn+1,t

em,n+1,l
r )

w
em,n+1,l

j = 0,

0 6 m 6 Nx − 1, 0 6 n 6 Ny − 2, 0 6 l 6 Nt − 1, 0 6 p 6 Qx − 1, 0 6 r 6 Qt − 1.

(16b)

14



On the sub-domain boundaries t = Tl+1 (0 6 l 6 Nt − 2), the C0 continuity conditions become,

M∑
j=1

V emnl
j (xemnl

p , yemnl
q , Tl+1)wemnl

j −
M∑
j=1

V
emn,l+1

j (x
emn,l+1
p , y

emn,l+1
q , Tl+1)w

emn,l+1

j = 0,

0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1, 0 6 l 6 Nt − 2, 0 6 p 6 Qx − 1, 0 6 q 6 Qy − 1.

(17)

The equations consisting of (12)–(17) form a system of linear algebraic equations about the training

parameters wemnl
j (1 6 j 6 M , 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1 and 0 6 l 6 Nt − 1). In these equations,

V emnl
j ,

∂V
emnl
j

∂t ,
∂V

emnl
j

∂x ,
∂V

emnl
j

∂y and LV emnl
j are all known functions and can be evaluated on the collocation

points by the local neural networks. In particular, the partial derivatives therein can be computed based on

auto-differentiation.

This linear system consists of Nequ = NxNyNt [QxQyQt + 2(Qx +Qy)Qt +QxQy] equations, and is

about NxNyNtM unknown variables wemnl
j . We seek a least squares solution to this system with minimum

norm, and compute this solution by the linear least squares method. In the implementation we employ the

linear least squares routine from LAPACK to compute the least squares solution. The weight coefficients in

the output layers of the local neural networks are then determined by the least squares solution to the above

system. Training the neural network basically consists of computing the least squares solution.

Block Time-Marching for Long-Time Simulations Since the linear least squares computation, and

hence the neural network training, is computationally fast, longer-time dynamic simulations of time-dependent

PDEs become feasible using the current method. With the basic method, we observe that as the temporal

dimension of the spatial-temporal domain (i.e. Γ) increases, the network training generally becomes more

difficult, in the sense that the obtained solution tends to become less accurate corresponding to the later

time instants in the domain. When Γ is large, the solution can contain pronounced errors. Therefore, using

a large dimension in time (i.e. large Γ) with the basic method is generally not advisable.

To perform long-time simulations, we will employ the following block time-marching strategy. Given a

spatial-temporal domain with a large dimension in time, we divide the domain into a number of windows,

referred to as time blocks, along the temporal direction, so that the temporal dimension of each time block

has a moderate size. We then solve the initial-boundary value problem using the basic method as discussed

above on the spatial-temporal domain of each time block, individually and successively. We use the solution

from the previous time block evaluated at the last time instant as the initial condition for the computations

of the current time block. We start with the first time block, and march in time block by block, until the

last time block is completed.

Specifically, let Ω = {(x, y, t) | x ∈ [a1, b1], y ∈ [a2, b2], t ∈ [0, tf ]} denote the spatial-temporal domain

on which the initial-boundary value problem (10a)–(10c) is to be solved, where tf can be large. We divide

the domain into Nb (Nb > 1) uniform blocks in time, with each block the size of Γ =
tf
Nb

. We choose Nb

such that the block size Γ is a moderate value.

On the k-th (0 6 k 6 Nb − 1) time block, we introduce a time shift and a new dependent variable as a

function of the shifted time based on the following transform:

ξ = t− kΓ, U(x, y, ξ) = u(x, y, t), t ∈ [kΓ, (k + 1)Γ], ξ ∈ [0,Γ], (18)

15



where ξ denotes the shifted time and U(x, y, ξ) denotes the new dependent variable. The equations (10a)

and (10b) are then transformed into,

∂U

∂ξ
= LU + f(x, y, ξ + kΓ), (19a)

U(x, y, ξ) = g(x, y, ξ + kΓ), for (x, y) on spatial domain boundary. (19b)

This is supplemented by the initial condition,

U(x, y, 0) = U0(x, y), (20)

where U0(x, y) denotes the initial distribution on the time block k, given by

U0(x, y) =

{
u(x, y, 0) = h(x, y), if k = 0,
u(x, y, kΓ) computed on time block (k − 1), if k > 0.

(21)

Note that h(x, y) is the initial condition for the problem.

The initial-boundary value problem on time block k now consists of equations (19a), (19b) and (20), to be

solved on the spatial-temporal domain Ωst = {(x, y, ξ) | x ∈ [a1, b1], y ∈ [a2, b2], ξ ∈ [0,Γ]} for the function

U(x, y, ξ). This is the same problem we have considered previously, and it can be solved using the basic

method discussed before. With U(x, y, ξ) obtained, the function u(x, y, t) on time block k is recovered by

the transform (18). By solving the initial-boundary value problem on successive time blocks, we can attain

the solution u(x, y, t) on the entire spatial-temporal domain Ω. This is the block time-marching scheme for

potentially long-time simulations of time-dependent linear PDEs.

2.3 Nonlinear Differential Equations

In this section we look into how to solve the initial/boundary value problems involving nonlinear differential

equations using domain decomposition and the locELM representation for the solutions. The overall proce-

dure is analogous to that for linear differential equations. The main difference lies in that here the set of

local neural networks needs to be trained by a nonlinear least squares computation.

2.3.1 Time-Independent Nonlinear Differential Equations

We first consider the boundary value problems involving nonlinear differential equations together with Dirich-

let boundary conditions, and discuss how to solve such problems using the locELM method. We assume that

the highest-orer terms in the equation are linear, and that the nonlinear terms involve the unknown function

and also possibly its derivatives of lower orders. To make the discussions more concrete, we again focus on

two dimensions (with coordinates x and y), and assume that the highest partial derivatives with respect to

both x and y are of second order in the equation.

Let us consider the following generic second-order nonlinear differential equation of such a form on domain

Ω, together with the Dirichlet boundary condition on ∂Ω,

Lu+ F (u, ux, uy) = f(x, y), (22a)

u(x, y) = g(x, y), on ∂Ω, (22b)

16



where u(x, y) is the field function to be solved for, ux = ∂u
∂x , uy = ∂u

∂y , L is a second-order linear differential

operator with respect to both x and y, F denotes the nonlinear term, f(x, y) is a prescribed source term,

and g(x, y) denotes the Dirichlet boundary data.

The overall procedure for solving equations (22a)–(22b) using the locELM method is analogous to that

in Section 2.2.1. We focus on a rectangular domain, Ω = {(x, y) | x ∈ [a1, b1], y ∈ [a2, b2]}, and partition

this domain into Nx and Ny sub-domains along the x and y directions, respectively, thus leading to a total of

Ne = NxNy sub-domains in Ω. Following the notation of Section 2.2.1, we denote the sub-domain boundary

coordinates along the x and y directions by two vectors [X0, X1, . . . , XNx ] and [Y0, Y1, . . . , YNy ], respectively.

Let Ωemn
= [Xm, Xm+1] × [Yn, Yn+1] denote the sub-domain with index emn for 0 6 m 6 Nx − 1 and

0 6 n 6 Ny − 1. We use (xemn
p , yemn

q ) (0 6 p 6 Qx − 1, 0 6 q 6 Qy − 1) to denote a set of uniform

collocation points in the sub-domain emn, where Qx and Qy are the number of collocation points in the x

and y directions on the sub-domain. The input layer of the local neural network consists of two nodes (x

and y), and the output layer consists of one node (representing u). Let uemn(x, y) denote the output of the

local neural network on the sub-domain emn, and V emn
j (x, y) (1 6 j 6 M) denote the output of the last

hidden layer of the local neural network, where M is the number of nodes in the last hidden layer. We have

the following relations,

uemn(x, y) =
M∑
j=1

V emn
j (x, y)wemn

j ,
∂uemn

∂x
=

M∑
j=1

∂V emn
j

∂x
wemn

j ,
∂uemn

∂y
=

M∑
j=1

∂V emn
j

∂y
wemn

j ,

for 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1,

(23)

where the constants wemn
j (1 6 j 6M) denote the weight coefficients in the output layer of the local neural

network on sub-domain emn, and they constitute the training parameters of the neural network.

Enforcing equation (22a) on the collocation points (xemn
p , yemn

q ) for each sub-domain leads to

M∑
j=1

[
LV emn

j (xemn
p , yemn

q )
]
wemn

j + F
(
uemn , uemn

x , uemn
y

)∣∣
(xemn

p ,yemn
q )

− f(xemn
p , yemn

q ) = 0,

for 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1, 0 6 p 6 Qx − 1, 0 6 q 6 Qy − 1,

(24)

where uemn , uemn
x and uemn

y are given by (23) in terms of the training parameters wemn
j . Enforcing the

boundary condition (22b) on the collocation points of the four domain boundaries x = a1 or b1 and y = a2

or b2 leads to the equations (7a), (7b), (7c) and (7d). Since equation (22a) is of second-order with respect to

both x and y, we impose C1 continuity conditions across the sub-domain boundaries along both the x and

y directions. Enforcing the C1 continuity conditions on the collocation points of the sub-domain boundaries

x = Xm+1 (0 6 m 6 Nx−2) and y = Yn+1 (0 6 n 6 Ny−2) leads to the equations (8a)–(8b) and (9a)–(9b).

The set of equations consisting of (24), (7a)–(7d), (8a)–(8b) and (9a)–(9b) is a system of nonlinear

algebraic equations about the training parameters wemn
j (1 6 j 6 M , 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1).

In these equations the functions V emn
j (x, y) are all known and their partial derivatives can be computed by

auto-differentiation. This nonlinear algebraic system consists of NxNy(QxQy + 2Qx + 2Qy) equations with

NxNyM unknowns.

This system is to be solved for the determination of the training parameters. We seek a least squares

solution to this system for the training parameters wemn
j , thus leading to a nonlinear least squares problem.

17



Algorithm 1: NLSQ-perturb (nonlinear least squares with perturbations)

input : constant δ > 0, initial guess x0

output: solution vector x, associated cost c

1 call scipy.optimize.least squares routine using x0 as the initial guess
2 set x← returned solution
3 set c← returned cost
4 if c is below a threshold then
5 return
6 end

7 for i← 0 to maximum number of sub-iterations do
8 generate a random number ξ1 on the interval [0, 1]
9 set δ1 ← ξ1δ

10 generate a uniform random vector ∆x of the same shape as x on the interval [−δ1, δ1]

11 generate a random number ξ2 on the interval [0, 1]
12 set y0 ← ξ2x + ∆x

13 call scipy.optimize.least squares routine using y0 as the initial guess
14 if the returned cost is less than c then
15 set x← the returned solution
16 set c← the returned cost

17 end
18 if the returned cost is below a threshold then
19 return
20 end

21 end

To solve this problem, we take advantage of the nonlinear least squares implementations from the scientific

libraries. In the current implementation, we employ the nonlinear least squares routine “least squares” from

the scipy.optimize package. This method typically works quite well, and exhibits a smooth convergence

behavior. However, we observe that in certain cases, e.g. when the simulation resolution is not sufficient or

sometimes in longer-time simulations with time-dependent nonlinear equations, this method at times can

be attracted to and trapped in a local minimum solution. While the method indicates that the nonlinear

iterations have converged, the norm of the converged equation residuals can turn out to be quite pronounced

in magnitude. In the event this takes place, the obtained solution can contain significant errors and the

simulation loses accuracy from that point onward. This issue is typically encountered when the resolution of

the computation (e.g. the number of collocation points in the domain or the number of training parameters

in the neural network) decreases to a certain point. This has been a main issue with the nonlinear least

squares computation using this method.

To alleviate this problem and make the nonlinear least squares computation more robust, we find it

necessary to incorporate a sub-iteration procedure with random perturbations to the initial guess when

invoking the nonlinear least squares routine. The basic idea is as follows. If the nonlinear least squares

routine converges with the converged cost (i.e. norm of the equation residual) exceeding a threshold, the

sub-iteration procedure will be triggered. Within each sub-iteration a random initial guess for the solution

18



is generated, based on e.g. a perturbation to the current approximation of the solution vector, and is fed to

the nonlinear least squares routine.

Algorithm 1 illustrates the nonlinear least squares computation combined with the sub-iteration proce-

dure, which will be referred to as the NLSQ-perturb (Nonlinear Least SQuares with perturbations) method

hereafter. In this algorithm the parameter δ controls the maximum range on which the random perturbation

vector is generated. Numerical experiments indicate that the method works better if δ is not large. A typical

value is δ = 0.5, which is observed to work well in numerical simulations. Combined with an appropriate

resolution (the number of collocation points in domain, and the number of training parameters in the neural

network) for a given problem, the NLSQ-perturb method turns out to be very effective. The solution can

typically be attained with only a few (e.g. around 4 or 5) sub-iterations if such an iteration is triggered.

For the numerical tests reported in Section 3, we employ a threshold value 10−3 in the lines 4 and 18 of

Algorithm 1. The final converged cost value is typically on the order 10−13.

Remark 2.8. In Algorithm 1 the value ξ2 controls around which point the random perturbation will be

generated. In Algorithm 1, ξ2 is taken to be a random value from [0, 1]. An alternative to this is to fix this

value at ξ2 = 0 or ξ2 = 1, which has been observed to work well in actual simulations. By using ξ2 = 0, one

is effectively generating a random perturbation around the origin and use it as the initial guess. By using

ξ2 = 1, one is effectively setting the initial guess as a random perturbation to the best approximation obtained

so far.

Besides the above nonlinear least squres formulation with the NLSQ-perturb method, we have considered

another method for solving the system (22a)–(22b), by a combination of Newton iterations and the linear

least squares approach, which we will refer to as the Newton-LLSQ (Newton-Linear Least SQuares) method

hereafter. With this method, we first linearize the equation (22a) to arrive at a linear differential equation

about the increment field. This linear differential equation, the associated boundary condition, and the

associated Ck continuity conditions constitute the system that determines the increment field. This system

for the increment field is linear and can be solved using the locELM method from Section 2.2.1 with the linear

least squares approach. The solution to the nonlinear system consisting of (22a)–(22b) can be obtained with

a Newton iteration, by starting with a zero initial guess and updating the approximation to the solution with

the increment field in each Newton step. We observe that the convergence behavior of the Newton-LLSQ

method is not as regular as the NLSQ-perturb method, but it appears less likely to be trapped to local

minimum solutions. The details of the Newton-LLSQ method are provided in an Appendix of this paper

(“Appendix A. The Newton-Linear Least Squares (Newton-LLSQ) Method”).

Remark 2.9. It is observed that the computational cost of the Newton-LLSQ method is typically considerably

smaller than that of the NLSQ-perturb method in training the locELM neural networks. On the other hand,

the locELM solutions obtained with the Newton-LLSQ method are in general markedly less accurate than

those obtained using the NLSQ-perturb method.

In the current work, we implement the local neural networks for each sub-domain emn using one or

several dense Keras layers, with the collocation points (xemn
p , yemn

q ) as the input data and uemn as the

19



output. In the implementation, an affine mapping is incorporated into each local neural network behind

the input layer to normalize the input (x, y) data to the interval [−1, 1]× [−1, 1] for each sub-domain. The

set of local neural networks logically forms a multiple-input multiple-output Keras model. The weight/bias

coefficients in all the hidden layers are set to uniform random values generated on [−Rm, Rm]. The weight

coefficients of the output layers (wemn
j ) of the local neural networks are determined and set by using the

NLSQ-perturb or Newton-LLSQ methods. The partial derivatives involved in the formulation are computed

by auto-differentiation from the Tensorflow package.

2.3.2 Time-Dependent Nonlinear Differential Equations

We next consider the initial-boundary value problems involving time-dependent nonlinear differential equa-

tions together with Dirichlet boundary conditions, and discuss how to solve such problems using the locELM

method. We make the same assumptions about the differential equation as in Section 2.3.1: The highest-

order terms are assumed to be linear, and the nonlinear terms may involve the unknown function or its

partial derivatives of lower orders. We again focus on two spatial dimensions, plus time t, and assume that

the equation is of second order with respect to both spatial coordinates (x and y).

Consider the following generic nonlinear partial differential equation of such a form on a spatial-temporal

domain Ω, supplemented by the Dirichlet boundary condition and an initial condition,

∂u

∂t
= Lu+ F (u, ux, uy) + f(x, y, t), (25a)

u(x, y, t) = g(x, y, t), for (x, y) on the spatial domain boundary, (25b)

u(x, y, 0) = h(x, y), (25c)

where u(x, y, t) is the unknown field function to be solved for, L is a second-order linear differential operator

with respect to both x and y, F denotes the nonlinear term, f(x, y, t) is a prescribed source term, g(x, y, t)

denotes the Dirichlet boundary data, and h(x, y) is the initial field distribution.

Our discussion below largely parallels that of Section 2.2.2. We first discuss the basic method on a

spatial-temporal domain, and then develop the block time-marching idea for longer-time simulations of the

nonlinear partial differential equations.

Basic Method We focus on a rectangular spatial-temporal domain Ω = {(x, y, t) | x ∈ [a1, b1], y ∈
[a2, b2], t ∈ [0,Γ]}, and solve the initial-boundary value problem consisting of equations (25a)–(25c) on this

domain.

Following the notation of Section 2.2.2, we use Nx, Ny and Nt to denote the number of sub-domains along

the x, y and t directions, where the locations of the sub-domain boundaries along the three directions are

given by the vectors [X0, X1, . . . , XNx ], [Y0, Y1, . . . , YNy ] and [T0, T1, . . . , TNt ], respectively. A sub-domain

with the index emnl corresponds to the spatial-temporal region Ωemnl
= [Xm, Xm+1]× [Yn, Yn+1]× [Tl, Tl+1],

for 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1 and 0 6 l 6 Nt − 1. Let (xemnl
p , yemnl

q , temnl
r ) (0 6 p 6 Qx − 1,

0 6 q 6 Qy− 1, 0 6 r 6 Qt− 1) denote the set of Q = QxQyQt collocation points on each sub-domain emnl.

Let uemnl(x, y, t) denote the output of the local neural network corresponding to the sub-domain emnl, and

20



V emnl
j (x, y, t) (1 6 j 6M) denote the output of the last hidden layer of the local neural network, where M

is the number of nodes in the last hidden layer. The following relations hold,

uemnl(x, y, t) =
M∑
j=1

V emnl
j (x, y, t)wemnl

j , uemnl
x (x, y, t) =

M∑
j=1

∂V emnl
j

∂x
wemnl

j ,

uemnl
y (x, y, t) =

M∑
j=1

∂V emnl
j

∂y
wemnl

j ,
∂uemnl

∂t
=

M∑
j=1

∂V emnl
j

∂t
wemnl

j ,

for 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1, 0 6 l 6 Nt − 1,

(26)

where wemnl
j denote the weight coefficients in the output layers of the local neural networks and they con-

stitute the training parameters of the network.

Enforcing equation (25a) on the collocation points (xemnl
p , yemnl

q , temnl
r ) of each sub-domain emnl leads to

M∑
j=1

[
∂V emnl

j

∂t
− LV emnl

j

]∣∣∣∣
(x

emnl
p ,y

emnl
q ,t

emnl
r )

wemnl
j − F (uemnl , uemnl

x , uemnl
y )

∣∣
(x

emnl
p ,y

emnl
q ,t

emnl
r )

− f(xemnl
p , yemnl

q , temnl
r ) = 0,

for 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 1, 0 6 l 6 Nt − 1, 0 6 p 6 Qx − 1, 0 6 q 6 Qy − 1,

0 6 r 6 Qt − 1,

(27)

where uemnl , uemnl
x and uemnl

y are given by (26) in terms of the known function V emnl
j and its partial

derivatives. This is a set of nonlinear algebraic equations about the training parameters wemnl
j . Enforcing

the boundary condition (25b) on the collocation points of the four spatial boundaries at x = a1 or b1

and y = a2 or b2 leads to the equations (13a)–(13d). Enforcing the initial condition (25c) on the spatial

collocation points at t = 0 results in equation (14). We impose the C1 continuity conditions on the unknown

field u(x, y, t) across the sub-domain boundaries along the x and y directions, since L is assumed to be a

second-order operator with respect to both x and y. We impose the C0 continuity condition across the

sub-domain boundaries in the temporal direction, since equation (25a) is first-order with respect to time.

Enforcing the C1 continuity conditions on the collocation points on the sub-domain boundaries x = Xm+1

(0 6 m 6 Nx − 2) and y = Yn+1 (0 6 n 6 Ny − 2) leads to the equations (15a)–(16b). Enforcing the C0

continuity condition on the collocation points on the sub-domain boundaries t = Tl+1 (0 6 l 6 Nt− 2) leads

to the equation (17).

The set of equations consisting of (27) and (13a)–(17) is a nonlinear algebraic system of equations about

the training parameters wemnl
j . This system consists of NxNyNt[QxQyQt + 2(Qx +Qy)Qt +QxQy] coupled

nonlinear algebraic equations with NxNyNtM unknowns. This system can be solved using the NLSQ-perturb

method from Section 2.3.1 to determine the training parameters wemnl
j .

Similarly, the system consisting of (25a)–(25c) can also be solved by the Newton-LLSQ method; see

Remark 5.2 in the Appendix A for more details.

Block Time-Marching For longer-time simulations of time-dependent nonlinear differential equations, we

employ a block time-marching strategy analogous to that of Section 2.2.2. Let Ω = {(x, y, t)|x ∈ [a1, b1], y ∈
[a2, b2], t ∈ [0, tf ]} denote the spatial-temporal domain on which the problem is to be solved, where tf

21



can be large. We divide the temporal dimension into Nb uniform time blocks, with the block size Γ =
tf
Nb

being a moderate value, and solve the problem on each time block separately and successively. On the k-th

(0 6 k 6 Nb − 1) time block, we introduce a shifted time ξ and a new dependent variable U(x, y, ξ) as given

by equation (18). Then equation (25a) is transformed into

∂U

∂ξ
= LU + F (U,Ux, Uy) + f(x, y, ξ + kΓ), (28)

where Ux = ∂U
∂x and Uy = ∂U

∂y . Equation (25b) is transformed into (19b). The initial condition for time block

k is given by (20), in which the initial distribution data is given by (21).

The initial-boundary value problem consisting of equations (28), (19b) and (20), on the spatial-temporal

domain Ωst = [a1, b1] × [a2, b2] × [0,Γ], is the same problem we have considered before, and can be solved

for U(x, y, ξ) using the basic method. The solution u(x, y, t) on time block k can then be recovered by the

transform (18).

Starting with the first time block, we can solve the initial-boundary value problem on each time block

successively. After the problem on the k-th block is solved, the obtained solution can be evaluated at

t = (k + 1)Γ and used as the initial condition for the computation on the subsequent time block.

Remark 2.10. We observe from numerical experiments that the time block size Γ can play a crucial role in

long-time simulations of time-dependent nonlinear differential equations. In general, reducing Γ can improve

the convergence of the nonlinear iterations on the time blocks. If Γ is too large, the nonlinear iterations can

become hard to converge. With the other simulation parameters (such as the number of collocation points in

the time block and the number of training parameters in the neural network) fixed, reducing the time block

size effectively amounts to an increase in the resolution of the data on each time block.

Remark 2.11. We will present numerical experiments with nonlinear PDEs in Section 3 to compare the

current locELM method with the deep Galerkin method (DGM) and the physics-informed neural network

(PINN), and also compare the current method with the classical finite element method (FEM). We observe

that for these problems the locELM method is considerably superior to DGM and PINN, with regard to both

the accuracy and the computational cost. In terms of the computational performance, the locELM method is

on par with the finite element method, and oftentimes the locELM performance exceeds the FEM performance.

3 Numerical Examples

In the forthcoming section we provide a number of numerical examples to test the locELM method. These

examples pertain to stationary and time-dependent, linear and nonlinear differential equations. They are

in general one- or two-dimensional (1D/2D) in space, and also plus time if time-dependent. For certain

problems (e.g. the advection equation) we provide results from long-time simulations, to demonstrate the

capability of the locELM method combined with the block time-marching scheme. We employ tanh as the

activation function in all the local neural networks of this section.

We focus on the accuracy and the computational cost in our discussions. For locELM, the computational

cost here refers to the total training time of the overall neural network, which includes the computation time

22



for the output functions of the last hidden layer and its derivatives (e.g. V emnl
j ,

∂V
emnl
j

∂x , etc), the computation

time for the coefficient matrix and the right hand side of the least squares problem, and the solution time for

the linear/nonlinear least squares problem. It does not include, after the training is over, the evaluation of

the neural network on a set of given points for the output of the solution data. The timing data is collected

using the “timeit” module in Python.

We compare the current locELM method with the deep Galerkin method (DGM) [41] and the physics-

informed neural network (PINN) method [37], in terms of the accuracy and the network training time. DGM

and PINN are trained using both the Adam [25] and the L-BFGS [34] optimizers. For L-BFGS, we have

employed the routine available from the Tensorflow-Probability library (www.tensorflow.org/probability).

For DGM and PINN, the training time refers to the time interval between the start and the end of the Adam

or L-BFGS training loop for a given number of epochs/iterations. The locELM, DGM and PINN methods

are all implemented in Python with the Tensorflow (www.tensorflow.org) and Keras (keras.io) libraries.

Additionally, we compare locELM with the classical finite element method (linear elements, second-

order), in terms of the accuracy and computational cost. For the numerical tests reported below, the

finite element method (FEM) is implemented also in Python, using the FEniCS library (fenicsproject.org).

Defining the mesh, the finite element space, the trial and test functions, the boundary conditions, and the

variational problem, as well as forming and solving the linear system, are all handled by FEniCS. In the

implementation, a user only needs to specify these components symbolically; see [28]. The linear system

is solved by the default linear solver in the FEniCS library, which is the sparse LU decomposition. For

nonlinear differential equations, the resultant nonlinear algebraic system is solved by the Newton’s method

from the FEniCS library, with a relative tolerance 1e− 12.

When the FEM code is run for the first time, the FEniCS library uses Just-In-Time (JIT) compilers to

compile certain key finite element operations in the Python code into C++ code, which is in turn compiled

by the C++ compiler and then cached. This is done only once. So the FEM code is slower as JIT compilation

occurs when run for the first time, but it is much faster in subsequent runs. For FEM, the computational cost

here refers to the computation time collected using the “timeit” module after the code has been compiled by

the JIT compilers. The FEM computation time includes the specifications of the mesh, the finite element

space, the trial/test function spaces, the variational problem, the forming and solution of the linear system.

It does not include the output of the solution data after the problem is solved. All the timing data with

the locELM, DGM, PINN and FEM methods is collected on a MAC computer (3.2GHz Intel Core i5 CPU,

24GB memory) at the authors’ institution.

3.1 Helmholtz Equation

In the first test we consider the boundary value problem with the one-dimensional (1D) Helmholtz equation

on the domain x ∈ [a, b],

d2u

dx2
− λu = f(x), (29a)

u(a) = h1, u(b) = h2, (29b)

23



x

S
o

lu
ti
o

n
s

0 2 4 6 8

5

10

15

20

locELM, 1 sub­domain

locELM, 4 sub­domains

exact solution

(a) x

E
rr

o
rs

0 2 4 6 8
10

­12

10
­10

10
­8

10
­6

10
­4

10
­2

10
0

locELM, 1 sub­domain

locELM, 4 sub­domains

(b) number of sub­domains

E
rr

o
rs

0 2 4 6 8
10

­9

10
­7

10
­5

10
­3

10
­1

10
1

maximum error

rms error

(c) number of sub­domains

tr
a
in

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

(d)

Figure 1: Effect of the number of sub-domains, with fixed degrees of freedom per sub-domain (1D Helmholtz
equation): Profiles of (a) the locELM solutions and (b) their absolute errors, computed using one sub-domain
and four sub-domains. (c) The maximum and rms errors in the domain, and (d) the neural-network training
time, as a function of the number of sub-domains.

where u(x) is the field function to be solved for, f(x) is a prescribed source term, and h1 and h2 are the

boundary values. The other constants in the above equations and the domain specification are λ = 10, a = 0

and b = 8. We choose the source term f(x) such that the equation (29a) has the following solution,

u(x) = sin

(
3πx+

3π

20

)
cos
(

2πx+
π

10

)
+ 2. (30)

We choose h1 and h2 according to this analytic solution by setting x = a and x = b in (30), respectively.

Under these settings the boundary value problem (29a)–(29b) has the analytic solution (30).

We solve this problem using the locELM method presented in Section 2.2.1, by restricting the scheme

to one spatial dimension. We partition [a, b] into Ne uniform sub-domains (sub-intervals), and impose

the C1 continuity conditions across the sub-domain boundaries. Let Q denote the number of collocation

points within each sub-domain, and consider three types of collocation points: uniform grid points, the

Gauss-Lobatto-Legendre quadrature points, and random points. The majority of tests reported below are

performed with uniform collocation points in each sub-domain.

For the majority of tests in this subsection, each local neural network consists of an input layer with one

node (representing x), an output layer with one node (representing the solution u), and one hidden layer in

between. We have also considered local neural networks with two or three hidden layers between the input

and the output layers. We employ tanh as the activation function for all the hidden layers. The output layer

contains no bias and no activation function, as discussed in Section 2.1. Additionally, an affine mapping

operation that normalizes the input x data on each sub-domain to the interval [−1, 1] is incorporated into

the local neural networks right behind the input layer. This operation is implemented using the “lambda”

layer in Keras, which contains no adjustable parameters and we do not count it toward the number of

hidden layers. Following Section 2, let M denote the number of nodes in the last hidden layer, which is also

the number of training parameters for each sub-domain. As discussed in Section 2.1, the weight and bias

coefficients in the hidden layers are pre-set to uniform random values generated on the interval [−Rm, Rm]

and are fixed in the computation.

The main simulation parameters with locELM include the number of sub-domains (Ne), the number

of collocation points per sub-domain (Q), the number of training parameters per sub-domain (M), the

maximum magnitude of the random coefficients (Rm), the number of hidden layers in the local neural

24



collocation points/sub­domain

E
rr

o
rs

0 50 100 150 200 250 300
10

­9

10
­7

10
­5

10
­3

10
­1

10
1

maximum error

rms error

(a) training parameters/sub­domain

E
rr

o
rs

0 50 100 150 200 250 300 350 400
10

­9

10
­7

10
­5

10
­3

10
­1

10
1

maximum error

rms error

(b)

Figure 2: Effect of the number of collocation points and training parameters (1D Helmholtz equation): the
maximum and rms errors as a function of (a) the number of collocation points/sub-domain, and (b) the
number of training parameters/sub-domain. Two uniform sub-domains are used.

network, and the type of collocation points in each sub-domain. We will use the total number of collocation

points (NeQ) and the total number of training parameters (NeM) to characterize the total degrees of freedom

in the simulation. The effects of the above parameters on the simulation results will be investigated. To

make the numerical tests repeatable, all the random numbers are generated by the Tensorflow library, and

we employ a fixed seed value 1 for the random number generator with all the tests with locELM in this

sub-section.

Figure 1 illustrates the effect of the number of sub-domains in the locELM simulation, with the degrees

of freedom per sub-domain (i.e. the number of collocation points and the number of training parameters per

sub-domain) fixed. Figures 1(a) and (b) show the solution and error profiles obtained with one sub-domain

and 4 sub-domains in the locELM simulation. Figure 1(c) shows the maximum (L∞) and the rms (L2)

errors of the locELM solution in the overall domain as a function of the number of sub-domains. Figure

1(d) shows the training time of the overall neural network as a function of the number of sub-domains. Here

the error refers to the absolute value of the difference between the locELM solution and the exact solution

give by equation (30). As discussed before, the training time refers to the total computation time of the

locELM method, and includes the time for computing the output of the last hidden layer V s
j (x) (1 6 s 6 Ne,

1 6 j 6M) and its derivatives, the coefficient matrix and the right hand side, and for solving the linear least

squares problem. In this set of tests, we have employed Q = 50 uniform collocation points per sub-domain

and M = 50 training parameters per sub-domain. Each local neural network contains a single hidden layer,

and we have employed Rm = 3.0 when generating the random weight/bias coefficients for the hidden layers

of the local neural networks. It can be observed that the locELM method produces dramatically (nearly

exponentially) more accurate results with increasing number of sub-domains, with the maximum error in the

domain reduced from around 101 for a single sub-domain to about 10−7 for 8 sub-domains. The training time

for the neural network, on the other hand, increases approximately linearly with increasing sub-domains,

with the training time from about 0.1 seconds for a single sub-domain to about 0.8 seconds for 8 sub-domains.

Figure 2 illustrates the effects of the number of collocation points and the number of training parameters

per sub-domain on the simulation accuracy. Figure 2(a) depicts the maximum and rms errors in the domain

versus the number of collocation points/sub-domain. Figure 2(b) depicts the maximum and rms errors in

25



collocation points/sub­domain

M
a
x
im

u
m

 e
rr

o
rs

20 40 60 80 100 120
10

­8

10
­6

10
­4

10
­2

10
0

10
2

uniform points

quadrature points

random points

Figure 3: Effect of the collocation-point distribution (1D Helmholtz equation): the maximum error in the
domain versus the number of collocation points/sub-domain, obtained with three collocation-point distribu-
tions: uniform points, quadrature points, and random points.

the domain versus the number of training parameters/sub-domain. In these tests we have employed Ne = 2

uniform sub-domains, uniform collocation points in each sub-domain, one hidden layer in each local neural

network, and Rm = 3.0 when generating the random weight/bias coefficients for the hidden layer. For the

tests in plot (a) the number of training parameters/sub-domain is fixed at M = 200, and for the tests in

plot (b) the number of collocation points/sub-domain is fixed at Q = 100. Increasing the collocation points

per sub-domain causes an exponential decrease in the numerical errors initially. The errors then stagnate

as the number of collocation points/sub-domain exceeds a certain point (Q ∼ 100 in this case). The error

stagnation is due to the fixed number of training parameters/sub-domain (M = 200) here. The number

of training parameters/sub-domain appears to have a similar effect on the errors. Increasing the training

parameters per sub-domain also causes a nearly exponential decrease in the errors initially. The errors then

stagnate as the number of training parameters increases beyond a certain point (M ∼ 175 in this case).

The results in Figures 1 and 2 show that the current locELM method exhibits a clear sense of convergence

with respect to the degrees of freedom. The numerical errors decrease exponentially or nearly exponentially,

as the number of sub-domains, or the number of collocation points per sub-domain, or the number of training

parameters per sub-domain increases.

Figure 3 illustrates the effect of the collocation-point distribution on the simulation accuracy. It shows the

maximum error in the domain versus the number of collocation points/sub-domain in the locELM simulation

using three types of collocation points: uniform regular points, Gauss-Lobatto-Legendre quadrature points,

and random points (see Remark 2.4). In this group of tests we have employed two sub-domains (Ne = 2) with

M = 200 training parameters/sub-domain, and the local neural networks each contains a single hidden layer

with Rm = 3.0 when generating the random weight/bias coefficients. With the same number of collocation

points, we observe that the results corresponding to the random collocation points are the least accurate.

The results obtained with the quadrature points are the most accurate among the three, whose errors can

be orders of magnitude smaller than those with the random collocation points. The accuracy corresponding

to the uniform regular collocation points lies between the other two. With the quadrature points, however,

we have encountered practical difficulties in our implementation when the number of quadrature points

becomes larger (above 100), because the library our implementation is based on is unable to compute

26



x

S
o

lu
ti
o

n

0 2 4 6 8
0.5

1

1.5

2

2.5

3

3.5
locELM, 30 points/sub­domain

locELM, 200 points/sub­domain

exact solution

(a) x

E
rr

o
r

0 2 4 6 8
10

­14

10
­12

10
­10

10
­8

10
­6

10
­4

10
­2

10
0

10
2 locELM, 30 points/sub­domain

locELM, 200 points/sub­domain

(b) collocation points/sub­domain

E
rr

o
rs

0 50 100 150 200 250 300 350 400
10

­13

10
­11

10
­9

10
­7

10
­5

10
­3

10
­1

10
1

maximum error

rms error

(c) collocation points/sub­domain

tr
a
in

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

0 50 100 150 200 250 300 350 400
3

3.5

4

4.5

5

5.5

6

(d)

Figure 4: locELM simulations with 2 hidden layers in local neural networks (1D Helmholtz equation): profiles
of (a) the locELM solutions and (b) their absolute errors, computed with 30 and 200 uniform collocation
points per sub-domain. (c) the maximum and rms errors in the domain, and (d) the training time, as a
function of the number of uniform collocation points per sub-domain.

x

S
o

lu
ti
o

n

0 2 4 6 8
0.5

1

1.5

2

2.5

3

3.5
locELM, 30 points/sub­domain

locELM, 200 points/sub­domain

exact solution

(a) x

E
rr

o
r

0 2 4 6 8
10

­15

10
­13

10
­11

10
­9

10
­7

10
­5

10
­3

10
­1

10
1

locELM, 30 points/sub­domain

locELM, 200 points/sub­domain

(b) collocation points/sub­domain
E

rr
o

rs
0 50 100 150 200 250 300

10
­11

10
­9

10
­7

10
­5

10
­3

10
­1

10
1

maximum error

rms error

(c) collocation points/sub­domain

tr
a
in

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

0 50 100 150 200 250 300
3

3.5

4

4.5

5

5.5

6

(d)

Figure 5: locELM simulations with 3 hidden layers in local neural networks (1D Helmholtz equation): profiles
of (a) the locELM solutions and (b) their absolute errors, computed with 30 and 200 uniform collocation
points per sub-domain. (c) the maximum and rms errors in the domain, and (d) the training time, as a
function of the number of uniform collocation points per sub-domain.

the quadrature points accurately when the number of quadrature points exceeds 100 due to an inherent

limitation. Consequently, we are unable to obtain results with more than 100 collocation points/sub-domain

when quadrature points are used, which hampers our ability to perform certain types of tests. Therefore,

the majority of locELM simulations in the current work are conducted with uniform collocation points.

The test results discussed so far are obtained using a single hidden layer in the local neural networks.

Traditional studies of global extreme learning machines are confined to such a configuration, using a single

hidden layer in the neural network [20]. With the current locELM method, it is observed that using more

than one hidden layer in the local neural networks one can also obtain accurate results. This is demonstrated

by the results in Figures 4 and 5. Figure 4 shows locELM simulation results obtained with 2 hidden layers

in each of the local neural networks, and Figure 5 shows locELM results obtained with 3 hidden layers in

the local neural networks. In these tests two uniform sub-domains (Ne = 2) have been used. The local

neural networks corresponding to Figure 4 each contains 2 hidden layers with 20 and 300 nodes, respectively,

and Rm = 3.0 is employed when the random weight/bias coefficients for the hidden layers are generated.

The local neural networks corresponding to Figure 5 each contains 3 hidden layers with 20, 20 and 300

nodes, respectively, and Rm = 1.0 is employed when the random weight/bias coefficients are generated for

the hidden layers. The number of training parameters per sub-domain in these tests is therefore fixed at

M = 300, which corresponds to the number of nodes in the last hidden layer. We have used tanh as the

activation function for all the hidden layers. Uniform collocation points have been used in each sub-domain,

27



max magnitude of random coefficients

M
a
x
im

u
m

 e
rr

o
r 

in
 d

o
m

a
in

5 10 15 20 25 30
10

­14

10
­12

10
­10

10
­8

10
­6

10
­4

10
­2

10
0

10
2 Q = M = 50

Q = M = 100

Q = M = 300

(a)
max magnitude of random coefficients

m
a
x
im

u
m

 e
rr

o
r 

in
 d

o
m

a
in

0 5 10 15 20 25 30
10

­11

10
­9

10
­7

10
­5

10
­3

10
­1

10
1

10
3

Q = 50, M = 200

Q = 100, M = 200

Q = 200, M = 200

Q = 300, M = 200

(b)

Figure 6: Effect of random weight/bias coefficients in hidden layers (1D Helmholtz equation): (a) The
maximum error in the domain versus Rm, for several cases with the number of collocation points/sub-
domain (Q) and the number of training parameters/sub-domain (M) kept identical. (b) The maximum
error in the domain versus Rm, for several cases with the number of training parameters/sub-domain fixed
and the number of collocation points/sub-domain varied. Four uniform sub-domains are used in (a), and
two uniform sub-domains are used in (b).

and the number of collocation points is varied in the tests. In each of these two figures, the plots (a) and (b)

are profiles of the locELM solutions and their absolute errors computed with 30 and 200 uniform collocation

points per sub-domain, respectively. The plots (c) and (d) show the maximum/rms errors in the domain

and the training time as a function of the number of collocation points per sub-domain, respectively. It

is evident that the numerical errors decrease exponentially with increasing collocation points/sub-domain,

similar to what has been observed with a single hidden layer from Figure 2(a), until the errors saturate as

the number of collocation points increases beyond a certain point. With more than one hidden layer, the

locELM method can similarly produce accurate results with a sufficient number of collocation points per

sub-domain. The training time is also observed to increase essentially linearly with respect to the number of

collocation points per sub-domain. Numerical experiments with even more hidden layers in the local neural

networks suggest that the simulation tends to be not as accurate as those corresponding to one, two or three

hidden layers. It appears to be harder to obtain accurate or more accurate results with even more hidden

layers.

Apart from the number of collocation points and the number of training parameters in each sub-domain,

we observe that the random weight/bias coefficients in the hidden layers can influence the accuracy of the

locELM simulation results. As discussed in Section 2.1, the weight/bias coefficients in the hidden layers of

the local neural networks are pre-set to uniform random values generated on the interval [−Rm, Rm], and

they are fixed throughout the computation. It is observed that Rm, the maximum magnitude of the random

coefficients, can influence significantly the simulation accuracy. Figure 6 demonstrates this effect with two

groups of tests. In the first group, four uniform sub-domains (Ne = 4) are used. The number of (uniform)

collocation points per sub-domain (Q) and the number of training parameters per sub-domain (M) are kept

to be the same, and several of these values have been considered (Q = M = 50, 100, 300). Then for each

of these cases we vary Rm systematically and record the errors of the simulation results. Figure 6(a) shows

the maximum error in the domain as a function Rm for this group of tests. In the second group of tests,

28



x

S
o

lu
ti
o

n
s

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5
locELM, 1 sub­domain

locELM, 4 sub­domains

exact solution

(a) x

E
rr

o
rs

0 2 4 6 8
10

­12

10
­11

10
­10

10
­9

10
­8

10
­7

10
­6

10
­5

locELM, 1 sub­domain

locELM, 4 sub­domains

(b) number of sub­domains

E
rr

o
rs

0 2 4
10

­10

10
­9

10
­8

10
­7

10
­6

10
­5

maximum error

rms error

(c) number of sub­domains

tr
a
in

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

0 2 4
0

1

2

3

4

(d)

Figure 7: Effect of the number of sub-domains, with fixed total degrees of freedom in the domain (1D
Helmholtz equation): profiles of (a) the locELM solutions and (b) their absolute errors, computed using one
and four uniform sub-domains in the simulation. (c) The maximum and rms errors in the domain, and (d)
the training time, as a function of the number of uniform sub-domains.

two uniform sub-domains (Ne = 2) are used. The number of training parameters per sub-domain is fixed

at M = 200, and several values for the number of (uniform) collocation points are considered (Q = 50, 100,

200, 300). For each of these cases, Rm is varied systematically and the corresponding errors of the simulation

results are recorded. Figure 6(b) shows the maximum error in the domain as a function of Rm for this group

of tests. In both groups of tests, the local neural networks each contains a single hidden layer. These results

indicate that, for a fixed simulation resolution (i.e. fixed Q and M), the error tends be worse as Rm becomes

very large or very small. The simulation tends to produce more accurate results for a range of moderate Rm

values, which is typically around Rm ≈ 1 ∼ 10. As the simulation resolution increases, the optimal range

of Rm values tends to expand and shift rightward (toward larger values) on the Rm axis. Further tests also

suggest that with increasing number of sub-domains the optimal range of Rm values tends to shift leftward

(toward smaller values) along the Rm axis.

We observe that the use of multiple sub-domains and local extreme learning machines can significantly

accelerate the computation and reduce the network training time, without seriously compromising the ac-

curacy, when compared with global extreme learning machines. This point is demonstrated by Figure 7.

Here we fix the total degrees of freedom in the domain, i.e. the total number of collocation points and the

total number of training parameters in the domain, and vary the number of sub-domains in the locELM

simulation. The locELM case with a single sub-domain is equivalent to a global ELM. The total number of

collocation points in the domain is fixed at NeQ = 200, and the total number of training parameters is fixed

at NeM = 400. Uniform sub-domains are employed in these tests, with uniform collocation points in each

sub-domain. So with multiple sub-domains the total degrees of freedom are evenly distributed to different

sub-domains and local neural networks. The local neural networks each contains a single hidden layer, and

the maximum magnitudes of the random coefficients (Rm) employed in the tests here are approximately in

their optimal range of values. Figures 7(a) and (b) illustrates profiles of the localELM solutions and their ab-

solute errors obtained using a single sub-domain (Q = 200, M = 400, Rm = 6.0) and using four sub-domains

(Q = 50, M = 100, Rm = 3.0) in the locELM simulations. Both simulations have produced accurate results,

with comparable error levels. Figure 7(c) shows the maximum and rms errors in the domain versus the

number of sub-domains in the simulations, and Figure 7(d) shows the training time as a function of the

number of sub-domains. It can be observed that the error levels corresponding to multiple sub-domains are

29



x

S
o

lu
ti
o

n
s

0 2 4 6 8
0.5

1

1.5

2

2.5

3

3.5

PINN (Adam)

PINN (L­BFGS)

DGM (Adam)

DGM (L­BFGS)

locELM

exact solution

(a) x

E
rr

o
rs

0 2 4 6 8
10

­12

10
­10

10
­8

10
­6

10
­4

10
­2

PINN (Adam)

PINN (L­BFGS)

DGM (Adam)

DGM (L­BFGS)

locELM

(b)

Figure 8: Comparison between locELM, PINN and DGM (1D Helmholtz equation): profiles of (a) the
solutions and (b) their absolute errors, obtained using PINN [37] and DGM [41] with the Adam and L-
BFGS optimizers, and using the current locELM method.

comparable to, or in certain cases maybe slightly better or worse than, those of a single sub-domain. But

the training time of the neural network is dramatically reduced with multiple sub-domains, when compared

with a single sub-domain.

The reduction in the training time is due to the fact that, with multiple sub-domains, the coefficient

matrix in the linear least squares problem becomes very sparse, because only the degrees of freedom in

neighboring sub-domains are coupled through the Ck continuity conditions while those in sub-domains that

are not adjacent to each other are not coupled. In other words, the input collocation points on one sub-domain

only directly contribute to the training parameters of the local neural network for the same sub-domain.

This relation is evident from Equation (2). The input data x on the sub-domain Ωs only directly contributes

to V s
j (x), the output functions of the last hidden layer, which are associated with the training parameters

on the same sub-domain. Those input collocation points that reside on the sub-domain boundaries also

contribute to the training parameters of the adjacent sub-domains through the Ck continuity conditions. In

contrast, with a single global domain, all the degrees of freedom in the entire domain are coupled with one

another, and every input collocation point in the domain directly contributes to every training parameter

in the entire neural network. This leads to a dense coefficient matrix in the linear least squares problem,

and a larger time for the computation of the coefficient matrix data and the overall solution of the least

squares problem. The above results indicate that, when compared with global ELM, the use of domain

decomposition and local neural networks can reduce the coupling among the degrees of freedom in different

sub-domains without seriously compromising the accuracy, and this can significantly reduce the computation

time for the least squares problem, and hence the network training time.

We next compare the the current locELM method with the physics-informed neural network (PINN) [37]

method and the deep Galerkin method (DGM) [41], two often-used PDE solvers based on deep neural

networks. Figure 8 compares profiles of the solutions (plot (a)) and their absolute errors (plot (b)) obtained

using PINN and DGM with the Adam and the L-BFGS optimizers, and using the current locELM method.

In the PINN and DGM simulations, the neural network contains 6 hidden layers with 50 nodes and the tanh

activation function in each layer, and the output layer is linear. With PINN, the input data consist of 300

30



method maximum error rms error epochs/iterations training time (seconds)
PINN (Adam) 1.06e− 3 1.57e− 4 45, 000 507.7
PINN (L-BFGS) 1.98e− 4 3.15e− 5 22, 500 1035.8
DGM (Adam) 1.57e− 3 2.98e− 4 45, 000 457.0
DGM (L-BFGS) 3.83e− 4 5.70e− 5 22, 500 1127.7
locELM 1.56e− 9 2.25e− 10 0 1.1

Table 1: 1D Helmholtz equation: Comparison between the current locELM method and PINN/DGM, in
terms of the maximum/rms errors in the domain, the number of epochs or iterations in the training of neural
networks, and the training time. The problem settings correspond to those of Figures 8.

method elements sub-domains Q M maximum error rms error wall time (seconds)
locELM – 4 100 75 4.02e− 8 5.71e− 9 0.67

– 4 100 100 1.56e− 9 2.25e− 10 1.1
– 4 100 125 1.42e− 10 2.55e− 11 1.3

FEM 25, 000 – – – 6.82e− 8 1.74e− 8 0.32
50, 000 – – – 1.67e− 8 4.35e− 9 0.62
100, 000 – – – 1.33e− 8 3.30e− 9 1.24

Table 2: 1D Helmholtz equation: Comparison between the current locELM method and the finite element
method (FEM), in terms of the maximum/rms errors in the domain and the training or computation time.
The problem settings correspond to those of Figure 9.

uniform collocation points in the domain. With DGM, we partition the domain into 8 uniform sub-intervals,

and employ 37 Gauss-Lobatto-Legendre quadrature points on each sub-interval when computing the residual

norm integral in the loss function. These quadrature points constitute the input data to the neural network

with DGM. In the PINN/Adam and DGM/Adam simulations, the network has been trained on the input

data for 45, 000 epochs, with the learning rate coefficient gradually decreasing from 0.001 at the beginning to

2.5× 10−5 at the end. In the PINN/L-BFGS and DGM/L-BFGS simulations, the network has been trained

for 22, 500 L-BFGS iterations. In the locELM simulation, four uniform sub-domains (Ne = 4) have been

used, with M = 100 training parameters per sub-domain and Q = 100 uniform collocation points per sub-

domain. The four local neural networks each consists of one hidden layer with M = 100 nodes and the tanh

activation function, and we have employed Rm = 3.0 for generating the random hidden-layer coefficients.

Figure 8 shows that PINN, DGM and the locELM method have all captured the solution quite accurately.

The error levels obtained with PINN and DGM are comparable. But the current method is considerably

more accurate than PINN and DGM, by a factor of nearly five orders of magnitude in terms of the errors.

Table 1 is a further comparison of PINN, DGM and locELM in terms of the maximum/rms errors in the

domain, and the computational cost (the network training time). The problem setting corresponds to that of

Figure 8. The current method is not only much more accurate than PINN and DGM, but also considerably

cheaper in terms of the computational cost. The training time with the current locELM method is on

the order of a second. In contrast, it takes around 500 seconds to train DGM and PINN with Adam and

around 1000 seconds to train them with L-BFGS. We observe a clear superiority of the locELM method to

the PINN/DGM solvers in terms of both accuracy and the computational cost. These observations will be

confirmed and reinforced with other problems in subsequent sections.

Finally we compare the current locELM method with the classical finite element method (FEM). We

31



x

S
o

lu
ti
o

n
s

0 2 4 6 8
0.5

1

1.5

2

2.5

3

3.5 locELM

FEM

exact solution

(a) x

E
rr

o
rs

0 2 4 6 8
10

­12

10
­11

10
­10

10
­9

10
­8

10
­7

locELM

FEM

(b) number of elements

E
rr

o
rs

10
3

10
4

10
510

­9

10
­8

10
­7

10
­6

10
­5

10
­4

maximum error

rms error

reference

(c)

Figure 9: Comparison between locELM and FEM (1D Helmholtz equation): Profiles of (a) the solutions and
(b) their absolute errors, computed using the finite element method (FEM) and the current locELM method.
(c) The maximum and rms errors in the domain versus the number of elements from the FEM simulations,
showing its second-order convergence rate.

observe that the computational performance of locELM is comparable to that of FEM, and oftentimes the

locELM performance surpasses that of FEM, in terms of the accuracy and computational cost. Figures 9(a)

and (b) are comparisons of the solution profiles and the error profiles obtained using locELM and FEM.

Figure 9(c) shows the maximum and rms errors as a function of the number of elements obtained using

FEM, demonstrating its second-order convergence rate. As mentioned before, the finite element method is

implemented in Python using the FEniCS library. In these tests uniform linear elements have been used.

For the plots (a) and (b), 100, 000 elements are used in the FEM simulation. In the locELM simulation, we

have employed Ne = 4 uniform sub-domains, Q = 100 uniform collocation points per sub-domain, M = 100

training parameters per sub-domain, a single hidden layer in the local neural networks, and Rm = 3.0 when

generating the random coefficients. It is evident that both FEM and locELM produce accurate solutions.

Table 2 provides a more comprehensive comparison between locELM and FEM for the 1D Helmholtz

equation, with regard to the accuracy and computational cost. Here we list the maximum and rms errors in

the domain, and the training or computation time, obtained using locELM and FEM corresponding to several

numerical resolutions. The data show that the current locELM method is very competitive compared with

FEM. For example, the locELM case with M = 75 training parameters/sub-domain is similar in performance

to the FEM case with 50, 000 elements, with comparable values for the numerical errors and the wall time.

The locELM cases with M = 100 and M = 125 training parameters/sub-domain have wall time values

comparable to the FEM case with 100, 000 elements, but the numerical errors of these locELM cases are

considerably smaller than those of the FEM case.

3.2 Advection Equation

We next test the locELM method using the advection equation in one spatial dimension plus time, and we

will demonstrate the capability of the method, when combined with the block time-marching strategy, for

long-time simulations. Consider the spatial-temporal domain, Ω = {(x, t) | x ∈ [a1, b1], t ∈ [0, tf ]}, and the

32



x
t

0 2 4
0

2

4

6

8

10

(a) x

t

0 2 4
0

2

4

6

8

10

(b)

Figure 10: Advection equation: Distributions of (a) the locELM solution and (b) its absolute error in the
spatial-temporal plane. The temporal domain size is tf = 10, and 10 time blocks are used in the simulation.

initial/boundary-value problem with the advection equation on this domain,

∂u

∂t
− c∂u

∂x
= 0, (31a)

u(a1, t) = u(b1, t), u(x, 0) = h(x) (31b)

where u(x, t) is the field function to be solved for, the constant c denotes the wave speed, and we impose the

periodic boundary condition on the spatial domain boundaries x = a1 and b1. h(x) denotes the initial wave

profile given by

h(x) = 2 sech

[
3

δ0
(x− x0)

]
, (32)

where x0 is the peak location of the wave and δ0 is a constant that controls the width of the wave profile.

The above equations and the domain specification contain several constant parameters, and we employ the

following values in this problem,

a1 = 0, b1 = 5, c = −2, δ0 = 1, x0 = 2.5, tf = 2, or 10, or 100. (33)

The temporal domain size tf is varied in different tests and will be specified in the discussions below. This

problem has the following solution

u(x, t) = 2 sech

[
3

δ0

(
−L1

2
+ ξ

)]
, ξ = mod

(
x− x0 + ct+

L1

2
, L1

)
, L1 = b1 − a1, (34)

where mod denotes the modulo operation.

We simulate this problem using the locELM method together with the block time-marching strategy from

Section 2.2.2, by restricting the method to one spatial dimension. We divide the overall spatial-temporal

domain into Nb uniform blocks along the temporal direction, with a time block size Γ =
tf
Nb

. The spatial-

temporal domain of each time block is then partitioned into Nx uniform sub-domains along the x direction

and Nt uniform sub-domains in time, leading to Ne = NxNt uniform sub-domains in each time block. C0

continuity is imposed on the sub-domain boundaries in both the x and t directions. Within each sub-domain,

33



number of sub­domains/time­block

E
rr

o
rs

0 2 4 6 8
10

­5

10
­4

10
­3

10
­2

10
­1

10
0

maximum error

rms error

(a)
collocation points per direction per sub­domain

E
rr

o
rs

0 10 20 30 40
10

­5

10
­4

10
­3

10
­2

10
­1

10
0

maximum error

rms error

(b) training parameters/sub­domain

E
rr

o
rs

0 100 200 300 400
10

­5

10
­4

10
­3

10
­2

10
­1

10
0

maximum error

rms error

(c)

Figure 11: Effect of the degrees of freedom (advection equation): the maximum and rms errors in the
overall domain as a function of (a) the number of sub-domains, (b) the number of collocation points in each
direction per sub-domain, and (c) the number of training parameters per sub-domain. Temporal domain
size is tf = 10, and 10 time blocks have been used. In (a), the degrees of freedom per sub-domain are fixed.
In (b) and (c), Ne = 8 sub-domains per time block are used.

let Qx denote the number of uniform collocation points along the x direction and Qt denote the number of

uniform collocation points in time, leading to Q = QxQt uniform collocation points in each sub-domain.

The local neural network corresponding to each sub-domain contains an input layer of two nodes (repre-

senting x and t), a single hidden layer with M nodes and the tanh activation function, and an output layer

(representing the solution u) of a single node. The output layer is linear and contains no bias. An additional

affine mapping normalizing the input x and t data to the interval [−1, 1]× [−1, 1] has been incorporated into

the local neural networks right behind the input layer for each sub-domain. The number of training param-

eters per sub-domain corresponds to M , the width of the hidden layer. The weight and bias coefficients in

the hidden layer are pre-set to uniform random values generated on [−Rm, Rm], as in the previous section.

The locELM simulation parameters include the number of sub-domains (Nx, Nt, Ne), the number of

collocation points per sub-domain (Qx, Qt, Q), the number of training parameters per sub-domain (M), and

the maximum magnitude of the random coefficients (Rm). The degrees of freedom within a sub-domain are

characterized by (Q,M). The degrees of freedom in each time block are characterized by (NeQ, NeM). We

use a fixed seed value 1 for the Tensorflow random number generators in all the tests with locELM of this

sub-section, so that all the numerical tests here are repeatable.

Figure 10 illustrates the solution from the locELM simulation. Plotted here are the distributions of the

locELM solution and its absolute error in the spatial-temporal plane. In this test, the temporal domain size

is tf = 10, and we employ 10 uniform time blocks (Nb = 10) in this domain. Within each time block, we

have employed Ne = 8 uniform sub-domains (with Nx = 4 and Nt = 2), and Q = 20×20 uniform collocation

points (Qx = Qt = 20) in each sub-domain. We employ M = 300 training parameters per sub-domain, and

Rm = 1.0 when generating the random weight/bias coefficients. It is evident that the current method has

captured the wave solution accurately.

The effect of the degrees of freedom on the simulation accuracy is illustrated by Figure 11. In this

group of tests, the temporal domain size is fixed at tf = 10. We have employed Nb = 10 uniform time blocks

within the domain, one hidden layer in each local nueral network, and Rm = 1.0 when generating the random

34



max magnitude of random coefficients

E
rr

o
rs

0 2 4 6 8 10
10

­5

10
­4

10
­3

10
­2

10
­1

10
0

maximum error

rms error

Figure 12: Effect of the random coefficients (advection equation): the maximum and rms errors in the
domain as a function of Rm, the maximum magnitude of the random coefficients in hidden layer of local
neural networks.

weight/bias coefficients for the hidden layers. Figure 11(a) illustrates the effect of the number of sub-domains

per time block, when the degrees of freedom per sub-domain are fixed. Here the number of sub-domains

within each time block is varied systematically. We employ a fixed set of Q = 20 × 20 uniform collocation

points per sub-domain (Qx = Qt = 20), and fix the number of training parameters per sub-domain at

M = 300. This plot shows the maximum and rms errors in the domain as a function of the number of sub-

domains per time block. Here the case with Ne = 2 sub-domains/time-block corresponds to (Nx, Nt) = (2, 1).

The case with Ne = 4 sub-domains corresponds to (Nx, Nt) = (2, 2), and the case with Ne = 8 sub-domains

corresponds to (Nx, Nt) = (4, 2). It can be observed that, with increasing sub-domains/time-block, the rate

of reduction in the errors, while not very regular, is approximately exponential.

Figure 11(b) shows the maximum and rms errors in the entire spatial-temporal domain as a function of the

number of collocation points in each direction (with Qx = Qt maintained) in each sub-domain. Figure 11(c)

shows the maximum and rms errors in the entire domain as a function of the number of training parameters

per sub-domain. In these tests, we have employed 8 sub-domains (Nx = 4, Nt = 2) per time block. For

those tests of Figure 11(b), the number of training parameters/sub-domain is fixed at M = 300. For the

tests of Figure 11(c), the number of collocation points/sub-domains is fixed at Q = 20× 20 (Qx = Qt = 20).

With the increase of the collocation points in each direction, or the increase of the training parameters per

sub-domain, we can observe an approximately exponential decrease in the maximum and rms errors. When

the number of collocation points (or training parameters) increases above a certain point, the errors start to

stagnate, apparently because of the fixed number of training parameters (or the fixed number of collocation

points) in these tests. The sense of convergence exhibited by the current locELM method is unmistakable.

The effect of the random coefficients in the hidden layers of the local neural networks on the simulation

accuracy is illustrated in Figure 12. This plot shows the maximum and rms errors in the domain as a

function of Rm, the maximum magnitude of the random weight/bias coefficients. In this set of experiments,

the temporal domain size is tf = 10, and Nb = 10 time blocks are used in the domain. We have employed

8 uniform sub-domains per time block (Nx = 4, Nt = 2), Q = 20 × 20 uniform collocation points per sub-

domain (Qx = Qt = 20), and M = 300 training parameters per sub-domain. The weight/bias coefficients

in the hidden layers of the local neural networks are set to uniform random values generated on [−Rm, Rm],

35



t

x

0 20 40 60 80 100
0

5
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(a)

t

x

0 20 40 60 80 100
0

5
5.0E­05 1.0E­04 1.5E­04 2.0E­04 2.5E­04 3.0E­04 3.5E­04

(b)

Figure 13: Long-time simulation of the advection equation: distributions of (a) the locELM solution and (b)
its absolute error in the spatial-temporal plane for a long-time simulation. In these tests 100 time blocks in
the domain and 8 sub-domains per time block are used.

and Rm is varied systematically in these tests. Very large or very small values of Rm have an adverse effect

on the simulation accuracy. Better accuracy generally corresponds to a range of moderate Rm values.

Thanks to its accuracy and favorable computational cost, it is feasible to perform long-time simulations

of time-dependent PDEs using the current locELM method. Figures 13 and 14 demonstrate a long-time

simulation of the advection equation with the current method. In this simulation, the temporal domain

size is set to tf = 100, which amounts to approximately 40 periods of the wave propagation time. In the

simulation we have employed 100 uniform time blocks in the domain, 8 uniform sub-domains per time block

(with Nx = 4 and Nt = 2), 20 × 20 uniform collocation points per sub-domain (i.e. Qx = Qt = 20), 300

training parameters per sub-domain (M = 300), a single hidden layer in each local neural network, and

Rm = 1.0 when generating the random weight/bias coefficients for the hidden layers of the local neural

networks. The total network training time for this locELM computation is about 892 seconds. Figure 13

shows the distributions of the locELM solution and its absolute error in the spatial-temporal plane. Figures

14(a) and (b) are the time histories of the locELM solution and its absolute error at the mid-point (x = 2.5)

of the spatial domain. The time history of the exact solution at this point is also shown in Figure 14(a),

which can be observed to overlap with that of the locELM solution. Figures 14(c) and (d) show the locELM-

computed wave profile and its absolute-error profile at the last time instant t = 100. We have also computed

and monitored the maximum and rms errors of the locELM solution within each time block. Figure 14(e)

shows these errors versus the time block index, which represents essentially the time histories of these block-

wise maximum and rms errors. All these results show that the current method has captured the solution to

the advection equation quite accurately in the long-time simulation. Accurate simulation of the advection

equation in long time integration is challenging, even for classical numerical methods. The results presented

here demonstrate the capability and the promise of the current method in tackling long-time dynamical

simulations of these challenging problems.

In Figure 15 we compare the the solutions and their errors obtained using a single sub-domain per time

block, which is equivalent to that of a global extreme learning machine, and using two sub-domains per time

block in the locELM simulation. Here the temporal domain size is tf = 10, and 10 uniform time blocks have

been used in the overall domain. This figure is basically a comparison between the global ELM and locELM

results. The total degrees of freedom in the overall domain are essentially the same for these two cases. In the

36



time

s
o

lu
ti
o

n

0 20 40 60 80 100

0

2

locELM solution

exact solution

(a)

time

e
rr

o
r

0 20 40 60 80 100
10

­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

(b)

x

S
o

lu
ti
o

n

0 1 2 3 4 5
0

1

2
locELM solution

exact solution

(c) x

E
rr

o
r

0 1 2 3 4 5
10

­7

10
­6

10
­5

10
­4

10
­3

(d) Time block index

E
rr

o
rs

0 20 40 60 80 100
10

­6

10
­5

10
­4

10
­3

maximum error in time block

rms error in time block

(e)

Figure 14: Long-time simulation of the advection equation: Time histories of the locELM solution (a) and
its absolute error against the exact solution (b) at the mid-point (x = 2.5) of the spatial domain. Profiles of
the locELM solution (c) and its absolute error against the exact solution (d) at the last time instant t = 100.
(e) Time histories of the maximum and rms errors in each time block. The problem settings correspond to
those of Figure 13.

x

y

0 2 4
0

2

4

6

8

10

(a) x

y

0 2 4
0

2

4

6

8

10

(b) x

y

0 2 4
0

2

4

6

8

10

(c) x

y

0 2 4
0

2

4

6

8

10

(d)

Figure 15: Comparison between locELM and global ELM solutions (advection equation): distributions of
the solutions (a,c) and their absolute errors (b,d) computed using the locELM method with 1 sub-domain
per time block (a,b), which is equivalent to a global ELM, and 2 sub-domains per time block (c,d). Both
cases have essentially the same total degrees of freedom in the domain.

37



number of sub­domains/time­block

E
rr

o
rs

1 2 3 4
10

­5

10
­4

10
­3

10
­2

maximum error in domain

rms error in domain

(a) number of sub­domains/time­block

tr
a
in

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

1 2 3 4

40

60

80

100

120

(b)

Figure 16: Effect of the number of sub-domains, with fixed total degrees of freedom in the domain (advection
equation): (a) the maximum and rms errors in the overall domain, and (b) the training time, as a function
of the number of sub-domains per time-block. 10 time blocks are used in the domain. For all cases, the total
number of training parameters per time block is fixed at 2500, and the total number of collocation points
per time block is approximately 2500.

case of 1 sub-domain/time-block, we have employed 1600 training parameters per sub-domain and 50 × 50

uniform collocation points per sub-domain. In the case of 2 sub-domains/time-block we have employed 800

training parameters per sub-domain and 35 × 35 uniform collocation points per sub-domain. So both cases

have the same total number of training parameters per time block, and also comparable total number of

collocation points per time block (2500 for 1 sub-domain/block versus 2450 for 2 sub-domains/block). The

local neural networks contain a single hidden layer. For the case of 1 sub-domain/block we have employed

Rm = 3.0 when generating the random coefficients for the hidden layer of the local neural network, and

for the case of 2 sub-domains/block we have employed Rm = 2.0 when generating random coefficients for

the hidden layers of the local neural networks. These values are approximately in the optimal range of Rm

values for these cases. It is evident that both the locELM and the global ELM capture the wave solution

quite accurately, with the locELM solution on two sub-domains/time-block better.

Figure 16 provides further comparisons between the locELM and global ELM results. The problem

settings here correspond to those of Figure 15. We fix the total degrees of freedom in each time block

(temporal dimension tf = 10, 10 time blocks, 1600 training parameters/time-block, approximately 2500

collocation points/time-block), and vary the number of sub-domains per time block. Figure 16(a) shows the

maximum and rms errors in the overall spatial-temporal domain as a function of the number of sub-domains

per time block. The cases of one and 2 sub-domains/time-block correspond to those of Figure 15. For

the case with 4 sub-domains per time-block, we have employed the configuration of Nx = 4 and Nt = 1,

M = 400 training parameters per sub-domain, Q = 25× 25 uniform collocation points per sub-domain, and

Rm = 2.0 when generating the random coefficients in the hidden layers of the local neural networks. The

error levels with one sub-domain and multiple sub-domains per time block are observed to be comparable,

with the results of 2 sub-domains per time block more accurate than the others. Figure 16(b) compares the

network training time corresponding to different sub-domains. The use of multiple sub-domains is observed

to significantly reduce the training time of the neural network, from around 105 seconds with a single sub-

domain per time block to around 40 seconds with 4 sub-domains per time block. The results here confirm

38



x

t

0 1 2 3 4 5
0

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

(a) x

t

0 1 2 3 4 5
0

0.5

1

1.5

2

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055 0.006 0.0065 0.007 0.0075 0.008

(b)

x

t

0 1 2 3 4 5
0

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

(c) x

t

0 1 2 3 4 5
0

0.5

1

1.5

2

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002 0.0022 0.0024

(d)

x

t

0 1 2 3 4 5
0

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

(e) x

t

0 1 2 3 4 5
0

0.5

1

1.5

2

2.0E­05 4.0E­05 6.0E­05 8.0E­05 1.0E­04 1.2E­04 1.4E­04 1.6E­04 1.8E­04 2.0E­04 2.2E­04 2.4E­04 2.6E­04

(f)

Figure 17: Comparison between locELM and DGM (advection equation): distributions of the solutions (left
column) and their absolute errors (right column), computed using the deep Galerkin method (DGM) [41]
with the Adam optimizer (top row) and the L-BFGS optimizer (middle row), and computed using the current
locELM method (bottom row).

method maximum error rms error epochs/iterations training time (seconds)
DGM (Adam) 8.37e− 3 1.64e− 3 60, 000 2527.8
DGM (L-BFGS) 2.59e− 3 5.37e− 4 12, 000 1675.9
locELM (no block time-marching) 2.74e− 4 6.05e− 5 0 43.4
locELM (with block time-marching) 1.83e− 4 4.34e− 5 0 19.3

Table 3: Advection equation: comparison between locELM and DGM. The problem settings correspond to
those of Figure 17. The two DGM cases and the locELM case with no block time-marching correspond to
those of Figure 17. In the locELM case with block time-marching, two time blocks in the domain and 8
sub-domains per time block are used. The total degrees of freedom for this case are identical to those of the
locELM case with no block time marching.

what has been observed in the previous section. With the same total degrees of freedom in the domain, the

use of multiple sub-domains and local neural networks with the current locELM method can significantly

reduce the training/computation time, while producing results with comparable accuracy when compared

with the global ELM method.

Finally we compare the current locELM method with the deep Galerkin method (DGM) [41], another

often-used DNN-based PDE solver, for solving the advection equation. Figure 17 shows distributions of the

solutions and their absolute errors obtained using DGM with the Adam and the L-BFGS optimizers and

using the current locELM method. The temporal domain size is tf = 2.0 in these tests. With DGM, four

39



hidden layers with a width of 40 nodes and the tanh activation function in each layer have been employed

in the neural networks. When computing the residual norms in the DGM loss function, we have partitioned

the domain into 8 sub-regions (4 in x and 2 in time) and used 30 × 30 Gaussian quadrature points in

each sub-region for calculating the integrals. The periodic boundary condition is enforced exactly using

the method from [7] for DGM. With the Adam optimizer, the neural network has been trained for 60, 000

epochs, with the learning rate decreasing gradually from 0.001 at the beginning to 2.5 × 10−5 at the end

of training. With the L-BFGS optimizer, the neural network has been trained for 12, 000 iterations. In the

locELM simulation, a single time block has been used in the spatial-temporal domain, i.e. without block time

marching. We employ 16 sub-domains (with 4 sub-domains in x and time) per time block, 20 × 20 uniform

collocation points in each sub-domain, 250 training parameters per sub-domain, a single hidden layer in each

local neural network, and Rm = 2.0 for generating the random weight/bias coefficients for the hidden layer

of the local neural networks. One can observe that the current method produces considerably more accurate

result than DGM for the advection equation.

Table 3 provides further comparisons between locELM and DGM. Here we list the maximum and rms

errors in the overall spatial-temporal domain, the number of epochs or iterations in the network training, and

the training time obtained using DGM (Adam/L-BFGS optimizers) and using locELM without block time

marching, and additionally using locELM together with block time marching. The problem settings here

correspond to those of Figure 17, and the DGM cases and the locELM case without block time marching

correspond to those in Figure 17. In the locELM case with block time marching, we have employed 2 uniform

time blocks in the spatial-temporal domain, 8 sub-domains (Nx = 4, Nt = 2) per time block, 20×20 uniform

collocation points per sub-domain, 250 training parameters per sub-domain, a single hidden layer in the local

neural networks, and Rm = 2.0 when generating the random weight/bias coefficients. So the total degrees

of freedom in this case are identical to those of the locELM case without block time marching. The data

in the table shows that the current locELM method (with and without block time marching) is much more

accurate than DGM (by an order of magnitude), and is dramatically faster to train than DGM (by nearly

two orders of magnitude). In addition, we observe that the locELM method with block time marching and

a moderate time block size can significantly reduce the training time, and simultaneously achieve the same

or better accuracy, when compared with that without block time marching.

3.3 Diffusion Equation

In this subsection we the test the locELM method using the diffusion equation in one and two spatial

dimensions (plus time). Let us first study the 1D diffusion equation. We consider the spatial-temporal

domain, Ω = {(x, t) | x ∈ [a1, b1], t ∈ [0, tf ]}, and the following initial/boundary-value problem,

∂u

∂t
− ν ∂

2u

∂x2
= f(x, t), (35a)

u(a1, t) = g1(t), u(b1, t) = g2(t), (35b)

u(x, 0) = h(x), (35c)

40



x

T
im

e

0 2 4

0

2

4

6

8

10

11

10

9

8

7

6

5

4

3

2

1

0

­1

­2

­3

­4

­5

­6

(a) x

T
im

e

0 2 4

0

2

4

6

8

10

4.0E­08

3.5E­08

3.0E­08

2.5E­08

2.0E­08

1.5E­08

1.0E­08

5.0E­09

(b)

Figure 18: 1D diffusion equation: distributions of the solution (a) and its absolute error (b) computed using
the current locELM method. 10 time blocks and 5 sub-domains per time block are employed.

where u(x, t) is the field function to be solved for, f(x, t) is a prescribed source term, the constant ν is the

diffusion coefficient, g1(t) and g2(t) are the boundary conditions, and h(x) is the initial field distribution.

The values for the constant parameters involved in the above equations and in the domain specification are,

a1 = 0, b1 = 5, ν = 0.01, tf = 10 or 1.

We choose the source term f such that the following function satisfies equation (35a),

u(x, t) =

[
2 cos

(
πx+

π

5

)
+

3

2
cos

(
2πx− 3π

5

)][
2 cos

(
πt+

π

5

)
+

3

2
cos

(
2πt− 3π

5

)]
. (36)

We choose the boundary conditions g1(t) and g2(t) and the initial condition h(x) according to equation (36),

by restricting this expression to the corresponding boundaries of the spatial-temporal domain. Therefore,

the function given by (36) solves the initial/boundary value problem represented by equations (35a)–(35c).

We employ the locELM method together with block time marching from Section 2.2.2 to solve this

initial/boundary value problem, by restricting the method to one spatial dimension. We partition the

spatial-temporal domain Ω in time into Nb uniform blocks, and compute these time blocks individually and

successively. Within each time block, we further partition its spatial-temporal domain into Nx uniform

sub-domains along the x direction and Nt uniform sub-domains in time, leading to Ne = NxNt uniform

sub-domains per time block. We impose C1 continuity conditions on the sub-domain boundaries in the x

direction and C0 continuity on the sub-domain boundaries in the temporal direction. Within each sub-

domain we use Qx uniform collocation points along the x direction and Qt uniform collocation points in

time as the input training data, leading to a total of Q = QxQt uniform collocation points per sub-domain.

We use one local neural network to approximate the solution on each sub-domain within the time block,

thus leading to a total of Ne local neural networks in the locELM simulation. In the majority of tests of

this subsection the local neural networks each contains a single hidden layer with M nodes and the tanh

activation function. We also report results obtained with the local neural networks containing more than

one hidden layer. The input layer of the local neural networks consists of two nodes, representing x and

t. The output layer consists of a single node, representing the solution u, and has no bias coefficient and

41



sub­domains per time block

E
rr

o
rs

1 2 3 4 5
10

­9

10
­7

10
­5

10
­3

10
­1

10
1

maximum error

rms error

(a)
collocation points per direction per sub­domain

E
rr

o
rs

0 10 20 30 40
10

­9

10
­7

10
­5

10
­3

10
­1

10
1

maximum error

rms error

(b) training parameters/sub­domain

E
rr

o
rs

0 100 200 300 400
10

­10

10
­8

10
­6

10
­4

10
­2

10
0

maximum error

rms error

(c)

Figure 19: Effect of the degrees of freedom on simulation accuracy (1D diffusion equation): the maximum
and rms errors in the domain as a function of (a) the number of sub-domains in each time block, (b) the
number of collocation points in each direction in each sub-domain, and (c) the number of training parameters
in each sub-domain. Temporal domain size is tf = 10 and 10 uniform time blocks are used.

no activation function. As in previous subsections, we incorporate an additional affine mapping operation

right behind the input layer of the local neural network to normalize the input x and t data to the interval

[−1, 1] × [−1, 1] in each sub-domain. The weight/bias coefficients in the hidden layer of each of the local

neural networks are set to uniform random values generated on the interval [−Rm, Rm]. We use a fixed seed

value 22 for the Tensorflow random number generator for all the tests with locELM in this subsection.

The locELM simulation parameters include the number of time blocks (Nb), the number of sub-domains

per time block (Ne, Nx, Nt), the number of training parameters per sub-domain (M), the number of collo-

cation points per sub-domain (Qx, Qt, Q), and the maximum magnitude of the random coefficients (Rm).

In accordance with previous subsections, we use (Q,M) to characterize the degrees of freedom within a

sub-domain, and (NeQ,NeM) to characterize the degrees of freedom within a time block.

Figure 18 shows distributions of the locELM solution and its absolute error in the spatial-temporal plane.

In this test the temporal domain size is set to tf = 10. We have employed Nb = 10 uniform time blocks in

the simulation, Ne = 5 uniform sub-domains per time block (with Nx = 5 and Nt = 1), Q = 30×30 uniform

collocation points in each sub-domain (with Qx = Qt = 30), M = 300 training parameters per sub-domain,

a single hidden layer in the local neural networks, and Rm = 1.0 when generating the random weight/bias

coefficients for the hidden layers of the local neural networks. It is evident that the locELM method has

captured the solution very accurately, with the absolute error on the order of 10−9 ∼ 10−8.

The effect of the degrees of freedom on the simulation accuracy is illustrated by Figure 19. In this group

of tests, the temporal domain size is set to tf = 10, and we have employed Nb = 10 uniform time blocks in the

spatial-temporal domain, a single hidden layer in each local neural network, and Rm = 1.0 when generating

the random coefficients for the hidden layers of the local neural networks. The number of sub-domains in

each time block, or the number of collocation points per sub-domain, or the number of training parameters

per sub-domain has been varied in the tests.

Figure 19(a) illustrates the effect of the number of sub-domains within each time block, while the degrees

of freedom per sub-domain are fixed. Here we fix the number of uniform collocation points per sub-domain

at Q = 30 × 30 (Qx = Qt = 30) and the number of training parameters per sub-domain at M = 300, and

42



(a)
collocation points per direction per sub­domain

E
rr

o
rs

0 10 20 30 40
10

­9

10
­7

10
­5

10
­3

10
­1

10
1

maximum error

rms error

(b)

Figure 20: Results obtained with two hidden layers in local neural networks (1D diffusion equation): (a)
error distribution in the spatial-temporal plane. (b) The maximum/rms errors in the domain versus the
number of collocation points in each direction per sub-domain.

then vary the number of uniform sub-domains per time block systematically. This plot shows the maximum

and rms errors of the locELM solution in the overall spatial-temporal domain as a function of the number

of sub-domains per time block in the simulations. With increasing number of sub-domains, the numerical

errors are observed to decrease dramatically, from around 10−1 with one sub-domain/time-block to around

10−8 with 5 sub-domains/time-block.

Figure 19(b) illustrates the effect of the number of collocation points per sub-domain on the simulation

accuracy. Here we use Ne = 5 uniform sub-domains (with Nx = 5 and Nt = 1) in each time block, fix the

the number of training parameters per sub-domain at M = 300, and vary the number of collocation points

per sub-domain while maintaining Qx = Qt. This plot shows the maximum and rms errors in the overall

spatial-temporal domain as a function of the number of collocation points in each direction in each sub-

domain. The numerical errors can be observed to initially decrease exponentially with increasing number of

collocation points per direction when it is below about 20, and then stagnate at a level around 10−8 ∼ 10−7

as the number of collocation points per direction further increases.

Figure 19(c) illustrates the effect of the number of training parameters on the simulation accuracy. Here

we use Ne = 5 sub-domains (with Nx = 5 and Nt = 1) in each time block, fix the number of collocation

points per sub-domain at Q = 30 × 30 (Qx = Qt = 30), and vary the number of training parameters per

sub-domain. The plot shows the maximum/rms errors in the overall domain as a function of the number

of training parameters per sub-domain. One can observe that the errors initially decrease exponentially

with increasing number of training parameters/sub-domain when it is below about 250, and then the error

reduction slows down as the number of training parameters/sub-domain further increases. These behaviors

are consistent with what have been observed with other problems in previous subsections.

In Figure 20 we show results obtained with local neural networks containing more than one hidden layer.

In this group of simulations, each local neural network contains two hidden layers, with 30 and 300 nodes in

these two layers, respectively. The activation function is tanh in both hidden layers. The temporal domain

size is tf = 10, and 10 uniform time blocks have been used. We employ Ne = 5 sub-domains per time

block (Nx = 5 and Nt = 1), M = 300 training parameters per sub-domain (width of the last hidden layer),

43



maximum magnitude of random coefficients

E
rr

o
rs

0 1 2 3 4 5 6 7
10

­9

10
­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

maximum error

rms error

Figure 21: Effect of the random coefficients in local neural networks (1D diffusion equation): the maximum
and rms errors in the domain as a function of Rm, the maximum magnitude of the random coefficients.

and Rm = 0.5 when generating the random weight/bias coefficients for the hidden layers of the local neural

networks. The number of collocation points per sub-domain (Q) is varied systematically while Qx = Qt is

maintained. Figure 20(a) shows the distribution of the absolute error of the locELM solution in the spatial-

temporal plane, obtained with Q = 30 × 30 uniform collocation points per sub-domain. This figure can be

compared with Figure 18(b), which corresponds to the same simulation resolution but is obtained with local

neural networks containing a single hidden layer. Figure 20(b) shows the maximum and rms errors in the

overall domain as a function of the number of collocation points in each direction per sub-domain. This

figure can be compared with Figure 19(b), which corresponds to a single hidden layer in the local neural

networks. It is evident that the solution has been captured accurately by the current locELM method using

two hidden layers in the local neural networks. The results shown here and those results in Section 3.1 (see

Figures 4 and 5) demonstrate that the current locELM method, using local neural networks with a small

number of (more than one) hidden layers, is able to produce accurate simulation results.

Figure 21 illustrates the effect of the random weight/bias coefficients in the local neural networks on the

simulation accuracy. It shows the maximum and rms errors of the locELM solution in the overall domain as

a function of Rm, the maximum magnitude of the random coefficients. In this group of tests, the temporal

domain size is tf = 10, and we have employed Nb = 10 uniform time blocks in the domain, Ne = 5 uniform

sub-domains per time block (Nx = 5, Nt = 1), Q = 30 × 30 uniform collocation points per sub-domain,

M = 300 training parameters per sub-domain, and a single hidden layer in the local neural networks. The

random coefficients in the hidden layers are generated on [−Rm, Rm], and Rm is varied systematically in

these tests. We observe a similar behavior to those in previous subsections. A better accuracy can be

attained with a range of moderate Rm values, while very large or very small Rm values tend to produce less

accurate results.

Figure 22 depicts a study of the effect of the number of sub-domains in the simulation on the simulation

accuracy and on the network training time, while the total number of degrees of freedom in the domain

is fixed. In this group of tests, the temporal domain size is tf = 10, and we have used Nb = 10 time

blocks in the overall spatial-temporal domain. The number of uniform sub-domains per time block is varied

systematically between Ne = 1 and Ne = 5 in the simulations, implemented by fixing Nt = 1 and varying

44



sub­domains per time block

E
rr

o
rs

1 2 3 4 5
10

­10

10
­9

10
­8

10
­7

10
­6

10
­5

10
­4

maximum error

rms error

(a) sub­domains per time block

tr
a
in

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

1 2 3 4 5
0

50

100

150

200

250

300

(b)

Figure 22: Effect of the number of sub-domains, with fixed total degrees of freedom in the domain (1D
diffusion equation): (a) the maximum and rms errors in the domain, and (b) the training time, as a function
of the number of sub-domains per time block.

Nx between 1 and 5. We set the number of training parameters per sub-domain (M), and the number of

uniform collocation points per sub-domain (Q, with Qx = Qt), in a way such that the total number of

training parameters per time block is fixed at NeM = 1500 and the total number of collocation points per

time block is approximately fixed at NeQ ≈ 2500. Specifically, M and Q in different cases are: M = 1500

and Q = 50× 50 for 1 sub-domain per time block, M = 750 and Q = 35× 35 for 2 uniform sub-domains per

time block, M = 500 and Q = 29× 29 for 3 uniform sub-domains per time block, M = 375 and Q = 25× 25

for 4 uniform sub-domains per time block, and M = 300 and Q = 22 × 22 for 5 uniform sub-domains per

time block. We employ Rm = 3.0 when generating the random coefficients for the case with one sub-domain

per time block, which is approximately at the optimal range of Rm values for this case. We employ Rm = 1.0

when generating the random coefficients for the rest of the cases with Ne = 2 ∼ 5 sub-domains per time

block. Note that the case with one sub-domain per time block is equivalent to the configuration of a global

ELM in the simulation. Figure 22(a) shows a comparison of the maximum and rms errors in the overall

spatial-temporal domain as a function of the number of sub-domains per time block in the simulations. It

can be observed that the numerical errors with 2 or more sub-domains are comparable to or smaller than the

errors corresponding to one sub-domain in the simulations. Figure 22(b) shows the neural-network training

time as a function of the number of sub-domains per time block. One can observe that the training time

decreases significantly with increasing number of sub-domains. Compared with the case of one sub-domain

per time block, the training time corresponding to 2 and more sub-domains in the simulations has been

considerably reduced, e.g. 277 seconds with one sub-domain versus 79 seconds with 2 sub-domains. These

results confirm and reinforce our observations with the other problems that, compared with global ELM, the

use of domain decomposition and locELM with multiple sub-domains can significantly reduce the network

training time, and hence the computational cost, while attaining the same or sometimes even better accuracy

in the simulation results.

Let us now compare the current locELM method with DGM and PINN for solving the 1D diffusion

equation. Figure 23 compares distributions of the solutions and their absolute errors obtained using DGM

and PINN with the Adam and L-BFGS optimizers and using locELM. The temporal domain size is set to

tf = 1 in these tests. With both DGM and PINN, the neural network consists of 4 hidden layers, with a

45



x

t

0 1 2 3 4 5
0

0.5

1

­6 ­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5 6 7 8 9 10 11 12

(a) x

t

0 1 2 3 4 5
0

0.5

1

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

(b)

(c) x

t

0 1 2 3 4 5
0

0.5

1

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055

(d)

(e) (f)

(g) (h)

x

t

0 1 2 3 4 5
0

0.5

1

­6 ­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5 6 7 8 9 10 11 12

(i) x

t

0 1 2 3 4 5
0

0.5

1

5E­09 1E­08 1.5E­08 2E­08 2.5E­08 3E­08 3.5E­08 4E­08 4.5E­08 5E­08 5.5E­08

(j)

Figure 23: Comparison between locELM, DGM and PINN (1D diffusion equation): Distributions of the
solutions (left column) and their absolute errors (right column) computed using DGM with Adam (a,b) and
L-BFGS (c,d), using PINN with Adam (e,f) and L-BFGS (g,h), and using the current locELM method (i,j).

x

S
o

lu
ti
o

n
s

0 1 2 3 4 5

­5

0

5

10

DGM (Adam)

DGM (L­BFGS)

PINN (Adam)

PINN (L­BFGS)

locELM

Exact solution

(a) x

E
rr

o
rs

0 1 2 3 4 5
10

­11

10
­9

10
­7

10
­5

10
­3

10
­1

DGM (Adam)

DGM (L­BFGS)

PINN (Adam)

PINN (L­BFGS)

locELM

(b)

Figure 24: Comparison between locELM, DGM and PINN (1D diffusion equation): Profiles of the solutions
(a) and their absolute errors (b) at t = 1.0 obtained using DGM and PINN (Adam/L-BFGS optimizers) and
using locELM. The problem settings and the simulation parameters correspond to those of Figure 23.

46



method maximum error rms error epochs/iterations training time (seconds)
DGM (Adam) 2.59e− 2 3.84e− 3 135, 000 4194.5
DGM (L-BFGS) 5.82e− 3 8.21e− 4 36, 000 3201.4
PINN (Adam) 1.81e− 2 2.62e− 3 135, 000 3739.1
PINN (L-BFGS) 7.51e− 3 9.27e− 4 36, 000 3174.4
locELM 5.82e− 8 6.25e− 9 0 28.4

Table 4: 1D diffusion equation: comparison between DGM/PINN (Adam/L-BFGS optimizers) and locELM.
The settings and parameters correspond to those of Figure 23.

width of 40 nodes and the tanh activation function in each layer. With DGM, when computing the loss

function we have divided the domain into 5 uniform sub-regions along the x direction, and computed the

residual norm integral by the Gaussian quadrature rule on 20×20 Gauss-Lobatto-Legendre quadrature points

in each sub-region. With PINN, we have employed a set of 100× 20 uniform collocation points (100 uniform

points in x and 20 uniform points in t) in the spatial-temporal domain as the input to the network. For both

DGM and PINN, the neural network has been trained for 135, 000 epochs with the Adam optimizer, with

the learning rate coefficient decreasing gradually from 0.001 at the beginning to 2.5× 10−6 at the end of the

training. With the L-BFGS optimizer, the neural network has been trained for 36, 000 L-BFGS iterations for

both DGM and PINN. In the simulation with locELM, we employ Nb = 1 time block in the spatial-temporal

domain, Ne = 5 sub-domains (with Nx = 5, Nt = 1) per time block, Q = 30× 30 uniform collocation points

per sub-domain, M = 300 training parameters per sub-domain, 1 hidden layer in each of the local neural

networks, and Rm = 1.0 when generating the random hidden-layer coefficients. Both DGM and PINN have

captured the solution reasonably well. But their error levels are considerably higher, by about five orders of

magnitude, than that of the locELM method (10−3 versus 10−8).

A comparison of the solution and the error profiles of locELM, DGM and PINN is provided in Figure

24. Figure 24(a) shows the solution profiles at t = 1.0 obtained using DGM and PINN (Adam/L-BFGS

optimizers) and using the locELM method, together with that of the exact solution. The settings and the

parameters correspond to those of Figure 23. The computed profiles all agree with the exact solution quite

well. Figure 24(b) compares profiles of the absolute error at t = 1.0 obtained with DGM, PINN and the

current method. The numerical error of the current method, which is at a level around 10−9, is significantly

smaller than those from DGM and PINN, which are at a level around 10−4.

In Table 4 we provide some further comparisons between locELM, DGM, and PINN in terms of the accu-

racy and the computational cost. Here we list the maximum and rms errors in the overall spatial-temporal

domain, the number of epochs or iterations in network training, and the training time of DGM/PINN with

the Adam and L-BFGS optimizers and of the locELM method. The problem settings and the simulation

parameters correspond to those of Figure 23. The error levels and the computational cost of DGM and

PINN are comparable. The data demonstrate a clear superiority of locELM to DGM and PINN, with the

locELM errors five orders of magnitude smaller and the training time over two orders of magnitude less.

Let us next compare the current locELM method with the classical finite element method for solving

the 1D diffusion equation. In Figures 25(a) and (b) we compare profiles of the solutions and their absolute

errors at t = 1.0, obtained using the current locELM method and the finite element method. The domain

47



x

S
o

lu
ti
o

n
s

0 1 2 3 4 5
­5

0

5

10
locELM

FEM

exact solution

(a) x

E
rr

o
rs

0 1 2 3 4 5
10

­11

10
­10

10
­9

10
­8

10
­7

10
­6

10
­5 locELM

FEM

(b) ∆t

E
rr

o
rs

10
­4

10
­3

10
­2

10
­110

­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

maximum error

rms error

reference

(c)

Figure 25: Comparison between locELM and FEM (1D diffusion equation): Profiles of (a) the solutions
and (b) their absolute errors at t = 1.0, computed using the current locELM method and using the finite
element method (FEM). (c) The FEM maximum and rms errors at t = 0.5 versus ∆t, showing the temporal
second-order convergence rate of FEM.

method ∆t elements sub-domains Q M maximum rms wall time
error error (seconds)

locELM – – 5 20× 20 200 2.48e− 6 2.23e− 7 7.9
– – 5 20× 20 250 8.97e− 8 2.25e− 8 11.3
– – 5 30× 30 300 5.82e− 8 6.25e− 9 28.4

FEM 0.002 2000 – – – 2.42e− 4 4.40e− 5 5.9
0.001 2000 – – – 9.82e− 5 2.01e− 5 12.0
0.0005 2000 – – – 1.54e− 4 2.61e− 5 24.0
0.00025 2000 – – – 1.72e− 4 2.85e− 5 48.3
0.002 5000 – – – 3.63e− 4 5.98e− 5 12.3
0.001 5000 – – – 6.99e− 5 1.22e− 5 24.6
0.0005 5000 – – – 1.69e− 5 3.43e− 6 48.8
0.00025 5000 – – – 2.26e− 5 3.91e− 6 97.9
0.002 10000 – – – 3.85e− 4 6.32e− 5 22.2
0.001 10000 – – – 9.11e− 5 1.49e− 5 43.9
0.0005 10000 – – – 1.75e− 5 3.05e− 6 86.9
0.00025 10000 – – – 4.24e− 6 8.58e− 7 179.0

Table 5: 1D diffusion equation: comparison between FEM and the current locELM method, in terms of the
maximum/rms errors in the overall domain and the training/computation time. The temporal domain size
is tf = 1. Rm = 1.0 in locELM simulations.

and problem settings in these tests correspond to those of Figures 23(e,f), with a temporal domain size

tf = 1. The simulation parameters for the locELM computation also correspond to those of Figures 23(e,f).

For the FEM simulation, the diffusion equation (35a) is discretized in time by the second-order backward

differentiation formula (BDF2), and the diffusion term is treated implicitly. We have employed a time step

size ∆t = 0.00025 and 10, 000 uniform linear elements to discretize the spatial domain. It is evident from

these data that both the FEM and the current method have produced accurate results. Figure 25(c) shows

the maximum and rms errors at t = 0.5 versus the time step size ∆t with FEM, showing the second-order

temporal convergence rate. In these tests a fixed mesh of 10, 000 uniform linear elements has been used,

which accounts for the observed error saturation in Figure 25(c) when ∆t becomes sufficiently small.

Table 5 provides a comparison of the accuracy and the computational cost of the locELM method and the

48



(a) (b)

Figure 26: 2D diffusion equation: distributions of (a) the solution and (b) its absolute error computed using
the current locELM method. 40 uniform time blocks are used in the simulation.

finite element method. In these tests the temporal domain size is set to tf = 1. In the locELM simulations

we employ a single time block in the spatial-temporal domain, 5 uniform sub-domains in the time block, and

several sets of collocation points/sub-domain and training parameters/sub-domain, a single hidden layer in

the local neural networks, and Rm = 1.0 when generating the random coefficients. In the FEM simulations,

we employ several sets of elements and ∆t values. The maximum error and the rms error in the overall

spatial-temporal domain have been computed, and the wall time for the computation or network training

have been recorded. In Table 5 we list these errors and the wall time numbers corresponding to the different

simulation cases with locELM and FEM. We observe that the current method performs markedly better

than FEM. The current method achieves a considerably better accuracy with the same computational cost

as FEM, and it incurs a lower computational cost while achieving the same accuracy as FEM. For example,

the locELM case with (Q,M) = (20 × 20, 250) has a computational cost comparable to the FEM cases

with 2000 elements and ∆t = 0.001 and with 5000 elements and ∆t = 0.002. But the numerical errors of

locELM are considerably smaller, by around three orders of magnitude, than those of the FEM cases. The

locELM case with (Q,M) = (30 × 30, 300) has a lower computational cost, by a factor of about three, and

a considerably better accuracy, by a factor of nearly three orders of magnitude, than the FEM case with

10, 000 elements and ∆t = 0.0005.

All the above results are for the 1D diffusion equation. In Figure 26 we show some results of the current

locELM method for the two-dimensional (2D) diffusion equation plus time. This test concerns the following

initial/boundary value problem, on the spatial-temporal domain Ω = {(x, y, t) | x ∈ [a1, b1], y ∈ [a2, b2], t ∈
[0, tf ]},

∂u

∂t
− ν

(
∂2u

∂x2
+
∂2u

∂y2

)
= f(x, y, t), (37a)

u(a1, y, t) = g1(y, t), u(b1, y, t) = g2(y, t), u(x, a2, t) = g3(x, t), u(x, b2, t) = g4(x, t), (37b)

u(x, y, 0) = h(x, y), (37c)

where u(x, y, t) is the field function to be solved for, f(x, y, t) is a prescribed source term, gi (1 6 i 6 4)

are the boundary distributions, and h is the initial distribution. The constant parameters are a1 = a2 = 0,

49



b1 = b2 = 0.5, tf = 10, and ν = 0.01. We have chosen f(x, y, t), g1(y, t), g2(y, t), g3(x, t), g4(x, t) and h(x, y)

such that the following function satisfies the equations (37a)–(37c),

u(x, y, t) =

[
3

2
cos

(
πx+

2π

5

)
+ 2 cos

(
2πx− π

5

)] [3

2
cos

(
πy +

2π

5

)
+ 2 cos

(
2πy − π

5

)]
[

3

2
cos

(
πt+

2π

5

)
+ 2 cos

(
2πt− π

5

)]
.

(38)

The problem consisting of (37a)–(37c) has been solved using the current locELM method together block

time marching. Figure 26 shows the distributions of the locELM solution and its absolute error against

the exact solution given by (38). In the simulation, we have used 40 time blocks in the spatial-temporal

domain, 4 sub-domains per time block (with 2 uniform sub-domains along the x and y directions and one

sub-domain in time), 15 × 15 × 15 uniform collocation points per sub-domain, a single hidden layer with a

width of 400 nodes and the tanh activation function in the local neural networks for each sub-domain, and

the weight/bias coefficients for the hidden layer are set to uniform random values generated on the interval

[−0.2, 0.2]. A seed value 12 has been used for the Tensorflow random number generator for this test. It can

be observed that the current method has captured the solution accurately, with the maximum absolute error

and the rms absolute error in the overall spatial-temporal domain being 1.04e−6 and 7.19e−8, respectively.

The neural-network training time is 564 seconds for this computation.

3.4 Nonlinear Examples

3.4.1 Nonlinear Helmholtz Equation

As the first nonlinear example, we test the locELM method using the boundary value problem with the

nonlinear Helmholtz equation in one dimension. Consider the domain [a, b] and the following boundary

value problem on this domain,

d2u

dx2
− λu+ β sin(u) = f(x), (39a)

u(a) = h1, u(b) = h2, (39b)

where u(x) is the function to be solved for, f(x) is a prescribed source term, λ and β are constant parameters,

and h1 and h2 are the boundary values. We assume the following values for the constant parameters involved

in these equations and domain specification,

a = 0, b = 8, λ = 50, β = 10.

We choose the source term f(x) and the boundary values h1 and h2 such that the following function satisfies

the equations (39a)–(39b),

u(x) = sin

(
3πx+

3π

20

)
cos

(
4πx− 2π

5

)
+

3

2
+

x

10
. (40)

We employ the locELM method discussed in Section 2.3.1 for solving this problem, by restricting the

method to one dimension. We partition the domain [a, b] into Ne uniform sub-domains (sub-intervals), and

impose the C1 continuity conditions across the sub-domain boundaries. We employ Q uniform collocation

points within each sub-interval.

50



x

S
o

lu
ti
o

n
s

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5
locELM, NLSQ­perturb

exact

(a) x

E
rr

o
rs

0 2 4 6 8
10

­14

10
­13

10
­12

10
­11

10
­10

10
­9

10
­8

(b) x

S
o

lu
ti
o

n
s

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

locELM, Newton­LLSQ

exact

(c) x

E
rr

o
rs

0 2 4 6 8
10

­12

10
­11

10
­10

10
­9

10
­8

10
­7

10
­6

10
­5

10
­4

(d)

Figure 27: Nonlinear Helmholtz equation: profiles of the locELM solutions (a,c) and their absolute errors
(b,d), computed using NLSQ-perturb (a,b) and Newton-LLSQ (c,d).

The local neural network for each sub-domain consists of an input layer with one node (representing

x), a single hidden layer with M nodes and the tanh activation function, and an output layer with one

node (representing the solution u) and no activation function and no bias. An additional affine mapping

operation normalizing the input x data to the interval [−1, 1] is incorporated into the local neural networks

right behind the input layer for each sub-domain. The weight and bias coefficients in the hidden layer of the

local neural networks are set to uniform random values generated on the interval [−Rm, Rm]. We employ a

fixed seed value 12 for the Tensorflow random number generator for all the tests reported in this sub-section

with locELM.

We employ the nonlinear least squared method with perturbations (NLSQ-perturb) and the combined

Newton/linear least squared method (Newton-LLSQ) from Section 2.3.1 for computing the resultant non-

linear problem. The initial guess to the solution is set to zero in all the tests of this subsection. In the

NLSQ-perturb method (see Algorithm 1), we have employed δ = 0.2, and ξ2 = 1 as discussed in Remark

2.8, for generating the random perturbations in the following tests.

The locELM simulation parameters include the number of sub-domains (Ne), the number of collocation

points per sub-domain (Q), the number of training parameters per sub-domain (M), and the maximum

magnitude of the random coefficients of the local neural networks (Rm).

Figure 27 illustrates the profiles of the locELM solutions and their absolute errors computed using the

NLSQ-perturb and Newton-LLSQ methods. In these simulations, we have employed Ne = 4 uniform sub-

domains, Q = 100 uniform collocation points per sub-domain, M = 200 training parameters per sub-domain,

and Rm = 5.0 for generating the random weight/bias coefficients. The profile of the exact solution given by

(40) is also included in these plots. The solution profiles obtained with the current method exactly overlap

with that of the exact solution. The error profiles indicate that the NLSQ-perturb method results in more

accurate results than Newton-LLSQ, with error levels on the order 10−12 ∼ 10−9 for NLSQ-perturb versus

10−9 ∼ 10−5 for Newton-LLSQ.

Figure 28 demonstrates the effect of the number of collocation points per sub-domain on the simulation

accuracy and the computational cost. In this group of tests, we have employed Ne = 4 sub-domains, M = 200

training parameters per sub-domain, and Rm = 5.0 when generating the random coefficients. The number

of uniform collocation points per sub-domain is varied systematically between Q = 25 and Q = 200. Figure

28(a) shows the maximum and rms errors in the domain as a function of the number of collocation points per

51



collocation points/sub­domain

E
rr

o
rs

50 100 150 200
10

­12

10
­10

10
­8

10
­6

10
­4

10
­2

10
0

maximum error, NLSQ­perturb

rms error, NLSQ­perturb

maximum error, Newton­LLSQ

rms error, Newton­LLSQ

(a) collocation points/sub­domain

T
ra

in
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

50 100 150 200
0

5

10

15

20

25

30

NLSQ­perturb

Newton­LLSQ

(b)

Figure 28: Effect of collocation points (nonlinear Helmholtz equation): (a) the maximum and rms errors
in the domain, and (b) the network training time, as a function of the number of collocation points per
sub-domain, computed using the locELM method with NLSQ-perturb and Newton-LLSQ.

training parameters/sub­domain

E
rr

o
rs

50 100 150 200 250 300 350
10

­12

10
­10

10
­8

10
­6

10
­4

10
­2

10
0

10
2

maximum error, NLSQ­perturb

rms error, NLSQ­perturb

maximum error, Newton­LLSQ

rms error, Newton­LLSQ

(a) training parameters/sub­domain

T
ra

in
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

50 100 150 200 250 300 350
0

5

10

15

20

NLSQ­perturb

Newton­LLSQ

(b)

Figure 29: Effect of the number of training parameters (nonlinear Helmholtz equation): (a) the maximum
and rms errors in the domain, and (b) the network training time, versus the number of training parameters
per sub-domain, computed using the locELM method with NLSQ-perturb and Newton-LLSQ.

sub-domain, obtained with NLSQ-perturb and Newton-LLSQ. Figure 28(b) shows the corresponding train-

ing time of the overall neural network versus the number of collocation points per sub-domain. With the

Newton-LLSQ method, the errors are observed to decrease gradually with increasing number of collocation

points, and appear to stagnate at a level around 10−6 when the number of collocation points/sub-domain

is beyond 150. With the NLSQ-perturb method, the errors initially decrease exponentially with increas-

ing number of collocation points (when below 125), and then stagnate at a level around 10−11 when the

number of collocation points/sub-domain increases to 150 and beyond. The NLSQ-perturb results are in

general considerably more accurate than those obtained with Newton-LLSQ. In terms of the training time,

the Newton-LLSQ method is consistently faster than NLSQ-perturb, and the difference becomes larger as

the number of collocation points increases. With the Newton-LLSQ method, the training time appears not

sensitive to the number of collocation points, and remains nearly the same with increasing number of col-

location points (Figure 28(b)). With the NLSQ-perturb method, the training time increases approximately

linearly with increasing number of collocation points per sub-domain, and it becomes substantially slower

than Newton-LLSQ when the number of collocation points becomes large.

52



x

S
o

lu
ti
o

n
s

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5
locELM, NLSQ­perturb

exact

(a) x

A
b

s
o

lu
te

 e
rr

o
r

0 2 4 6 8
10

­15

10
­14

10
­13

10
­12

10
­11

10
­10

10
­9

(b) collocation points/sub­domain

E
rr

o
rs

50 100 150 200
10

­12

10
­10

10
­8

10
­6

10
­4

10
­2

10
0

maximum error, NLSQ­perturb

rms error, NLSQ­perturb

(c)

Figure 30: Results obtained with 2 hidden layers in local neural networks (nonlinear Helmholtz equation):
profiles of (a) the locELM (NLSQ-perturb) solution and (b) its absolute error. (c) The maximum/rms errors
in the domain versus the number of collocation points per sub-domain.

Figure 29 demonstrates the effect of the number of training parameters per sub-domain on the simulation

accuracy and the computational cost. In this group of tests, we have employed Ne = 4 sub-domains, Q = 100

uniform collocation points per sub-domain, and Rm = 5.0 when generating the random coefficients in the

hidden layers of the local neural networks. The number of training parameters per sub-domain is varied

systematically between 50 and 350. Figure 29(a) shows the maximum and rms errors of the solutions as a

function of the number of training parameters per sub-domain obtained with NLSQ-perturb and Newton-

LLSQ. With NLSQ-perturb, the numerical errors decrease substantially as the number of training parameters

per sub-domain increases, reaching a level around 10−10 when the number of training parameters increases

beyond 200. With Newton-LLSQ, one can also observe a decrease in the errors as the number of training

parameters increases. But the error reduction is much slower. When the number of training parameters

per sub-domain exceeds 200, the errors with Newton-LLSQ no longer seem to decrease further and remain

at a level around 10−5. It is evident that the results from the Newton-LLSQ method are generally much

less accurate than those from the NLSQ-perturb method. Figure 29(b) shows the corresponding network

training time as a function of the number of training parameters per sub-domain. In the range of training

parameters tested here, the training time with both of these two methods appear to fluctuate around a

certain level. But the training time with the Newton-LLSQ method is generally notably smaller than that

with the NLSQ-perturb method, except for the outlier point corresponding to 100 training parameters per

sub-domain. These data suggest that Newton-LLSQ is generally faster than NLSQ-perturb.

With the current locELM method, the local neural network can contain more than one hidden layer. As

shown in previous sub-sections, local neural networks with a small number (more than one) of hidden layers

can also deliver accurate results using the current method. Figure 30 demonstrates again this point with

the nonlinear Helmholtz equation. In this group of tests, we employ Ne = 4 uniform sub-domains, M = 250

training parameters per sub-domain, 2 hidden layers (with widths 25 and 250, respectively, and the tanh

activation function) in each local neural network, and Rm = 2.0 when generating the random weight/bias

coefficients for these hidden layers. The number of uniform collocation points per sub-domain is varied

systematically in these tests. Figures 30(a) and (b) show the locELM solution and error profiles obtained

with Q = 175 uniform collocation points per sub-domain using the NLSQ-perturb method. Figure 30(c)

53



Maximum magnitude of random coefficient

M
a
x
im

u
m

 e
rr

o
rs

2 4 6 8 10
10

­11

10
­9

10
­7

10
­5

10
­3

10
­1

10
1 locELM, NLSQ­perturb

locELM, Newton­LLSQ

Figure 31: Effect of the random coefficients in local neural networks (nonlinear Helmholtz equation): the
maximum error in the domain versus Rm, obtained with the NLSQ-perturb and Newton-LLSQ methods.

number of sub­domains

E
rr

o
rs

1 2 3 4
10

­13

10
­12

10
­11

10
­10

10
­9

10
­8

10
­7

maximum error

rms error

(a) number of sub­domains

T
ra

in
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

1 2 3 4
5

10

15

20

25

30

35

(b)

Figure 32: Effect of the number of sub-domains, with fixed total degrees of freedom in the domain (nonlinear
Helmholtz equation): (a) the maximum and rms errors in the domain, and (b) the training time, as a function
of the number of sub-domains in the locELM simulation with NLSQ-perturb.

shows the maximum and rms errors in the domain as a function of the number of uniform collocation points

per sub-domain. We observe an essentially exponential decrease in the numerical errors with increasing

number of collocation points per sub-domain.

Figure 31 illustrates the effect of the random coefficients in the hidden layers of the local neural networks.

In this group of tests we employ Ne = 4 sub-domains, Q = 100 uniform collocation points per sub-domain,

200 training parameters per sub-domain, and a single hidden layer in the local neural networks. As discussed

before, the weight/bias coefficients in the hidden layer of each local neural network are set to uniform random

values generated on [−Rm, Rm]. In these tests, we vary Rm systematically and study its effect. Figure 31

shows the maximum error in the overall domain as a function of Rm, obtained with the NLSQ-perturb and

the Newton-LLSQ methods. The error exhibits a behavior similar to what has been observed with the linear

problems. The methods have a better accuracy with a range of moderate Rm values, and the results are

less accurate with very large or very small Rm values. We again observe that the NLSQ-perturb result is

significantly more accurate than that of Newton-LLSQ, except for a range of small Rm values.

In Figure 32 we study the effect of the number of sub-domains on the simulation accuracy and the

computational cost, while the total degrees of freedom in the domain are fixed. In these tests we vary the

number of uniform sub-domains (Ne). We choose the number of uniform collocation points per sub-domain

54



x

S
o

lu
ti
o

n
s

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5
PINN, Adam

exact

(a) x

E
rr

o
rs

0 2 4 6 8
10

­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

(b) x

S
o

lu
ti
o

n
s

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5
PINN, L­BFGS

exact

(c) x

E
rr

o
rs

0 2 4 6 8
10

­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

(d)

Figure 33: Nonlinear Helmholtz equation: Distributions of the solutions (a,c) and their absolute errors (b,d)
computed using PINN [37] with the Adam optimizer (a,b) and the L-BFGS optimizer (c,d). These can be
compared with those in Figure 27 computed using locELM.

(Q) and the training parameters per sub-domain (M) such that the total number of collocation points in

the domain is fixed at NeQ = 400 and the total number of training parameters in the domain is fixed at

NeM = 800. We have tested three cases, corresponding to Ne = 1, 2 and 4. As in the previous sections, the

case with one sub-domain (Ne = 1) corresponds to use of a global ELM. Figure 32(a) shows the maximum

and rms errors in the overall domain as a function of the number of sub-domains. Figure 32(b) shows

the corresponding training time versus the number of sub-domains. These results are obtained with the

NLSQ-perturb method. We have employed Rm = 20.0 when generating the random coefficients with one

sub-domain (Ne = 1), Rm = 10.0 with two sub-domains (Ne = 10.0) and Rm = 4.5 with four sub-domains

(Ne = 4.5). These Rm values approximately reside in the optimal range of Rm values for these cases. One

can observe that the numerical errors obtained with different number of sub-domains are comparable, with

the errors obtained on four sub-domains a little worse than those of the other cases. On the other hand, the

network training time decreases significantly with increasing number of sub-domains.

We next compare the current locELM method with the PINN method [37] for solving the nonlinear

Helmholtz equation. Figure 33 shows distributions of the PINN solutions and their absolute errors against

the exact solution given in equation (40), computed using the Adam optimizer (Figures 33(a,b)) and the

L-BFGS optimizer (Figures 33(c,d)). With the Adam optimizer, the neural network consists of 7 hidden

layers, with a width of 50 nodes in each layer and the tanh activation function, in addition to the input layer

of one node (representing x) and the output layer of one node (representing the solution u). The network

has been trained on the input data of 400 uniform collocation points for 45, 000 epochs, with the learning

rate gradually decreasing from 0.001 at the beginning to 5 × 10−6 at the end of the training. With the

L-BFGS optimizer, the neural network consists of 4 hidden layers, with a width of 50 nodes in each layer

and the tanh activation function, apart from the input layer of one node and the output layer of one node.

The network has been trained on the input data of 400 uniform collocation points in the domain for 22, 000

L-BFGS iterations. The results indicate that the PINN method has captured the solution quite accurately,

with the errors on the order 10−5 ∼ 10−3 with the Adam optimizer and on the order 10−5 ∼ 10−4 with the

L-BFGS optimizer. Comparing the PINN results in this figure and the locELM results in Figure 27, we can

observe that the locELM method is considerably more accurate than PINN.

Table 6 provides further comparisons between locELM and PINN in terms of the accuracy and the

computational cost. Here we have listed the maximum and rms errors in the domain, the number of epochs

55



method maximum error rms error epochs/iterations training time (seconds)
PINN (Adam) 4.56e− 3 5.04e− 4 45, 000 578.2
PINN (L-BFGS) 1.69e− 3 1.69e− 4 22, 000 806.4
locELM (NLSQ-perturb) 1.45e− 9 2.34e− 10 71 7.7
locELM (Newton-LLSQ) 1.28e− 5 1.75e− 6 5 2.7

Table 6: Nonlinear Helmholtz equation: comparison between locELM and PINN in terms of the maxi-
mum/rms errors in the domain, the number of epochs or nonlinear iterations, and the network training time.
The problem settings and simulation parameters correspond to those of Figures 27 and 33.

x

S
o

lu
ti
o

n
s

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

FEM solution

exact solution

(a) x
E

rr
o

r 
o

f 
F

E
M

 s
o

lu
ti
o

n

0 2 4 6 8
10

­13

10
­12

10
­11

10
­10

10
­9

10
­8

10
­7

(b)

Figure 34: Nonlinear Helmholtz equation: profiles of the solution (a) and its absolute error (b) computed
using the finite element method (FEM) with 200, 000 uniform elements.

or nonlinear iterations in the training, and the network training time, associated with the PINN (with

Adam/L-BFGS optimizers) simulations and the current locELM simulations. The problem settings and the

simulation parameters here correspond to those in Figure 27 with locELM and those in Figure 33 with PINN.

It is evident that the current locELM method is much more accurate than PINN. For example, the errors

obtained using locELM/NLSQ-perturb are about six orders of magnitude smaller than those obtained by

PINN/L-BFGS. The errors obtained by locELM/Newton-LLSQ are about two orders of magnitude smaller

than those of PINN/L-BFGS. Furthermore, the current method is computationally much cheaper than

PINN, with the training time approximately two orders of magnitude smaller (e.g. about 8 seconds with

locELM/NLSQ-perturb versus around 806 seconds with PINN/L-BFGS).

Let us now compare the current locELM method with the finite element method for solving the nonlinear

Helmholtz equation. Figure 34 shows the profiles of the finite element solution and its absolute error against

method elements sub-domains Q M maximum rms wall-time
error error (seconds)

locELM (NLSQ-perturb) – 4 100 200 1.45e− 9 2.34e− 10 7.7
– 4 125 200 3.96e− 11 7.02e− 12 10.6

FEM 200, 000 – – – 5.26e− 9 1.37e− 9 4.7
400, 000 – – – 1.31e− 9 3.43e− 10 8.8
800, 000 – – – 3.29e− 10 8.57e− 11 18.1

Table 7: Nonlinear Helmholtz equation: comparison between locELM and FEM, in terms of the maxi-
mum/rms errors in the domain and the training/computation time. The problem settings correspond to
those of Figures 27(a,b) and 34.

56



t

S
o

lu
ti
o

n
s

0 20 40 60 80 100
­150

­100

­50

0

50

100

150

locELM

exact solution

(a) t

E
rr

o
r

0 20 40 60 80 100
10

­15

10
­14

10
­13

10
­12

10
­11

10
­10

10
­9

10
­8

10
­7

(b)

Figure 35: Nonlinear spring: time histories of (a) the locELM solution and (b) its absolute error against the
exact solution. 40 uniform time blocks are used.

the analytic solution, computed on a mesh of 200, 000 uniform elements. The finite element method is again

implemented using the FEniCS library in Python, and the nonlinear algebraic equation is solved using a

Newton iteration. The FEM result is observed to be accurate, with an error level on the order 10−9. In

Table 7 we compare the locELM method and the finite element method with regard to the accuracy and the

computational cost. The table lists the maximum and rms errors in the domain and the wall time of the

training or computation, obtained using locELM and FEM on several sets of parameters corresponding to

different simulation resolutions. One can observe that locELM exhibits a comparable, and generally superior,

performance to FEM. For example, the locELM case with (Q,M) = (100, 200) has a computational cost

comparable to the FEM case with 400, 000 elements, and their error levels are also comparable. The locELM

case with (Q,M) = (125, 200) has a lower cost (∼ 10 seconds) than the FEM case with 800, 000 elements

(∼ 18 seconds), and also has considerably smaller errors, by an order of magnitude, than the latter.

3.4.2 Nonlinear Spring Equation

In the next example we test the locELM method using an initial value problem, the nonlinear spring. The

goal here is to assess the performance of the locELM method together with the block time marching scheme,

especially for long-time dynamic simulations.

Consider the temporal domain, Ω = [0, tf ], and the following initial value problem on this domain,

d2u

dt2
+ ω2u+ α sin(u) = f(t), (41a)

u(0) = u0,
du

dt

∣∣∣∣
t=0

= v0, (41b)

where u(t) is the displacement, f(t) is an imposed external force, ω and α are constant parameters, u0 is

the initial displacement, and v0 is the initial velocity. The parameters in the above domain and problem

specifications assume the following values in this subsection,

ω = 2, α = 0.5, tf = 100, or 15, or 2.5.

We choose the external force f(t) such that the following function satisfies the equation (41a),

u(t) = t sin(t). (42)

57



t

A
b

s
o

lu
te

 e
rr

o
rs

0 5 10 15
10

­13

10
­11

10
­9

10
­7

10
­5

10
­3

10
­1

20 collocation points

40 collocation points

(a) collocation points/time­block

E
rr

o
rs

0 50 100 150 200
10

­13

10
­11

10
­9

10
­7

10
­5

10
­3

10
­1

maximum error

rms error

(b) t

A
b

s
o

lu
te

 e
rr

o
rs

0 5 10 15
10

­14

10
­12

10
­10

10
­8

10
­6

10
­4

10
­2

10
0

20 training parameters

30 training parameters

(c) training parameters/time­block

E
rr

o
rs

0 20 40 60 80 100 120 140
10

­13

10
­11

10
­9

10
­7

10
­5

10
­3

10
­1

10
1

maximum error

rms error

(d)

Figure 36: Nonlinear spring: (a) Error histories obtained with 20 and 40 collocation points per time block.
(b) The maximum/rms errors in the domain versus the number of collocation points per time block. In (a)
and (b), the number of training parameters per time block is fixed at 100. (c) Error histories obtained with
20 and 30 training parameters per time block. (d) The maximum/rms errors versus the number of training
parameters per time block. In (c) and (d) the number of the collocation points per time block is fixed at 60.

We set the initial displacement and the initial velocity both to zero, i.e. u0 = 0 and v0 = 0. Under these

settings, the initial value problem consisting of equations (41a)–(41b) has the solution given by (42).

We employ the locELM method and the block time marching scheme from Section 2.3.2 to solve this

initial value problem. We partition the domain [0, tf ] into Nb uniform time blocks, and solve this initial value

problem on each time block individually and successively. For the computation within each time block, we

use a single sub-domain in the simulation, as the amount of data involved in is quite small because the

function does not depend on space. We enforce the equations on Q uniform collocation points within each

time block. Accordingly, we employ a single neural network within each time block for this problem. The

neural network consists of an input layer of one node (representing the time t), a single hidden layer with

a width of M nodes and the tanh activation function, and an output layer of one node (representing the

solution u). The output layer is assumed to be linear (no activation function) and contains no bias. As

in previous sections, we incorporate an affine mapping operation right behind the input layer to normalize

the input t data to the interval [−1, 1] for each time block. The weight and bias coefficients in the hidden

layer of the neural network are pre-set to uniform random values generated on the interval [−Rm, Rm]. A

fixed seed value 1234 is used with locELM for the random number generator. We employ the NLSQ-perturb

method from Section 2.3.1 for computing the resultant nonlinear algebraic problem. The initial guess of the

solution is set to zero. In the event the random perturbation is triggered, we employ δ = 1.0 and ξ2 = 1 (see

Algorithm 1 and Remark 2.8) for generating the random perturbations in the tests of this subsection.

The locELM simulation parameters include the number of time blocks Nb, the number of collocation

points per time block Q, the number of training parameters per time block M (i.e. the number of nodes in

the hidden layer of the neural network), and the maximum magnitude of the random coefficients Rm.

Figure 35 shows the time histories of the displacement and its absolute error obtained using locELM in

a fairly long-time simulation. The time history of the exact solution given by (42) has also been shown in

Figure 35(a) for comparison. In this test the domain size is set to tf = 100. We have employed Nb = 40

uniform time blocks within the domain, Q = 60 uniform collocation points per time block, M = 100 training

parameters per time block, and Rm = 5.0 when generating the random weight/bias coefficients for the hidden

layer of the neural network. It is evident that the current locELM method has captured the solution very

58



maximum magnitude of random coefficients

E
rr

o
rs

0 2 4 6 8 10 12
10

­13

10
­11

10
­9

10
­7

10
­5

10
­3

maximum error

rms error

Figure 37: Nonlinear spring: The maximum and rms errors in the overall domain as a function of Rm, the
maximum magnitude of the random coefficients.

accurately, with the maximum level of the absolute error on the order 10−8 over the entire domain.

Figure 36 illustrates the effect of the number of degrees of freedom (collocation points, training param-

eters) on the simulation accuracy. In this group of tests the temporal domain size is set to tf = 15, and

we employ Nb = 6 time blocks within the domain. Figure 36(a) shows the absolute-error histories of the

locELM solution against the exact solution, obtained using 20 and 40 collocation points per time block.

Figure 36(b) shows the maximum and rms errors in the overall domain obtained with different numbers of

collocation points in the locELM simulation. The number of training parameters per time block is fixed at

M = 100 with the tests in these two plots. The errors can be observed to decrease exponentially as the

number of collocation points per time block increases (when below around 60), and then become stagnant as

the number of collocation points increases further. Figure 36(c) shows time histories of the absolute errors

corresponding to 20 and 40 training parameters per time block. Figure 36(d) shows the maximum/rms errors

in the overall domain, obtained with different numbers of training parameters per time block. In the tests of

these two plots, the number of collocation points per time block has been fixed at Q = 60. The convergence

with respect to the training parameters is not as regular as that for the collocation points. Nonetheless, one

can see that the errors approximately decrease exponentially with increasing number of training parameters

(when below 50), and then they essentially stagnate as the number of training parameters increases further.

Figure 37 demonstrates the effect of Rm, the maximum magnitude of the random coefficients, on the

simulation accuracy. In this set of tests, the temporal domain size is tf = 15. We have employed Nb = 6

uniform time blocks in the domain, Q = 60 uniform collocation points in each time block, and M = 100

training parameters per time block. The value of Rm is varied systematically in the tests. In this figure

we plot the maximum and rms errors in the overall domain corresponding to different Rm values. The

characteristics observed here are consistent with those from previous subsections. The locELM method has

a better accuracy with Rm in a range of moderate values, and in this case approximately Rm = 1 ∼ 9. The

results are less accurate if Rm is very large or very small.

Let us next compare the current locELM method with PINN [37] for solving the nonlinear spring equation.

Figure 38 shows a comparison of the time histories of the solutions and their absolute errors obtained using

PINN with the Adam optimizer and using the current locELM method with NLSQ-perturb. In this group

59



t

S
o

lu
ti
o

n
s

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

PINN

locELM

exact solution

(a) t

A
b

s
o

lu
te

 e
rr

o
rs

0 0.5 1 1.5 2 2.5
10

­15

10
­13

10
­11

10
­9

10
­7

10
­5

10
­3

10
­1

PINN

locELM

(b)

Figure 38: Comparison between locELM and PINN (nonlinear spring): Time histories of (a) the solutions
and (b) their absolute errors, computed using PINN [37] with the Adam optimizer and using locELM with
the NLSQ-perturb method. The temporal domain size is tf = 2.5.

method maximum error rms error epochs/iterations training time (seconds)
PINN (Adam) 1.21e− 4 6.71e− 5 20, 000 26.3
locELM (NLSQ-perturb) 2.82e− 11 1.12e− 11 48 0.34

Table 8: Nonlinear spring: Comparison between locELM and PINN in terms of the maximum/rms errors
in the domain, the number of epochs or nonlinear iterations in the training, and the network training time.
The problem settings and the simulation parameters correspond to those of Figure 38.

of tests, the temporal domain size is set to tf = 2.5. In the PINN simulation, the neural network consists

of an input layer of one node (representing t), three hidden layers with a width of 10 nodes and the tanh

activation function in each layer, and an output layer of one node (representing the solution u). The input

data consists of 500 uniform collocation points from the domain [0, tf ]. The neural network has been trained

using the Adam optimizer for 20, 000 epochs, with the learning rate decreasing from 0.01 at the beginning

to 1e − 5 at the end of the training. In the locELM simulation, we employ a single time block (Nb = 1) in

the domain, Q = 60 uniform collocation points within the time block, M = 100 training parameters in the

time block, a single hidden layer in the neural network, and Rm = 5.0 for generating the random weight/bias

coefficients. Figure 38 demonstrates that both PINN and locELM have captured the solution accurately,

but the error of the locELM result is considerably smaller than that of PINN.

Table 8 provides a further comparison between locELM and PINN in terms of their accuracy and compu-

tational cost. The problem settings and the simulation parameters here correspond to those of Figure 38. We

have listed the maximum and rms errors of the PINN and locELM results in the overall domain, the number

of epochs or nonlinear iterations in the training, and the network training time. The data demonstrate that

the current locELM method is much more accurate, by six orders of magnitude, than PINN, and the network

training time of locELM is much smaller, by nearly two orders of magnitude, than that of PINN.

3.4.3 Viscous Burger’s Equation

In this subsection we further test the locELM method using the viscous Burger’s equation. Consider the

spatial-temporal domain Ω = {(x, t) | x ∈ [a, b], t ∈ [0, tf ]}, and the following initial/boundary value problem

60



(a) (b)

Figure 39: Burgers equation: distributions of (a) the solution, and (b) its absolute error in the spatial-
temporal plane, computed using the current locELM (NLSQ-perturb) method.

with the Burger’s equation,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ f(x, t), (43a)

u(a, t) = g1(t), u(b, t) = g2(t), (43b)

u(x, 0) = h(x), (43c)

where u(x, t) is the solution to be solved for, the constant ν denotes the viscosity, f(x, t) is a prescribed

source term, g1(t) and g2(t) denote the boundary distributions, and h(x) is the initial distribution. We

employ the following values for the constant parameters,

ν = 0.01, a = 0, b = 5, tf = 10, or 2.5, or 0.25.

We choose the source term f and the boundary/initial distributions (g1, g2 and h) such that the function

u(x, t) =
(

1 +
x

10

)(
1 +

t

10

)[
2 cos

(
πx+

2π

5

)
+

3

2
cos

(
2πx− 3π

5

)][
2 cos

(
πt+

2π

5

)
+

3

2
cos

(
2πt− 3π

5

)] (44)

satisfies this initial/boundary value problem.

We employ the method from Section 2.3.2 with block time marching to solve this problem, by restricting

the method to one spatial dimension. The spatial-temporal domain Ω is partitioned into Nb uniform time

blocks. Within each time block, we further partition its spatial-temporal domain into Nx uniform sub-

domains in x and Nt uniform sub-domains in time, resulting in Ne = NxNt sub-domains per time block.

C1 continuity is imposed on the sub-domain boundaries in the x direction, and C0 continuity is imposed

on the sub-domain boundaries in time. Within each sub-domain we employ a total of Q = QxQt uniform

collocation points, with Qx uniform collocation points in x and Qt uniform collocation points in time.

We employ a local neural network for each sub-domain, leading to a total of Ne local neural networks in

the simulations. Each local neural network consists of an input layer of two nodes, representing the x and

t, a single hidden layer with a width of M nodes and the tanh activation function, and an output layer of

61



x

S
o

lu
ti
o

n
s

0 1 2 3 4 5
­30

­20

­10

0

10

20

30 locELM

exact solution

(a) x

E
rr

o
r

0 1 2 3 4 5
10

­11

10
­10

10
­9

10
­8

10
­7

10
­6

(b) t

S
o

lu
ti
o

n
s

0 2 4 6 8 10
­30

­20

­10

0

10

20

30
locELM

exact solution

(c) t

E
rr

o
r

0 2 4 6 8 10
10

­11

10
­10

10
­9

10
­8

10
­7

(d)

Figure 40: Burger’s equation: Profiles of the locELM (NLSQ-perturb) solution (a) and its absolute error
(b) at t = 8.75. Time histories of the locELM (NLSQ-perturb) solution (c) and its absolute error (d) at the
point x = 2.75. The settings and simulation parameters correspond to those of Figure 39.

a single node, representing the field solution u. The output layer has no bias and no activation function.

Additionally, an affine mapping operation is incorporated into the network right behind the input layer

to normalize the input x and t data to the interval [−1, 1] × [−1, 1] for each sub-domain. The weight/bias

coefficients in the hidden layer of the local neural networks are pre-set to uniform random values generated on

the interval [−Rm, Rm], and are fixed during the simulation. A fixed seed value 22 is used for the Tensorflow

random number generator for all the tests with locELM in this sub-section.

We employ the NLSQ-perturb method from Section 2.3.1 for computing the resultant nonlinear algebraic

problem in the majority of tests presented below. The results computed using Newton-LLSQ are also

provided for comparison in some cases. The initial guess of the solution is set to zero. With the NLSQ-

perturb method, we employ δ = 0.5 and ξ2 = 0 (see Algorithm 1 and Remark 2.8) for generating the random

perturbations in the following tests.

The locELM simulation parameters include the number of time blocks (Nb), the number of sub-domains

per time block (Ne, Nx, Nt), the number of collocation points per sub-domain (Q, Qx, Qt), the number of

training parameters per sub-domain (M), and the maximum magnitude of the random coefficients (Rm).

Figure 39 shows distributions of the solution and its absolute error in the spatial-temporal plane, com-

puted using the current locELM method (with NLSQ-perturb). Here the temporal domain size is set to be

tf = 10, and 40 uniform time blocks (Nb = 40) are used in the spatial-temporal domain. We have employed

Ne = 5 uniform sub-domains with Nx = 5 and Nt = 1 within each time block, Q = 20× 20 uniform colloca-

tion points per sub-domain (Qx = Qt = 20), M = 200 training parameters per sub-domain, and Rm = 0.75

when generating the random coefficients. The current method has captured the solution accurately, with

the absolute error on the order 10−8 ∼ 10−7 in the overall domain.

Figure 40 further examines the accuracy of the locELM solution. The problem settings and the simulation

parameters here correspond to those of Figure 39. Figures 40(a) and (b) depict the profiles of the locELM

(NLSQ-perturb) solution and its absolute error at the time t = 8.75. The exact solution profile at this time

instant is also shown in Figure 40(a). The locELM solution profile exactly overlaps with that of the exact

solution, and the absolute error is around the level 10−10 ∼ 10−7. Figures 40(c) and (d) show the time

histories of the locELM (NLSQ-perturb) solution and its absolute error at the point x = 2.75. The time

history of the exact solution at this point is also shown in Figure 40(c). The simulated signal overlaps with

that of the exact signal, and the absolute error can be observed to fluctuate around the level 10−10 ∼ 10−8.

62



collocation points per direction per sub­domain

E
rr

o
rs

5 10 15 20 25 30
10

­10

10
­8

10
­6

10
­4

10
­2

10
0

10
2

maximum error

rms error

(a) training parameters/sub­domain

E
rr

o
rs

100 150 200 250
10

­9

10
­8

10
­7

10
­6

10
­5

10
­4

10
­3

maximum error

rms error

(b)

Figure 41: Effect of the degrees of freedom on the accuracy (Burger’s equation): the maximum and rms
errors in the domain as a function of (a) the number of collocation points in each direction per sub-domain,
and (b) the number of training parameters per sub-domain.

sub­domains/block

E
rr

o
rs

1 2 3 4 5
10

­10

10
­9

10
­8

10
­7

10
­6

10
­5

maximum error

rms error

(a) sub­domains/block

T
ra

in
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

1 2 3 4 5
0

20

40

60

80

100

120

(b)

Figure 42: Effect of the number of sub-domains, with fixed total degrees of freedom in the domain (Burger’s
equation): (a) the maximum and rms errors in the domain, and (b) the training time, as a function of the
number of uniform sub-domains per time block. Temporal domain size is tf = 0.25, and a single time block
is used in the spatial-temporal domain.

Figure 41 demonstrates the effect of the degrees of freedom on the simulation accuracy. In this group of

tests the temporal domain size is set to tf = 2.5. We have employed Nb = 10 uniform time blocks in the

overall spatial-temporal domain, Ne = 5 uniform sub-domains per time block (with Nx = 5 and Nt = 1), and

Rm = 0.5 when generating random coefficients for the hidden layers of the local neural networks. First, we fix

the number of training parameters per sub-domain to M = 200, and vary the number of (uniform) collocation

points per sub-domain systematically while maintaining Qx = Qt. Figure 41(a) shows the maximum and

rms errors in the overall domain versus the number of collocation points in each direction per sub-domain.

It is observed that the errors decrease essentially exponentially with increasing number of collocation points

per direction (when below around Qx = Qt = 15). Then the errors stagnate as the number of collocation

points per direction increases beyond 15, due to the saturation associated with the fixed number of training

parameters in the test. Then, we fix the number of uniform collocation points to Q = 20×20 per sub-domain,

and vary the number of training parameters per sub-domain systematically in a range of values. Figure 41(b)

shows the resultant maximum/rms errors in the overall domain versus the number of training parameters

per sub-domain. As the number of training parameters per sub-domain increases, the locELM errors can be

observed to decrease substantially.

63



method maximum error rms error epochs/iterations training time (seconds)
DGM (Adam) 4.57e− 2 5.76e− 3 128, 000 1797.8
DGM (L-BFGS) 7.50e− 3 1.55e− 3 28, 000 1813.5
locELM (NLSQ-perturb) 1.85e− 8 4.44e− 9 27 27.6
locELM (Newton-LLSQ) 1.62e− 5 3.11e− 6 15 9.1

Table 9: Burger’s equation: comparison between locELM and DGM in terms of the maximum/rms errors
in the domain, the number of epochs or nonlinear iterations, and the network training time. The problem
settings and simulation parameters correspond to those of Figure 43.

Figure 42 demonstrates the effect of the number of sub-domains, with the total number of degrees

of freedom in the domain (approximately) fixed. In this group of tests, the temporal domain size is set

to tf = 0.25, and we employ a single time block in the spatial-temporal domain. We employ uniform

sub-domains, and vary the number of sub-domains within the time block systematically between Ne = 1

and Ne = 5 (with fixed Nt = 1 and various Nx). The number of (uniform) collocation points per sub-

domain and the number of training parameters per sub-domain are both varied, but the total number of

collocation points and the total number of training parameters in the time block are fixed approximately at

NeQ ≈ 2000 and NeM ≈ 1000, respectively. More specifically, we employ Q = 45×45 collocation points/sub-

domain and M = 1000 training parameters/sub-domain with Ne = 1 sub-domain within the time block,

Q = 32×32 collocation points/sub-domain and M = 500 training parameters/sub-domain with Ne = 2 sub-

domains, Q = 26 × 26 collocation points/sub-domain and M = 333 training parameters/sub-domain with

Ne = 3 sub-domains, Q = 22 × 22 collocation points/sub-domain and M = 250 training parameters/sub-

domain with Ne = 4 sub-domains, and Q = 20 × 20 collocation points/sub-domain and M = 200 training

parameters/sub-domain with Ne = 5 sub-domains within the time block. When generating the random

weight/bias coefficients, we have employed Rm = 2.0 with Ne = 1 sub-domain in the time block, Rm = 1.0

with Ne = 2 and 3 sub-domains, and Rm = 0.75 with Ne = 4 and 5 sub-domains within the time block.

These values are approximately in the optimal range of Rm values for these cases. Figure 42(a) shows the

maximum and rms errors of the locELM (NLSQ-perturb) solution in the domain as a function of the number

of sub-domains within the time block. We observe that the errors decrease quite significantly, by nearly two

orders of magnitude, as the number of sub-domains increases from Ne = 1 to Ne = 3. The errors remain

approximately at the same level with three and more sub-domains. Note that the case with one sub-domain

corresponds to the global ELM computation. These results indicate that the local ELM simulation with

multiple sub-domains appears to achieve a better accuracy than the global ELM simulation for this problem.

Figure 42(b) shows the training time of the neural network as a function of the number of sub-domains.

The training time has been reduced substantially as the number of sub-domains increases from one to three

sub-domains (from around 110 seconds to about 40 seconds), and it remains approximately the same with

three and more sub-domains. These results show that, compared with the global ELM, the use of domain

decomposition and multiple sub-domains in locELM can significantly reduce the computational cost for the

Burger’s equation. This is consistent with the observations with the other problems in previous sections.

We next compare the current locELM method with the deep Galerkin method (DGM) for the Burger’s

equation. Figure 43 is a comparison of distributions of the solutions (left column) and their absolute errors

64



x

t

0 1 2 3 4 5
0

0.1

0.2

­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

(a) x

t

0 1 2 3 4 5
0

0.1

0.2

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

(b)

x

t

0 1 2 3 4 5
0

0.1

0.2

­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

(c) x

t

0 1 2 3 4 5
0

0.1

0.2

0.001 0.002 0.003 0.004 0.005 0.006 0.007

(d)

x

t

0 1 2 3 4 5
0

0.1

0.2

­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

(e) x

t

0 1 2 3 4 5
0

0.1

0.2

2E­09 4E­09 6E­09 8E­09 1E­08 1.2E­08 1.4E­08 1.6E­08

(f)

x

t

0 1 2 3 4 5
0

0.1

0.2

­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

(g) x

t

0 1 2 3 4 5
0

0.1

0.2

2E­06 4E­06 6E­06 8E­06 1E­05 1.2E­05 1.4E­05

(h)

Figure 43: Comparison between locELM and DGM (Burger’s equation): distributions of the solutions (left
column) and their absolute errors (right column) computed using DGM with the Adam optimizer (a,b) and
L-BFGS optimizer (c,d), and using locELM with NLSQ-perturb (e,f) and with Newton-LLSQ (g,h).

x

S
o

lu
ti
o

n
s

0 1 2 3 4 5

­3

­2

­1

0

1

2

3

4
DGM (Adam)

DGM (L­BFGS)

locELM (NLSQ­perturb)

locELM (Newton­LLSQ)

exact solution

(a) x

E
rr

o
rs

0 1 2 3 4 5
10

­11

10
­9

10
­7

10
­5

10
­3

10
­1

DGM (Adam)

DGM (L­BFGS)

locELM (NLSQ­perturb)

locELM (Newton­LLSQ)

(b)

Figure 44: Burger’s equation: Profiles of (a) the solutions and (b) their absolute errors at t = 0.2 computed
using DGM and locELM. The settings and simulation parameters correspond to those of Figure 43.

(right column) in the spatial-temporal plane, obtained using DGM with the Adam and L-BFGS optimizers

(top two rows) and using the current locELM method with NLSQ-perturb and Newton-LLSQ (bottom two

rows). In these tests the temporal domain size is set to tf = 0.25. For DGM, the neural network consists of

an input layer of two nodes (representing x and t), 5 hidden layers with a width of 40 nodes in each layer

and the tanh activation function, and an output layer of a single node (representing u) with no bias and no

activation function. When computing the loss function, the spatial-temporal domain has been divided into

10 uniform sub-domains along the x direction, and we have used 10×10 Gauss-Lobatto-Legendre quadrature

points in each sub-domain for computing the residual norms. With the Adam optimizer, the neural network

has been trained for 128, 000 epochs, with the learning rate gradually decreasing from 0.001 at the beginning

to 10−5 at the end of the training. With the L-BFGS optimizer, the neural network has been trained for

28, 000 iterations. For the current locELM method, we have employed a single time block in the spatial-

temporal domain and Ne = 5 uniform sub-domains along the x direction within this time block. With

65



x

S
o

lu
ti
o

n
s

0 1 2 3 4 5

­3

­2

­1

0

1

2

3

4

locELM (NLSQ­perturb)

FEM

exact solution

(a) x

E
rr

o
rs

0 1 2 3 4 5
10

­12

10
­11

10
­10

10
­9

10
­8

10
­7

10
­6

10
­5 locELM (NLSQ­perturb)

FEM

(b) ∆t

E
rr

o
rs

10
­5

10
­4

10
­3

10
­2

10
­110

­8

10
­6

10
­4

10
­2

10
0

10
2

maximum error

rms error

reference

(c)

Figure 45: Comparison between locELM and FEM (Burger’s equation): Profiles of (a) the solutions and
(b) their absolute errors at t = 0.2, computed using locELM (with NLSQ-perturb) and using FEM. (c)
The maximum and rms errors at t = 0.25 versus ∆t computed using FEM (with a mesh of 10, 000 uniform
elements), showing its second-order convergence rate in time.

NLSQ-perturb, we have employed Q = 20×20 uniform collocation points per sub-domain, M = 200 training

parameters per sub-domain, and Rm = 0.75 when generating the random coefficients. With Newton-LLSQ,

we have employed Q = 20×20 uniform collocation points per sub-domain, M = 150 training parameters per

sub-domain, and Rm = 1.0 when generating the random coefficients. The results in Figure 43 indicate that

the current locELM method is considerably more accurate than DGM for the Burger’s equation. The errors

of the current method is generally several orders of magnitude smaller than those of DGM. The locELM

method with NLSQ-perturb provides the best accuracy, with the errors on the order 10−9 ∼ 10−8. Then it

is the locELM method with Newton-LLSQ, with the errors on the level 10−6 ∼ 10−5. In contrast, the errors

of the DGM with Adam and L-BFGS are generally on the levels 10−3 ∼ 10−2 and 10−3, respectively.

Figure 44 compares the profiles of the DGM and locELM solutions (plot (a)) and their errors (plot (b))

at the time instant t = 0.2. The profile of the exact solution at this instant is also included in Figure 44(a)

for comparison. The problem settings and the simulation parameters here correspond to those of Figure

43. The solution profiles from DGM and locELM simulations are in good agreement with that of the exact

solution. The error profiles, on the other hand, reveal disparate accuracies in the results obtained using

these methods. They confirm the ordering of these methods, from the most to the least accurate, to be

locELM/NLSQ-perturb, locELM/Newton-LLSQ, DGM/L-BFGS, and DGM/Adam.

Table 9 provides a further comparison between locELM and DGM for the Burger’s equation, in terms of

their accuracy and computational cost. We have listed the maximum and rms errors in the overall spatial-

temporal domain, the number of epochs or nonlinear iterations in the training, and the training time of the

neural network corresponding to DGM with the Adam/L-BFGS optimizers and the current locELM method

with NLSQ-perturb and Newton-LLSQ. The observations here are consistent with those of previous sections.

The locELM method is orders of magnitude more accurate than DGM (e.g. 10−8 with locELM/NLSQ-perturb

versus 10−3 with DGM/L-BFGS), and its training time is orders of magnitude smaller than that of DGM

(e.g. around 28 seconds with locELM/NLSQ-perturb versus around 1800 seconds with DGM/L-BFGS).

Finally, we compare the current locELM method with the classical finite element method for solving

the Burger’s equation. In the FEM simulation, we discretize the Burger’s equation (43a) in time using a

66



method elements ∆t sub- Q M maximum rms wall-time
domains error error (seconds)

locELM – – 5 15× 15 150 2.10e− 6 4.35e− 7 14.7
(NLSQ-perturb) – – 5 20× 20 200 1.85e− 8 4.44e− 9 27.6
locELM – – 5 15× 15 150 1.25e− 5 2.71e− 6 6.8
(Newton-LLSQ) – – 5 20× 20 150 1.62e− 5 3.11e− 6 9.1
FEM 2000 0.001 – – – 2.64e− 5 5.15e− 6 12.5

2000 0.0005 – – – 3.07e− 5 5.76e− 6 25.4
5000 0.001 – – – 1.89e− 5 1.74e− 6 26.0
5000 0.0005 – – – 4.13e− 6 7.90e− 7 50.8
10000 0.001 – – – 2.22e− 5 1.99e− 6 47.7
10000 0.0005 – – – 4.74e− 6 4.36e− 7 92.6

Table 10: Burger’s equation: comparison between locELM and FEM in terms of the maximum/rms errors
in the domain and the training/computation time. Q and M denote the number of collocation points per
sub-domain and the number of training parameters per sub-domain, respectively.

semi-implicit scheme. We treat the nonlinear term explicitly and the viscous term implicitly, and discretize

the time derivative by the second-order backward differentiation formula (BDF2). The method is again

implemented using the FEniCS library in Python. Figures 45(a) and (b) show a comparison of the solution

and error profiles at t = 0.2 obtained using the current locELM (NLSQ-perturb) method and using the finite

element method. Figure 45(c) shows the numerical errors at t = 0.25 as a function of the time step size

∆t computed using the finite element method. In these simulations the temporal domain size is tf = 0.25.

In Figures 45(a,b), the FEM simulation is conducted with ∆t = 1.25e − 4 on a mesh of 10, 000 uniform

elements, and the locELM simulation is conducted with a single time block in the domain and Ne = 5 sub-

domains in the time block, with (Q,M) = (20 × 20, 200) and Rm = 0.75. In Figure 45(c), the simulations

are performed with a fixed mesh of 10, 000 uniform elements. It can be observed that both locELM and

FEM have produced accurate solutions, and that the FEM exhibits a second-order convergence rate in time

before the error saturation when ∆t becomes very small.

Table 10 provides a comparison between locELM and FEM in terms of their accuracy and computational

cost for the Burger’s equation. The temporal domain size is tf = 0.25 in these tests. We solve the problem

using locELM and FEM on several sets of simulation parameters with different numerical resolutions. The

maximum and rms errors in the spatial-temporal domain are computed, and we also record the training

time of locELM and the computation time of FEM in these simulations. We list in this table the maximum

and rms errors, as well as the training/computation time, corresponding to different simulation parameters

for the locELM method with NLSQ-perturb and Newton-LLSQ and for the finite element method. A single

time block has been used in the spatial-temporal domain for the locELM simulations, and we employ Rm =

0.75 with locELM/NLSQ-perturb and Rm = 1.0 with locELM/Newton-LLSQ for generating the random

coefficients. It is observed that the current locELM method with both NLSQ-perturb and Newton-LLSQ

shows a superior performance to the FEM. For example, the two cases with locELM/Newton-LLSQ have

numerical errors comparable to the FEM cases with 2000 elements (for both ∆t), 5000 elements (∆t = 0.001)

and 10000 elements (∆t = 0.001), but the computational cost of locELM/Newton-LLSQ is notably smaller

than the cost of these FEM cases. The locELM/NLSQ-perturb case with (Q,M) = (15 × 15, 150) has

67



numerical errors comparable to the FEM cases with 5000 elements (∆t = 0.0005) and 10000 elements

(∆t = 0.0005), but the computational cost of this locELM/NLSQ-perturb case is only a fraction of those of

these two FEM cases. The locELM/NLSQ-perturb case with (Q,M) = (20 × 20, 200) has a computational

cost comparable to the FEM cases with 2000 elements (∆t = 0.0005) and 5000 elements (∆t = 0.001), but

the errors of this locELM/NLSQ-perturb case are nearly three orders of magnitude smaller than those of

these two FEM cases.

4 Concluding Remarks

In this paper we have developed an efficient method based on domain decomposition and local extreme

learning machines (termed locELM) for solving linear/nonlinear partial differential equations. The problem

domain is partitioned into sub-domains, and the field solution on each sub-domain is represented by a local

shallow feed-forward neural network, consisting of a small number (one or more) of hidden layers. Ck

continuity conditions, with k related to the PDE order, are imposed on the sub-domain boundaries. The

hidden-layer coefficients of all the local neural networks are pre-set to random values, and are fixed in the

computation. The training parameters consist of the output-layer coefficients of the local neural networks.

We employ a set of collocation points within each sub-domain, which constitute the input data to the

neural network. The PDE, the boundary/initial conditions, and the Ck continuity conditions are enforced

on the collocation points in the sub-domains, on the overall domain boundaries, and on the sub-domain

boundaries, respectively. These operations result in a system of linear or nonlinear algebraic equations

about the training parameters. We seek a least squares solution to this system, and compute the solution by

a linear or nonlinear least squares method. Training the overall network consists of the linear or nonlinear

least squares computations. This is different from the back propagation-type algorithms.

For longer-time simulations of time-dependent PDEs, we have developed a block time-marching scheme

together with the locELM method. The spatial-temporal domain is first divided into a number of windows

in time, referred to as time blocks, and we solve the PDE on each time block separately and successively.

We observe that when the temporal dimension of the domain is large, if without block time marching, the

neural network can become very difficult to train. On the other hand, with block time marching and using

a moderate time block size, the problem is more manageable and much easier to solve. Block time marching

requires re-training of the overall neural network on different time blocks, and so all network trainings are

online operations. This is feasible with locELM thanks to its high accuracy and low computational cost.

We have performed extensive numerical experiments to test the locELM method, and compared it with

DGM, PINN, global ELM, and the finite element method (FEM). We have the following observations:

• The locELM method exhibits a clear sense of convergence with increasing number of degrees of freedom.

Its errors typically decrease exponentially or nearly exponentially as the number of sub-domains, or the

number of collocation points/sub-domain, or the number of training parameters/sub-domain increases.

• The random hidden-layer coefficients of the local neural networks influence the simulation accuracy. In

this work these coefficients are set to uniform random values generated on [−Rm, Rm]. The simulation

68



accuracy tends to decrease with very large or very small Rm. Higher accuracy is generally associated

with a range of moderate Rm values. This range of optimal Rm values tends to expand when the

number of collocation points/sub-domain or training parameters/sub-domain increases.

• The locELM training time generally increases linearly (or super-linearly for some problems) with

respect to the number of sub-domains. It also tends to increase with respect to the number of collocation

points and to the number of training parameters, but the relation is not quite regular.

• When the total degrees of freedom (total collocation points, total training parameters) in the system

are fixed, increasing the number of sub-domains, hence with the number of collocation points/training

parameters per sub-domain accordingly reduced, generally leads to simulation results with comparable

accuracy, but it can dramatically reduce the network training time. Compared with global ELM, which

corresponds to the locELM with a single sub-domain, the use of multiple sub-domains in locELM can

significantly reduce the network training time, and produce results with comparable accuracy.

• The current locELM method shows a clear superiority to DGM and PINN, which are some of the

commonly-used DNN-based PDE solvers, in terms of both accuracy and computational cost. The

numerical errors and the network training time of locELM are considerably smaller, typically by orders

of magnitude, than those of DGM and PINN.

• The locELM method exhibits a computational performance that is comparable, and oftentimes su-

perior, to the classical FEM. With the same computational cost, the locELM errors are comparable

to, and oftentimes much smaller than, the FEM errors. To achieve the same accuracy, the locELM

training time is comparable to, and oftentimes markedly smaller than, the FEM computation time.

We would like to make some further comments with regard to Rm, the maximum magnitude of the

random hidden-layer coefficients of the local neural networks. As discussed above, the simulation results

have a better accuracy if Rm falls into a range of moderate values for a given problem. Let us consider the

following question: given a new problem (e.g. a new PDE), how do we know what this range is and how do we

find this range of optimal Rm values in practice? The approximate range of these optimal Rm values can be

estimated readily by preliminary numerical experiments. Here is the basic idea. Given a new problem, one

can always add some source terms to the PDE or to the boundary/initial conditions, and then manufacture

a solution to the given problem, with the augmented source terms. Then one can use the manufactured

solution to evaluate the accuracy of a set of preliminary simulations by varying the Rm systematically. This

will provide a reasonable estimate for the range of optimal Rm values. After that, one can conduct actual

simulations of the given problem, without the added source term, by using an Rm value from the estimated

range. It is observed that the optimal range for Rm is not sensitive to the manufactured solution used for

its estimate when a reasonably good resolution is employed. If a very complicated manufactured solution is

being used, one will want to employ a large enough resolution when estimating Rm.

Some further comments are also in order concerning the numerical tests with fixed total degrees of

freedom in the domain, while the number of sub-domains is varied. Because the total degrees of freedom

69



in the domain is fixed, the degrees of freedom per sub-domain decrease as the number of sub-domains

increases. One can anticipate that, when the number of sub-domains becomes sufficiently large, the number

of degrees of freedom per sub-domain can become very small. This will be bound to adversely affect the

simulation accuracy, because the solution is represented locally by these degrees of freedom on each sub-

domain. Therefore, if the total degrees of freedom in the domain are fixed, when the number of sub-domains

increases beyond a certain point, the simulation accuracy will start to deteriorate. The aforementioned

observation about comparable accuracy with increasing number of sub-domains, with fixed total degrees of

freedom in the domain, is for the cases where the number of sub-domains is below that point.

As demonstrated by ample examples in this paper, the computational performance of the current locELM

method is on par with, and oftentimes exceeds, that of the classical finite element method. The importance of

this point cannot be overstated. To the best of the authors’ knowledge, this seems to be the first time when a

neural network-based method delivers the same performance as, or a better performance than, a traditional

numerical method for the commonly-encountered computational problems in low dimensions. The current

method demonstrates the great potential, and perhaps points toward a path forward, for neural network-

based methods to be truly competitive, and excel, in computational science and engineering simulations.

Some characteristics exhibited by the current locELM method, e.g. the exponential convergence with

respect to the number of collocation points and training parameters, are reminiscent of those of the traditional

high-order numerical methods. Compared with the finite element method employing higher-order elements

(see the Appendix B), the current locELM method is also competitive to a certain degree. But overall the

locELM seems not as efficient as the higher-order finite elements at this point. How to further improve this

method is an interesting problem, and will be explored in a future endeavor.

Acknowledgement

This work was partially supported by NSF (DMS-2012415, DMS-1522537).

5 Appendices

5.1 Appendix A. The Newton-Linear Least Squares (Newton-LLSQ) Method

In this Appendix we elaborate on the Newton-LLSQ method from Section 2.3.1 for solving the nonlinear

system consisting of (22a)–(22b) in some detail. This method combines the Newton iteration on the top

level with a linear least squares approach for computing the increment field within each Newton step.

Let u(k)(x, y) denote the approximation of the solution u at the Newton step k, and v(x, y) denote the

increment field to be computed at this step. Then

u(k+1) = u(k) + v. (45)

The increment v is described by the linearized version of the equation (22a),

Lv + J
(
u(k), u(k)x , u(k)y

)
v = f(x, y)−

[
Lu(k) + F

(
u(k), u(k)x , u(k)y

)]
, (46)

70



where u
(k)
x and u

(k)
y denote the partial derivatives of u(k), and J

(
u(k), u

(k)
x , u

(k)
y

)
is the Jacobian (operator)

of the nonlinear term F (u, ux, uy). We impose the boundary condition (22b) on u(k+1), which gives rise to

following boundary condition for the increment v in light of (45),

v = g(x, y)− u(k)(x, y), on ∂Ω. (47)

The equations (46) and (47) are linear equations about the increment field v(x, y). Given the approxi-

mation u(k) at Newton step k, these equations can be solved using the locELM method for linear differential

equations as discussed in Section 2.2.1, which employs a linear least squares approach. Then the approxi-

mation to the solution u at Newton step (k + 1) is given by equation (45).

Note that in Section 2.3.1 we assume that L is a second-order linear differential operator with respect to

both x and y. When solving the equations (46)–(47) with locELM, we therefore impose the C1 continuity

conditions for u(k+1) on the sub-domain boundaries. These will give rise to the continuity conditions about

the increment field v on the sub-domain boundaries. Let the vectors [X0, X1, . . . , XNx
] and [Y0, Y1, . . . , YNy

]

again denote the coordinates of the sub-domain boundaries in the x and y directions, and emn denote the

sub-domain that occupies the region [Xm, Xm+1]× [Yn, Yn+1] for 0 6 m 6 Nx−1 and 0 6 n 6 Ny−1, where

Nx and Ny denote the number of sub-domains along the x and y directions. Then the continuity conditions

for the increment field v(x, y) on the sub-domain boundaries are given by,

vemn(Xm+1, y)− vem+1,n(Xm+1, y) = −u(k),emn(Xm+1, y) + u(k),em+1,n(Xm+1, y), (48a)

∂vemn

∂x

∣∣∣∣
(Xm+1,y)

− ∂vem+1,n

∂x

∣∣∣∣
(Xm+1,y)

= − ∂u(k),emn

∂x

∣∣∣∣
(Xm+1,y)

+
∂u(k),em+1,n

∂x

∣∣∣∣
(Xm+1,y)

, (48b)

for 0 6 m 6 Nx − 2, 0 6 n 6 Ny − 1,

and

vemn(x, Yn+1)− vemn+1(x, Yn+1) = −u(k),emn(x, Yn+1) + u(k),emn+1(x, Yn+1), (49a)

∂vemn

∂y

∣∣∣∣
(x,Yn+1)

− ∂vemn+1

∂y

∣∣∣∣
(x,Yn+1)

= − ∂u(k),emn

∂y

∣∣∣∣
(x,Yn+1)

+
∂u(k),emn+1

∂y

∣∣∣∣
(x,Yn+1)

, (49b)

for 0 6 m 6 Nx − 1, 0 6 n 6 Ny − 2,

where vemn and u(k),emn denote the fields v and u(k) on the sub-domain emn, respectively.

Remark 5.1. In the Newton-LLSQ method, both the increment field v(x, y) and the converged solution

u(x, y) from the Newton iterations can be represented in terms of the output-layer coefficients (training

parameters) of the local neural networks. The increment v can be so represented, because it is computed in

this way by the linear least squares method. Here is the basic idea on how to represent the approximation

u(k+1) and the converged solution u(x, y) in terms of the output-layer coefficients of the local neural networks.

We start with a zero initial guess, u(0) = 0, for the Newton iteration. Accordingly, we initialize a vector

(or matrix) with the same shape as the vector (or matrix) of output-layer coefficients of the local neural

networks, which will be referred to as the accumulation vector, to all zeros. At Newton step k (k > 0),

after the increment field v is computed by the linear least squares method, we update the the accumulation

71



Figure 46: Poisson equation: distribution of the exact solution.

vector by adding in the output-layer coefficients corresponding to the increment v. At this point, the updated

accumulation vector contains the weight coefficients that correspond to the approximation u(k+1). Upon

convergence of the Newton iteration, the accumulation vector contains the weight coefficients that correspond

to the converged solution. We can then update the output-layer coefficients of the local neural networks by the

content of the accumulation vector, and the local neural networks now fully represent the converged solution

to the boundary value problem with the the nonlinear differential equation.

Remark 5.2. The formulation presented above for the Newton-LLSQ method also applies to the time-

dependent nonlinear differential equations (25a)–(25c). Note that the time-derivative operator is linear and

can be incorporated into the operator L in the above formulation. By imposing the initial condition (25c)

on u(k+1)(x, y, t = 0), one can attain a corresponding initial condition for the increment field v(x, y, t = 0)

using equation (45). Additionally, one will need to impose the C0 continuity condition for u(k+1)(x, y, t)

on the sub-domain boundaries along the temporal direction. This will give rise to an associated continuity

condition for the increment field v(x, y, t) on the sub-domain boundaries along the temporal direction, which

is analogous to the equations (48a) and (49a). The linear system consisting of the linearized differential

equation about the increment v, the corresponding boundary and initial conditions for v, and the associated

continuity conditions for v on the sub-domain boundaries along the spatial and temporal directions, can be

solved using the locELM method (the basic method) as discussed in Section 2.2.2 with the linear least squares

approach.

5.2 Appendix B. Numerical Tests with the Poisson Equation

In this Appendix we consider the classical Poisson equation in two dimensions (2D) and provide further

comparisons between the locELM method and the FEM. Here we compare locELM not only with the

classical second-order finite elements (linear elements), but also with higher-order Lagrange elements, which

are available from the FEniCS library.

We consider the 2D domain Ω = {(x, y) | x ∈ [0, 1], y ∈ [0, 1]}, and the Poisson equation on this domain

72



(a)
Collocation points per direction per sub­domain

E
rr

o
rs

5 10 15 20 25
10

­10

10
­8

10
­6

10
­4

10
­2

10
0

maximum error

rms error

(b) Training parameters per sub­domain

E
rr

o
rs

0 100 200 300 400 500 600
10

­12

10
­10

10
­8

10
­6

10
­4

10
­2

10
0

10
2

maximum error

rms error

(c)

Figure 47: Poisson equation (locELM 4 sub-domains): (a) Distribution of the absolute error of locELM
solution. The maximum/rms errors of the locELM solution versus (b) the number of collocation points in
each direction per sub-domain, and (c) the number of training parameters per sub-domain.

with Dirichlet boundary conditions,

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), (50a)

u(0, y) = g1(y), u(1, y) = g2(y), u(x, 0) = h1(x), u(x, 1) = h2(x), (50b)

where u(x, y) is the field to be solved for, f(x, y) is a prescribed source term, g1, g2, h1 and h2 denote the

boundary distributions. We consider the following manufactured solution to the system (50),

u(x, y) = −
[

3

2
cos

(
πx+

2π

5

)
+ 2 cos

(
2πx− π

5

)] [3

2
cos

(
πy +

2π

5

)
+ 2 cos

(
2πy − π

5

)]
. (51)

The source term f and the boundary distributions (g1, g2, h1 and h2) are chosen accordingly such that the

expression (51) satisfies (50). Figure 46 shows the distribution of this solution in the x-y plane.

We employ the locELM method from Section 2.2.1 to solve this problem. Each local neural network

consists of an input layer of two nodes, representing x and y, a hidden layer with M nodes (M to be

specified below) and the tanh activation function, and a linear output layer with one node, representing the

field solution u. The output layer has zero bias. Additionally, an affine mapping is incorporated into the

network right behind the input layer to normalize the input x and y data to the interval [−1, 1]× [−1, 1] for

each sub-domain. The hidden-layer coefficients in the local neural networks are pre-set to uniform random

values generated on [−Rm, Rm]. A fixed seed value 1 is used for the Tensorflow random number generator

for all the tests in this Appendix. C1 continuity conditions are imposed on the sub-domain boundaries in

both x and y directions.

The notations below are the same as those in the main text. (Nx, Ny, Ne) denote the number of uniform

sub-domains in the x direction, in the y direction, and the total number of sub-domains, respectively, with

Ne = NxNy. (Qx, Qy, Q) denote the number of uniform collocation points in the x direction, in the y

direction, and the total number of collocation points per sub-domain, respectively, with Q = QxQy. M

denotes the number of training parameters per sub-domain. Rm denotes the maximum magnitude of the

random hidden-layer coefficients.

Figure 47 provides an overview of the solution error and convergence characteristics of the locELM

method for the Poisson equation. Here we have employed Ne = 2×2 uniform sub-domains, and Q = Q1×Q1

73



(a)
Collocation points per direction per sub­domain

E
rr

o
rs

5 10 15 20 25
10

­10

10
­8

10
­6

10
­4

10
­2

10
0

maximum error

rms error

(b)
Collocation points per direction per sub­domain

T
ra

in
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

5 10 15 20 25
0

2

4

6

8

10

12

(c)

Figure 48: Poisson equation (locELM 2 sub-domains): (a) Distribution of the absolute error of locELM
solution. (b) The maximum/rms errors of the locELM solution, and (c) the training time, versus the
number of collocation points in each direction per sub-domain.

(Qx = Qy = Q1) uniform collocation points in each sub-domain, where Q1 is either fixed at Q1 = 20 or

varied between Q1 = 5 and Q1 = 25. The number of training parameters per sub-domain is either fixed at

M = 300 or varied systematically between M = 25 and M = 600. The random coefficients are generated

with Rm = 1, which approximately lies in the range of optimal values for Rm for this problem. Figure

47(a) shows the error distribution of the locELM solution obtained with Q = 20 × 20 collocation points

and M = 300 training parameters per sub-domain. Figures 47(b) and (c) show the maximum and rms

errors in the overall domain of the locELM solution as a function of the number of collocation points in

each direction (Q1) and the number of training parameters per sub-domain, respectively. In plot (b) M is

fixed at M = 300 and Q1 is varied. In plot (c) Q1 is fixed at Q1 = 20 and M is varied. It is evident that

the locELM method has produced highly accurate results with the Poisson equation. The exponential or

nearly exponential convergence behavior (before saturation), as evidenced by Figures 47(b,c), of the locELM

method is consistent with what has been observed with the other test problems studied in this paper.

Figure 48 illustrates the locELM solution obtained on Ne = 2 × 1 uniform sub-domains with M = 350

training parameters per sub-domain. The random coefficients are again generated with Rm = 1. Figure

48(a) shows the error distribution of the locELM solution computed with Q = 20 × 20 uniform collocation

points per sub-domain. Figure 48(b) shows the maximum and rms errors of the loELM solution in the overall

domain as a function of the number of uniform collocation points in each direction Q1 (with Qx = Qy = Q1)

per sub-domain. Figure 48(c) shows the corresponding network training time as a function of Q1. We can

observe the exponential decrease of the errors (before saturation), and the near-linear growth of the training

time, with increasing number of collocation points.

We next compare these locELM simulation results with those of the classical finite element method (2nd-

order, linear elements) with the Figures 49 and 50 and the Table 11. The setting for the FEM simulations

is as follows. We employ a N1×N2 uniform rectangular mesh in the FEM simulation, where N1 and N2 are

specified below. As stipulated by the FEniCS library, each rectangle in the mesh is further divided along

its diagonal into two triangular linear elements. So an N1 ×N2 rectangular mesh contains a total of 2N1N2

triangular linear elements for the FEM simulations.

Figure 49 provides an overview of the FEM simulation results of the Poisson equation. Figure 49(a)

74



(a) Elements in each direction

E
rr

o
rs

10
2

10
310

­6

10
­5

10
­4

10
­3

10
­2

10
­1

maximum error

rms error

Reference

(b) Elements in each direction

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

0 200 400 600 800 1000
0

5

10

15

20

(c)

Figure 49: Poisson equation (FEM, linear elements): (a) FEM error distribution computed on a 1000×1000
mesh. (b) The FEM maximum/rms errors in the domain, and (c) the FEM computation time, as a function
of the number of elements in each direction. An N ×N mesh contains 2N2 triangular linear elements.

Training/computation time (seconds)

M
a
x
im

u
m

 e
rr

o
r 

in
 d

o
m

a
in

5 10 15 20
10

­9

10
­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

FEM

locELM

Figure 50: Poisson equation: The maximum error of the locELM/FEM solutions versus the train-
ing/computation time. The locELM data correspond to those of Figures 48(b,c) with 2 sub-domains, where
the number of collocation points is varied. The FEM data correspond to those of Figures 49(b,c), where the
number of elements in the mesh is varied.

shows the distribution of the absolute error of the FEM solution obtained on a 1000× 1000 mesh, indicating

that the FEM solution is quite accurate. Figures 49(b) and (c) show the maximum/rms errors of the FEM

solution in the domain, and the FEM computation time, as a function of the number of elements in each

direction of the mesh (N1). Here we have varied N1 systematically between N1 = 25 and N1 = 1000, while

maintaining N1 = N2 in the mesh. The second-order convergence rate can be clearly observed from Figure

49(b). The computation time approximately quadruples as the number of elements in each direction (N1)

doubles.

In Figure 50 we plot the maximum error in the domain of the locELM solution (and the FEM solu-

tion) versus the network-training time (respectively the FEM computation time). Here the locELM data

correspond to those of Figure 48(b,c), with Ne = 2× 1 sub-domains, M = 350 training parameters per sub-

domain, and the number of collocation points per sub-domain varied between 5 × 5 and 25× 25. The FEM

data correspond to those of Figures 49(b,c), with the mesh size varied between 25× 25 and 1000× 1000. We

observe that the accuracy-cost relation for the current locELM method and the classical FEM is qualitatively

different. With FEM, the error initially decreases rapidly with increasing computation time (smaller mesh),

75



method mesh sub-domains Q M max-error rms-error wall-time (seconds)
FEM 250× 250 – – – 4.41e− 4 1.24e− 4 0.70

400× 400 – – – 1.72e− 4 4.83e− 5 1.87
500× 500 – – – 1.10e− 4 3.09e− 5 3.09
600× 600 – – – 7.66e− 5 2.15e− 5 4.76
700× 700 – – – 5.63e− 5 1.58e− 5 6.83
800× 800 – – – 4.31e− 5 1.21e− 5 9.01
900× 900 – – – 3.41e− 5 9.54e− 6 12.3
1000× 1000 – – – 2.76e− 5 7.73e− 6 16.2

locELM – 2 5× 5 350 1.73e− 1 3.69e− 2 5.2
– 2 8× 8 350 3.26e− 3 5.02e− 4 5.6
– 2 10× 10 350 2.16e− 4 4.78e− 5 5.7
– 2 12× 12 350 6.72e− 5 1.52e− 5 6.4
– 2 15× 15 350 1.03e− 6 2.34e− 7 7.1
– 2 20× 20 350 1.45e− 8 1.35e− 9 8.6
– 2 25× 25 350 2.81e− 8 1.98e− 9 10.4
– 4 5× 5 300 1.41e− 1 3.01e− 2 9.8
– 4 8× 8 300 7.56e− 4 1.45e− 4 10.1
– 4 10× 10 300 1.90e− 4 4.21e− 5 11.1
– 4 12× 12 300 1.37e− 5 3.29e− 6 12.2
– 4 15× 15 300 1.20e− 7 2.80e− 8 13.6
– 4 20× 20 300 6.57e− 9 4.49e− 10 17.9
– 4 25× 25 300 6.72e− 9 5.21e− 10 20.8

Table 11: Poisson equation: Comparison between locELM and the classical FEM (linear elements) in terms of
the maximum/rms errors in the domain and the training or computation time. The FEM results correspond
to those of Figure 49. The locELM results correspond to those of Figure 48 for 2 sub-domains and those of
Figure 47 for 4 sub-domains. Q and M denote the number of uniform collocation points and the number of
training parameters per sub-domain, respectively.

and then the error reduction slows down dramatically with respect to the computation time (larger mesh).

When the mesh size becomes moderate or large, only slight improvement in the accuracy can be gained with

increasing computation time for the classical FEM. On the other hand, with locELM the error decreases

approximately exponentially with increasing computation time, until it saturates at a certain level and no

longer decreases as the computation time further increases. Figure 50 shows that there is a crossover point,

below which the FEM outperforms the locELM and beyond which the locELM outperforms the FEM. By

saying one method outperforming the other, we mean that the first method can achieve a better accuracy

with the same computation time, or can achieve the same accuracy with less computation time. This sug-

gests that with a smaller FEM mesh (or a smaller number of training data points for locELM) the FEM can

achieve a better accuracy than locELM with the same computation time. On the other hand, with a larger

number of training data points (or a larger mesh for FEM) the locELM can achieve a better accuracy than

the classical FEM with the same computation time.

Table 11 provides more concrete error and computation time data for comparison between locELM and

the classical FEM for the Poisson equation. Here we list the maximum and rms errors of the locELM and

FEM solutions, as well as the locELM training time and FEM computation time, corresponding to a set of

FEM meshes and locELM resolutions. The locELM data include those obtained on both two and four sub-

domains. One can observe that the FEM errors and computation time on the 700×700 mesh are comparable

76



Elements in each direction

E
rr

o
rs

10
1

10
210

­10

10
­9

10
­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

maximum error

rms error

Reference

(a) Elements in each direction

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

0 50 100 150 200 250 300 350
0

5

10

15

20

(b)

Collocation points per direction per sub­domain

E
rr

o
rs

5 10 15 20
10

­11

10
­9

10
­7

10
­5

10
­3

10
­1

maximum error

rms error

(c)
Collocation points per direction per sub­domain

T
ra

in
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

5 10 15 20
0

5

10

15

20

(d)

Figure 51: Poisson equation (comparing locELM with higher-order FEM): The FEM maximum/rms errors
(a) and the computation time (b) as a function of the number of elements in each direction, obtained with
Lagrange elements of degree 3. The locELM maximum/rms errors (c) and the network training time (d) as a
function of the number of collocation points in each direction per sub-domain, obtained with Ne = 2× 2 = 4
uniform sub-domains (M = 325 and Rm = 1).

to those of the locELM method with 2 sub-domains and 12 × 12 collocation points per sub-domain. With

simulation resolutions below these values the classical FEM outperforms locELM, and with resolutions above

these values the locELM outperforms the classical FEM. It can also be observed that the FEM errors and

computation time on the 900×900 mesh are comparable to those of the locELM method with 4 sub-domains

and 12×12 collocation points per sub-domain. The classical FEM outperforms the locELM with resolutions

below these values, and the locELM method outperforms the FEM with resolutions beyond these values.

In all the foregoing comparisons we have used the classical finite element method, i.e. second-order with

linear elements. We next provide some comparisons between the locELM method and the FEM with higher-

order elements, specifically with higher-order Lagrange elements [4], which are available from the FEniCS

library. The simulation results and the comparison are summarized in Figures 51 and 52.

Figures 51(a) and (b) show the maximum/rms errors of the FEM solution obtained with Lagrange

elements of degree 3 (4th-order), as well as the computation time, as a function of the number of elements in

each direction. Here the size of the rectangular mesh is varied systematically between 10×10 and 350×350.

One can clearly observe the 4th-order convergence rate and the rapid growth in the computation time as

the number of elements in the mesh increases. Figures 51(c) and (d) show the maximum/rms errors of the

locELM solution, and the network training time, as a function of the number of collocation points in each

direction per sub-domain. Here we have employed Ne = 2 × 2 uniform sub-domains, M = 325 training

77



Training/computation time (seconds)

M
a
x
im

u
m

 e
rr

o
r 

in
 d

o
m

a
in

0 5 10 15 20
10

­11

10
­9

10
­7

10
­5

10
­3

10
­1

10
1

FEM, degree=3

FEM, degree=4

locELM, N
e
=2, M=350

locELM, N
e
=4, M=325

Figure 52: Poisson equation (comparing locELM with higher-order FEM): The maximum error in the domain
versus the training/computation time for locELM and higher-order FEM. The FEM results are obtained
with Lagrange elements of degrees 3 and 4, with the degree-3 FEM results corresponding to those of Figures
51(a,b). The locELM results are obtained with Ne = 2 (M = 350) and Ne = 4 (M = 325) sub-domains,
with the two-subdomain results corresponding to those of Figures 48(b,c) and the four-subdomain results
corresponding to those of Figures 51(c,d).

parameters per sub-domain, Rm = 1 for generating the random coefficients, and Q = Q1 × Q1 collocation

points per sub-domain with Q1 varied systematically. We can observe the exponential decrease in the locELM

errors (before saturation) and the near-linear growth in the network training time.

In Figure 52 we plot the maximum error in the domain of the locELM solution and the higher-order FEM

solution, as a function of the training/computation time. The locELM data include those with 2 sub-domains

(M = 350, Q varied) corresponding to Figures 48(b,c) and those with 4 sub-domains (M = 325, Q varied)

corresponding to Figures 51(c,d). The FEM data include those obtained with Lagrange elements of degree 3

and degree 4. The FEM results with degree-three Lagrange elements correspond to those of Figures 51(a,b).

The FEM results with degree-four Lagrange elements are obtained with the mesh size varied between 10×10

and 160× 160. Due to the limited computer memory, the 160× 160 mesh is the largest one we can perform

the FEM simulations on using the Lagrange elements of degree 4. Figure 52 shows that the FEM with

degree-three Lagrange elements outperforms the locELM using two sub-domains as tested here. There is a

crossover point between the degree-three FEM curve and the locELM curve with four sub-domains. With

lower resolutions the degree-three FEM outperforms the locELM, and with higher resolutions the locELM

with four sub-domains outperforms the degree-three FEM. The FEM with degree-four Lagrange elements

appear to outperform the locELM in all the cases tested here.

To summarize, as the number of training data points (respectively the number of elements) increases, the

convergence behavior of the locELM method is fundamentally different from that of the classical (second-

order) finite element method. When the number of elements (or the number of training data points) is

small, the classical FEM outperforms locELM, in the sense it can achieve a better accuracy with the same

computation/training time. As the number of elements (or number of training data points) increases, there

is a crossover point. Beyond this point the locELM outperforms the classical FEM, and achieves a better

accuracy with the same training/computation time. Compared with the finite element method employing

higher-order elements, the current locELM method is also competitive to a certain degree. But overall it

78



appears not as efficient as the latter in its current state (or perhaps implementation).

References

[1] S. Balasundaram and Kapil. Application of error minimized extreme learning machine for simultaneous

learning of a function and its derivativs. Neurocomputing, 74:2511–2519, 2011.

[2] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, and J.M. Siskind. Automatic differentiation in machine

learning: a survey. J. Mach. Learn. Res., 18:1–43, 2018.

[3] N.E. Cotter. The stone-weierstrass theorem and its application to neural networks. IEEE Transactions

on Neural Networks, 4:290–295, 1990.

[4] R.L. Courant. Variational methods for the solution of problems of equilibrium and vibration. Bulletin

of the American Mathematical Society, 49:1–23, 1943.

[5] S. Dong. BDF-like methods for nonlinear dynamic analysis. Journal of Computational Physics,

229:3019–3045, 2010.

[6] S. Dong. Multiphase flows of N immiscible incompressible fluids: a reduction-consistent and

thermodynamically-consistent formulation and associated algorithm. Journal of Computational Physics,

361:1–49, 2018.

[7] S. Dong and N. Ni. A method for representing periodic functions and enforcing exactly periodic boundary

conditions with deep neural networks. Journal of Computational Physics, 435:110242, 2021.

[8] S. Dong and J. Shen. A time-stepping scheme involving constant coefficient matrices for phase field

simulations of two-phase incompressible flows with large density ratios. Journal of Computational

Physics, 231:5788–5804, 2012.

[9] S. Dong and J. Shen. A pressure correction scheme for generalized form of energy-stable open boundary

conditions for incompressible flows. Journal of Computational Physics, 291:254–278, 2015.

[10] S. Dong and Z. Yosibash. A parallel spectral element method for dynamic three-dimensional nonlinear

elasticity problems. Computers and Structures, 87:59–72, 2009.

[11] V. Dwivedi and B. Srinivasan. Physics informed extreme learning machine (pielm) − a rapid method

for the numerical solution of partial differential equations. Neurocomputing, 391:96–118, 2020.

[12] W. E and B. Yu. The deep Ritz method: a deep learning-based numerical algorithm for solving

variational problems. Communications in Mathematics and Statistics, 6:1–12, 2018.

[13] G.H. Golub and C.F.V. Loan. Matrix Computations, 3rd Ed. Johns Hopkins Press, MD, 1996.

[14] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016.

[15] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999.

79



[16] J. He and J. Xu. MgNet: A unified framework for multigrid and convolutional neural network. Science

China Mathematics, 62:1331–1354, 2019.

[17] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approxima-

tors. Neural Networks, 2:359–366, 1989.

[18] K. Hornik, M. Stinchcombe, and H. White. Universal approximation of an unknown mapping and its

derivatives using multilayer feedforward networks. Neural Networks, 3:551–560, 1990.

[19] G.-B. Huang, D.H. Wang, and Y. Lan. Extreme learning machines: a survey. Int. J. Mach. Learn.

Cybern., 2:107–122, 2011.

[20] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: theory and applications. Neuro-

computing, 70:489–501, 2006.

[21] B. Igelnik and Y.H. Pao. Stochastic choice of basis functions in adaptive function approximation and

the functional-link net. IEEE Transactions on Neural Networks, 6:1320–1329, 1995.

[22] H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert. Optimization and applications of echo state

networks with leaky integrator neurons. Neural Networks, 20:335–352, 2007.

[23] A.D. Jagtap, E. Kharazmi, and G.E. Karniadakis. Conservative physics-informed neural networks on

discrete domains for conservation laws: applications to forward and inverse problems. Computer Methods

in Applied Mechanics and Engineering, 365:113028, 2020.

[24] G.E. Karniadakis and S.J. Sherwin. Spectral/hp element methods for computational fluid dynamics, 2nd

edn. Oxford University Press, 2005.

[25] D.P. Kingma and J. Ba. Adam: a method for stochastic optimization. arXiv:1412.6980, 2014.

[26] I.E. Lagaris, A.C. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary and partial

differential equations. IEEE Transactions on Neural Networks, 9:987–1000, 1998.

[27] I.E. Lagaris, A.C. Likas, and D.G. Papageorgiou. Neural-network methods for boundary value problems

with irregular boundaries. IEEE Transactions on Neural Networks, 11:1041–1049, 2000.

[28] H.P. Langtangen and A. Logg. Solving PDEs in Python, The FEniCS Tutorial I. SpringerOpen, 2016.

[29] K. Li, K. Tang, T. Wu, and Q. Liao. D3M: A deep domain decomposition method for partial differential

equations. IEEE Access, 8:5283–5294, 2020.

[30] X. Li. Simultaneous approximations of mulvariate functions and their derivatives by neural networks

with one hidden layer. Neurocomputiing, 12:327–343, 1996.

[31] Y. Wang G. Lin. Efficient deep learning techniques for multiphase flow simulation in heterogeneous

porous media. Journal of Computational Physics, 401:108968, 2020.

80



[32] H. Liu, B. Xing, Z. Wang, and L. Li. Legendre neural network method for several classes of singu-

larly perturbed differential equations based on mapping and piecewise optimization technology. Neural

Processing Letters, 51:2891–2913, 2020.

[33] W. Maass and H. Markram. On the computational power of recurrent circuits of spiking neurons. J.

Comput.Syst. Sci., 69:593–616, 2004.

[34] J. Nocedal and S.J. Wright. Numerical Optimization, Second Edition. Springer, 2006.

[35] S. Panghal and M. Kumar. Optimization free neural network approach for solving ordinary and partial

differential equations. Engineering with Computers, Early Access, February 2020.

[36] Y.H. Pao, G.H. Park, and D.J. Sobajic. Learning and generalization characteristics of the random vector

functional-link net. Neurocomputing, 6:163–180, 1994.

[37] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: a deep learning

framework for solving forward and inverse problems involving nonlinear partial differential equations.

Journal of Computational Physics, 378:686–707, 2019.

[38] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the

brain. Psychol. Rev., 65:386–408, 1958.

[39] K. Rudd and S. Ferrari. A constrained integration (CINT) approach to solving partial differential

equations using artificial neural networks. Neurocomputing, 155:277–285, 2015.

[40] E. Samanaiego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and

T. Rabczuk. An energy approach to the solution of partial differential equations in computational

mechanics via machine learning: concepts, implementation and applications. Computer Methods in

Applied Mechanics and Engineering, 362:112790, 2020.

[41] J. Sirignano and K. Spoliopoulos. DGM: A deep learning algorithm for solving partial differential

equations. Journal of Computational Physics, 375:1339–1364, 2018.

[42] Barry F. Smith, Petter E. Bjørstad, and William D. Gropp. Domain decomposition : parallel multilevel

methods for elliptic partial differential equations. Cambridge University Press, 1996.

[43] H. Sun, M. Hou, Y. Yang, T. Zhang, F. Weng, and F. Han. Solving partial differential equations based

on bernsteirn neural network and extreme learning machine algorithm. Neural Processing Letters,

50:1153–1172, 2019.

[44] A. Toselli and O. Widlund. Domain Decomposition Methods − Algorithms and Theory. Springer, 2005.

[45] C.S. Webster. Alan Turing’s unorganized machines and artificial neural networks: his remarkable early

work and future possibilities. Evol. Intel., 5:35–43, 2012.

81



[46] P.J. Werbos. Beyond regression: new tools for prediction and alaysis in the behavioral sciences. PhD

Thesis, Harvard Univeristy, Cambridge, MA, 1974.

[47] N. Winovich, K. Ramani, and G. Lin. ConvPDE-UQ: Convolutional neural networks with quanti-

fied uncertainty for heterogeneous elliptic partial differential equations on varied domains. Journal of

Computational Physics, 394:263–279, 2019.

[48] W. Xing, R.M. Kirby, and S. Zhe. Deep corgionalization for the emulation of spatial-temporal fields.

arXiv:1910.07577, 2019.

[49] J. Xu. The finite neuron method and convergence analysis. arXiv:2010.01458, 2020.

[50] Y. Yang, M. Hou, and J. Luo. A novel improved extreme learning machine algorithm in solving ordinary

differential equations by legendre neural network methods. Advances in Differential Equations, 469:1–24,

2018.

[51] Y. Yu, R.M. Kirby, and G.E. Karniadakis. Spectral element and hp methods. Encyclopedia of Compu-

tational Mechanics, John Wiley and Sons, NY, 1:1–43, 2017.

[52] Y. Zang, G. Bao, X. Ye, and H. Zhou. Weak adversarial networks for high-dimensional partial differential

equations. Journal of Computational Physics, 411:109409, 2020.

[53] L. Zhang and P.N. Suganthan. A comprehensive evaluation of random vector functional link networks.

Inf. Sci., 367–368:1094–1105, 2016.

[54] X. Zheng and S. Dong. An eigen-based high-order expansion basis for structured spectral elements.

Journal of Computational Physics, 230:8573–8602, 2011.

82


	Introduction
	Domain Decomposition and Local Extreme Learning Machines
	Local Extreme Learning Machines (locELM) for Representing Functions 
	Linear Differential Equations
	Time-Independent Linear Differential Equations
	Time-Dependent Linear Differential Equations

	Nonlinear Differential Equations
	Time-Independent Nonlinear Differential Equations
	Time-Dependent Nonlinear Differential Equations


	Numerical Examples
	Helmholtz Equation
	Advection Equation
	Diffusion Equation
	Nonlinear Examples
	Nonlinear Helmholtz Equation
	Nonlinear Spring Equation
	Viscous Burger's Equation


	Concluding Remarks
	Appendices
	Appendix A. The Newton-Linear Least Squares (Newton-LLSQ) Method
	Appendix B. Numerical Tests with the Poisson Equation


