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Abstract

In extreme learning machines (ELM) the hidden-layer coefficients are randomly set and fixed, while the
output-layer coefficients of the neural network are computed by a least squares method. The randomly-
assigned coefficients in ELM are known to influence its performance and accuracy significantly. In this
paper we present a modified batch intrinsic plasticity (modBIP) method for pre-training the random
coefficients in the ELM neural networks. The current method is devised based on the same principle as
the batch intrinsic plasticity (BIP) method, namely, by enhancing the information transmission in every
node of the neural network. It differs from BIP in two prominent aspects. First, modBIP does not involve
the activation function in its algorithm, and it can be applied with any activation function in the neural
network. In contrast, BIP employs the inverse of the activation function in its construction, and requires
the activation function to be invertible (or monotonic). The modBIP method can work with the often-
used non-monotonic activation functions (e.g. Gaussian, swish, Gaussian error linear unit, and radial-basis
type functions), with which BIP breaks down. Second, modBIP generates target samples on random
intervals with a minimum size, which leads to highly accurate computation results when combined with
ELM. The combined ELM/modBIP method is markedly more accurate than ELM/BIP in numerical
simulations. Ample numerical experiments are presented with shallow and deep neural networks for
function approximation and boundary/initial value problems with partial differential equations. They
demonstrate that the combined ELM/modBIP method produces highly accurate simulation results, and
that its accuracy is insensitive to the random-coefficient initializations in the neural network. This is in
sharp contrast with the ELM results without pre-training of the random coefficients.

Keywords: batch intrinsic plasticity, extreme learning machine, neural network, scientific machine learn-
ing, least squares, differential equation

1 Introduction

This work concerns the use of extreme learning machines (ELM) for scientific computing, chiefly for solving

ordinary and partial differential equations (ODE/PDE). ELM is proposed in [20] for single hidden-layer

feed-forward networks (SLFN), and consists of two main ideas: (i) the weights/biases in the hidden layer

are randomly set and fixed, and (ii) the weights of the linear output layer are computed/trained by a linear

least squares method or by using the pseudo-inverse (Moore-Penrose inverse) of the coefficient matrix. In the

context of the current paper we will broadly refer to neural network-based methods adopting these strategies
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Figure 1: Illustration of the random-coefficient effect on ELM accuracy: the maximum/rms errors of the ELM
solution versus Rm (maximum magnitude of the random coefficients), for solving 1D Helmholtz equation.

as ELM methods, including those that employ multiple hidden layers in the neural network and those that

train the output-layer coefficients by nonlinear least squares computations (see e.g. [6]).

ELM is one type of random-weight neural networks [40, 13], which randomly assign and fix a subset of

the network’s weights so that the resultant optimization task of training the neural network can be simpler,

and often linear, for example, formulated as a linear least squares problem. Randomization can be applied

to both feed-forward and recurrent networks, leading to methodologies such as the random vector functional

link (RVFL) networks [35, 24], the extreme learning machine [20, 19], the no-propagation network [48],

the echo-state network [25, 30], and the liquid state machine [31]. The universal approximation capability

of the random-weight feed-forward neural networks has been investigated in e.g. [24, 28, 23]. It is shown

in [23, 21, 22] that any continuous function can be approximated to any desired degree of accuracy with

a single hidden-layer feed-forward neural network having random but fixed (not trained) hidden nodes,

provided that the number of hidden units is sufficiently large. Randomized neural networks can be traced

to the un-organized machines by Turing [46] and the perceptron by Rosenblatt [37] in the 1950s. After a

hiatus of several decades, contributions started to appear in the 1990s, and in recent years such methods

have witnessed a strong revival. We refer to e.g. [40] for a historical overview of randomized neural networks.

With ELM one employs the least squares method, either linear or nonlinear least squares [6], to com-

pute/train the training parameters, which consist of only the weights in the linear output layer of the neural

network. This training method is different from the back propagation (or gradient descent) type algo-

rithms [47, 16], which have been widely used in the deep neural network (DNN) based PDE solvers in recent

years (see e.g. [41, 36] and related approaches [27, 38, 11, 49, 17, 29, 50, 53, 45, 26, 39, 51, 7]). This is the

primary factor that accounts for ELM’s lower computational cost observed in numerical simulations [6].

The randomly-assigned coefficients in the neural network are crucial to the performance of ELM, and

strongly influence its accuracy. As an illustration, Figure 1 shows a typical plot of the L∞ (maximum)

and L2 (root-mean-squares or rms) norms of the absolute error of the ELM solution as a function of Rm,

which denotes the maximum magnitude of the random coefficients, for solving the one-dimensional (1D)

Helmholtz equation with Dirichlet boundary conditions. Here the hidden-layer coefficients of the network

are assigned to uniform random values generated on the interval [−Rm, Rm]. It is evident that the random
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coefficients are critical to the ELM performance. We refer to [6] for a recent fairly detailed study of the

random-coefficient effects on the ELM simulation results in solving linear and nonlinear partial differential

equations. The effects of the random coefficients on the performance of ELM and other random-weight neural

networks have also been recognized in regression and classification problems other than scientific computing

(see e.g. [33, 32, 52, 44, 9, 13], among others).

How to choose, or perhaps pre-train, the random coefficients in the ELM (or related random-weight)

neural networks is an important issue, and this issue is the focus of the current work. Several studies in

this regard are available from the literature in the past few years. In [33] the batch intrinsic plasticity

(BIP) method is proposed to pre-train and adapt the activation function of the hidden-layer neurons by a

pseudo-inverse technique to achieve a desired output distribution, so that the information transmission of the

neural network can be improved. BIP is inspired by the biological intrinsic-plasticity mechanism [43], which,

when applied to recurrent networks, can enhance the encoding and improve the information transmission

of the network [42]. In [32] the authors employ the ELM method in handwritten digit classification, and

investigate ways to set the input weights as a function of the input data by aiming to e.g. increase the inner

product between the weights and the training data samples, constrain the input weights to a set of difference

vectors, or make the input weights sparse. A combination of such ideas is also studied therein. In [52] the

authors present an algorithm to grow the single hidden-layer feed-forward network incrementally, by adding

a macro node each time, which consists of several hidden nodes and is called a subnetwork hidden node. The

method calculates the subnetwork hidden nodes by pulling back the network error into the hidden layer for

invertible activation functions, and by aiming to reduce the norms of the weights. In [44] the authors present

a technique to constructively build single hidden-layer feed-forward networks by stochastic configuration

algorithms (called stochastic configuration networks or SCN). The constructive process starts with a small

network, and the hidden nodes are added incrementally until an acceptable tolerance is achieved. The added

weights/biases are assigned by a supervisory mechanism to satisfy certain inequality constraints guided by

the universal approximation property. In addition to the above works, other researchers have aimed to utilize

the relationship between the input-data rank and the performance of randomized neural networks, or to pick

the weights/bias based on the input data range and the activation function type, or to consider the numerical

stabilities (see e.g. [1, 9, 13], among others).

In the current paper we present a modified batch intrinsic plasticity (modBIP) method for pre-training

the random coefficients of the ELM neural networks, which can be shallow (single hidden layer) or deep

(multiple hidden layers). By random coefficient pre-training we mean that, after the weight/bias coefficients

of the hidden layers are initialized to random values, we update these coefficients systematically by a well-

defined procedure. The updated coefficients are then fixed, and employed in ELM for computing/training

the weights in the output layer (i.e. the training parameters) by the least squares method.

The current modBIP method is devised based on the same principle as the batch intrinsic plasticity

(BIP) method [33], namely, by enhancing the information transmission in every node of the neural network.

The current method differs from BIP [33] in two key aspects. First, modBIP does not involve the activation

function in its algorithm, and it can work with any activation function in the ELM neural network. In
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contrast, BIP [33] employs the inverse of the activation function in its algorithm, and requires the activation

function to be invertible (i.e. monotonic). BIP can only work with those activation functions that are

monotonic. This excludes many often-used activation functions that are non-invertible, such as the Gaussian

function, the swish function [12], the Gaussian error linear unit (GELU) [18], and other radial-basis type

activation functions. Second, the modBIP method generates the target samples on random intervals with

some minimum size, which leads to highly accurate simulation results when combined with ELM. The

combined ELM/modBIP method is observed to be markedly more accurate than the combined ELM/BIP

method in numerical simulations.

We present a number of numerical examples of boundary-value and boundary/initial-value problems with

linear partial differential equations to evaluate the performance of modBIP and the combined ELM/modBIP

method. We compare their performance with those of the combined ELM/BIP method and the ELM

method without pre-training of the random coefficients. These numerical experiments show that the com-

bined ELM/modBIP method produces highly accurate simulation results with both shallow and deep neural

networks, and that the accuracy of the ELM/modBIP solution is insensitive to the initial random coeffi-

cients in the neural network. More precisely, with the hidden-layer coefficients initialized as uniform random

values generated on [−Rm, Rm], for an arbitrary Rm, the combined ELM/modBIP method results in very

accurate results. This is in sharp contrast with the ELM method without pre-training of the random coef-

ficients (see e.g. Figure 1). The numerical results demonstrate that the combined ELM/modBIP method,

with non-invertible activation functions such as the Gaussian/swish/GELU functions in the neural network,

exhibits the same properties of high accuracy and insensitivity to the random coefficient initialization. This

is in sharp contrast with the ELM/BIP method, which breaks down with the class of non-invertible ac-

tivation functions. The simulation results also signify the exponential decrease in the numerical errors of

the ELM/modBIP method as the number of degrees of freedom (e.g. number of training collocation points,

number of training parameters) in the system increases, analogous to the observations of [6].

We have also looked into the computational cost of the modBIP pre-training of the random coefficients,

as compared to that of the ELM training of the neural networks. For every hidden-layer node, the primary

operations with modBIP consist of (i) the computation of the total input to the current node induced by

the input samples to the network, and (ii) the solution of a small linear system consisting of two unknown

variables by the linear least squares method. The modBIP pre-training cost increases linearly or nearly

linearly with increasing number of training parameters and collocation points. The pre-training cost is

insignificant, and it is only a fraction of the ELM training cost for the neural network. In typical numerical

simulations, the modBIP pre-training cost is within 10% of the ELM network training cost.

The contribution of this paper lies in the development of the modBIP algorithm for pre-training the

random coefficients of shallow and deep ELM neural networks. The algorithm has been shown to be effective,

efficient, and highly accurate. The combined ELM/modBIP method is observed to be a promising technique

for scientific computing.

The rest of this paper is structured as follows. In Section 2 we present the modBIP algorithm for

pre-training the random coefficients of ELM neural networks, and outline how to employ the combined
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ELM/modBIP method to solve linear differential equations. In Section 3 we test the performance of the

modBIP algorithm and the combined ELM/modBIP method with function approximation and several PDEs

commonly encountered in computational science/engineering [8, 3, 4]. We compare the performance of the

current modBIP algorithm, the BIP algorithm, and the case with no pre-training of the random coefficients.

The effectiveness of modBIP for shallow and deep neural networks, and with invertible and non-invertible

activation functions is demonstrated. Section 4 then concludes the discussions with some closing remarks.

2 Pre-training Random Coefficients of Extreme Learning Machines

2.1 Extreme Learning Machine and Random Coefficients

We consider a feed-forward neural network [15] with one or multiple hidden layers, and the function repre-

sentation using this network. We assume the following in its configuration and settings:

• The weight/bias coefficients in all the hidden layers are pre-set to random values, and are fixed through-

out the computation once they are set. In this work we follow [6] and set the hidden-layer coefficients

to uniform random values generated on [−Rm, Rm], where Rm > 0 is a user-provided parameter.

• The last hidden layer, i.e. the layer before the output layer, can be wide. It may contain a large number

of nodes.

• The output layer is linear (i.e. no activation function applied) and has zero bias. The training param-

eters consist of the weights of the output layer, and will be adjusted by the training computation.

• The network is to be trained, and the training parameters are to be determined by a least squares

computation.

In the current work we concentrate on function approximation and linear partial differential equations, and

so the network training is via a linear least squares computation. We refer to [6] for the network training by

a nonlinear least squares method for solving nonlinear partial differential equations.

A feed-forward neural network with the above settings, when containing a single hidden layer, is known

as an extreme learning machine (ELM) [20, 19]. In the current work we consider neural networks with both

a single and multiple hidden layers, and we follow this terminology and will refer to them as shallow and

deep extreme learning machines, respectively.

The random coefficients in the hidden layers of the neural network are crucial to the performance and

accuracy of ELM [33, 32, 13, 6]. It has been observed from the numerical experiments in [6] that the ELM

accuracy can be influenced strongly by the maximum magnitude of the random coefficients (i.e. Rm), where

uniform random coefficients generated on [−Rm, Rm] are employed. When Rm is very large or very small,

ELM tends to produce results with poor accuracy. More accurate results tend to be attained with Rm in

a range of moderate values. This “optimal” range for Rm is problem dependent and is also affected by the

simulation resolution (e.g. the number of training parameters, number of training data points) [6]. For many

problems the optimal range for Rm appears to reside somewhere between 1 and 15. As discussed in the

Introduction section, Figure 1 is an illustration of the effect of Rm on the ELM accuracy.
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Our goal here is to devise a method for pre-training the random coefficients once they are initialized, so

that accurate ELM results can be obtained with random coefficients initialized by essentially an arbitrary

Rm. Once the hidden-layer coefficients in the neural network are initialized to uniform random values from

[−Rm, Rm], for some given Rm, our method can be applied to update or adjust these random coefficients.

The updated hidden-layer coefficients are then fixed, and the usual ELM method and the least squares

procedure can be employed to determine the training parameters (i.e. the output-layer coefficients).

2.2 Modified Batch Intrinsic Plasticity (modBIP) Algorithm

Consider a feed-forward neural network [15] with (L+ 1) layers, and let Ml denote the number of nodes in

layer l for 0 6 l 6 L. The layer zero represents the input to the neural network, and let the matrix X of

dimension Ns ×M0 denote the input data, where Ns is the number of samples in the input data. The layer

L represents the output of the neural network, denoted by the matrix U of dimension Ns ×ML. The layers

in between are the hidden layers. Let the matrix Φl, with dimension Ns ×Ml, denote the output data of

layer l for 0 6 l 6 L, with Φ0 = X and ΦL = U. Then the logic of the hidden layer l (1 6 l 6 L − 1) is

given by,

Φl = σ (Φl−1Wl + bl) , 1 6 l 6 L− 1, (1)

where σ(·) denotes the activation function, the Ml−1 ×Ml matrix Wl denotes the weights of layer l, and

the row vector bl (with dimension 1×Ml) denotes the biases of this layer. Note that here we have adopted

the convention (as in the computer language Python) that when computing (Φl−1Wl + bl), the data in the

vector bl will first be propagated along the first dimension to form a Ns ×Ml matrix. In equation (1) we

have also assumed for simplicity that the same activation function is employed for different hidden layers.

The logic of the output layer is given by

U = ΦL−1WL (2)

where the ML−1 × ML matrix WL denotes the weights of the output layer, and they are the training

parameters of the neural network. As discussed before, the output layer is assumed to contain no bias and

no activation function. The weight and bias coefficients of the hidden layers, Wl and bl (1 6 l 6 L− 1), are

initialized to uniform random values generated on the interval [−Rm, Rm] for some prescribed Rm. Once the

specific problem is given, the training parameters WL can be determined by a least squares computation

based on the ELM procedure [6]. The parameter value Rm, and hence the random coefficients Wl and bl,

strongly influence the ELM accuracy, as discussed in the previous subsection.

Given the input data X and the initial random coefficients Wl and bl (1 6 l 6 L− 1), we will compute

a set of new coefficients W′
l and b′l for 1 6 l 6 L − 1 based on a procedure presented below, and replace

Wl and bl by the newly computed values, so that the resultant neural network will give rise to results that

are more accurate and less sensitive or insensitive to Rm. We refer to this process as the pre-training of the

random coefficients. Once the random hidden-layer coefficients are pre-trained, they will be fixed throughout

the rest of the computation, when the training parameters are determined by the least squares method in

the usual ELM algorithm.
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To pre-train the random hidden-layer coefficients, we follow the philosophy as advocated in [33]. In other

words, these coefficients should assume values that will facilitate the information transmission within each

neuron. Consider a particular node (or neuron) in a particular hidden layer of the neural network. Let s

denote the total input (synaptic input) to this neuron from the previous layer, and φ denote the output

signal of this neuron. Then φ = σ(s), where σ is the activation function of this neuron. For commonly used

activation functions (e.g. tanh, sigmoid, Gaussian), if the magnitude of the input s is very large, the output

φ of the neuron will reach the level of saturation, which is unfavorable for the information transmission

in this neuron. Therefore, the magnitude of the synaptic input to the neuron should not be too large, in

order to facilitate the information transfer. Let us further suppose that the synaptic input to this neuron

consists of Ns independent samples si (1 6 i 6 Ns), and let smax and smin denote the maximum and

the minimum of these input samples. If smax and smin are very close to each other, then this neuron will

output essentially a constant value under these Ns input samples, which is unfavorable for the information

transmission. Therefore, the samples of the synaptic input to a neuron should maintain a reasonable spread

in their values, in order to facilitate the information transfer. In light of these considerations, in order to

facilitate the information transmission, we will impose the following requirements on the synaptic input to

any neuron:

• The synaptic input to the neuron should fall within a range [−Sb, Sb], where Sb > 0 is a user-provided

hyper-parameter. The larger the Sb parameter, the more likely the input will cause a saturation in the

neuron response.

• The samples of the synaptic input to the neuron should be such that smax− smin > Sc, where Sc (with

0 6 Sc < 2Sb) is a user-provided hyper-parameter. A non-zero Sc ensures that the input samples to

the neuron have a spread of at least Sc in their values.

These requirements provide the basis for the algorithm described below for pre-training the random hidden-

layer coefficients in the neural network.

Given Sb and Sc, we pre-train the random coefficients as follows. We start with the first hidden layer,

and pre-train the random coefficients in each layer individually and successively, until the last hidden layer

is pre-trained. It should be noted that pre-training a later hidden layer depends on the updated weight/bias

coefficients in previous layers that are already pre-trained. Within each hidden layer, we pre-train the

random coefficients associated with each node individually and independently. We start with the first node

and proceed until all the nodes in the layer are pre-trained.

The general idea for pre-training a node is as follows. For any particular node in a layer, we first compute

the total input to this node corresponding to all the Ns input data samples to the neural network. This

produces the input samples si (1 6 i 6 Ns) to this node. We generate a random sub-interval [tmin, tmax] ⊂
[−Sb, Sb], satisfying the condition tmax − tmin > Sc. Then we generate Ns random numbers ti (1 6 i 6 Ns)

on the interval [tmin, tmax], which will be referred to as the target samples. We sort the input samples si

and the target samples ti in the ascending order, respectively. Then we compute an affine mapping between

si and ti by a linear least squares method. The weight/bias coefficients associated with this node are then
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updated by the computed affine mapping coefficients to complete the pre-training for this node.

Let us now expand on the general idea to provide more details for pre-training a node. We consider

pre-training the random coefficients associated with node k in the hidden layer l, for 1 6 l 6 L − 1 and

1 6 k 6 Ml. At this point, all the previous hidden layers have been pre-trained and their weight/bias

coefficients have been updated. We evaluate the neural network against the input data X to attain the

output of the layer l−1, which is denoted by the matrix Φl−1 of dimension Ns×Ml−1. Note that Φl−1 = X

if this is the first hidden layer (i.e. l = 1). The current weights for layer l are given by the Ml−1×Ml matrix

Wl, and the current biases for this layer are given by the row vector bl with dimension Ml. Let w denote

the k-th column of Wl, and bk denote the k-th component of bl. Then the synaptic input, s, to the current

node in consideration is given by

(s1, s2, . . . , sNs)T = s = Φl−1w + 1bk, (3)

where si (1 6 i 6 Ns) are the components of s, and 1 denotes the vector of all ones. The values of w and

bk will be updated when this node is pre-trained.

Next we generate two uniform random numbers tmin and tmax on [−Sb, Sb] that satisfy the condition

tmax − tmin > Sc. Then we generate Ns random numbers ti (1 6 i 6 Ns) on the interval [tmin, tmax] as the

target samples. In the current implementation we have considered two distributions when generating the

target samples:

• ti (1 6 i 6 Ns) are generated on [tmin, tmax] from a normal distribution with a mean 1
2 (tmin + tmax)

and a standard deviation 1
4 (tmax− tmin). When drawing from the normal distribution, if the generated

random number is out of the range [tmin, tmax], a simple sub-iteration can produce a random number

on [tmin, tmax].

• ti (1 6 i 6 Ns) are uniform random numbers on [tmin, tmax].

We sort the input samples si (1 6 i 6 Ns) in the ascending order, and also sort the target samples ti

(1 6 i 6 Ns) in the ascending order. Then we solve for two scalar numbers ξ and η from the following linear

system by the linear least squares method,

siξ + η = ti, 1 6 i 6 Ns. (4)

Finally, we update the column k of the weight-coefficient matrix Wl and the k-th component of the bias

vector bl by the following relations:

w←− ξw, bk ←− ξbk + η. (5)

This completes the pre-training of the node.

The overall pre-training procedure by the modBIP method is summarized in Algorithm 1. A key con-

struction in the algorithm that enables high accuracy of this method is the adoption of random sub-intervals

[tmin, tmax] with a minimum size Sc when generating the target samples. If this interval is taken to be

[−Sb, Sb] or some fixed sub-interval of [−Sb, Sb], numerical experiments show that the method will be much

8



Algorithm 1: modBIP algorithm

input : input data X; initial random weight coefficients Wl and initial random bias coefficients bl,
for 1 6 l 6 L− 1; constant Sb > 0; constant Sc, with 0 6 Sc < 2Sb.

output: updated weight coefficients Wl and updated bias coefficients bl, for 1 6 l 6 L− 1.

1 for l← 1 to L− 1 do
2 if l equals 1 then
3 set Φl−1 = X
4 else
5 compute Φl−1 by evaluating the neural network (first l − 1 layers) on the input data X
6 end

7 for k ← 1 to Ml do
8 set w to point to the column k of Wl

9 set bk to point to the k-th component of bl

10 compute the input samples si (1 6 i 6 Ns) by equation (3)
11 sort si (1 6 i 6 Ns)

12 generate uniform random numbers tmin and tmax on [−Sb, Sb] satisfying tmax − tmin > Sc
13 generate random numbers ti (1 6 i 6 Ns) on [tmin, tmax] by a normal distribution (mean:

(tmin + tmax)/2, stddev: (tmax − tmin)/4) or a uniform distribution
14 sort ti (1 6 i 6 Ns)

15 solve equation (4) for ξ and η by the linear least squares method
16 update w and bk by equation (5)

17 end

18 end
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Figure 2: Profiles of several commonly-used activation functions.

less accurate. Target samples generated on [tmin, tmax] from a uniform distribution and from a normal dis-

tribution seem to produce results with comparable accuracy. For different problems one type of distribution

may lead to results with slightly better accuracy than the other, but their error levels are largely the same. In

the numerical tests of Section 3, we employ the normal distribution when generating random target samples

on [tmin, tmax].

Remark 2.1. The parameter Sc controls the minimum size of the random sub-interval [tmin, tmax]. As

Sc → 0, random intervals with a near-zero size may be generated. This will cause the mapped synaptic input

(and also the neuron response) to cluster around a constant level, which will affect the accuracy adversely.
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On the other hand, as Sc → 2Sb, all the random sub-intervals [tmin, tmax] → [−Sb, Sb]. So the randomness

in the sub-interval will be lost, and the accuracy will deteriorate as mentioned before. We observe from

numerical experiments that a value around Sc = Sb/2 produces results with very good (and oftentimes the

best) accuracy. So in the current paper we will employ Sc = Sb/2 with modBIP in the numerical simulations.

Remark 2.2. The parameter Sb controls which regime the pre-training algorithm generally maps the synaptic

input data into. If Sb is very small, the mapped synaptic input will be close to zero, and many activation

functions are close to a linear function in this regime. Since a linear function reduces the approximation

capability of a neuron, the accuracy in this case will be limited. If Sb is very large, the magnitude of the mapped

synaptic input to the neuron can be large. It is thus more likely to cause saturation in the neuron response,

which is unfavorable for the information transmission and can have an adverse effect on the accuracy.

Figure 2 shows the profiles of several commonly-used activation functions, including the tanh, Gaussian

(σ(x) = e−x
2

), softplus (σ(x) = log(1 + ex)), and swish (σ(x) = x/(1 + e−x)) functions. They suggest that a

reasonable range for the input to the activation function seems to be somewhere around [−3, 3], and perhaps

even a little larger with the swish and softplus functions. We observe from numerical experiments that, with

the tanh (and Gaussian) activation function and a single hidden layer in the neural network, a value around

Sb = 2 ∼ 3 will produce results with good accuracy. For certain problems, the method achieves even better

accuracy if Sb is adjusted from this base value. When the neural network contains more hidden layers, it is

observed that Sb should typically be decreased from this reference range to achieve a better accuracy.

While the above reference range for Sb is useful, for a given problem can we estimate the Sb value that

provides the best or close to the best accuracy? The answer is positive, and we next outline a procedure for

estimating the optimal Sb using simple numerical experiments. Let us use the problem of solving linear PDEs

for illustration. When training the ELM neural network, suppose the linear system resulting from the PDE

that one needs to solve using the least squares method is given by the following (see Section 2.3),

Ax = b (6)

where A, x, and b denote the coefficient matrix (non-square), the vector of unknowns, and the right-hand-side

vector, respectively. Let r denote the residual vector associated with the least squares solution,

r = b−Ax+, (7)

where x+ denotes the least squares solution to equation (6) (with minimum norm if rank-deficient). We use

the residual norm ‖r‖ as an indicator to the accuracy of the least squares solution. Since ‖r‖ can be readily

evaluated, we will use preliminary simulations to compute ‖r‖ and estimate the best Sb. The main steps are

as follows:

• Consider a set of points from a range for Sb (e.g. Sb ∈ [0.5, 5]).

• For each Sb value, set Sc = Sb/2 and pre-train the random coefficients of the network using modBIP.

• Perform a preliminary ELM simulation using the pre-trained neural network, and compute ‖r‖.
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• Collect ‖r‖ for the set of Sb values. Find the Sb corresponding to the smallest (or close to the smallest)

‖r‖. Use this value as an estimate for the best Sb.

With the estimate for Sb available, we can then use it in modBIP and perform actual simulations for the

given problem with ELM. It should be noted that in the simulations for estimating Sb, the number of training

data points should be larger than the number of training parameters in the neural network to avoid the regime

of rank deficiency in the least squares solution.

Remark 2.3. In the current work we have considered a symmetric interval [−Sb, Sb] in the modBIP al-

gorithm. For activation functions that are not symmetric or anti-symmetric (e.g. swish, softplus), one can

imagine that the use of a non-symmetric interval such as [Sb1, Sb2] in the algorithm might be more favorable.

This aspect is not considered here, and we employ a symmetric interval in the current work.

Remark 2.4. We observe that the ELM method, with the random coefficients pre-trained by the current

modBIP algorithm, produces highly accurate simulation results, and that the accuracy of the combined

ELM/modBIP method is insensitive to the random coefficient initializations. More specifically, with the

hidden-layer coefficients initialized as random values generated on [−Rm, Rm], for an arbitrary Rm, the

combined ELM/modBIP method produces accurate results and the accuracy is insensitive to Rm. This is

very different from the behavior of ELM without pre-training of the random coefficients (see e.g. Figure 1).

We will demonstrate this point with numerical experiments in Section 3.

Remark 2.5. It is evident that the modBIP algorithm does not involve the activation function in its con-

struction. Therefore, essentially any activation function can be used in the neural network together with

the current method. This is in sharp contrast with the BIP algorithm [33], which employs the inverse of

the activation function in its construction. BIP requires the activation functions in the neural network to

be invertible (i.e. monotonic). This precludes many often-used activation functions such as the Sigmoid

weighted linear unit (SiLU or swish) [12], Gaussian error linear unit (GELU) [18], Gaussian, and other

radial basis-type functions.

Remark 2.6. We briefly mention another method for generating target samples from a normal distribution,

which is different from what has been discussed above. In Algorithm 1 we replace the constant Sc by two

constants Sc1 and Sc2 , with 0 < Sc1 6 Sc2 . So now there are three constant parameters in the input, Sb,

Sc1 and Sc2 . We replace the lines 12 and 13 of Algorithm 1 by the following steps for generating the random

target samples ti (1 6 i 6 Ns):

generate a uniform random number µ on [−Sb, Sb];

generate a uniform random number δ on [Sc1 , Sc2 ];

generate random numbers ti (1 6 i 6 Ns) from a normal distribution with mean = µ, stddev = δ.

Here we use a random mean µ from [−Sb, Sb] and a random standard deviation δ from [Sc1 , Sc2 ] for generating

the target samples ti. We observe that a value around Sb = 2 ∼ 2.5, Sc1 = 0.2 and Sc2 = Sb/2 generally

produce results with good accuracy.
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2.3 Solving Linear Differential Equations with Combined ELM/modBIP

We will test the modBIP pre-training algorithm by combining it with ELM for solving partial differential

equations (PDE). We first initialize the hidden-layer coefficients in the neural network by uniform random

values from [−Rm, Rm], for some prescribed Rm. Then we pre-train these random coefficients by modBIP,

and afterwards fix the updated hidden-layer coefficients. At this point, we can use the ELM method and

the pre-trained neural network in the usual fashion. We concentrate on linear partial differential equations

in this subsection, and we can compute the training parameters (output-layer coefficients) by a linear least

squares method for solving linear PDEs. The use of ELM/modBIP for solving nonlinear partial differential

equations can be carried out analogously, and will be discussed toward the end of this subsection.

The use of ELM for solving linear partial differential equations has been discussed in a number of previous

works; see e.g. [34, 10, 6] and the references therein. For the sake of completeness, we summarize the main

procedure below, and we refer the reader to e.g. [6] for more detailed discussions of related aspects. Here

we assume that the hidden-layer coefficients of the neural network have been pre-trained by modBIP as

discussed above. So the weight/bias coefficients in the hidden layers are fixed throughout the computations

to be discussed below.

For illustration we consider a rectangular domain in two dimensions (2D), Ω = {(x, y) | x ∈ [a1, a2], y ∈
[b1, b2]}. If the problem is time-dependent, we will treat the time t in the same way as the spatial variables,

and use the last independent variable to denote the time t. In the case with two independent variables, for

time-dependent problems, the last independent variable (i.e. y) denotes the time t. With this notation, we

can treat time-dependent and time-independent problems in a unified fashion. So the following discussions

also apply to time-dependent problems.

Consider a generic linear partial differential equation on Ω,

Lu = f(x, y), (8a)

Bu = g(x, y), on ∂Ω, (8b)

where u(x, y) is the field function to be solved for, L is a linear differential operator, B is a linear operator,

f(x, y) is a prescribed source term on the domain, and g(x, y) is a prescribed source term defined on the

domain boundary ∂Ω. We assume that the system as given by (8a)–(8b) is well-posed. Note that, depending

on the order of L, the boundary condition (8b) may be imposed only on a part of the domain boundary, and

that it should include the initial condition(s) if this is a time-dependent problem.

To solve equations (8a)–(8b), we use an extreme learning machine (feed-forward neural network), with its

random hidden-layer coefficients pre-trained by modBIP, to represent the solution field u(x, y). The input

layer of the neural network consists of two nodes, representing x and y, respectively. The output layer of

the neural network consists of one node, representing the solution u. The neural network contains one or

multiple hidden layers in between. Let M denote the number of nodes in the last hidden layer of the neural

network, and let Vj(x, y) (1 6 j 6 M) denote the output fields of the last hidden layer. Then the logic of
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the output layer is given by

u(x, y) =
M∑
j=1

βjVj(x, y), (9)

where βj (1 6 j 6M) denote the weight coefficients in the output layer, which are the training parameters

of the neural network.

We employ (Qx + 1) and (Qy + 1) uniform grid points in the x and y directions, respectively, with their

coordinates given by

xp = a1 +
a2 − a1
Qx

p, yq = b1 +
b2 − b1
Qy

q, 0 6 p 6 Qx, 0 6 q 6 Qy. (10)

We enforce the equation (8a) on all the grid points (xp, yq), which will be refer to as the collocation points,

and arrive at

M∑
j=1

[LVj(xp, yq)]βj = f(xp, yq), 0 6 p 6 Qx, 0 6 q 6 Qy, (11)

where equation (9) has been employed. Let Xb denote the set of collocation points, among (xp, yq), that

reside on the domain boundary ∂Ω where the boundary condition (8b) is imposed on. Let Qb denote the

number of points in Xb. We enforce the boundary condition (8b) on each (x′m, y
′
m) ∈ Xb, and arrive at

M∑
j=1

[BVj(x
′
m, y

′
m)]βj = g(x′m, y

′
m), 0 6 m 6 Qb − 1. (12)

Equations (11) and (12) form a linear algebraic system about the training parameters βj (1 6 j 6

M). This system consists of [(Qx + 1)(Qy + 1) + Qb] equations and M unknowns. The terms involved

in the coefficient matrix, such as Vj(xp, yq), LVj(xp, yq), Vj(x
′
m, y

′
m) and BVj(x

′
m, y

′
m), can be computed

by a forward evaluation of the neural network or by auto-differentiation. We seek a least squares solution

(with minimum norm if the problem is rank deficient) to this system, and solve it by the linear least

squares method [14]. In the current implementation, we have employed the linear least squares routine from

LAPACK, available through the wrapper function in the scipy package in Python (function scipy.linalg.lstsq).

In the current paper, we implement the neural network in Python employing the Tensorflow and Keras

libraries. The neural-network layers are implemented as the “Dense” layers in Keras. The input (training)

data to the neural network consist of the coordinates of all the collocation points (xp, yq) (0 6 p 6 Qx and

0 6 q 6 Qy) in the domain. In our implementation, we have incorporated an affine mapping between the

input layer and the first hidden layer to normalize the input (x, y) data from Ω = [a1, a2] × [b1, b2] to the

domain [−1, 1] × [−1, 1]. This mapping is implemented by a “lambda” layer in Keras, which contains no

weight/bias coefficients. This lambda layer does not need to be pre-trained by modBIP. With this lambda

layer incorporated, in line 3 of Algorithm 1, Φl−1 should be the output of the lambda layer, i.e. the normalized

data, instead of the original input data X.

After the linear system consisting of (11) and (12) is solved by the linear least squares method, the weight

coefficients of the output layer will be set to the computed solution. Then the neural network is evaluated
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on a set of finer grid points, which is different from the training data points, to attain the field solution data

u(x, y). The solution data is then compared with e.g. the exact solution to compute the errors and other

useful quantities. These steps have been followed in the numerical experiments of Section 3.

Remark 2.7. For longer-time simulations of time-dependent partial differential equations, we employ the

block time-marching scheme developed in [6]. The spatial-temporal domain is first divided into a number of

windows along the time (time blocks). The equations (11) and (12) are solved on each time block, individually

and successively, using the method discussed in this sub-section. After one time block is computed, the solution

at the last time instant will be evaluated, and used as the initial condition for the computation of the time

block that follows. We refer to [6] for more detailed discussions of this scheme. Block time marching has

been employed for simulations of time-dependent problems in Section 3.

Remark 2.8. While the above discussions concern linear PDEs, the combined ELM/modBIP method can

also be applied to solving nonlinear partial differential equations, with the same general procedure. One

can use modBIP to pre-train the random hidden-layer coefficients first, and then fix the updated random

coefficients. The neural network can then be used in ELM in the usual fashion for solving the nonlinear

partial differential equation. The ELM solution algorithm for nonlinear PDEs has been discussed in detail

in [6]. It involves a nonlinear least squares method with perturbations (NLLSQ-perturb) [6] for solving the

nonlinear algebraic system that results from enforcing the PDE and the boundary/initial conditions on the

collocation points of the domain and boundaries. Block time marching can be applied with ELM for solving

time-dependent nonlinear PDEs. We refer the reader to [6] for details of related discussions.

The procedure given in Remark 2.2 for estimating the best Sb in modBIP can be modified accordingly for

nonlinear PDEs. Let

F(x) = 0 (13)

denote the system of nonlinear algebraic equations resulting from the nonlinear PDE and boundary/initial

conditions on the collocation points. Let

r = F(x+) (14)

denote the residual vector of this system associated with the least squares solution. In other words, x+ here

denotes the solution to (13) from the nonlinear least squares method. When using ELM/modBIP for solving

nonlinear PDEs, we use the residual norm ‖r‖, where r is given by (14), as the indicator for estimating the

best Sb in the procedure as outlined in Remark 2.2.

3 Representative Numerical Examples

In this section we evaluate the performance of the modBIP algorithm using function approximation and linear

partial differential equations in one or two dimensions (1D/2D) in space, and plus time if the problem is

time-dependent. We solve these equations numerically by the combined ELM/modBIP method as discussed
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Figure 3: Function approximation: (a) Distribution of the exact function. (b) Residual norm of the linear
least squares (LLSQ) problem versus Sb, for estimating the best Sb in modBIP. (c) The maximum error of
the ELM/modBIP solution as a function of Rm, corresponding to several Sb in modBIP.

in Section 2.3. The random hidden-layer coefficients in the neural network are pre-trained by modBIP

first, and then they are fixed and used in ELM for finding the solutions to the differential equations. In

the numerical experiments reported below, with modBIP we employ Sc = Sb/2, and estimate Sb using

the procedure outlined in Remark 2.2 by computing the residual norm of the linear least squares (LLSQ)

problem in ELM. When generating the target samples on the random interval [tmin, tmax], we have employed

the normal distribution with a mean (tmin + tmax)/2 and a standard deviation (tmax − tmin)/4 (see line 13

of Algorithm 1) in all the numerical tests. The numerical experiments are conducted on a MAC computer

(3.2GHz Quad-Core Intel Core i5 CPU, 24GB memory) in the authors’ institution. The wall clock time is

collected by using the “timeit” module in Python.

In the current implementation, the initial random coefficients in the hidden layers are generated using the

random number generator from the Tensorflow library (invoked by the initialization routines in the Keras

library), while the random values in the modBIP algorithm are generated by the random number generator

in the numpy package in Python. In order to make all the simulation results reported here fully and exactly

repeatable and reproducible, we have employed the same seed value for the random number generators in

both Tensorflow and numpy, and the seed value is fixed for all the numerical experiments reported within

a subsection. More specifically, the seed value is 1 for the numerical experiments presented in Sections 3.1

and 3.2, 12 for those in Section 3.3, and 22 for those in Sections 3.4 and 3.5, respectively.

Hereafter we employ the vector [M0,M1, . . . ,ML] (L > 2) to represent the architecture of the feed-forward

neural network in ELM, where the vector length (L + 1) denotes the number of layers in the network and

Mi is the number of nodes in layer i for 0 6 i 6 L. Note that M0 and ML are the numbers of nodes in the

input and output layers, respectively. The number of training parameters in ELM is ML−1, i.e. the number

of nodes in the last hidden layer, as discussed in Section 2.

3.1 Function Approximation

We approximate the following function u(x) by the combined ELM/modBIP method,

u = esin(2πx) + x cos(πx), x ∈ [0, 2.5] . (15)
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Figure 3(a) shows the distribution of this function on the domain. Note that the function approximation

problem is equivalent to solving the linear PDE (8a), with no boundary condition, in which L is given by

the identity operator and f is given by the function to be approximated.

Let us first consider a single hidden layer in the neural network, with the network architecture given by

[1, 100, 1] and tanh as the activation function in the hidden layer (the output layer is linear). The input

node represents x, and the output node represents the function u(x). The input data to the neural network

consists of Q = 121 uniform grid (collocation) points on [0, 2.5]; see equation (10) when restricted to 1D.

The function values on these collocation points are provided in equation (8a) as the data for the source term.

The hidden-layer coefficients are initialized by uniform random values generated on [−Rm, Rm], with Rm

specified below.

We first estimate the Sb in modBIP using the procedure from Remark 2.2. Figure 3(b) shows the residual

norm of the linear least squares (LLSQ) problem as a function of Sb in a set of preliminary simulations. Here

the initial random coefficients in the neural network are generated with Rm = 50. They are pre-trained by

modBIP, with Sc = Sb/2 and Sb from a range of values. The residual norm of the LLSQ problem in ELM

is collected corresponding to these Sb values and plotted in Figure 3(b). This plot indicates that, while

the residual norm at times fluctuates with respect to Sb, it achieves a relatively low level for a range of

Sb ≈ 10 ∼ 20 for this problem. We employ Sb = 10 in modBIP in the majority of subsequent tests for this

problem.

Figure 3(c) illustrates the general behavior of the ELM approximation error, with the random coefficients

pre-trained by modBIP. It shows the maximum error in the domain of the ELM approximant as a function

of Rm, the maximum magnitude of the initial random coefficients, corresponding to several Sb values around

Sb = 10 in the modBIP algorithm. Here for a given Sb value, we vary Rm systematically in the range

0.1 6 Rm 6 100, and for each Rm we initialize the hidden-layer coefficients by uniform random values

generated on [−Rm, Rm] and pre-train the random coefficients by modBIP with the given Sb and Sc = Sb/2.

The pre-trained random coefficients are then used in ELM to compute the training parameters (i.e. the

output-layer coefficients) by the linear least squares method for approximating the function (15). So the

approximation function is now represented by the fully trained neural network. We then evaluate the trained

neural network on a set of 401 (finer) uniform grid points to compute the approximant values, which are

then compared with the exact function (15) to attain the errors. We can observe from Figure 3(c) that,

with the modBIP pre-training of the random coefficients, the ELM error is essentially independent of Rm,

although some fluctuations with respect to Rm can be observed in certain cases. This insensitivity to Rm

is a common characteristic of the combined ELM/modBIP method, which will be observed repeatedly in

subsequent numerical experiments.

Figures 4 and 5 are comparisons of the ELM errors of the function approximation problem obtained

with three configurations: no pre-training of the random coefficients, and with pre-training of the random

coefficients by the BIP algorithm [33] and by the current modBIP algorithm. As mentioned before, the

network architecture is characterized by [1, 100, 1], with the tanh activation function and Q = 121 uniform

collocation points as the training data points. In this set of tests the initial random coefficients are generated
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Figure 5: Function approximation: The maximum and rms errors in the domain of the ELM approximant
as a function of Rm, attained with (a) no pre-training, (b) BIP pre-training, and (c) modBIP pre-training
of the random coefficients.

with Rm either fixed at Rm = 50 or varied systematically. In the case without pre-training, the initial random

coefficients are directly used in ELM for computing the training parameters and the approximation function.

In the cases with pre-training, the initial random coefficients are pre-trained by BIP or modBIP first, and

the pre-trained hidden-layer coefficients are then used in ELM for computing the approximation function.

With BIP, we employ a normal distribution for generating the target samples for each hidden-layer node,

with a random mean from [−1, 1] and a standard deviation 0.5, as described in [33]. The inverse of tanh is

then applied to the target samples, which are then used to compute the mapping coefficients in BIP [33].

With modBIP pre-training, we employ Sc = Sb/2 and Sb = 10 in Algorithm 1.

Figure 4 compares profiles of the absolute error of the ELM approximant obtained without pre-training,

with BIP pre-training, and with modBIP pre-training of the random coefficients. The initial random co-

efficients are generated with Rm = 50 in this set of tests. The error levels of the ELM result with BIP

pre-training and without pre-training are largely comparable, both on the order of 10−3. In contrast, the

error level of the ELM result with the modBIP pre-training is considerably lower, on the order of 10−9.

This indicates that the combined ELM/modBIP method is markedly more accurate than the ELM methods
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Figure 6: Function approximation (non-monotonic activation functions): (a) Residual norm of the LLSQ
problem versus Sb, for estimating the best Sb in modBIP. The maximum and rms errors of the ELM solution
as a function of Rm obtained using (b) the Gaussian and (c) the swish activation functions, with the random
coefficients pre-trained by modBIP.

without pre-training and with the BIP pre-training of the random coefficients.

Figure 5 shows the maximum and root-mean-squares (rms) errors in the domain of the ELM approximants

obtained without pre-training and with BIP and modBIP pre-training of the random coefficients. In this set

of tests, Rm is varied systematically between 0.1 and 100, and the maximum/rms errors of the ELM solution

corresponding to the initial random coefficients generated on [−Rm, Rm], with and without pre-training,

are computed and collected. Without pre-training of the random coefficients, the ELM accuracy exhibits

a strong dependence on Rm. It produces quite accurate results in a range of moderate Rm values, while

outside this range the accuracy can be quite poor; see Figure 5(a). With BIP and modBIP pre-training

of the random coefficients, the error of the ELM result is observed to be largely independent of Rm. The

ELM error level corresponding to the modBIP pre-training is considerably smaller than that of the BIP

pre-training (see Figures 5(b,c)).

A prominent advantage of modBIP over BIP lies in that modBIP does not place any constraint on the

activation function, while BIP requires the activation function to be invertible. So modBIP can be applied

with many activation functions with which BIP breaks down. Two such examples are provided in Figure

6, with the Gaussian and the swish [12] activation functions. Neither of these two functions has an inverse.

Here the neural network has the same architecture as before, but the activation function for the hidden

layer has been changed to the Gaussian function (σ(x) = e−x
2

) or the swish function (σ(x) = x/(1 + e−x)).

The initial random coefficients are generated with a fixed Rm = 50 (plot (a)) or a varying Rm (plots (b,c)),

and pre-trained by modBIP. We employ the same training data points as before (Q = 121), and Sc = Sb/2

in modBIP. Figure 6(a) shows the LLSQ residual norms for estimating the best Sb, suggesting a value

around Sb ≈ 20 with the Gaussian function and around Sb ≈ 24 with the swish function. Figures 6(b,c)

show the maximum and rms errors in the domain of the ELM/modBIP approximant as a function of Rm,

corresponding to the Gaussian activation function (with Sb = 20) and to the swish activation function (with

Sb = 24). The ELM/modBIP results exhibit a high accuracy (error level around 10−10 ∼ 10−7), which is

insensitive to Rm (or the initial random coefficients). It should be noted that the BIP algorithm breaks

down when used with these activation functions, because they do not have an inverse.
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Figure 7: Function approximation (3 hidden layers in neural network): (a) The LLSQ residual norm versus
Sb, for estimating the best Sb in modBIP. (b) Distribution of the absolute error of the ELM/modBIP
approximant. The maximum/rms errors of the ELM/modBIP approximant as a function of (c) Rm, (d) the
number of collocation points Q, and (e) the number of training parameters M . Q is fixed at Q = 150 in
(a,b,c,e) and varied in (d). M is fixed at M = 100 in (a,b,c,d) and varied in (e). Rm is fixed at Rm = 50 in
(a,b,d,e) and varied in (c). Sb is varied in (a) and fixed at Sb = 3.5 in (b,c,d,e).
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Figure 8: Function approximation (7 hidden layers in neural network): (a) The LLSQ residual norm versus
Sb, for estimating the best Sb in modBIP. (b) Distribution of the absolute error of the ELM/modBIP
approximant. The maximum/rms errors of the ELM/modBIP approximant as a function of (c) Rm, (d) the
number of collocation points Q, and (e) the number of training parameters M . Q is fixed at Q = 150 in
(a,b,c,e) and varied in (d). M is fixed at M = 100 in (a,b,c,d) and varied in (e). Rm is fixed at Rm = 50 in
(a,b,d,e) and varied in (c). Sb is varied in (a) and fixed at Sb = 1.7 in (b,c,d,e).
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The results presented so far are obtained with a single hidden layer in the neural network. Let us

next investigate the performance of the ELM/modBIP method with neural networks containing multiple

hidden layers. Figures 7 and 8 display ELM/modBIP results obtained with 3 and 7 hidden layers in the

neural network, respectively. The network architecture is characterized by the vectors [1, 40, 40,M, 1] and

[1, 40, 40, 40, 40, 40, 40,M, 1] in these two cases, respectively, where M denotes the number of training pa-

rameters and is either fixed at M = 100 or varied between M = 20 and M = 200. The activation function is

tanh in all hidden layers, and the output layer is linear. We employ Q uniform grid (collocation) points in the

domain as the training data points, with Q either fixed at Q = 150 or varied between Q = 10 and Q = 300.

The initial hidden-layer coefficients are set to uniform random values generated on [−Rm, Rm], with Rm

either fixed at Rm = 50 or varied between Rm = 0.1 and Rm = 100. These initial random coefficients are

pre-trained by modBIP with Sc = Sb/2.

Figure 7 illustrates the ELM/modBIP results with three hidden layers in the neural network. The plot (a)

shows the LLSQ residual norms for estimating the best Sb in modBIP, suggesting a value around Sb ≈ 3.5.

The plot (b) depicts the error distribution of the ELM/modBIP approximant against the actual function

(15). The plots (c,d,e) show the maximum and rms errors in the domain of the ELM/modBIP appximant

as a function of Rm, the number of training collocation points Q, and the number of training parameters

M . The specific parameter values employed for each plot are provided in the caption of Figure 7.

Figure 8 shows the corresponding ELM/modBIP results obtained with seven hidden layers in the neural

network. The LLSQ residual norms in plot (a) suggest a value around Sb ≈ 1.7 for modBIP, which has been

employed to attain the error distribution and the maximum/rms errors of the ELM/modBIP in the plots

(b) to (e). The specific parameter values for each case are provided in the caption of this figure.

The results in Figures 7 and 8 indicate that the combined ELM/modBIP method produces highly accurate

results with multiple hidden layers in the neural network. The best Sb for modBIP (with Sc = Sb/2) appears

to decrease with increasing number of hidden layers in the neural network. The ELM/modBIP errors are

not sensitive to the initial random coefficients, similar to what has been observed with a single hidden layer

in the network. These errors decrease approximately exponentially as the number of collocation points or

the number of training parameters increases, until they essentially saturate when the number of collocation

points or training parameters becomes sufficiently large.

3.2 Poisson Equation

We next consider the two-dimensional (2D) domain Ω = {(x, y) | x ∈ [0, 2], y ∈ [0, 2]}, and test the combined

ELM/modBIP method using the boundary value problem with the Poisson equation on Ω:

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), (16a)

u(0, y) = g1(y), (16b)

u(2, y) = g2(y), (16c)

u(x, 0) = h1(x), (16d)

u(x, 2) = h2(x), (16e)
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Figure 9: Poisson equation: (a) Distribution of the exact solution. (b) LLSQ residual norm as a function
of Sb, for estimating the best Sb in modBIP. (c) The maximum error of the ELM/modBIP solution as a
function of Rm. Rm = 10 in (b) and is varied in (c). Q = 25× 25 in (c), and takes several values in (b). Sb
takes several values in (c), and is varied in (b).

where u(x, y) is the field function to be solved for, f(x, y) is a prescribed source term, and g1, g2, h1 and h2

are the Dirichlet boundary distributions. We consider the following manufactured solution to this problem,

u(x, y) = −
[

3

2
cos

(
πx+

7π

20

)
+ 2 cos

(
2πx− π

4

)] [3

2
cos

(
πy +

7π

20

)
+ 2 cos

(
2πy − π

4

)]
. (17)

Accordingly, the source term f and the boundary distributions are chosen such that the expression (17)

satisfies the system (16). Figure 9(a) illustrates the distribution of this analytic solution.

We employ the combined ELM/modBIP method to solve the system (16); see Section 2.3. We first

consider a single hidden layer in the neural network, with an architecture given by [2, 500, 1], the tanh

activation function for the hidden layer, and a linear output layer. The input layer (2 nodes) represents the

coordinates x and y, and the output layer (1 node) represents the field solution u(x, y). We employ a set of

Q = 25× 25 uniform grid (collocation) points as the training data points, i.e. with 25 points in both x and

y directions (see equation (10)), which constitute the input data into the neural network. The hidden-layer

coefficients in the neural network are initialized to uniform random values generated on [−Rm, Rm], with

Rm either fixed at Rm = 10 or varied between Rm = 0.1 and Rm = 100 in the following tests. The initial

random coefficients are pre-trained by modBIP with Sc = Sb/2 and Sb determined by the procedure given

in Remark 2.2.

Figure 9(b) shows the residual norm of the linear least squares (LLSQ) problem as a function of Sb in

modBIP, where the initial random coefficients are generated with Rm = 10. The results corresponding to

Q = 25 × 25 and several other sets of collocation points are included, which all suggest a value around

Sb ≈ 3 for modBIP. Figure 9(c) shows the maximum and rms errors in the domain of the ELM/modBIP

solution as a function of Rm, corresponding to several Sb values around Sb = 3 in modBIP (with Sc = Sb/2),

where Q = 25× 25 collocation points have been employed. The errors of the ELM/modBIP method can be

observed to be insensitive to Rm (or the initial random coefficients).

Figure 10 compares distributions of the absolute error of the ELM solution obtained with no pre-training

and with the BIP and the modBIP pre-training of the random coefficients in the neural network. Here we

have employed a network architecture given by [2, 500, 1], the tanh activation function for the hidden layer,
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Figure 10: Poisson equation: Distributions of the absolute error of the ELM solution computed with (a) no
pre-training, (b) BIP pre-training, and (c) modBIP pre-training of the random coefficients.
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Figure 11: Poisson equation: the maximum and rms errors in the domain as a function of Rm, obtained
with (a) no pre-training, (b) BIP pre-training, and (c) modBIP pre-training of the random coefficients.

Q = 25 × 25 uniform collocation points, and Rm = 10 for generating the initial random coefficients. With

BIP, we employ a normal distribution for the target samples, with a random mean generated on [−1, 1] from

a uniform distribution and a standard deviation 0.5 [33]. With modBIP we employ Sb = 3 and Sc = Sb/2

in the algorithm. One can observe that the ELM result is inaccurate without pre-training of the random

coefficients. With both BIP and modBIP pre-training of the random coefficients, the ELM method produces

accurate solutions to the Poisson equation. The ELM/modBIP solution is markedly more accurate than

that of ELM/BIP.

Figure 11 is a further comparison of the cases with no pre-training and with BIP and modBIP pre-training

of the random coefficients. Here we vary Rm systematically, and for each Rm we initialize the hidden-layer

coefficients to uniform random values from [−Rm, Rm], which are then pre-trained by BIP or modBIP and

used in the ELM computations. The other parameter values are identical to those for Figure 10. The three

plots show the maximum and rms errors in the domain of the ELM solution as a function of Rm, obtained

with no pre-training and with the BIP and modBIP pre-training of the random coefficients. With no pre-

training, Rm is observed to strongly influence the accuracy of the ELM solution. With both BIP and modBIP

pre-training of the random coefficients, the accuracy of the ELM solution becomes essentially independent

of Rm. The error level of the ELM/modBIP solution is markedly lower than that of the ELM/BIP solution.

Figure 12 illustrates the ELM/modBIP results attained with the Gaussian and the swish activation
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Figure 12: Poisson equation (non-monotonic activation functions): (a) LLSQ residual norms versus Sb, for
estimating the best Sb in modBIP with the Gaussian and swish activation functions. Error distributions of the
ELM/modBIP solution obtained with (b) Gaussian and (c) swish activation functions. Maximum/rms errors
of the ELM/modBIP solution versus Rm, obtained with (d) Gaussian and (e) swish activation functions.
Rm = 10 in (a,b,c) and is varied in (d,e). Sb = 5 in (b,d) and Sb = 7 in (c,e).

functions for the hidden layers. It should be noted that the BIP algorithm [33] breaks down with these

activation functions because they do not have an inverse. In these tests, we have employed a network

architecture [2, 500, 1], Q = 25 × 25 uniform collocation points, either a fixed Rm = 10 or a varying Rm

for generating the initial random coefficients, and Sc = Sb/2 in modBIP. Figure 12(a) shows the LLSQ

residual norms for estimating the Sb parameter in modBIP, which suggest a value around Sb ≈ 5 with the

Gaussian function and a value around Sb ≈ 7 with the swish function. Figures 12(b) and (d) show the error

distribution of the ELM/modBIP solution with Rm = 10, and its maximum/rms errors corresponding to the

initial random coefficients generated with different Rm, computed using the Gaussian activation function

with Sb = 5 in modBIP. Figures 12(c) and (e) show the corresponding ELM/modBIP results computed using

the swish activation function with Sb = 7 in modBIP. These data indicate that the combined ELM/modBIP

method produces highly accurate results with these activation functions, and that its accuracy is insensitive

to the initial random coefficients.

Figure 13 compares the accuracy of the combined ELM/modBIP method and the ELM method with no

pre-training of the random coefficients, and also examines the computational cost of the modBIP pre-training

of the random coefficients. In this set of tests, we employ a neural network architecture [2,M, 1], where the

number of training parameters M is either fixed at M = 500 or varied between M = 50 and M = 600. We

employ the tanh activation function for the hidden layer, and Q = Q1×Q1 uniform collocation points in the
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Figure 13: Poisson equation: The maximum/rms errors of the ELM/modBIP solution as a function of (a)
the number of collocation points in each direction and (b) the number of training parameters, attained with
no pre-training and with modBIP pre-training of the random coefficients. The modBIP pre-training time of
the random coefficients, and the ELM training time of the neural network, as a function of (c) the number
of collocation points in each direction and (d) the number of training parameters.

domain, where Q1 denotes the number of collocation points in x/y directions and is either fixed at Q1 = 35

or varied between Q1 = 5 and Q1 = 50. The initial random coefficients are generated with Rm = 10, and

we employ Sb = 3 and Sc = Sb/2 in modBIP. Figure 13(a) shows the maximum and rms errors of the ELM

solutions as a function of Q1, obtained without pre-training and with modBIP pre-training of the random

coefficients and with a fixed M = 500. Figure 13(b) shows the maximum/rms ELM errors as a function of

M , obtained with no pre-training and with modBIP pre-training and with a fixed Q1 = 35 for the collocation

points. The ELM solution obtained without pre-training the random coefficients generated with Rm = 10

is not accurate, and increasing the number of collocation points or the training parameters results in little

or no improvement in the accuracy. In contrast, the errors of the combined ELM/modBIP method decrease

exponentially as the number of collocation points per direction Q1 or the number of training parameters M

increases. The errors are observed to saturate at a level around 10−8 ∼ 10−6 as Q1 increase beyond 25 for

this case.

Figures 13(c) and (d) show the corresponding computational cost, i.e. the modBIP pre-training time of

the random coefficients and the ELM training time of the neural network, as a function of the number of

collocation points in each direction (Q1) and the number of training parameters (M), respectively. Both the

modBIP pre-training time and the ELM network training time increase with increasing number of collocation

points in the domain and increasing number of training parameters in the neural network. But the modBIP
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Figure 14: Poisson equation (3 hidden layers in neural network): (a) LLSQ residual norms versus Sb, for
estimating the best Sb in modBIP. (b) Error distribution of the ELM/modBIP solution. Maximum/rms
errors of the ELM/modBIP solution as a function of (c) Rm, and (d) the number of collocation points in
each direction. Sb = 1 in (b,c,d) and is varied in (a). Rm = 10 in (a,b,d) and is varied in (c). Q = 25× 25
in (a,b,c) and is varied in (d). M = 500 in (a,b,c,d).
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Figure 15: Poisson equation (5 hidden layers in neural network): (a) LLSQ residual norm for estimating
the best Sb in modBIP. (b) Error distribution of the ELM/modBIP solution. The maximum/rms errors of
ELM/modBIP solution as a function of (c) Rm, and (d) the number of collocation points in each direction.
Sb = 0.8 in (b,c,d) and is varied in (a). Rm = 10 in (a,b,d) and is varied in (c). Q = 25× 25 in (a,b,c) and
is varied in (d). M = 500 in (a,b,c,d).

pre-training cost increases much more slowly than the latter. The modBIP pre-training cost of the random

coefficients is only a fraction of the ELM network training cost. For example, in the range of collocation

points tested here, the modBIP pre-training time is about 2 ∼ 10% of the ELM network training time. These

results suggest that the modBIP pre-training of the random coefficients is not significant in terms of the

overhead it induces. It should be noted that the modBIP pre-training cost can be further reduced, because

logically pre-training the random coefficients only needs to be performed once (the first time) for a given a

network architecture and the input collocation points. The pre-trained hidden-layer random coefficients can

be saved and used directly for subsequent ELM computations.

We next test the combined ELM/modBIP method for solving the Poisson equation with multiple hidden

layers in the neural network. Figures 14 and 15 illustrate the ELM/modBIP simulation results obtained using

neural networks containing 3 hidden layers, with an architecture [2, 50, 50, 500, 1], and 5 hidden layers, with

an architecture [2, 50, 50, 50, 50, 500, 1], respectively. The activation function is tanh in the hidden layers. In

these tests the initial random coefficients are generated on [−Rm, Rm] with Rm either fixed at Rm = 10 or

varied between Rm = 0.1 and Rm = 100. We employ Q = Q1 ×Q1 uniform collocation points, where Q1 is

fixed at Q1 = 25 or varied between Q1 = 5 and Q1 = 50. In modBIP we employ Sc = Sb/2 and determine

Sb based on the procedure from Remark 2.2.
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Figure 16: Poisson equation: The modBIP pre-training time of the random coefficients and the ELM training
time of the neural network as a function of the number of collocation points in each direction, obtained with
3 hidden layers (a) and 5 hidden layers (b) in the neural network. The network architecture of (a) is
[2, 50, 50, 500, 1] and the parameter values correspond to those of Figure 14(d). The network architecture of
(b) is [2, 50, 50, 50, 50, 500, 1] and the parameter values correspond to those of Figure 15(d).

Figure 14(a) shows the LLSQ residual norms for estimating Sb, suggesting a value around Sb ≈ 1 for

modBIP with three hidden layers in the neural network. Figures 14(b) to (d) show the error distribution, and

the maximum/rms errors in the domain of the ELM/modBIP solution as a function of Rm and Q1, obtained

with Sb = 1 in modBIP. The specific parameter values for each plot are provided in the caption of this

figure. Figure 15(a) shows the LLSQ residual norms computed with 5 hidden layers in the neural network,

suggesting a value around Sb ≈ 0.8 in this case. Figures 15(b,c,d) show the ELM/modBIP results obtained

with 5 hidden layers in the neural network and Sb = 0.8 in modBIP, which correspond to those of Figures

14(b,c,d). These results confirm that the combined ELM/modBIP method produces accurate simulation

results with multiple hidden layers in the neural network. The characteristics of exponential convergence

and insensitivity to Rm are similar to what has been observed with single-hidden-layer neural networks.

Figure 16 is a study of the computational cost of the modBIP pre-training of the random coefficients

and the ELM training of the neural network with multiple hidden layers in the neural network. It shows

the modBIP pre-training time and the ELM network training time as a function of the number of colloca-

tion points in each direction, corresponding to 3 and 5 hidden layers in the neural network. The network

architecture and the parameter values in Figures 16(a) and (b) are identical to those of Figure 14(d) and

Figure 15(d), respectively. In the range of collocation points tested here, the modBIP pre-training cost is

approximately 2 ∼ 8% of the ELM network training cost with 3 hidden layers, and approximately 2 ∼ 7%

of the ELM network training cost with 5 hidden layers in the neural network.

3.3 Wave Equation

We next test the ELM/modBIP method using the one-dimensional second-order wave equation (plus time).

Consider the spatial-temporal domain, Ω = {(x, t) | x ∈ [0, 5], t ∈ [0, 10]}, and the initial/boundary-value
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Figure 17: Wave equation: (a) Distribution of the exact solution in the spatial-temporal plane. (b) The
maximum residual norm of the LLSQ problem versus Sb, for estimating the best Sb in modBIP. (c) The
maximum error in the overall domain as a function of Rm, corresponding to several Sb values in modBIP
for pre-training the random coefficients.

problem with the wave equation on this domain,

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0, (18a)

u(0, t) = u(5, t), (18b)

∂

∂x
u(0, t) =

∂

∂x
u(5, t), (18c)

u(x, 0) = 2 sech3

[
3

δ0
(x− x0)

]
, (18d)

∂u

∂t

∣∣∣∣
(x,0)

= 0, (18e)

where u(x, t) is the field solution to be solved for, periodic boundary conditions are imposed on x = 0 and

5, c is the wave speed, x0 is the initial peak location of the wave, and the constant δ0 controls the width of

the wave profile. The constant parameters assume the following values for this problem:

c = 2, δ0 = 2, x0 = 3.

This problem has the following solution,
u(x, t) = sech3

[
3

δ0

(
−5

2
+ ξ

)]
+ sech3

[
3

δ0

(
−5

2
+ η

)]
,

ξ = mod

(
x− x0 + ct+

5

2
, 5

)
, η = mod

(
x− x0 − ct+

5

2
, 5

)
,

(19)

where mod refers to the modulo operation. The two terms in this solution represent the leftward- and

rightward-traveling waves, respectively. Figure 17(a) shows the distribution of this solution in the spatial-

temporal plane.

To simulate this problem, we employ the block time-marching scheme and the local extreme learning

machines (locELM) developed in [6]. We first divide the spatial-temporal domain Ω along the temporal

direction into 20 uniform time blocks, and the system (18) is computed on each time block individually and

successively (see Remark 2.7). We partition the spatial-temporal domain of each time block into 4 uniform
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sub-domains along the x direction, and represent the field solution u(x, t) on each sub-domain by a local

feed-forward neural network [6]. C1 continuity conditions are imposed on the sub-domain boundaries. The

configuration of the local neural networks follows that of the ELM. The weight/bias coefficients in the hidden

layers of the local neural networks are initialized as uniform random values generated on [−Rm, Rm], which

are pre-trained by modBIP and then fixed afterwards. The output layers of the local neural networks are

linear (with zero bias), and the weight coefficients therein are the training parameters and can be determined

by a least squares computation. The local neural networks are coupled with one another due to the C1

continuity conditions [6], and need to be trained together as a whole system. By enforcing the system of

equations, boundary/initial conditions, and the C1 continuity conditions on a set of collocation points inside

each sub-domain and on the domain and sub-domain boundaries, we arrive at a system of linear algebraic

equations about the training parameters, which can be solved by the linear least squares method. We refer

to [6] for more detailed discussions of the locELM method and the block time marching scheme.

After the random coefficients in the local neural networks are initialized, we use modBIP to pre-train

the random coefficients in each local neural network (see Algorithm 1), and then employ the pre-trained

random coefficients in the locELM computation for the training parameters based on the linear least squares

method. We refer to the overall method as the combined locELM/modBIP method.

We first consider a single hidden layer in the local neural networks, whose architecture each is character-

ized by [2, 250, 1] and with tanh as the activation function for the hidden layers. The two nodes in the input

layer represent the spatial-temporal coordinates x and t, and the single node in the output layer represents

the field function u(x, t) on the corresponding sub-domain. We employ Q = 25 × 25 uniform collocation

points on each sub-domain, and Sc = Sb/2 in the modBIP algorithm. Sb in modBIP is determined by the

procedure from Remark 2.2.

Figure 17(b) shows the maximum residual norms, among the 20 time blocks, of the linear least squares

(LLSQ) problem as a function of Sb, for estimating the best Sb in modBIP. In this set of tests, the initial

random coefficients are generated with Rm = 50. The data suggest a value around Sb ≈ 2 for modBIP. Figure

17(c) shows the maximum error in the entire spatial-temporal domain of the locELM/modBIP solution as

a function of Rm, obtained with several Sb values in modBIP. We observe the familiar insensitivity of the

locELM/modBIP error with respect to Rm (or the initial random coefficients) in the neural network.

Figure 18 compares distributions in the spatial-temporal plane of the absolute error of the locELM

solution obtained with no pre-training, and with BIP and modBIP pre-training of the random coefficients

in the local neural networks. In this set of tests, we employ local neural networks with an architecture

[2, 250, 1], the tanh activation function for the hidden layers, and Q = 31× 31 uniform collocation points on

each sub-domain. The initial random coefficients in the local neural networks are generated with Rm = 50.

With BIP, we generate target samples by a normal distribution with a random mean from [−1, 1] and a

standard deviation 0.5 [33]. With modBIP we employ Sb = 2 and Sc = Sb/2 in Algorithm 1. The locELM

solution obtained without pre-training of the random coefficients generated by Rm = 50 exhibits no accuracy

for this problem (Figure 18(a)). On the other hand, the locELM solutions obtained with BIP and modBIP

pre-training are quite accurate, and the combined locELM/modBIP solution is observed to be notably more
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(a) (b) (c)

Figure 18: Wave equation: Distributions of the absolute error of the locELM solution obtained with (a) no
pre-training, (b) BIP pre-training, and (c) modBIP pre-training of the random coefficients.
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Figure 19: Wave equation: Maximum and rms errors of the locELM solution in the domain as a function
of Rm, obtained with (a) no pre-training, (b) BIP pre-training, and (c) modBIP pre-training of the random
coefficients.

accurate than the locELM/BIP one (with error levels 10−5 versus 10−4).

Figure 19 is a further comparison of the locELM methods with no pre-training and with BIP and modBIP

pre-training of the random coefficients. Plotted here are the maximum and rms errors in the overall domain

of the locELM solution obtained with these three cases as a function of Rm for generating the initial random

coefficients. The local neural-network architecture and related parameters, the collocation points, and the

parameters for the BIP and modBIP algorithms are the same as those for Figure 18, except that here the Rm

is varied systematically between Rm = 0.1 and Rm = 100 in this set of computations. Without pre-training

of the initial random coefficients, one can observe a strong influence of Rm on the locELM solution accuracy

(Figure 19(a)). On the other hand, the pre-training of the random coefficients by either modBIP or BIP

essentially eliminates the dependence of the solution error on Rm (i.e. the initial random coefficients). The

combined locELM/modBIP method is again observed to be more accurate than locELM/BIP.

Figure 20 demonstrates the ability of the current modBIP algorithm to work with non-invertible activation

functions. By contrast, the BIP algorithm breaks down if such activation functions are present in the

neural network. Specifically, this figure examines the locELM/modBIP simulation results obtained using
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Figure 20: Wave equation (non-monotonic activation functions): (a) The LLSQ maximum residual norm
for estimating Sb in modBIP, with the Gaussian and GELU [18] activation functions. Error distributions of
the locELM/modBIP solution obtained with (b) the Gaussian, and (c) the GELU activation functions. The
maximum/rms errors of the locELM/modBIP solution as a function of Rm obtained using (d) the Gaussian,
and (e) the GELU activation functions. Sb = 3 in (b,d) with the Gaussian function, and Sb = 4 in (c,e) with
GELU, and Sb is varied in (a). Rm = 50 in (a,b,c) and is varied in (d,e).

the Gaussian function and the Gaussian error linear unit (GELU) [18] as the activation functions in the

hidden layers of the local neural networks. Here each local neural network has an architecture [2, 250, 1],

with Gaussian or GELU as the activation function for the hidden layer, and we employ Q = 31× 31 uniform

collocation points on each sub-domain. The initial random coefficients in the local neural networks are

generated with either a fixed Rm = 50 or with Rm varied between Rm = 0.1 and Rm = 100, and are

pre-trained using modBIP with Sc = Sb/2. Figure 20(a) shows the LLSQ maximum residual norms (among

the 20 time blocks) for estimating the Sb in modBIP, which suggest a value around Sb ≈ 3 with the Gaussian

activation function and a value around Sb ≈ 4 with the GELU activation function. Figures 20(b) and (c)

show the error distributions the locELM/modBIP solution obtained using the Gaussian and GELU activation

functions, respectively, with a fixed Rm = 50 for generating the initial random coefficients. Figures 20(d)

and (e) are the maximum and rms errors of the locELM/modBIP solution in the overall domain as a function

of Rm, obtained with the Gaussian and GELU activation functions, respectively. In the plots (b)-(d), we

employ Sb = 3 with the Gaussian function and Sb = 4 with GELU in the modBIP algorithm. It is evident

that the combined locELM/modBIP produces accurate simulation results with the Gaussian and GELU

activation functions, and that its errors are insensitive to the initial random coefficients.

Finally, Figure 21 is an illustration of the locELM/modBIP results with 3 hidden layers in the local

neural networks. In this group of tests, we employ an architecture [2, 50, 50,M, 1] in all the local neural

networks with the tanh activation function for the hidden layers, where M is either fixed at M = 250 or
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Figure 21: Wave equation (3 hidden layers in neural network): (a) The LLSQ maximum residual norm
for estimating the best Sb in modBIP. The maximum and rms errors of the locELM/modBIP solution as
a function of (b) Rm, and (c) the number of training parameters per sub-domain. (d) The modBIP pre-
training time and the ELM network training time as a function of the number of training parameters per
sub-domain. Sb = 0.8 in (b,c,d), and is varied in (a). Rm = 50 in (a,c,d), and is varied in (b). Local neural
network architecture is [2, 50, 50,M, 1], with M = 250 in (a,b) and varied in (c,d). Q = 31× 31 in (a,b,c,d).

varied between M = 50 and M = 400. We again employ 20 uniform time blocks, 4 uniform sub-domains

within each time block, and a set of Q = 31 × 31 uniform collocation points on each sub-domain. The

initial random coefficients are generated with Rm either fixed at Rm = 50 or varied between Rm = 0.1 and

Rm = 100. Figure 21(a) shows the LLSQ maximum residual norm for estimating Sb, suggesting a value

around Sb ≈ 0.8 in modBIP. Figures 21(b) and (c) show the maximum and rms errors in the overall domain

of the locELM/modBIP solution as a function of Rm and the number of training parameters per sub-domain

M , respectively. The results signify the insensitivity of the locELM/modBIP errors with respect to the initial

random coefficients, and the exponential decrease in the errors with increasing training parameters in the

neural network. Figure 21(d) shows the modBIP pre-training time of the random coefficients and the ELM

training time of the neural network as a function of the number of training parameters per sub-domain.

While both the modBIP pre-training time and the ELM training time grows with increasing number of

training parameters, the growth rate of the modBIP pre-training time is much slower than the ELM training

time. For example, as the number of training parameters per sub-domain increases from 50 to 400, the

modBIP pre-training time increases from around 1.4 seconds to about 4.2 seconds, while the ELM training

time increases from about 4.8 seconds to about 87 seconds.
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Figure 22: Diffusion equation: (a) Distribution of the exact solution in the spatial-temporal plane. (b) The
maximum residual norm of the linear least squares (LLSQ) problem as a function of Sb, for estimating the
best Sb in modBIP. (c) The maximum error in the domain of the ELM/BIP solution as a function of Rm,
corresponding to several Sb values in modBIP. Rm = 100 in (b) and is varied in (c).

3.4 Diffusion Equation

As another example we test the combined ELM/modBIP method using the unsteady diffusion equation.

Consider the spatial-temporal domain, Ω = { (x, t) | x ∈ [0, 1], t ∈ [0, 10]}, and the following initial/boundary

value problem,

∂u

∂t
− ν ∂

2u

∂x2
= f(x, t), (20a)

u(0, t) = g1(t), (20b)

u(1, t) = g2(t), (20c)

u(x, 0) = h(x), (20d)

where u(x, t) is the field solution to be solved for, the constant ν = 0.01 denotes the diffusion coefficient,

f(x, t) is a prescribed source term, g1 and g2 are the Dirichlet boundary distributions at x = 0 and x = 1,

and h(x) is the initial distribution. We employ the following manufactured solution to this problem,

u(x, t) =

[
2 cos

(
πx+

π

5

)
+

3

2
cos

(
2πx− 3π

5

)][
2 cos

(
πt+

π

5

)
+

3

2
cos

(
2πt− 3π

5

)]
. (21)

Accordingly, the source term f(x, t), the boundary/initial distributions g1, g2 and h are chosen such that the

expression (21) satisfies the system (20). Figure 22(a) shows the distribution of the analytic solution (21) in

the spatial-temporal (x, t) plane.

We employ the block time-marching scheme and the combined ELM/modBIP method to solve the system

(20). We divide the spatial-temporal domain Ω along the temporal direction into 10 uniform time blocks, and

solve the system (20) on each time block individually and successively (see Remark 2.7) using the combined

ELM/modBIP method (see Section 2.3).

Let us first consider the neural network containing a single hidden layer, with the architecture character-

ized by [2, 300, 1], the tanh activation function for the hidden layer and a linear output layer. The input layer
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(a) (b) (c)

Figure 23: Diffusion equation: Distributions of the absolute error of the ELM solution obtained with (a) no
pre-training, (b) BIP pre-training, and (c) modBIP pre-training of the random coefficients.

(2 nodes) denotes the spatial/temporal coordinates (x and t), and the output layer (1 node) represents the

field solution u(x, t). We employ a set of Q = 25× 25 uniform grid (collocation) points on each time block

(25 points in both x and t directions) as the training data points, which constitute the input data into the

neural network. The hidden-layer coefficients in the neural network are initialized to uniform random values

generated on [−Rm, Rm], with Rm either fixed at Rm = 100 or varied between Rm = 0.1 and Rm = 100

in the subsequent tests. The initial random coefficients are pre-trained by modBIP with Sc = Sb/2 and Sb

determined by the procedure discussed in Remark 2.2.

Figure 22(b) shows the LLSQ maximum residual norm among the 10 time blocks for estimating the best

Sb in modBIP, which suggests a value around Sb ≈ 2.5. This set of tests are performed with a fixed Rm = 100

when generating the random coefficients in the neural network. Figure 22(c) plots the maximum error in the

overall domain of the ELM/modBIP solution as a function of Rm, with several Sb values around Sb = 2.5

and Sc = Sb/2 in the modBIP algorithm. The ELM/modBIP solution errors in this and the subsequent

figures are computed as follows. After the neural network has been trained, we evaluate the neural network

on a set of 101 × 101 uniform grid points on each time block to obtain the numerical solution. The exact

solution (21) is evaluated on the same set of grid points in the overall domain. Then the maximum and the

rms errors of the numerical solution against the analytic solution can be computed based these data. The

error of the ELM/modBIP solution can be observed to be insensitive to the initial random coefficients in the

neural network, irrespective of the Sb parameter in modBIP.

In Figures 23 and 24 we compare the ELM method with no pre-training and with the BIP and modBIP

pre-training of the random coefficients in the neural network. In the case with no pre-training, the initial

random coefficients generated on [−Rm, Rm] are directly used in the ELM computation. In the case with

BIP or modBIP pre-training, the initial random coefficients are pre-trained first, and the updated random

coefficients are then used in the ELM computation. With BIP, a normal distribution for the target samples

has been employed with a random mean on [−1, 1] and a standard deviation 0.5 [33]. With modBIP we
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Figure 24: Diffusion equation: The maximum and rms errors of the ELM solution as a function of Rm
obtained with (a) no pre-training, (b) BIP pre-training, and (c) modBIP pre-training of the random coeffi-
cients.

employ Sc = Sb/2 and Sb = 2.5 in the Algorithm 1. Figure 23 shows distributions in the spatial-temporal

plane of the absolute error of the ELM solution obtained with no pre-training and with BIP/modBIP pre-

training of the random coefficients. The initial random coefficients are generated with Rm = 100 in this

set of tests. The ELM solution obtained without pre-training of the random coefficients is totally off and

inaccurate. On the other hand, the ELM solutions with the initial random coefficients pre-trained by BIP

and modBIP are observed to be very accurate. The ELM/modBIP solution is observed to be considerably

more accurate (by two or three orders of magnitude) than the ELM/BIP solution.

Figure 24 shows the maximum and rms errors of the ELM solutions, obtained with no pre-training and

with BIP or modBIP pre-training of the random coefficients, as a function of Rm for generating the initial

random coefficients. The accuracy of the ELM solution without pre-training of the random coefficients

strongly depends on Rm, as is evident from Figure 24(a). In contrast, with the random coefficients pre-

trained by BIP or modBIP, the ELM solution accuracy becomes essentially independent of Rm (Figures

24(b,c)). The data again signify that the ELM/modBIP solution is much more accurate than the ELM/BIP

one.

Figure 25 demonstrates the capability of the combined ELM/modBIP method to work with activation

functions that do not have an inverse. Here we have considered the Gaussian and swish activation functions in

the neural network. We again employ a network architecture [2, 300, 1], with Q = 25×25 uniform collocation

points on each time block. The initial random coefficients are generated with Rm fixed at Rm = 100 or

varied between Rm = 0.1 and Rm = 100. Figure 25(a) shows the LLSQ maximum residual norms for

estimating the Sb in modBIP, which suggest a value around Sb ≈ 3 with the Gaussian activation function

and Sb ≈ 5 with the swish activation function. Figures 25(b) and (c) depict the error distributions in

the spatial-temporal plane of the ELM/modBIP solution corresponding to the Gaussian activation function

(with Sb = 3 in modBIP) and the swish activation function (with Sb = 5 in modBIP). One can observe

that the combined ELM/modBIP method, especially with the Gaussian activation function, has produced

very accurate results. The initial random coefficients are generated with Rm = 100 in the plots (a,b,c).

Figures 25(d) and (e) show the maximum/rms errors in the overall domain of the ELM/modBIP solution as

a function of Rm, corresponding to the Gaussian and swish activation functions, respectively. The solution
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Figure 25: Diffusion equation (non-monotonic activation functions): (a) The LLSQ maximum residual norm
versus Sb, for estimating the best Sb in modBIP, with the Gaussian and swish activation functions. Distri-
butions of the absolute error of the ELM/modBIP solution obtained with (b) the Gaussian, and (c) swish
activation functions. The maximum/rms errors in the domain as a function of Rm corresponding to (d) the
Gaussian, and (e) swish activation functions. Rm = 100 in (a,b,c) and is varied in (d,e). Sb = 3 in (b,d) for
the Gaussian function, and Sb = 5 in (c,e) for the swish function, and Sb is varied in (a).

errors are not sensitive to the initial random coefficients in the neural network. It should be noted that the

BIP algorithm breaks down with the type of activation functions tested here.

Finally, Figure 26 illustrates the ELM/modBIP simulation results using multiple hidden layers in the

neural network. Here 10 uniform time blocks are used in the domain for block time marching. The neural

network architecture is characterized by [2, 50, 50,M, 1], where the number of training parameters M is fixed

at M = 300 or varied between M = 50 and M = 600. The tanh activation function is used for all the hidden

layers. We employ Q = Q1 ×Q1 uniform collocation points within each time block, where Q1 is either fixed

at Q1 = 25 or varied between Q1 = 5 and Q1 = 50. The initial random coefficients are generated with a fixed

Rm = 100 or with Rm varied between Rm = 0.1 and Rm = 100. These random coefficients are pre-trained

by modBIP with Sc = Sb/2 and Sb estimated by the procedure in Remark 2.2. The specific parameter

values for each plot are provided in the caption of the figure. Figure 26(a) shows the LLSQ residual norms

versus Sb for estimating the best Sb in modBIP, which suggests a value around Sb ≈ 0.8 in the algorithm.

Figure 26(b) illustrates the error distribution of the ELM/modBIP solution in the spatial-temporal plane,

demonstrating that the method produces accurate simulation results. Figure 26(c) depicts the maximum and

rms errors in the overall domain of the ELM/modBIP solution as a function of Rm for generating the initial

random coefficients, indicating that the accuracy of the ELM/modBIP method is not sensitive to the initial
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Figure 26: Diffusion equation (3 hidden layers in neural network): (a) The maximum residual norm of the
LLSQ problem for estimating the Sb in modBIP. (b) Distribution of the absolute error of the ELM/modBIP
solution. The maximum and rms errors in the domain as a function of (c) Rm, and (d) the number of training
parameters M . (e) The modBIP pre-training time and the ELM network training time as a function of the
number of training parameters M . Sb = 0.8 in (b,c,d,e) and is varied in (a). Rm = 100 in (a,b,d,e) and is
varied in (c). M = 300 in (a,b,c) and is varied in (d,e). Q = 25× 25 in (a,b,c,d,e).

random coefficients with multiple hidden layers in the neural network. Figure 26(d) shows the maximum/rms

errors of the ELM/modBIP solution as a function of the number of training parameters (M), indicating an

exponential decrease in the errors (before saturation) with this method. Figure 26(e) shows the modBIP

pre-training time and the ELM network training time as a function of the number of training parameters in

the neural network. The modBIP pre-training time grows very slowly as the number of training parameters

increases. Its growth rate is much smaller compared with that of the ELM training time.

3.5 Burgers’ Equation

In the last example we test the ELM/modBIP method using a nonlinear PDE, the viscous Burgers’ equation.

Consider the spatial-temporal domain Ω = {(x, t) | x ∈ [0, 2], t ∈ [0, 5]} and the following initial/boundary

value problem with the Burgers’ equation on Ω,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ f(x, t), (22a)

u(0, t) = g1(t), (22b)

u(2, t) = g2(t), (22c)

u(x, 0) = h(x), (22d)
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Figure 27: Burgers’ equation: (a) Distribution of the exact solution. (b) The residual norm of the nonlinear
least squares (NLLSQ) problem as a function of Sb, for estimating the best Sb in modBIP. (c) The maximum
error of the locELM/modBIP solution in the domain Ω as a function of Rm, corresponding to several Sb
values in modBIP. Rm = 50 in (b) and is varied in (c).

where u(x, t) is the field to be solved for, ν = 0.01, f(x, t) is a prescribed source term, and g1(t), g2(t) and

h(x) are the boundary and initial conditions. We choose the source term f(x, t) and the boundary/initial

conditions g1, g2 and h such that the following expression satisfies the system (22),

u =
(

1 +
x

20

)(
1 +

t

20

)[
3

2
cos

(
2πx− 3

5
π

)
− 2 sin (πx)

] [
3

2
cos

(
2πt− 3

5
π

)
− 2 sin (πt)

]
. (23)

Figure 27(a) shows the distribution of this solution in the spatial-temporal domain Ω. We use this analytic

solution to test the performance of the ELM/modBIP method in this subsection.

We employ the block time-marching scheme and the local extreme learning machine (locELM) method

from [6] to solve this nonlinear problem (see Remark 2.8). We divide the domain Ω along the temporal

direction into 20 uniform time blocks (with a block size 0.25 in time), and solve the system (22) on each time

block individually and successively (see Remark 2.7). On each time block, we partition the spatial-temporal

domain into 2 uniform sub-domains along the x direction. The field solution u(x, t) on each sub-domain is

represented by a local feed-forward neural network, and C1 continuity conditions (along x) are imposed on

the common boundary of the two sub-domains. The hidden-layer coefficients in each local neural network

are initialized to uniform random values generated on [−Rm, Rm], which are then pre-trained by modBIP

and fixed afterwards. The output layers of the local neural networks are assumed to be linear with zero bias,

whose weight coefficients constitute the training parameters of the overall neural network. By enforcing

the system (22) and the C1 continuity conditions on a set of collocation points in each sub-domain and on

the domain and sub-domain boundaries, we arrive at a system of nonlinear algebraic equations about the

training parameters. This nonlinear algebraic system is solved by the nonlinear least squares method with

perturbations (NLLSQ-perturb); see Remark 2.8 and [6].

Let us first consider local neural networks with a single hidden layer. We use an architecture [2, 200, 1]

for each local neural network, with the tanh activation function for the hidden layer. The two nodes in the

input layer represent the spatial/temporal coordinates x and t of the sub-domain. The single output node

represents the solution u(x, t) on the corresponding sub-domain. We employ a uniform set of Q = 20 × 20
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(a) (b) (c)

Figure 28: Burgers’ equation: Distributions of the absolute error of the locELM solution obtained with (a)
no pre-training, (b) BIP pre-training, and (c) modBIP pre-training of the random coefficients.

collocation points on each sub-domain, and Sc = Sb/2 in the modBIP algorithm. The Sb parameter in

modBIP is determined by the procedure outlined in Remark 2.2, with modifications as given in Remark 2.8

for nonlinear problems.

Figure 27(b) shows the residual norm of the nonlinear algebraic system associated with the nonlinear

least squares (NLLSQ) solution, as a function of Sb, for estimating the best Sb in modBIP. In these tests

for estimating Sb, we have employed a single time block in the computation, i.e. a smaller temporal domain

(t ∈ [0, 0.25]) with its temporal dimension the same as a single time block. The initial random coefficients

in the hidden layers are generated with Rm = 50. The data suggest a value around Sb ≈ 1.25 for modBIP.

We then use modBIP (with Sc = Sb/2) and locELM to solve the problem on the entire spatial-temporal

domain Ω (t ∈ [0, 5]) with 20 time blocks. Figure 27(c) shows the maximum error of the locELM/modBIP

solution in the overall domain Ω versus Rm, obtained with several Sb values (around Sb = 1.25) in modBIP.

The curves suggest a general insensitivity of the locELM/modBIP error with respect to Rm or the initial

random coefficients in the neural network, consistent with the observations in previous subsections for linear

PDEs. In Figure 27(c) we do observe two “spikes” in the error curve corresponding to Sb = 1.5. An

examination of the computation details reveals that in these two cases the nonlinear least squares iteration

terminates a little earlier than in the other cases, because the gradient norm falls below a tolerance. This

leads to a somewhat larger residual norm of the nonlinear least squares problem, and a slightly larger error

for the computed locELM/modBIP solution corresponding to these cases. In spite of the spikes, the general

insensitivity of the locELM/modBIP solution with respect to the random initialization of the hidden-layer

coefficients is evident.

Figure 28 compares the error distributions of the locELM solution in the spatial-temporal plane obtained

with no pre-training, BIP pre-training, and modBIP pre-training of the random hidden-layer coefficients

in the local neural networks. In these tests the local neural networks have an architecture [2, 200, 1] and

the tanh activation function. We employ Q = 20 × 20 uniform collocation points on each sub-domain, and

the initial random hidden-layer coefficients are generated with Rm = 50. With BIP, the target samples

are generated by a normal distribution with a random mean on [−1, 1] and a standard deviation 0.5 [33].

38



R
m

E
rr

o
rs

10
­1

10
0

10
1

10
210

­10

10
­8

10
­6

10
­4

10
­2

10
0

10
2

maximum error

rms error

(a) R
m

E
rr

o
rs

10
­1

10
0

10
1

10
210

­6

10
­5

10
­4

10
­3

maximum error

rms error

(b) R
m

E
rr

o
rs

10
­1

10
0

10
1

10
210

­10

10
­9

10
­8

10
­7

10
­6

maximum error

rms error

(c)

Figure 29: Burgers’ equation: The maximum and rms errors of the locELM solution as a function of
Rm, obtained with (a) no pre-training, (b) BIP pre-training, and (c) modBIP pre-training of the random
coefficients.

With modBIP we employ Sb = 1.25 and Sc = Sb/2 in Algorithm 1. The locELM solution obtained without

pre-training of the random coefficients generated by Rm = 50 is not accurate (Figure 28(a)). The locELM

solutions attained with BIP and modBIP pre-training of the random coefficients are quite accurate (Figures

28(b,c)). But the locELM/modBIP solution is considerably more accurate than that from locELM/BIP,

with error levels 10−8 versus 10−5.

Figure 29 is a further comparison of the locELM solution without pre-training, with BIP pre-training and

with modBIP pre-training of the random coefficients. It shows the maximum and rms errors in the domain Ω

of the locELM solutions corresponding to these three cases as a function of Rm, which is used for generating

the initial random coefficients. The simulation parameters (local neural network architecture, activation

function, collocation points, parameters for BIP and modBIP) correspond to those for Figure 28, except

that here Rm is varied systematically between Rm = 0.1 and Rm = 100. The errors of the locELM solution

without pre-training of the random coefficients exhibit a large variation as Rm changes, showing a strong

influence of Rm on the accuracy (Figure 29(a)). On the other hand, the BIP and the modBIP pre-training of

the random coefficients largely eliminates the dependence of the locELM error on Rm. The accuracy of the

locELM/BIP and the locELM/modBIP solutions is essentially independent of Rm. The locELM/modBIP

solution is again observed to be much more accurate than the locELM/BIP one, by around three orders of

magnitude for this problem.

Figure 30 illustrates the performance of the modBIP algorithm for working with non-invertible activation

functions for the nonlinear Burgers’ equation. It should be noted that, in contrast, the BIP algorithm breaks

down if the neural network contains any of such activation functions. In this figure we have specifically

tested the locELM/modBIP method with the Gaussian and the swish activation functions in the hidden

layers of the local neural networks. In these tests, 20 time blocks are used to divide Ω in time, and two

uniform sub-domains along the x direction are used within each time block. The local neural networks have

an architecture [2, 200, 1], with Gaussian or swish as the activation function in the hidden layer. We employ

Q = 20× 20 uniform collocation points on each sub-domain. The initial random hidden-layer coefficients of

the local neural networks are generated with either a fixed Rm = 50 or with Rm varied between Rm = 0.1

and Rm = 100, and are pre-trained using modBIP with Sc = Sb/2. Figure 30(a) shows the NLLSQ residual
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Figure 30: Burgers’ equation (non-monotonic activation functions): (a) The NLLSQ residual norm for
estimating the best Sb in modBIP, with the Gaussian and swish activation functions. Distributions of the
absolute error of the locELM/modBIP solution obtained with (b) the Gaussian and (c) the swish activation
functions. The maximum/rms errors in the domain as a function of Rm corresponding to (d) the Gaussian
and (e) the swish activation functions. Rm = 50 in (a,b,c) and is varied in (d,e). Sb = 1.5 in (b,d) for the
Gaussian function, and Sb = 2.75 in (c,e) for the swish function, and Sb is varied in (a).

norm for estimating the Sb in modBIP, suggesting a value around Sb ≈ 1.5 with the Gaussian activation

function and a value around Sb ≈ 2.75 with the swish function. In these tests for estimating Sb, we have

used one time block (t ∈ [0, 0.25]), i.e. a smaller domain in time with its temporal dimension the same as

a time block size. Figures 30(b) and (c) are the error distributions of the locELM/modBIP solution in the

overall domain Ω (20 time blocks) obtained using Gaussian and swish activation functions, respectively, with

Rm = 50 for generating the initial random coefficients. Figures 30(d) and (e) show the maximum/rms errors

of the locELM/modBIP solution in the overall domain Ω as a function of Rm, obtained with the Gaussian

and swish activation functions, respectively. We have employed Sb = 1.5 with the Gaussian activation

function and Sb = 2.75 with the swish activation function in the modBIP algorithm for the Figures 30(b-e).

It is observed that the combined locELM/modBIP method produces accurate results with the Gaussian and

swish activation functions and that the errors are generally insensitive to the initial random coefficients.

Finally we look into the performance of the locELM/modBIP method with multiple hidden layers in the

local neural networks for solving the Burgers’ equation. Figure 31 illustrates the locELM/modBIP results

obtained using local neural networks with 4 hidden layers. The architecture of the local neural networks is

given by [2, 50, 50, 50,M, 1] with the tanh activation function for all hidden layers, where M is either fixed at

M = 200 or varied between M = 50 and M = 400. We again employ 20 uniform time blocks in Ω, 2 uniform
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Figure 31: Burgers’ equation (4 hidden layers in local neural network): (a) The NLLSQ residual norm for
estimating the Sb in modBIP. (b) Distribution of the absolute error of the locELM/modBIP solution. The
maximum and rms errors in the domain as a function of (c) Rm, and (d) the number of training parameters
per sub-domain M . (e) The modBIP pre-training time and the locELM network training time as a function
of the number of training parameters per sub-domain M . Sb = 0.4 in (b,c,d,e) and is varied in (a). Rm = 50
in (a,b,d,e) and is varied in (c). M = 200 in (a,b,c) and is varied in (d,e). The collocation points per
sub-domain are Q = 20× 20 in (a,b,c,d,e). The local neural network architecture is [2, 50, 50, 50,M, 1].

sub-domains along x within each time block, and Q = 20×20 uniform collocation points on each sub-domain.

The initial random coefficients are generated with Rm either fixed at Rm = 50 or varied between Rm = 0.1

and Rm = 100, and they are pre-trained using modBIP with Sc = Sb/2. Figure 31(a) shows the NLLSQ

residual norm for estimating Sb, suggesting a value around Sb ≈ 0.4 in modBIP. In the tests for estimating

Sb we have again used a single time block, corresponding to a smaller temporal domain t ∈ [0, 0.25]. Figure

31(b) shows the error distribution of the locELM/modBIP solution in the overall spatial-temporal domain

Ω (20 time blocks), obtained with Sb = 0.4 in modBIP and M = 200 in the local neural networks. The

result signifies a high accuracy (error level∼ 10−8) of the locELM/modBIP method for solving this nonlinear

equation. Figure 31(c) shows the maximum and rms errors of the locELM/modBIP solution in the overall

domain Ω as a function of Rm. The result indicates that, with multiple hidden layers in the neural network,

the locELM/modBIP accuracy is similarly independent of the initial random coefficients. Figures 31(d) and

(e) show the maximum/rms errors in the overall domain Ω, and the corresponding training time (locELM

network training time, modBIP pre-training time), as a function of the number of training parameters per

sub-domain M . We have employed 20 time blocks in Ω, 2 sub-domains per time block, and Q = 20 × 20

collocation points in this set of tests, while the number of training parameters per sub-domain is varied
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systematically. One can observe a near-exponential decrease in the numerical errors with increasing M

(before saturation). The modBIP pre-training time grows slightly, from approximately 0.4 seconds to 1

second, as the number of training parameters per sub-domain M increases from 50 to 400. The relation

between the locELM network training time and M is not very regular. The data suggest an overall trend

that the locELM training time tends to increase with a larger M . In the range of M values tested here,

the modBIP pre-training time is less than 2% of the locELM network training time, indicating that the

computational cost associated with the modBIP pre-training of the random coefficients is insignificant.

4 Concluding Remarks

We have presented an effective algorithm (termed modBIP) for pre-training the random hidden-layer coef-

ficients of extreme learning machines (ELM), and applied the combined ELM/modBIP method to function

approximations and solving partial differential equations. The initial random coefficients in the neural net-

work are first pre-trained by modBIP, and the updated hidden-layer coefficients are then fixed and employed

in the least squares computation with the ELM method. The modBIP algorithm is devised based on the same

principle as the batch intrinsic plasticity (BIP) method, namely, by enhancing the information transmission

in every node of the neural network.

Suppose the neural network architecture is chosen, which may be shallow or deep, the hidden-layer

coefficients are initialized to random values, and that the input data to the neural network are given. The

modBIP algorithm pre-trains the random hidden-layer coefficients as follows. For each node in each hidden

layer of the neural network, this algorithm first computes the total (synaptic) input to this node for all input

data samples to the neural network. The synaptic input samples are then mapped, by an affine mapping, to a

set of random target samples on a random sub-interval of [−Sb, Sb] with a minimum size, where Sb is a user-

provided hyper-parameter. The coefficients in the affine mapping are determined by solving a linear least

squares problem, and are used to update the random weight and bias coefficients associated with this node.

These operations are performed on each hidden layer, individually and successively, and within each hidden

layer node by node. For a given particular problem, the Sb parameter in modBIP can be estimated with

preliminary simulations by computing the residual norm of the least squares problem associated with the

least squares solution in ELM; see the procedure outlined in Remark 2.2 and also Remark 2.8 for nonlinear

PDEs.

The modBIP method differs from BIP [33] in one prominent aspect: modBIP does not involve the

activation function in its algorithm. In contrast, the BIP method employs the inverse of the activation

function in its construction, and requires the activation function to be invertible (or monotonic). This limits

the applicability of BIP to neural networks with only monotonic activation functions. On the other hand,

the modBIP method can be applied with essentially any activation function, including those often-used non-

monotonic activation functions such as the Gaussian function, swish function, Gaussian error linear unit

(GELU), and the class of radial basis activation functions.

Another crucial construction in modBIP is the random sub-interval of [−Sb, Sb] with a minimum size Sc,

on which the random target samples are generated. This is the key that accounts for the high accuracy of
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the modBIP (combined with ELM) results. If this sub-interval is fixed, instead of being random, much of the

high accuracy will be lost. As demonstrated by ample numerical experiments, when combined with ELM,

the modBIP method typically produces much more accurate simulation results than BIP.

In the current paper we have used partial differential equations to test the combined ELM/modBIP

method, and presented extensive numerical experiments to evaluate its computational performance. We

have the following observations:

• The combined ELM/modBIP method produces highly accurate simulation results, and its accuracy

is insensitive to the initial random coefficients of the neural network. More precisely, its accuracy is

insensitive to the Rm for generating the initial random coefficients. In contrast, without pre-training

the random coefficients, the accuracy of the ELM solution is strongly dependent on Rm, where the

initial random coefficients are generated on [−Rm, Rm].

• The combined ELM/modBIP method works well with non-monotonic activation functions, and pro-

duces highly accurate results. With the Gaussian activation function, the combined ELM/modBIP

method appears to produce generally the most accurate results among the activation functions tested

herein. In contrast, the BIP method [33] breaks down with non-monotonic activation functions.

• Irrespective of the initial random coefficients, the errors of the combined ELM/modBIP solution de-

crease exponentially or nearly exponentially, as the number of training data points in the domain or

the number of training parameters in the neural network increases.

• The combined ELM/modBIP method works well with both shallow and deep neural networks. The

favorable numerical properties, such as the error insensitivity to initial random coefficients and the ex-

ponential convergence with respect to the collocation points and the training parameters, are observed

with both shallow and deep neural networks.

• The computational cost of the modBIP pre-training of the random coefficients is low, and it is only

a fraction of the ELM training cost of the neural network. In typical simulations the modBIP pre-

training cost is within 10% of the ELM training cost for the neural network. Furthermore, the modBIP

pre-training of the random coefficients logically only needs to be performed once for a given network

architecture and the input data, and the pre-trained random coefficients can be saved and used later

directly by ELM.

The numerical results demonstrate unequivocally that modBIP provides an efficient and effective tech-

nique for pre-training the random coefficients to achieve high accuracy with ELM. It significantly boosts the

computational performance of ELM. The combined ELM/modBIP method can produce accurate simulation

results, regardless of the initial random coefficients in the neural network. This method is promising in terms

of both the accuracy and the computational cost.

The computational performance (accuracy, computational cost) of ELM is competitive when compared

with traditional numerical methods. In [6] the locELM method, which stands for local extreme learning
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machine and combines the ideas of ELM, domain decomposition and local neural networks, has been com-

pared in detail with the classical finite element method (FEM) and two DNN-based PDE solvers, the deep

Galerkin method (DGM) [41] and the physics-informed neural network (PINN) method [36], in terms of

their accuracy and computational cost for solving a number of linear and nonlinear PDEs. It is observed

that ELM far outperforms DGM and PINN, typically by orders of magnitude in terms of the accuracy and

the computational cost [6]. ELM exhibits a computational performance comparable to FEM [6]. There is

a cross-over point in performance with respect to the problem size. The FEM typically outperforms ELM

for smaller problem sizes, and for larger problem sizes ELM outperforms FEM [6]. By “outperform” we

mean that one method achieves a better accuracy under the same computational cost, or induces a smaller

computational cost to achieve the same accuracy.

The modBIP method developed in the current paper can work with both global and local extreme

learning machines. It enhances the accuracy of ELM, especially when the neural network becomes deep,

with an essentially negligible overhead. We anticipate that the ELM/modBIP method will be useful to and

instrumental in neural network-based scientific computing and the computational understanding of important

physical processes and phenomena [5, 2].
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