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Abstract

We present a method for solving linear and nonlinear partial differential equations (PDE) based
on the variable projection framework and artificial neural networks. For linear PDEs; enforcing the
boundary/initial value problem on the collocation points gives rise to a separable nonlinear least squares
problem about the network coefficients. We reformulate this problem by the variable projection approach
to eliminate the linear output-layer coefficients, leading to a reduced problem about the hidden-layer
coefficients only. The reduced problem is solved first by the nonlinear least squares method to determine
the hidden-layer coefficients, and then the output-layer coefficients are computed by the linear least
squares method. For nonlinear PDEs, enforcing the boundary /initial value problem on the collocation
points gives rise to a nonlinear least squares problem that is not separable, which precludes the variable
projection strategy for such problems. To enable the variable projection approach for nonlinear PDEs, we
first linearize the problem with a Newton iteration, using a particular linearization formulated in terms
of the updated approximation field. The linearized system is solved by the variable projection framework
together with artificial neural networks. Upon convergence of the Newton iteration, the neural-network
coefficients provide the representation of the solution field to the original nonlinear problem. We present
ample numerical examples to demonstrate the performance of the method developed herein. For smooth
field solutions, the errors of the current method decrease exponentially as the number of collocation
points or the number of output-layer coefficients increases. We compare extensively the current method
with the extreme learning machine (ELM) method from a previous work. Under identical conditions and
configurations, the current method exhibits an accuracy significantly superior to the ELM method.

Keywords: artificial neural networks, variable projection, linear least squares, mnonlinear least squares,
scientific machine learning, deep learning

1 Introduction

This work concerns the numerical approximation of partial differential equations (PDE) with artificial neural
networks (ANN), and we exploit the the variable projection (VarPro) approach [25] together with ANNs
for solving linear and nonlinear PDEs. Neural network-based PDE methods, especially those based on deep
neural networks (DNN) and deep learning [27], have flourished in the past few years; see e.g. [62, 56, 21,
29, 29, 45, 76, 17, 59, 68, 46, 74, 40, 44, 42, 54|, and the recent review [34] and the references therein. The
DNN-based PDE solvers are fairly straightforward to implement, by encoding the PDEs, the boundary and

initial conditions into a cost function and then using some flavor of gradient descent (or back propagation)
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type optimization algorithms to minimize this cost. Their weakness lies in the limited accuracy and the high
computational cost (long network-training time). Improvements to the neural network training have been
considered in a number of recent studies (see e.g. [68, 28, 40]). Another promising type of neural network-
based methods for computational PDEs has recently appeared [20, 15, 16, 7, 23, 19], which are based on a
type of randomized neural networks called extreme learning machines (ELM) [32, 33]. With these methods
the weight/bias coefficients in the hidden layers are randomly assigned and fixed. Only the coefficients
of the linear output layer are trainable, and they are trained by a linear least squares method for linear
PDEs and by a nonlinear least squares method for nonlinear PDEs [15]. Tt has been shown in [15] that the
accuracy and the computational cost (network training time) of the ELM-based method are advantageous
compared with those of the DNN-based PDE solvers. In addition, the computational performance of the
ELM-type method from [15] is observed to be comparable to or exceed that of the classical finite element
method (FEM). Further extensions and improvements to the ELM method of [15] have been documented
in [19] recently, which compares systematically the improved ELM with the classical and high-order FEM
for solving a number of problems. The improved ELM outperforms the classical second-order FEM by a
considerable margin, and it outcompetes the high-order FEM when the problem size is not very small [19].

Variable projection (VarPro) is a classical approach for solving separable nonlinear least squares (SNLLS)
problems [25, 26]. These problems are separable in the sense that the unknown parameters or variables can
be separated into two sets: the linear parameters and the nonlinear parameters. Problems of this kind
often involve a model function that is a linear combination of parameterized nonlinear basis functions.
The basic idea of VarPro is to treat the linear parameters as dependent on the nonlinear parameters, and
then eliminate the linear parameters from the problem by using the linear least squares method. This
gives rise to a reduced, but generally more complicated, nonlinear least squares problem that involves only
the nonlinear parameters [26]. One can then solve the reduced problem for the nonlinear parameters by
a nonlinear least squares method, typically involving a Gauss-Newton type algorithm coupled with trust
region or backtracking line search strategies [12, 4]. Upon attaining the nonlinear parameters, one then
computes the linear parameters by the linear least squares method. Although the reduced problem is in
general more complicated, the benefits of variable projection are typically very significant. These include
the reduced dimension of the parameter space, better conditioning, and faster convergence with the reduced
problem [58, 63, 26]. In some sense the idea of variable projection to least squares problems can be analogized
to the Schur complement in linear algebra or the static condensation in computational mechanics (see
e.g. [35]).

The VarPro algorithm was originally developed in [25], and has been improved and generalized by a
number of researchers and applied to many areas in the past few decades [36, 58, 26, 9, 53, 48, 52, 2, 8,
64, 22, 67, 49]. In [25] the authors have proved the equivalence between the solution of the VarPro reduced
formulation and that of the original problem, and developed differentiation formulas for the orthogonal
projectors and the Moore-Penrose pseudoinverses, which are critical to the computation of the Jacobian
matrix in the nonlinear least squares solution of the reduced problem. An important simplification to the

VarPro algorithm is suggested in [36], which involves computing an approximate Jacobian rather than the



true Jacobian. This significantly reduces the per-iteration cost of VarPro, with generally insignificant or
negligible sacrifice to the accuracy for many problems [24]. The variable projection algorithms for problems
with constraints on the linear or nonlinear parameters are investigated in e.g. [37, 61, 52, 10], among others.
The implementations of the VarPro method have been discussed in [41, 52]. In [26] the original developers
of VarPro have reviewed the developments of this method up to the early 2000s and compiled an extensive
list of areas for its ongoing and potential applications. A generalization of the variable projection approach
has been considered in [58], which deals with two separate classes of variables without requiring one class
to be linear; see also more recent contributions on the generalization of VarPro in e.g. [1, 60, 31, 67]. We
would also like to mention the simplification of the Jacobian matrix in [57], and the algorithm of [47],
which resembles the variable projection approach in some sense; see a comparison of these algorithms with
the variable projection method in [24]. An approach related to variable projection is the so-called block
coordinate descent [51], which alternates between the minimization of two separate sets of variables involved
in the problem [58, 9, 11].

The VarPro algorithm or its variants for training neural networks have been the subject of several studies
in the literature [69, 71, 70, 63, 55, 38, 50, 49]. The projection learning algorithm developed in [69, 71, 70]
is in the same spirit as variable projection, and it computes the linear parameters by the linear least squares
method and the nonlinear parameters by a gradient descent scheme. In [63] the authors have proved that
the reduced nonlinear functional of the variable projection approach, while seemingly more complicated,
leads to a better-conditioned problem and always converges faster than the original problem; see also [58].
The VarPro method together with the Levenberg-Marquardt algorithm is employed for the training of two-
layered neural networks in [55, 38] and compared with other related approaches. In the recent works [50, 49]
the authors extend the variable projection approach to deal with non-quadratic objective functions, such as
the cross-entropy function in classification tasks, and also present a stochastic optimization method (termed
“slimTrain”) based on variable projection for training deep neural networks with attractive properties.

In the current work we focus on the variable projection approach for solving partial differential equations.
We numerically approximate the solution fields to linear and nonlinear PDEs by exploiting variable projection
together with artificial neural networks. For computational PDEs, the issues one would encounter with
VarPro are a little different from those for data fitting problems or function approximations, which account
for the majority of VarPro applications in the literature so far. For PDEs, one does not have the data for
the field function to be solved for, unlike in data fitting problems. What one does have are the conditions
(or constraints) the solution field needs to satisfy, namely, the PDEs, the boundary conditions, and also
the initial conditions if the problem is time-dependent. To deal with this type of problems, the variable
projection method needs to be adapted accordingly.

The general approach with VarPro and artificial neural networks for solving PDEs is as follows. We
employ a feed-forward neural network with one or more hidden layers to represent the field solution to the
PDE, requiring that the output layer be linear (i.e. applying no activation function) and with zero bias. We
enforce the PDEs on a set of collocation points in the domain, and enforce the boundary /initial conditions

on a set of collocation points on the appropriate boundaries of the spatial (or spatial-temporal) domain.



This gives rise to a set of discrete equations about the field function to be solved for, which depends on the
weight /bias coefficients in the output/hidden layers of the neural network. In turn, this set of equations
leads to a nonlinear least squares problem about the neural-network coefficients, providing an opportunity
for the variable projection method if this nonlinear least squares problem is separable.

It is necessary to distinguish two types of linearities (or nonlinearities) before the variable projection can
be used to solve the above nonlinear least squares problem. The first type concerns whether the network
coefficients are linear (or nonlinear) with respect to the output field of the network. Since no activation
function is applied to the output layer, the output-layer coefficients are linear and the hidden-layer coefficients
are nonlinear with respect to the network output. The second type concerns whether the boundary /initial
value problem with the given PDE is linear (or nonlinear) with respect to the field function to be solved for.

If the boundary/initial value problem is linear, i.e. with both linear PDE and linear boundary/initial
conditions, then the aforementioned nonlinear least squares problem is separable. The output-layer coeffi-
cients of the neural network are the linear parameters and the hidden-layer coefficients are the nonlinear
parameters in this separable nonlinear least squares problem. In this case, employing VarPro for training the
neural network to solve the given boundary /initial value problem would be conceptually straightforward.

On the other hand, if the boundary/initial value problem is nonlinear, i.e. either the PDE itself or the
associated boundary /initial conditions are nonlinear, the aforementioned nonlinear least squares problem is
not separable. In this case all the network coefficients become nonlinear parameters in the aforementioned
nonlinear least squares problem. Therefore, the variable projection cannot be directly used for solving
nonlinear PDEs (or problems with nonlinear boundary/initial conditions). How to enable the variable
projection method to solve nonlinear PDEs is the focus of the current work.

In this paper we present a Newton-variable projection method together with artificial neural networks
for solving nonlinear boundary/initial value problems (nonlinear PDEs or nonlinear boundary /initial con-
ditions). Given a nonlinear boundary /initial value problem, we first linearize the problem for the Newton
iteration, with a particular linearized form. More specifically, the linearization is formulated in terms of
the updated approximation field, not the increment field. This linearization form is critical to the accuracy
of the current Newton-VarPro method. The linearized system (PDE and boundary/initial conditions) is
linear with respect to the updated approximation field, and it is solved by the variable projection approach
together with the neural networks. Therefore, to solve nonlinear PDEs, the current method involves an
overall Newton iteration. Within each iteration, we use the VarPro method together with ANNs to solve the
linearized system to attain the updated field approximation. Upon convergence of the Newton iteration, the
neural-network coefficients contain the representation of the solution field to the original nonlinear problem.

The VarPro method together with ANNs for solving linear PDEs has been considered first in this paper.
We discuss in some detail how to implement the Jacobian matrix together with neural networks, and how
to introduce perturbations in VarPro when solving the reduced problem in order to prevent the solution
from being trapped to the local minima in the nonlinear least squares computation. We have presented
several numerical examples, with both linear and nonlinear PDEs, to test the performance of the VarPro

method. We observe that, for smooth field solutions, the VarPro errors decrease exponentially as the number



of collocation points or the number of output-layer coefficients increases, which is reminiscent of the spectral
convergence of traditional high-order methods [35, 66, 75, 77, 18, 14, 13, 43, 72, 73]. We also compare the
performance of the current VarPro method with that of the ELM method from [15, 19]. The numerical results
show that, under the same conditions and network configurations, VarPro is considerably more accurate than
ELM, especially when the size of the neural network is small. On the other hand, the computational cost
(i.e. network training time) of VarPro is usually much higher than that of ELM.

In the current work the VarPro method and the neural networks are implemented based on the Tensorflow
(www.tensorflow.org) and Keras (keras.io) libraries in Python. The scipy and numpy libraries in Python are
used for the linear and nonlinear least squares computations. All the numerical tests are conducted on a
MAC computer (Intel Core i5 CPU 3.2GHz, 24 GB memory) in the authors’ institution.

The main contribution of this paper lies in the Newton-VarPro method together with artificial neural
networks for solving nonlinear partial differential equations. To the best of the authors’ knowledge, this work
seems also to be the first time when the variable projection approach (with ANNS) is extended and adapted
to solving linear partial differential equations.

The rest of this paper is structured as follows. In Section 2 we first outline how to solve linear PDEs with
the variable projection approach together with ANNs. The computations for the reduced residual function
and the Jacobian matrix of the reduced problem, and the VarPro algorithm with perturbations are discussed
in detail. Then we introduce the Newton-VarPro method together with ANNs for solving nonlinear PDEs.
In Section 3 we present several numerical examples with linear and nonlinear PDEs to demonstrate the
accuracy of the VarPro method. The performance of the current VarPro method is compared extensively
with that of the ELM method from [15, 19]. Section 4 then concludes the presentation with some closing
remarks and comments on the presented method. In Appendix A we study the effect of random seeds in
the random number generator on the VarPro accuracy. Appendix B compares the VarPro with the physics-
informed neural network (PINN) method [56]. Appendix C compares the VarPro with the classical finite
element method (FEM).

2 Variable Projection with Artificial Neural Networks for Com-
putational PDEs

We develop an algorithm combining the variable projection (VarPro) framework with artificial neural net-
works (ANN) for numerically approximating PDEs. For linear PDEs, the ANN representation of the solution
field leads to a separable nonlinear least squares problem, which can be solved by the variable projection
approach. For nonlinear PDEs, on the other hand, the ANN representation of the solution field leads to a
nonlinear least squares (NLLSQ) problem that is not separable, preventing the use of the variable projection
strategy. We overcome this issue by a combined Newton-variable projection method, which enables the
variable projection approach in solving nonlinear PDEs. In the following subsections we first illustrate the
VarPro/ANN algorithm for solving linear PDEs, and then introduce the Newton-VarPro/ANN algorithm

for solving nonlinear PDEs.
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Figure 1: Sketch of the neural network architecture (with 3 hidden layers).

2.1 Variable Projection Method for Solving Linear PDEs

Consider a domain 2 C R? (d =1 to 3) and the following linear boundary-value problem on €,

Lu = f(x), (1a)
Bu = g(x), on 0. (1b)
In these equations x = (z1,...,24) denotes the coordinate, u(x) is the field solution to be solved for, L

denotes a linear differential operator, B denotes a linear algebraic or differential operator on the boundary
0N representing the boundary conditions, and f(x) and g(x) are prescribed non-homogeneous terms in the
domain or on the boundary. We assume that L may include linear differential operators with respect to
the time ¢ (e.g. 8t7 atz) In such a case, this becomes an initial boundary-value problem, and we treat the
time t in the same way as the spatial coordinates. We designate the last coordinate x4 as ¢, and 2 becomes
a spatial-temporal domain. Accordingly, we assume that the boundary condition (1b) in this case should
include appropriate initial condition(s) with respect to ¢, which will be imposed only on the portion of 92
corresponding to the initial condition(s). The point here is that the equations (1a)—(1b) may denote a time-
dependent problem, and we will not distinguish the stationary and time-dependent cases in the following
discussions. We assume that the problem (1) is well-posed.

We approximate the solution field u(x) by a feed-forward neural network [27] with (K + 1) layers, where
K is an integer satisfying K > 2; see Figure 1 for a sktech of the network architecture with three hidden
layers. The input layer (layer 0) of the neural network contains d nodes which represent the coordinate
x, and the output layer (layer K) contains 1 node which represents the solution u. The (K — 1) layers in
between are the hidden layers. From layer to layer the network logic represents an affine transform followed
by a node-wise function composition with an activation function o(-) [27]. The coefficients of the affine
transforms are referred to as the weight and bias coefficients of the neural network. For the convenience of
presentation, we use the vector [Mg, My, ..., Mk] to denote the architecture of the neural network, where
M; (0 < i< K) denotes the number of nodes in layer i, with My = d and Mg = 1. We also use M = Mg _4
to denote the number of nodes in the last hidden layer in what follows. The weight/bias coefficients in all

the hidden layers and in the output layer are the trainable parameters of the neural network.



In the current work, we make the assumption that the output layer contains no bias (or zero bias), and
no activation function (or equivalently it uses the identity activation function o(z) = ). So the output layer
of the neural network is linear in this paper.

Let ®;(0,x) (1 < j < M) denote the output fields of the last hidden layer, where 8 = (61, ...,0x, )7 de-
notes the vector of weight/bias coefficients in all the hidden layers of the network, with N, = ZlK:Il M;(M;—1+

1). Then we have the following expansion relation,
M
U(X) = Zﬁj@j(aax) = 4’(97X),6 (2)
j=1

where ®(0,x) = [?1(0,%),..., P (0,x)] denotes the set of output fields of the last hidden layer, and
B =[B1,--.,Bm]7T is the vector of weight coefficients of the output layer. Note that (6,3) are the trainable
parameters of the neural network. Note also that M represents the number of nodes in the last hidden layer,
as well as the number of output-layer coefficients.

We choose a set of N (N > 1) collocation points on 2, which can be chosen according to a certain
distribution (e.g. random, uniform). Among them N, (1 < N, < N — 1) collocation points reside on the
boundary 0f2, and the rest of the points are from the interior of Q. We use X to denote the set of all the
collocation points and X, to denote the set of collocation points on 9€2. In the current paper, for simplicity
we assume that € is a rectangular domain, given by the interval [a;, b;] (1 < i < d) in the i-th direction. We
employ a uniform set of grid points (including the boundary end points) in each direction as the collocation
points for the numerical tests in Section 3.

The input training data to the neural network comnsist of the coordinates of the all the IV collocation
points on 2. We use the N x d matrix X to denote the input data. Each row of X denotes the coordinates
a collocation point. Let the N x 1 matrix U (column vector) denote the output data of the neural network,
which represents the solution field u(x) evaluated on all the N collocation points. We use the N x M matrix
W to denote the output data of the last hidden layer of the neural network, which represents the output
fields ®(0,x) of the last hidden layer evaluated on all the N collocation points.

Inserting the expansion (2) into (1), and enforcing the equation (1a) on all the collocation points from X

and the equation (1b) on all the boundary collocation points from X,, we arrive at the following system,

M

D [L®(0,%,)] 8 = f(xp), 1<p< N, wherex, €X, (3a)
1

<.
Il

[B®;(0,%,)] B; = g(x4), 1<q< Ny, where x, € X, (3b)

M=

1

<.
Il

This is a system of (N + N,) algebraic equations about the trainable parameters (8, 3), with (N, + M)
unknowns. Note that for a given 6 the terms L®;(0,x,) and B®P;(0,x,) in the above equations can be
computed by forward evaluations of the neural network and auto-differentiations.

We seek a least squares solution for (6, 3) to the system (3). This system is linear with respect to 3, and
nonlinear with respect to 8. This leads to a separable nonlinear least squares problem. Therefore we adopt

the variable projection approach [25] for the least squares solution of the system (3).



To make the formulation more compact, we re-write the system (3) into a matrix form,

L6, x,) £(x,)

H(9)8 =S, where H(0) = , S= . (4)

B®(0,x,) 9(x)

- . - (N-‘,—N!,)XM - : <4 (N4+Np)x1

For any given 0, the least squares solution for the linear parameters 3 to this system is given by
B=[H©O)]"S, (5)

where the superscript in Ht denotes the Moore-Penrose pseudo-inverse of H. Define the residual function

of the system (4) by
1(6) = H(6)8 — S = H()H' (6)S S, (6)

where the linear parameter 3 has been eliminated by using equation (5). We compute the optimal nonlinear

parameters 8,,; by minimizing the Euclidean norm of the residual function r,
1 1
Oopr = arg min o [r(6)[* = arg min - [FH()H (6)S — S|, (7
0 6

where |- || denotes the Euclidean norm. After 6, is obtained, we can compute the optimal linear parameters
Bopt based on equation (5) or by solving equation (4) using the linear least squares method. Outlined above
is the essence of the variable projection approach for solving the system (3) for (0, 3).

The problem represented by (7) is a nonlinear least squares problem about 8 only, where the linear
parameter 3 has been eliminated. We solve this problem by a Gauss-Newton algorithm combined with a
trust region strategy. Specifically, in the current paper we solve this problem by employing the nonlinear least
squares library routine “scipy.optimize.least_squares” from the scipy package in Python, which implements
the Gauss-Newton method together with a trust region reflective algorithm [5, 6].

”

The scipy routine “least_squares()” requires two functions as input, which are needed by the Gauss-

Newton algorithm. These are, for any given 0,

e a function for computing the residual r(0), and

e a function for computing the Jacobian matrix g—g.
The computation for r(@) is straightforward. For a given 6, we first solve equation (4) by the linear least
squares method for the minimum-norm least squares solution 3%°. Then we compute the residual according

to equation (6) as follows,
r(8) = H(9)3L5 — 8. (8)

Note that the Moore-Penrose inverse HT (0) is not explicitly computed in the implementation. In the current
paper we employ the linear least squares routine “scipy.linalg.lstsq” from scipy to solve (4) for 3. The

computation for r(8) is summarized in the Algorithm 1.



Algorithm 1: Computing the residual r(0)

input : 8; input data X to neural network; source data S.
output: r(0).

update the hidden-layer coefficients of the neural network by 6
if 6 = 6, then
retrieve H(8;), and set H(0) = H(,)
retrieve 379(0,), and set B3L°(0) = B-°(0,)
Ise
compute H(0) using the input data X
solve equation (4) by the linear least squares method to get B1°(8)
set @, = 0, and save H(0) and 3-%(0)
end

© 0 N O A W N
@

-
o

compute r(6) by equation (8)

Remark 2.1. Let us elaborate on, for a given @ and the input data X, how to compute the matriz H(0)
on line 6 of Algorithm 1. As defined in (4), H(@) consists of the terms L®(0,x%,) (x, € X) and B®(0,x,)
(x4 € Xp). These terms involve the output fields of the last hidden layer ®(0,x), and their derivatives up
to a certain order, evaluated on all the collocation points. All these terms can be computed by evaluating the
neural network on the input data X and by auto-differentiations. Specifically, in our implementation we have
created a sub-model to the neural network in Keras, with the neural network’s input as its input and with the
output of the neural network’s last hidden layer as the sub-model’s output. Let us refer to this sub-model as
the last-hidden-layer-model. Let m denote the order of the PDE (1a), and we assume that the hidden-layer
coefficients have been updated by the given 6. Then computing H(0) involves the the following procedure:

(i) evaluate the last-hidden-layer-model on the input X to get ®(0,x) on all the collocation points;

(i) compute the derivatives of ®(0,x) with respect to x, up to the order m, on all the collocation points by

a forward-mode auto-differentiation;
(iii) compute L®(6,x) on all the collocation points based on the data for ®(0,x) and its derivatives;

(iv) extract the boundary data (i.e. on the boundary collocation points) for ®(0,x) and its derivatives from

those data attained from steps (i) and (ii);
(v) compute B®(0,x) based on the boundary data for ®(0,x) and its derivatives;

(vi) assemble L®(0,x) (on all the collocation points) and B®(0,x) (on the boundary collocation points) to
form H(O) based on equation (4).

Note that we employ the forward-mode auto-differentiations to compute the derivatives of ®(0,x) in step
(ii) above, because the number of nodes in the last hidden layer (M) is typically much larger than that
in the input layer (d). In this case the forward-mode auto-differentiation is significantly faster than the
reverse-mode auto-differentiation. In our implementation we have used the “ForwardAccumulator” from the

Tensorflow library for the forward-mode auto-differentiations.



For computing the Jacobian matrix % we consider the following formula, which is due to [25],

or r OHT

OH
55 = [L-HOH ()] 2 H(0)S + [H'(0)]" —- [I - H(O)H'(0)] S )
~[I-H(O)H'(0)] Z—I;Hﬂa)s,

where I denotes the identity matrix and equation (6) has been used. Note that here we have adopted the
simplification suggested by [36] to keep only the first term for an approximation of %. So the Jacobian
matrix is computed only approximately. This greatly simplifies the computation, and as observed in [36, 26]
only slightly or moderately increases the number of Gauss-Newton iterations.

In light of (9), we compute the approximate Jacobian matrix as follows. For any given 8, note that

oH oV
Jo(0) = %HWG)S = ﬁﬁLS =20 (10)

where 31 is the least squares solution of (4), and
V= H(O)BL, with g5 = g5, (1)

Here 359 is a constant vector that equals 3% at the given 8. The vector V(@) of length (N -+ Nj) represents
the field [éz((iﬂ evaluated on the collocation points (and the boundary collocation points), with 6 as the

hidden-layer coefficients and 8L as the output-layer coefficients in the neural network. We would like to

emphasize that 8L is considered to be constant and does not depend on @ when computing Jo(8) = %—X.
For a given 0, Jy(0) can be computed by an auto-differentiation of the neural network.
In light of (10) we transform (9) into
Or
o = 30(6) ~ H(OJH' (0)30(0) = Jo(6) — 1,(0). (12)

The term J1(60) = H(O)H'(6)J¢(0) can be computed as follows. For any given 8, we first solve the following
system for the matrix K(0) by the linear least squares method,

H(0)K(0) = Jy(0). (13)
Then we compute J1(0) by
J.(0) = H(O)K(6). (14)

Therefore, in order to compute the Jacobian matrix we first solve equation (4) for 3% by the linear least
squares method, and then use (10) to compute J(0). We then compute J;(0) by equations (13) and (14).
Finally the Jacobian matrix g—; is computed by equation (12). These computations involve only the linear
least squares method and the auto-differentiations of the neural network. The computation for the Jacobian

matrix is summarized in Algorithm 2.

Remark 2.2. Let us elaborate on how to compute the matriz Jo(0), which has a dimension (N + Np) x N,
(N, denoting the total number of hidden-layer coefficients), on the lines 10 and 11 in Algorithm 2. This is
for a given 0, B (B = BE?), and the input data X to the neural network. Based on equation (11), the column

10



Algorithm 2: Computing the Jacobian matrix %

input : 8; input data X to neural network; source data S.
output: g—;.

update the hidden-layer coefficients of the neural network by 6
if 6 = 6, then
retrieve H(6;), and set H(0) = H(0y)
retrieve 379(0,), and set 3%%(0) = B-5(8,)
Ise
compute H(0) using the input data X
solve equation (4) by the linear least squares method to get 315 ()
set O, = 0, and save H(0) and 3%9(0)
end

© 0 N O U N W N
[¢)

10 compute V(0) by equation (11)

11 compute Jo(0) based on equation (10) by auto-differentiations
12 solve equation (13) for K(8) by the linear least squares method
13 compute J1(0) by equation (14)

14 compute g—g by equation (12)

vector V(0) consists of the terms Lu(xp) (x, € X) and Bu(x,) (x4 € Xp), where u(x) is the output field
of the neural network obtained with the given (8, BL%) as the hidden-layer coefficients and the output-layer
coefficients, respectively. It should be noted that Lu and Bu involve the derivatives of u(x) with respect

to x (not ). Based on equation (10), the matriz Jo(0) consists of the terms B(BLBU) (xp, € X) and

(0,xp)

0(Bu) (xq € Xy). These terms can be computed by evaluating the neural network on the input data X

00

(8,%q)
and by au%o—differentiations with respect to x and 8. We assume again that the PDE (la) is of the m-th

order. Given (0,3,X), we compute Jo(0) specifically by the following procedure:

(i) update the hidden-layer coefficients of the neural network by 0, and update the output-layer coefficients
by B;

(i) evaluate the neural network on the input X to obtain the output field u(x) on all the collocation points;
(iii) compute the derivatives of u(x) with respect to x, up to the order m, by a reverse-mode auto-differentiation;

(iv) compute the derivative, with respect to the hidden-layer coefficients, for uw(x) and for its derivatives with

respect to X from steps (ii) and (i), on all the collocation points by a reverse-mode auto-differentiation;

(v) compute a(aLgu) on all the collocation points based on the data for u(x) and its derivatives from the

previous step;

(vi) extract the boundary data (i.e. on the boundary collocation points) for u(x) and its derivatives from the

data obtained from step (iv);

(vii) compute 6(61,36)“) based on the boundary data for uw(x) and its derivatives from the previous step;

9(Lu)
15]

5~ (on all the collocation points) and a(‘fu)

(viii) assemble 5~ (on the boundary collocation points) to form

Jo(0).
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Algorithm 3: Variable projection algorithm with perturbations

input : input data X to neural network; source data S; initial guess 6p; maximum perturbation
magnitude & > 0; preference probability p (p € [0, 1]), with default value p = 0.5.
output: € and (3.

1 call scipy.optimize.least_squares routine to solve (7), using 6y as the initial guess, with Algorithms 1
and 2 as input arguments
2 set @ < returned solution, and ¢ < returned cost

3 if ¢ is above a threshold then

4 set dpref = None
5 for i + 1 to mazimum-number-of-sub-iterations do
6 generate a uniform random number ¢ € [0, 1]
7 if (0ppef is not None) and (§ < p) then
8 ‘ generate a uniform random number ¢; € [0, min(1.16pref, )]
9 else
10 | generate a uniform random number §; € [0, 4]
11 end
12 generate a uniform random vector A@ of the same shape as 6 on the interval [—d1, d1]
13 set ¥y < 0 + A0
14 call scipy.optimize.least_squares routine to solve (7), using ¥y as the initial guess, with
Algorithms 1 and 2 as input arguments
15 if the returned cost is less than ¢ then
16 set @ < returned solution, and ¢ < returned cost
17 set Opref = 01
18 end
19 if ¢ is not above a threshold then
20 | break
21 end
22 end
23 end

24 solve equation (4) for B by the linear least squares method

When computing the derivatives of u(x) with respect to x and with respect to the hidden-layer coefficients in
the steps (iit) and (iv) above, in our implementation we have employed a vectorized map (tf.vectorized_-map)
together with the gradient tape (if. GradientTape) in the Tensorflow library to vectorize the gradient compu-

tations.

Remark 2.3. In Algorithms 1 and 2, we have saved the matriz H(0) and the vector BL° when they are
computed for a new @; see the lines 2 to 9 in both algorithms. The goal of this extra storage is to save
computations. During the Gauss-Newton iterations, the Algorithm 2 is typically invoked to compute the
Jacobian matriz for the same 6, following the call to the Algorithm 1 for computing the residual r(6). In

this case one avoids the re-computation of the matriz H(O) and the vector B~ for the same 0.

To solve the system (3a)—(3b) with the variable projection approach, we first solve the reduced problem (7)
for @ by the the nonlinear least squares method, and then we solve the equation (4) for B by the linear least
squares method. To make the nonlinear least squares computation for (7) more robust (from being trapped

to local minima), in our implementation we have incorporated a perturbation to the initial guess and a
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sub-iteration procedure, in a way analogous to the NLLSQ-perturb method from [15]. The sub-iteration
procedure will be triggered if the nonlinear least squares computation fails to converge or the converged
cost value is not small enough. The overall variable projection algorithm with perturbations for solving
the system (3) is summarized in Algorithm 3. The perturbations to the initial guess of the nonlinear least

squares computation are generated on the lines 6 to 13 in Algorithm 3.

Remark 2.4. In Algorithm 3, when generating the perturbation magnitude 61, we have incorporated a
preferred perturbation magnitude 0,r.f and a preference probability p. Here 6pref keeps the last perturbation
magnitude 8, that has resulted in a reduction in the converged cost. The lines 6 to 11 of Algorithm 3 basically
means that, with a probability p, we will generate the next perturbation magnitude §; based on the preferred
magnitude Oprer. Otherwise, we will generate the next perturbation magnitude based on the original maximum
magnitude §. After the algorithm hits upon a favorable perturbation magnitude, the employment of dprer and
the probability p tends to promote the use this value. When the algorithm is close to convergence, this also
tends to reduce the amount of the perturbation, which is conducive to achieving convergence. In the current
paper we employ a preference probability p = 0.5 with the variable projection algorithm for all the numerical

tests in Section 3.

Remark 2.5. If the problem consisting of equations (1a)—(1b) is time dependent, for longer-time or long-
time simulations we employ the block time marching scheme from [15] together with the variable projection
algorithm developed here. The basic idea is as follows. If the domain §2 has a large dimension in time,
we first divide the temporal dimension into a number of windows (referred to as time blocks), so that each
time block has a moderate size in time. We solve the problem using the variable projection algorithm on the
spatial-temporal domain of each time block individually and successively. After one time block is computed,
the field solution (and also possibly its derivatives) evaluated at the last time instant of this block is used as
the initial condition(s) for the subsequent time block. We refer the reader to [15] for more detailed discussions

of the block time marching scheme.

Remark 2.6. We next comment on the VarPro algorithm combined with domain decomposition and local
neural networks for solving the system (1). In the above discussions we have represented the solution field
to the boundary value problem (1) by a single feed-forward neural network over the entire domain Q. This
can be considered as a “global” method. Alternatively, as discussed in [15], one can decompose the domain
Q into sub-domains and represent the solution on each sub-domain by a local feed-forward neural network,
and then impose C* (with an appropriate k) continuity conditions across the sub-domain boundaries. We
can combine VarPro and this local function representation based on domain decomposition and local neural
networks for solving PDEs. Note that in [15] the hidden-layer coefficients of the local neural networks are
fized random values and are not trainable, and only the oulpul-layer coefficients are trainable parameters.
In the current case, unlike in [15], the trainable parameters consist of the coefficients in both the hidden
layers and the output layers of the local neural networks. Note also that all the local neural networks are
coupled due to the C* continuity conditions. On each sub-domain we choose a set of collocation points, with

a subset of these points residing on the sub-domain boundaries. To solve the system (1), we enforce the
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equation (1a) on all the collocation points from each sub-domain, and enforce the equation (1b) on those
collocation points of each sub-domain that reside on the domain boundary 0. In addition, we enforce the C*
continuity conditions of the solution field on those collocation points of each sub-domain that reside on the
common sub-domain boundaries of adjacent sub-domains. We refer the reader to [15] for detailed discussions
of the enforcement of these equations/conditions. These operations result in a system of equations about the
hidden-/output-layer coefficients of the local neural networks. We seek a least squares solution to this system,
leading to a separable nonlinear least squares problem. The linear parameters of this problem consist of the
set of output-layer coefficients of all the local neural networks, and the nonlinear parameters consist of the
set of hidden-layer coefficients of all the local neural networks. The variable projection idea can be used to
solve this problem. We reformulate this problem by VarPro to eliminate the linear parameters and arrive
at a reduced problem about the nonlinear parameters only. Then the method as discussed in this section
can be employed to determine the nonlinear parameters first, which in turn are used to compute the linear
parameters. The procedure outlined above can be considered as a “local” version of the VarPro method. The
local VarPro method would be more favorable for PDE problems in which certain complex features (e.g. sharp
gradient) may exist locally in the domain. In such a case one can exploit domain decomposition and the local

VarPro method to better capture the local complex features of the solution.

Remark 2.7. It would be interesting to compare the current VarPro method with the extreme learning ma-
chine (ELM) method from [15, 19] for solving PDEs. With ELM, the weight/bias coefficients in all the
hidden layers of the neural network are pre-set to random values and are fixed, while the output-layer coef-
ficients are computed by the linear least squares method for solving linear PDEs and by the nonlinear least
squares method for solving nonlinear PDEs [15]. In [15, 19] the hidden-layer coefficients are set and fized to
uniform random values generated on the interval [— Ry, Ry], where Ry, is a user-provided constant (hyper-
parameter). The constant R, has an influence on the accuracy of ELM, and the optimal R,, value (denoted
by R0 in [19]) can be computed by the method from [19] based on the differential evolution algorithm. It is
crucial to note that in ELM all the hidden-layer coefficients are fized (not trained) once they are set.

With the VarPro method, the output-layer coefficients are always computed by the linear least squares
method, once the hidden-layer coefficients are determined. The weight/bias coefficients in the hidden layers
are determined by considering the reduced problem, which eliminates the linear output-layer coefficients.
The hidden-layer coefficients are computed by solving the reduced problem using the nonlinear least squares
method. With the VarPro approach, the hidden-layer coefficients of the neural network are trained/computed
first by solving the reduced problem, and then the output-layer coefficients are computed by the linear least
squares method afterwards. If the mazximum number of iterations is set to zero in the nonlinear least squares
solution of the reduced problem, the VarPro algorithm will be reduced to essentially the ELM method.

With the same neural network architecture and under the same settings, the VarPro method is in general
significantly more accurate than the ELM method. In particular, VarPro can produce highly accurate solutions
when the number of nodes in the last hidden layer is not large. In contrast, the result produced by ELM in this
case is usually much less accurate or utterly inaccurate. VarPro achieves the higher accuracy at the price of

the computational cost. Because VarPro needs to solve the reduced problem for the hidden-layer coefficients
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by a nonlinear least squares computation, its computational cost is usually much higher than that of the
ELM method, which only computes the output-layer coefficients by the linear least squares method (for linear
PDEs). In numerical simulations with VarPro, we initialize the hidden-layer coefficients (i.e. the initial
guess Oy in Algorithm 3) to uniform random values generated on the interval [— Ry, Ry, with R, = 1 in
general (or with R, set to a user-provided value). We observe from numerical experiments that the VarPro
method is less sensitive or insensitive to the random coefficient initializations (the R,, constant) than ELM.

We provide numerical experiments in Section 3 for comparisons between the VarPro and the ELM methods.

2.2 Newton-Variable Projection Method for Solving Nonlinear PDEs

We next develop a method based on variable projection for solving nonlinear PDEs. The notations and
settings here follow those of Section 2.1.

Consider the following nonlinear boundary value problem on the domain € in d dimensions,

Lu+ F(u) = f(x), (15a)
Bu + G(u) = g(x), on 09, (15Db)

where F'(u) and G(u) are nonlinear operators on the solution field u(x) and also possibly on its derivatives,
and L, B, f and g have the same meanings as in the equations (1a)-(1b). We assume that the highest-order
term occurs in the linear differential operator L, and that the nonlinear terms F(u) and G(u) involve only
the lower-order derivatives (if any). We again assume that the L operator may involve time derivatives. In
such a case we treat the time ¢ in the same way as the spatial coordinate x, as discussed in Section 2.1. We
assume that this problem is well-posed.

We approximate the field solution u(x) to the system (15) by a feed-forward neural network with (K +1)
layers, following the same configurations and settings as discussed in Section 2.1. Substituting the expansion
relation (2) for u(x) into equations (15a) and (15b), and enforcing these two equations on all the collocation
points from X and on all the boundary collocation points from X, respectively, we arrive at an algebraic
system of (N + Np) equations about the (N, + M) unknown neural-network coefficients (0, 3). We seek
a least squares solution to this system, thus leading to a nonlinear least squares problem. This algebraic
system, however, is nonlinear with respect to both 8 and 3, because of the nonlinear terms F(u) and G(u)
in (15a)—(15b). This is not a separable nonlinear least squares problem. The variable projection approach
apparently cannot be used for solving this system, at least with the above straightforward formulation.

To circumvent the above issue and enable the use of the variable projection strategy, we consider the
linearization of the system (15a)—(15b) with the Newton’s method. Let u* denote the approximation of the

solution at the k-th Newton iteration. We linearize this system as follows,

LuF+1 +F(uk> n F/(uk) (uk+1 _ uk) = f(x), (16a)
BuF ! 4 G(ub) + G/ (u) (uF Tt — ub) = g(x), om 09, (16b)

where F'(u) and G’(u) denote the derivatives with respect to u. We further re-write the linearized system
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into,

Lub Tt 4 F ()b = f(x) — F(u) + F (uP)u®, (17a)
BuM 4+ G (uF)uF T = g(x) — G(uF) + G'(WF)uF,  on 9Q. (17b)

Given u”, this system represents a linear boundary value problem about the updated approximation field
uF+1. Therefore, the VarPro/ANN algorithm developed in Section 2.1 can be used to solve this linearized
system (17a)—(17b) for u*+1. Upon convergence of the Newton iteration, the solution to the original nonlinear

system (15a)—(15b) will be obtained and represented by the neural-network coefficients.

Remark 2.8. It is important to notice that the above formulation leads to a linearized system about the

k+1

updated approximation field u directly. This linearization form is crucial to the high accuracy for solving

nonlinear PDFEs with the variable projection approach and artificial neural networks.
An alternative and perhaps more commonly-used form of linearization for the Newton’s method is often

formulated in terms of the increment field. Let
=P 4o, (18)
where v is the increment field at the step k. Then the increment is given by the following linearized system,

Lv+ F'(u")v = f(x) — [Lu" + F(u")], (19a)

Bv+ G'(uF)v = g(x) — [Bu* + G(uF)], on 0. (19b)

So the increment field v can be computed by the variable projection approach from the above system. The

k+

updated approzimation u*1 is given by equation (18).

There are two issues with the form of linearization given by (19) when using variable projection and

artificial neural networks. First, with this form u**1

can only be computed in the physical space (i.e. on the
collocation points), and it is not represented in terms of the neural network (i.e. given by the network coeffi-
cients). Note that with the system (19) the increment field v is computed by the VarPro/ANN algorithm and

is represented by the hidden-layer and output-layer coefficients of the neural network. But uF+1

is computed
by equation (18). This can only be performed in the physical space, not in terms of the neural-network coef-
ficients, due to the nonlinearity of the network output with respect to the hidden-layer coefficients. Second,
upon convergence of the Newton iteration, the solution to the nonlinear system (i.e. the converged u**') is
given in the physical space (on the collocation points), not represented by the neural network. Therefore,
one needs to additionally convert this solution from physical space to the neural network representation, by
solving a function approximation problem using the neural network and variable projection. This extra step
s necessary in order to evaluate the solution field on the points other than the training collocation points in
the domain.

The form of linearization given by (16), on the other hand, does not suffer from these issues. The

k+1

updated approzimation field u computed by the variable projection method is directly represented by the

neural-network coefficients, as well as the solution to the original nonlinear system upon convergence. We
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observe that the solution obtained based on the formulation (16) is considerably more accurate, typically by
two orders of magnitude or more, than that obtained based on the formulation (19). It should be noted that

the system (19) can be transformed into the system (16) by the substitution v = uF*+1 — u*.

Within each Newton iteration we solve the linear boundary value problem (17) using the variable projec-
tion method. In order to make the following discussions more concise, we introduce the following notation

to drop the superscripts,

{U(X) =u" (%), w(x) =u(x), 20)
fa(x) = f(x) = F(u") + F'(u")u",  ga(x) = g(x) = G(u*) + G (u")u".
Then the system (17) is re-written into,
Lu+ F'(w)u = f,(x), (21a)
Bu + G'(w)u = g,(x), on 0. (21b)

Let us next consider the solution of (21) with the variable projection approach. This system is similar
to (1). The solution procedure mirrors that of Section 2.1. So we only summarize the most important steps
below. We use a feed-forward neural network to represent the solution u(x) to the system (21), with the
same settings and configurations for the neural network and the collocation points as given in Section 2.1.
Substituting the expansion (2) into (21), and enforcing the equation (21a) on all the collocation points and

equation (21b) on all the boundary collocation points, we get the following system in matrix form,

L&(0,%,) + F'()®(0, x,) falxp)

H(0)3 = S, where H(0) = , 8= , (22)

B®(0,x,) + G (0)®(6, x,) 0a(%,)

L : d (V1N x M L I ovam)xa

where x,, € X and x, € X,. Following the same developments as given by equations (5) and (7), we arrive at
the reduced nonlinear least squares problem (7) about 8, with the understanding that the terms H(0) and S
in all those equations are now defined by (22). We then invoke the Algorithm 3 to compute (8, 3), with the
understanding that on line 24 of that algorithm the “equation (4)” is now replaced by equation (22) when
computing 3.

Remark 2.9. It should be noted that, depending on the form of the nonlinear operator F(u), the terms
F'(w)® in the matriz H(O) may involve the derivatives of ®. For example, with F(u) = u%, we have
Fl(w)® = 2°® + w2, The extra terms F'(w)® and G'(w)® in H(O) do not add to the difficulty in
computing the matrices H(0) and Jo(0). Computing H(0) and Jo(0) follows the same procedures as outlined
in the Remarks 2.1 and 2.2. The only difference lies in that in H(0) one needs to additionally compute the
F'(w)®(0,%,) (x, € X) and G'(w)®(0,x,) (x4 € Xp) based on the data for ®(0,x) and its derivatives

on the collocation points. In Jo(0) one needs to additionally compute the F'(w)%|(ex ) (%, € X) and
P
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Algorithm 4: Newton-variable projection algorithm for the nonlinear problem (15).

input : input data X to neural network; source data f(x,) (x, € X) and g(x4) (x4 € Xp); initial
guess u°(x).
output: solution u(x), represented by the coefficients of the neural network.

1 for k < 0 to mazimum-number-of-newton-iterations do
2 compute the vector R by (23)

3 if ||R|| is below a tolerance then

4 | break

5 end

6 compute S by the equations (22) and (20)
call Algorithm 3, with “equation (4)” on line 24 therein replaced by “equation (22)”, to obtain
(0, 3), which are the neural-network representation of u**! in the system (17)

compute the vector AU by (23)

9 if ||AU|| is below a tolerance then
10 ‘ break

11 end

12 end

G’(w)%h&xq) (x4 € Xp) based on the data for u(x) and its derivatives with respect to x and 6 on the

collocation points.

To solve the nonlinear boundary value problem (15), we employ an overall Newton iteration. Within
each iteration we invoke the variable projection method as given by Algorithm 3 to solve the system (17) for
uF*1, and the computed u**! is represented by the weight/bias coefficients of the artificial neural network.
Upon convergence of the Newton iteration, the solution to the original nonlinear system (15) is given by the
neural network, represented by the neural-network coefficients. In our implementation, we have considered
two stopping criteria for the Newton iterations, based on the Euclidean norms of the residual vector R and

the increment vector AU defined by

Flop) — L () — F(u(x,))

R— . AU= |ubti(x,) —uF(x)| (23)

9(x,) — Buk(x,) — G(ub (x,) | Nx1

L : 4 (N4+Ny)x1
The overall Newton-VarPro method with ANNs for solving the nonlinear system (15) is summarized in the

Algorithm 4.

Remark 2.10. When solving the nonlinear problem (15) using the Newton-VarPro method (Algorithm 4),
one can often turn off the initial-guess perturbations and sub-iterations in Algorithm 3 when invoking this
algorithm to solve the system (17). This can be achieved by simply setting the “maximum-number-of-sub-
iterations” to zero on line 5 of the Algorithm 3. In this case, if the converged cost from Algorithm 3 is not

k+1

very small (above some threshold), this means that the returned u solution from that Newton step may
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not be that accurate. This inaccuracy, however, can be offset by the subsequent Newton iterations.

Remark 2.11. When solving nonlinear PDEs using the Newton-VarPro method, if the resolution is low
(e.g. using a small number of training collocation points), we observe from numerical experiments that the
Newton iteration may have difficulty reaching convergence within a specified mazimum number of iterations.
In such a case, increasing the resolution (e.g. increasing the number of collocation points) can typically
improve the convergence of the Newton iteration. In the numerical experiments of Section 8 we typically

employ a relative tolerance 1E — 8 for the Newton iterations (see the lines 3 and 9 of Algorithm 4).

3 Numerical Examples

We use several numerical examples involving linear and nonlinear PDEs to illustrate the performance char-
acteristics of the VarPro method. These problems are in two spatial dimensions or in one spatial dimension
plus time. We also compare the simulation results of the current VarPro method and the ELM method
from [19, 15] to demonstrate the superior accuracy of the current method.

As stated previously, the current VarPro method is implemented in Python, using the Tensorflow
(www.tensorflow.org) and Keras (keras.io) libraries. For the linear least squares method we employ the scipy
routine “scipy.linalg.lstsq” in our implementation, which invokes the corresponding routine from the LA-
PACK library. For the nonlinear least squares method, we employ the scipy routine “scipy.optimize.least_squares”
in our application code, which implements the Gauss-Newton method together with a trust region algo-
rithm [5]. The differential operators acting on the output fields of the last hidden layer are computed by a
forward-mode auto-differentiation in our implementation, as discussed in Remark 2.1. The data for the Ja-
cobian matrix are computed by a reverse-mode auto-differentiation using a vectorized map together with the
GradientTape in Tensorflow, as discussed in Remark 2.2. We would like to mention that in our implementa-
tion of the neural network, between the input layer and the first hidden layer, we have incorporated a lambda
layer from Keras to normalize the input data X from the rectangular domain Q = [aq,b1] X - -+ X [ag, bg] to
the standard domain [—1,1]%.

As in our previous works [15, 16, 19], we employ a fixed seed value for the random number generators in
the numerical experiments in each subsection, so that the reported results here can be exactly reproducible.
We use the same seed for the random number generators from the Tensorflow library and from the numpy
package. These seed values are 1 in Sections 3.1.1 and 3.2.1, 10 in Sections 3.1.2 and 3.2.2, and 22 in
Section 3.2.3.

3.1 Linear Examples

3.1.1 Poisson Equation

We first consider the canonical two-dimensional (2D) Poisson equation on a unit square domain, (z,y) €
[0,1] x [0,1],

2'11, 2U
o 5o = F@) (24n)
”LL(SC, O) - gl(x)a u(xv 1) = gQ(x)a U(O,y) = gB(y)a U(l,y) = 94(y)7 (24b)
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Figure 2: Poisson equation: (a) Distribution of the exact solution. (b) Distribution of the absolute error
of the VarPro solution. In (b), neural network [2, 125, 1], “cos” activation function, @ = 15 x 15 uniform
training collocation points.

where u(z,y) is the field function to be solved for, f(x,y) is a prescribed source term, and g; (1 < ¢ < 4)

denote the boundary data. We employ the following analytic solution to this problem in the tests,

u = |2cos §71'334—g7r +§cos<37r:z:—z)+ ! 2 cos §7T —I—gw
- 2 5 2 5) T 1422 2™ 5

3 s 1
+§ cos (37ry — g) + ryz:| , (25)

by choosing the source term f and the boundary data g; (1 < ¢ < 4) appropriately. Figure 2(a) shows the
distribution of this analytic solution in the xy plane.

We employ feed-forward neural networks with one or two hidden layers, with the architecture given by
[2, M, 1] or [2,20, M, 1], where M is varied systematically or fixed at M = 100, 125 or 200. The two input
nodes represent the coordinates (x,y), and the single output node represents the solution field u(x,y). The
activation function for the hidden nodes is either the cosine function, o(x) = cos(x), or the Gaussian function,

=* The output layer is required to be linear (no activation function) and contain no bias.

o(x)=e"

We employ a uniform set of Q = Q1 x @1 grid points on the domain as the training collocation points,
where @) denotes the number of uniform grid points in each direction (including the two end points) and
is varied systematically between around 5 and 30 in the tests. After the neural network is trained by the
VarPro method on the @1 X @1 collocation points, the neural network is evaluated on a much larger uniform
set of Q2 x Q2 grid points, where Q2 = 101 for this problem, to obtain the solution u(z,y). This solution is
compared with the analytic solution (25) to compute the maximum (L°°) and the root-mean-squares (rms,
or L?) errors. These maximum/rms errors are then recorded and referred to as the errors associated with the
given neural network architecture and the training collocation points Q = Q1 X @1 for the VarPro method.

The main simulation parameters of the VarPro method are summarized in Table 1. The last three rows
of this table pertain to the parameters in Algorithm 3. 6y denotes the initial guess to the hidden-layer
coefficients in Algorithm 3, which are set to uniform random values generated on [— R, R,,] with R, = 1.0.

When comparing the VarPro method and the ELM method, we also employ a value R,,, = R, with VarPro,
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parameter value parameter value
neural network [2, M, 1] or [2,20, M, 1] training points @ Q1 X Q1
M varied Q1 varied
activation function cos, Gaussian testing points Q2 X Qo
random seed 1 Q2 101
initial guess 6g random values on [—R,,, R;n] | R 1.0

0 (Algorithm 3) 0.5, 1.0, 2.0, 5.0, or 7.0 p (Algorithm 3) 0.5
max-subiterations 5 threshold (Algorithm 3) 1E — 12

Table 1: Poisson equation: Main simulation parameters of the VarPro method.

AR ——O6— maxerror 10" FA —&—— maxerror
1000 ----A---- rms error . ----A---- rms error
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Figure 3: Poisson equation: Maximum/rms errors of the VarPro solution versus the number of collocation
points per direction (Q;) obtained with (a) the cos activation function, and (b) the Gaussian activation
function. Neural network [2, 200, 1] in (a,b); @ is varied in (a,b); § = 7.0 in (a), and § = 1.0 in (b).

where R0 is the optimal R, value corresponding to ELM computed using the method from [19]. ¢ and
p in this table are the maximum perturbation magnitude and the preference probability in Algorithm 3,
respectively. The “max-subiterations” here refers to the maximum-number-of-sub-iterations in Algorithm 3.
The “threshold” here refers to the threshold on the lines 3 and 19 in Algorithm 3.

Let us first consider the VarPro results obtained with neural networks containing a single hidden layer.
Figure 2(b) shows the distribution of the absolute error of the VarPro solution in the zy plane. This result
corresponds to the neural network architecture [2,125, 1], with the cos activation function, a uniform set of
@ = 15 x 15 training collocation points, and § = 7.0 in Algorithm 3. The VarPro solution is highly accurate,
with a maximum error around 108 in the domain.

Figure 3 illustrates the convergence behavior of the VarPro solution as a function of the number of training
collocation points in the domain. Here we employ a neural network [2,200, 1], with the cos and the Gaussian
activation functions. The number of collocation points in each direction (@) is varied systematically. Figure
3 shows the maximum and the rms errors of the VarPro solution in the domain as a function of @1, obtained
using the cos activation function (plot (a)) and the Gaussian activation function (plot (b)). The VarPro
errors decrease approximately exponentially when )7 is below around 20, and then appear to stagnate as
Q@ further increases. The VarPro errors reach a level around 10~ ~ 10~ with the cos activation function

and a level around 1072 ~ 10~7 with the Gaussian activation function.
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Figure 5: Poisson equation (2 hidden layers in neural network): (a) Error distribution of the VarPro solution.
(b) The maximum/rms errors of the VarPro solution versus the number of collocation points per direction
(Q1). Neural network [2, 20, 100, 1], with the cos activation function. @ = 18 x 18 in (a), and is varied in
(b). 6 =0.51in (a,b).

Figure 4 illustrates the convergence behavior of the VarPro accuracy with respect to the number of
nodes in the hidden layer (M) of the network. Here we consider neural networks with the architecture
[2, M, 1], where M is varied systematically, with the cos and Gaussian activation functions. A fixed uniform
set of @ = 21 x 21 training collocation points is used. Figure 4 shows the maximum/rms errors of the
VarPro solution in the domain as a function of M, obtained with the cos (plot(a)) and the Gaussian (plot
(b)) activation functions. One can observe an approximately exponential decrease in the VarPro errors with
increasing M (when M is below a certain value), and then the errors appear to stagnate (or increase slightly)
as M further increases.

Figure 5 illustrates the VarPro solution using a neural network containing two hidden layers. Here we
have employed a neural network with the architecture [2,20,100,1] and the cos activation function for all

the hidden nodes. Figure 5(a) shows the distribution of the absolute error of the VarPro solution obtained
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Neural [~ Ry, Rim] | collocation | VarPro ELM
network points max-error rmS-error Mmax-error  IMS-error
[2,100,1] | Ry =1 5 X b 6.470F + 1 2.422F 41 1.247TE+2 2.745E+1
10 x 10 8.388E — 3 3.941FE -3 1.402E+1 2.575FE+0
15 x 15 6.018E —7  8.241F —38 1475E+1 1.938E 40
20 x 20 3.693E -7 4.216FE -8 1.690EF+1 2.527TE+0
25 x 25 5.845E —7  8.054E -8 1.7TE+1  2.7752E 40
30 x 30 2688E -7 2867TE—-8 | 1864E+1 2916E+40
Ry =Rpno | 5%X5 2.156E +0 6.114FE — 1 2.156E+0 6.114E -1
= 10 x 10 7.735E — 4 1.497F — 4 1.353E —1 2497TE —2
15 x 15 4.17E -7  4.614F -8 3.019E -1 6.004E —2
20 x 20 1.753E -7 1974E -8 | 3.859FE —1 T7.575L —2
25 x 25 8.443F — 7 1.227TE -7 | 4.336E —1 8.489E —2
30 x 30 8.709E — 8 1.088F —8 | 4.673E —1 9.157F —2
[2,200,1] | Ry =1 5xb 5.948E + 0 2.102E +0 9.325E+1 2.024E +1
10 x 10 2.127TE -2 4.398E -3 | 4417TE+0 7.083E -1
15 x 15 6.082E — 8 1.983E — 8 5.615E+0 8.019FE—1
20 x 20 1.459FE -9 1.203E —10 | 4979E+0 7.610E —1
25 x 25 1.782FE — 7 7.978E — 8 5.077E +0 8.565E — 1
30 x 30 3.000E -9 3.420E —10 | 5.633E+0 8804F —1
Ry =Rpmo | 5X5 7.292F — 1 2.733E -1 7292E -1 2.732E -1
=6 10 x 10 1.283E -4  3.705E -5 1.283E —4 3.706E -5
15 x 15 2.315E -9 4.746E — 10 | 9.822F —6 T481FE —7
20 x 20 3.449F — 10 3.722F — 11 | 1.245F —5 1.518E —6
25 x 25 6.3719E -9  4980F —10 | 1.17T4E -5 1.677E —6
30 x 30 4.221F - 10 4.086F£ —11 | 1.242E -5 1.800E —6

Table 2: Poisson equation: comparison of the maximum/rms errors obtained using the VarPro and ELM
methods. cos activation function. In both VarPro and ELM, the hidden-layer coefficients are initialized /set
to uniform random values generated on [—R,,, Ry,], with R,, = 1.0 or with R,, = Ry,0. Rmo is the optimal
R, for ELM computed using the method from [19], and in this case R,,0 = 6.0. § = 5.0 in VarPro.

with a set of @ = 18 x 18 uniform collocation points in the domain. The maximum error is on the level
1072, indicating a high accuracy. Figure 5(b) depicts the maximum /rms errors of the VarPro solution as a
function of the number of collocation points in each direction (Q7). One can again observe an exponential
decrease in the errors (before saturation) with increasing number of collocation points. All these results
suggest that the VarPro method produces highly accurate results for solving the Poisson equation.

Table 2 compares the errors of the current VarPro method and the ELM method [19, 15] for solving the
Poisson equation. We have considered two neural networks having the architecture [2, M, 1], with M = 100
and M = 200. A uniform set of Q = @)1 X Q1 training collocation points are employed on the domain, where
()1 is varied between )1 = 5 and @1 = 30. In ELM the hidden-layer coefficients are set (and fixed) to uniform
random values generated on [—R,,, R,,], and in VarPro the hidden-layer coefficients are initialized (i.e. the
initial guess @y in Algorithm 3) to the same random values from [—R,,, R;]. So the random hidden-layer
coefficients in ELM and the initial hidden-layer coefficients in VarPro are identical. We have considered two
R,, values, R,, = 1.0 and R,, = R0, where R,,o is the optimal R,, for ELM computed using the method

from [19] and in this case R,,o = 6.0. We can make the following observations:

e The VarPro method in general produces considerably more accurate results than ELM, under the same
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VarPro solution, in the spatial-temporal plane. ¢; = 10. In (b), 10 time blocks, @ = 21 x 21 uniform
collocation points per time block, neural network [2, 100, 1], Gaussian activation function, the max sub-
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settings and conditions, especially when the size of the neural network is still not quite large.

e The ELM accuracy has a fairly strong dependence on the R, value. On the other hand, the VarPro

accuracy is less sensitive or insensitive to the R,, value.

In these tests the VarPro method has produced errors on the order 1078 ~ 10719 with the given neural
networks. We should point out that the ELM method can also achieve numerical errors on such levels, but

it requires neural networks with a larger number of nodes in the hidden layer.

3.1.2 Advection Equation

As another linear example we consider the spatial-temporal domain Q = {(z,t) | € [0,3], ¢t € [0,tf]} in
this test, where the temporal dimension ¢y is to be specified below. We consider the initial/boundary value

problem with the advection equation on {2,

Ju Ju
=== 2
ot oz 0 (262)
u(0,1) = u(3,1), (26b)
. 27
u(x,0) = sin ?(:z: —2), (26¢)
where u(z,t) is the field function to be solved for, and ¢ = —2.0 is the wave speed. This problem has the

following exact solution,
.27
u(x,t) = sin ?(:17 — 2t —2). (27)

Figure 6(a) shows the distribution of this exact solution in the spatial-temporal domain with ¢; = 10.
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parameter value parameter value

Ly 10, or 100 number of time blocks 10, or 100
neural network [2, M, 1], or [2,10, M, 1] training points @ Q1 x Q1
M varied Q1 varied
activation function Gaussian, GELU testing points Q2 X Qo
random seed 10 Q2 101
initial guess Og random values on [—R,,, R;,] | R 1.0

d (Algorithm 3) 0.0, 0.05, 1.0, or 3.0 p (Algorithm 3) 0.5
max-subiterations 0, or 2 threshold (Algorithm 3) 1F — 12

Table 3: Advection equation: main simulation parameters of the VarPro method.
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Figure 7: Advection equation: the maximum/rms errors of the VarPro solution versus the number of collo-
cation points per direction in each time block, obtained with (a) the Gaussian and (b) the GELU activation
functions. In (a,b), t; = 10, 10 time blocks, neural network [2, 100, 1], max-subiterations = 2 and ¢ = 1.0 in
VarPro.

To solve this problem with the VarPro method, we employ a feed-forward neural network with one or
two hidden layers, with the architecture given by [2, M, 1] or [2,10, M, 1], where M is varied systematically
in the tests. The two input nodes represent the spatial/temporal coordinates (z,t), and the output node

.’IJ2

represents the solution field u(x,t). We employ the Gaussian function, o(x) = e~®", or the Gaussian error

linear unit (GELU) [30], o(z) = 1z {1 + erf (%)}, as the activation function for all the hidden nodes. The
output layer is linear and with zero bias.

We primarily consider a temporal dimension ¢ty = 10 for the domain 2. We employ the block time
marching (BTM) scheme from [15] together with the VarPro method for this problem; see Remark 2.5. We
employ 10 uniform time blocks in time. and in each time block employ a uniform set of @) = @1 X @1 training
collocation points with the VarPro method, where (), is varied systematically. Following Section 3.1.1, we
employ a much larger uniform set of QY2 X Q2 grid points within each time block to evaluate the trained
neural network for the solution field and compute its errors by comparing with the exact solution (27). We
have also considered another spatial-temporal domain with a much larger temporal dimension ¢y = 100.
Correspondingly, 100 uniform time blocks are employed in simulations of this case. The main simulation
parameters for this problem are summarized in Table 3.

Let us first look into the VarPro errors obtained using neural networks with one hidden layer. Figure
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Figure 8: Advection equation: the maximum/rms errors of the VarPro solution versus the number of nodes
in the hidden layer (M) obtained with (a) the Gaussian and (b) the GELU activation functions. In (a,b),
ty = 10, 10 time blocks, @ = 21 x 21 uniform collocation points, neural network (2, M, 1] with M varied,
max-subiterations= 2 and J = 1.0 in VarPro.

6(b) shows the distribution of the absolute error of the VarPro result in the spatial-temporal domain. This
result is for the temporal dimension t; = 10, and is obtained using a neural network (2,100, 1] with the
Gaussian activation function and a uniform set of @ = 21 x 21 training collocation points in the domain.
The VarPro result is highly accurate, with a maximum error on the order 10~% in the overall domain.
Figure 7 illustrates the convergence behavior of the VarPro solution with respect to the number of
collocation points per direction (@) in each time block. This is for the temporal dimension ¢y = 10 computed
with a neural network [2, 100, 1] and 10 time blocks . The plot (a) shows the maximum and rms errors in the
overall domain of the VarPro solution as a function of @; obtained with the Gaussian activation function.
The plot (b) shows the corresponding result obtained with the GELU activation function. The exponential
decrease in the errors with increasing number of collocation points (before saturation) is unmistakable.
Figure 8 illustrates the convergence behavior of the VarPro solution with respect to the number of nodes
in the hidden layer (M). Here the domain corresponds to ¢; = 10, with 10 time blocks and a uniform set
of @ = 21 x 21 training collocation points per time block in the VarPro simulation. The neural network is
given by [2, M, 1], where M is varied systematically. Figures 8(a) and (b) shows the maximum/rms errors
in the overall domain as a function of M obtained using the Gaussian and the GELU activation functions,
respectively. The exponential decrease in the errors with increasing M (before saturation) is evident.
Figure 9 illustrates the VarPro results computed using a neural network containing two hidden layers. The
domain corresponds to ty = 10, and the neural network has the architecture [2, 10,100, 1] with the Gaussian
activation function. Figure 9(a) shows the VarPro error distribution in the overall spatial-temporal plane,
obtained with a uniform ¢ = 21 x 21 training collocation points per time block. Figure 9(b) depicts the
maximum/rms VarPro errors in the overall domain as a function of the collocation points per direction in
each time block, demonstrating the exponential convergence behavior.
A comparison between the current VarPro method and the ELM method [19, 15] for solving the advection

equation is provided in Table 4. The maximum and rms errors of the VarPro and the ELM methods obtained
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Figure 9: Advection equation (two hidden layers in NN): (a) Error distribution of the VarPro solution in
the spatial-temporal plane, and (b) the maximum/rms errors of the VarPro solution versus the number of
collocation points per direction, obtained with 2 hidden layers in the neural network. In (a,b), t; = 10, 10
uniform time blocks, neural network [2,10, 100, 1], Gaussian activation function, max-subiterations = 2 and
0 =0.05 in VarPro. @ =21 x 21 in (a) and is varied in (b).

[—Rpm, Rm] | collocation | VarPro ELM
points mMax-error  IrmS-error | Mmax-error  rMms-error
R, =1 5 XD 2.505E -1 1.006E—1 | 2.505E -1 1.006F —1

10 x 10 3.194FE —4 1864FE —4 | 3.758E —4 1.245FE —4
15 x 15 4.254FE —8 6.954E -9 | 4.232E -5 1.269E -5
20 x 20 2.348E —8 4.240E -9 | 4618E -5 1.402FE -5
25 x 25 14938 —8 2889FE —9 | 5471E -5 1.598E —5
30 x 30 1.354E -8 2528E—-9 | 6419E -5 1.773E -5
Ry, =Rpo | 5x5 1.038E —1 3.252FE —2 | 1.038E —1 3.252F —2

=0.7 | 10x10 1.996E —4 9.437E -5 | 2240E -4 6.519E -5
15 x 15 7934F —8 9495E -9 | 3.881E -5 9.642FE —6
20 x 20 9.261F —8 3.253E -8 | 3471E -5 1.060E —5
25 x 25 3.444FE -8 4931E -9 | 3.314E -5 1.117TE -5
30 x 30 4.670E —8 T428E—9 | 3.283E -5 1.164E -5

Table 4: Advection equation: comparison of the maximum/rms errors of the solutions obtained using the
VarPro and ELM methods. t¢; = 10, 10 time blocks, Neural network [2, 100, 1], Gaussian activation
function. In VarPro, the max-subiterations is 2 and 6 = 1.0. In ELM /VarPro, the hidden-layer coefficients
are set/initialized to uniform random values from [—R,,, R;,], with R,, = 1.0 or with R,, = R,,0 = 0.7.

on a series of training collocation points are listed. These results are for the domain ¢y = 10, with 10 time
blocks in block time marching. We have employed a neural network [2,100, 1] with the Gaussian activation
function. The random hidden-layer coefficients in ELM and the initial hidden-layer coefficients in VarPro
are generated by R,, =1 and R,, = R,,0 = 0.7. It is evident that VarPro generally leads to significantly
more accurate results than ELM.

Figures 10 and 11 illustrate a longer-time simulation of the advection equation using the VarPro method
and the block time marching scheme. Here the domain corresponds to ¢ty = 100. We have employed 100
uniform time blocks, a set of Q = 25 x 25 uniform collocation points per time time block, and a neural
network [2,150,1] with the Gaussian activation function. Figures 10(a) and (b) show the distributions of
the VarPro solution and its absolute errors in the overall spatial-temporal plane. It can be observed that

the VarPro method has produced highly accurate results, with the maximum error on the order 10~% in
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Figure 10: Advection equation (long-time simulation): Distributions of (a) the VarPro solution and (b) its
absolute error in the spatial-temporal domain. Domain: (x,t) € [0,3] x [0,100], 100 uniform time blocks,
@ = 25 x 25 uniform collocation points per time block, neural network [2,150,1], Gaussian activation
function, no subiteration (max-subiterations=0) in VarPro.
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Figure 11: Advection equation (long-time simulation): (a) Comparison of the time histories between the
VarPro solution and the exact solution at the mid-point of the domain (x = 1.5). (b) Time history of the
absolute error of the VarPro solution at the mid-point of the domain (z = 1.5). Simulation parameters and
configurations here follow those of Figure 10.

this long-time simulation. Figure 11(a) compares the time histories of the VarPro solution and the exact
solution (27) at the mid-point of the domain (z = 1.5), and Figure 11(b) shows the corresponding VarPro
error history at this point. These results indicate that the VarPro method together with the block time

marching scheme can produce highly accurate results in long-time simulations.
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Figure 12: Nonlinear Helmholtz equation: Distributions of (a) the exact solution and (b) the absolute error
of the VarPro solution. In (b), neural network [2, 200, 1], “sin” activation function, @ = 21 x 21 uniform
collocation points, § = 0.05 in VarPro.

3.2 Nonlinear Examples
3.2.1 Nonlinear Helmholtz Equation

In the first nonlinear example, we consider the boundary value problem with a nonlinear Helmholtz equation

on the unit square domain [0, 1] x [0, 1],

% + g—yz — 100u + 5 cos(2u) = f(z,y), (28a)
w(@,0) = g1(x), (1) =ga2(x), w(0,y) =gs(y), u(l,y)=ga(y), (28b)

where u(x,y) is the field function to be solved for, f(x,y) is a prescribed source term, and g; (1 < i < 4)
denote the boundary data. With f and g; (1 <4 < 4) chosen appropriately, this problem admits the following

analytic solution,

u= §cos §71'ﬂc—g7r +§cos 37mc—i—3—7T +1(e’”—6_’”) §cos §7r 2
TR\ TET) T 10) "2 2" 2™ 5

3 3 1
hd o Z(eY — Y
+2cos<37ry+10>+2(e e )} (29)

We employ this analytic solution in the following tests. Figure 12(a) shows the distribution of this analytic
solution in the xy plane.

We employ neural networks with the architectures [2, M, 1] and [2,5, M, 1] in the VarPro simulations,
where M is varied in the tests. The sine function, o(z) = sin(z), or the Gaussian function, o(x) = e is
employed as the activation functions for the hidden nodes. A uniform set of Q = @1 X Q1 training collocation
points, where @ is varied, is used to train the neural network. The VarPro solution is computed on a larger
set of Q2 X Q2 (with Q2 = 101) uniform grid points by evaluating the trained neural network, and compared
with the analytic solution to compute its errors. Table 5 provides the main simulation parameters for this
problem and the VarPro method. In this table “max-iterations-newton” denotes the maximum number of

Newton iterations, and “tolerance-newton” denotes the relative tolerance for the Newton iteration (see lines

3 and 9 of Algorithm 4).
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parameter value parameter value
neural network [2, M, 1], or [2,5, M, 1] training points @ Q1 X Q1
M varied Q1 varied
activation function sin, Gaussian testing points Q2 X Q2
random seed 1 Q2 101
initial guess 6g random values on [—R,,, Ryn] | R 1.0

0 (Algorithm 3) 0.02, 0.05, 0.1, or 0.2 p (Algorithm 3) 0.5
max-subiterations 2 threshold (Algorithm 3) 1E — 12
max-iterations-newton 20 tolerance-newton 1E -8

Table 5: Nonlinear Helmholtz equation: main simulation parameters of the VarPro method.
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Figure 13: Nonlinear Helmholtz equation: the maximum /rms errors of the VarPro solution versus the number
of collocation points per direction, obtained using (a) the sine and (b) the Gaussian activation functions.
Neural network [2, 200, 1], § = 0.1 in (a) and 6 = 0.2 in (b) with VarPro.

Figure 12(b) illustrates the error distribution of a VarPro solution in the zy plane, computed using a
neural network [2, 200, 1] with the sin activation function and a uniform set of @) = 21 x 21 collocation points.
The result is observed to be highly accurate, with a maximum error on the order 107!° in the domain.

Figure 13 illustrates the convergence behavior of the VarPro method with respect to the number of
training collocation points in the domain. In these tests the number of collocation points per direction (GQ1)
is varied systematically. The two plots show the maximum /rms errors in the domain of the VarPro solution
as a function of @)1, obtained using the sin (plot (a)) and the Gaussian (plot (b)) activation functions. These
VarPro results are attained using a neural network [2,200,1]. We observe an exponential decrease in the
VarPro errors (before saturation) with increasing number of collocation points.

Figure 14 illustrates the convergence behavior of the VarPro solution with respect to the number of nodes
in the hidden layer (M) for the nonlinear Helmholtz equation. Here the neural network has an architecture
[2, M, 1], where M is varied systematically, and a uniform set of = 21 x 21 training collocation points is
employed in the simulation. This figure shows the maximum/rms errors in the domain as a function of M,
obtained using the sin (plot (a)) and the Gaussian (plot (b)) activation functions. The errors computed with
the sin activation function appear not quite regular as M increases. But overall all these errors appear to

decrease approximately exponentially with increasing M.
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Figure 14: Nonlinear Helmholtz equation: the maximum /rms errors of the VarPro solution versus the number
of nodes in the hidden layer, obtained with (a) the sine and (b) the Gaussian activation functions. Neural
network [2, M, 1], where M is varied, @ =21 x 21, § = 0.1 in (a) and 6 = 0.2 in (b) with VarPro.
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Figure 15: Nonlinear Helmholtz equation (two hidden layers in NN): (a) Error distribution of the VarPro
solution. (b) The VarPro maximum/rms errors versus the number of collocation points per direction (Q1).
Neural network [2, 5, 200, 1], sin activation function, @ = 20 x 20 in (a) and is varied in (b), § = 0.02 in
(a,b) with VarPro.

Figure 15 illustrates the VarPro results obtained using two hidden layers in the neural network. Here
we consider a neural network with the architecture [2,5,200,1], with the sin activation function. Figure
15(a) shows the error distribution of the VarPro solution obtained using @) = 20 x 20 training collocation
points. In Figure 15(b) the number of collocation points per direction (Q) is varied systematically, and
the maximum/rms errors are plotted as a function of Q1. An exponential decrease in the errors (before
saturation) can be observed.

Table 6 is a comparison of the errors between the VarPro method and the ELM method for solving
the nonlinear Helmholtz equation. These results are for a neural network [2,200, 1] with the sin activation
function. In ELM the random hidden-layer coefficients are set to, and in VarPro the hidden-layer coefficients
are initialized to, uniform random values from [—R,,, R;,], where R,, = 1.0 or R,, = Rp,0 = 4.4. Several

sets of uniform training collocation points are tested, ranging from @ =5 x 5 to @ = 30 x 30. The VarPro
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[— R, R collocation | VarPro ELM
points max-error rms-error mMax-error  TMS-error

R, =1 5 X b 1.297TE+2 4536E+1 | 4388E4+0 8.195E -1
10 x 10 1.855FE — 2 3.955F — 3 7.701F+0 1.210E+0
15 x 15 2.868E — 8 3.252E -9 3.T43E —1 4.767TE —2
20 x 20 3.679E —10 3.203FE —11 | 1.280E+0 1.864F —1
25 x 25 6.014E — 8 3.281E -9 1434 +0 2.198F —1
30 x 30 5.709F — 10 4.576E —11 | 8366 E -1 1.123E -1

Ry, =Rpo=44|5%x5 6.742E — 1 2.408E -1 1.182F —1 3.589FE —2
10 x 10 5.869E -3 1.169E -3 | 8987E -7 1861FE —7
15 x 15 7T130E -9 1.024E -9 | 6.690E -9 8.655F — 10
20 x 20 2.851E -9 2.364FE — 10 | 2.384E -8 2.835E —9
25 x 25 4.193E - 10 5.173FE —11 | 3.133E -8 3.611E -9
30 x 30 1.128E -9 1.029F — 10 | 3.813E —8 4.194FE -9

Table 6: Nonlinear Helmholtz equation: comparison of the maximum/rms errors of the VarPro and ELM
solutions. Neural network [2, 200, 1], sin activation function. In VarPro, 6 = 0.1, and the tolerance-newton
is set to 1E — 8 with R,,, =1 and to 1E — 14 with R,, = 4.4.

(b)

Figure 16: Burgers’ equation (with manufactured solution): Distributions of (a) the manufactured solution
and (b) the absolute error of the VarPro solution in the spatial-temporal plane. In (b), neural network [2,
150, 1], and @ = 31 x 31 training collocation points.

results are in general markedly more accurate than those of the ELM results. This is especially pronounced

for those cases corresponding to R,, = 1.0.

3.2.2 Viscous Burgers’ Equation

In the second nonlinear example we use the viscous Burgers’ equation to test the VarPro method. We
will consider two solutions to the Burgers’ equation: (i) a manufactured smooth solution, and (ii) an exact
physical solution in which a sharp gradient develops in the domain over time.

Let us first examine the convergence behavior of VarPro using a manufactured solution. Consider the

spatial-temporal domain, Q = {(z,¢) | € [0,1], ¢ € [0, 1]}, and the following initial/boundary value problem
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parameter value parameter value
domain (z,t) € [0,1] x [0,1] block time marching none
neural network [2, M, 1] training points Q Q1 x Q1
M varied Q1 varied
activation function Gaussian testing points Q2 X Q2
random seed 10 Q2 101
initial guess 6 random values on [—R,,, Ryn] | R 1.0

d (Algorithm 3) un-used p (Algorithm 3) un-used
max-subiterations 0 (no subiteration) threshold (Algorithm 3) 1F — 12
max-iterations-newton 50 tolerance-newton 1F -8

Table 7: Burgers’ equation: main simulation parameters of VarPro with the manufactured solution (31).

on €,

Ou ou 0%y

5 + U T Vaa = f(z,t), (30a)
u(0,8) = g1(t),  u(1,t) = g2(t), (30b)
u(z,0) = h(z). (30c)

In the above equations, u(z,t) is the field function to be solved for, v = 0.05, f(x,t) is a prescribed source
term, g; and g, are the boundary conditions, and h is the initial condition. We choose f, g1, g2 and h such

that this problem has the the following manufactured analytic solution,

2m 3 3m 2m 3 3T
u(zx,t) = [2 cos (wx + 5) + 5 cos (27r:r - 5)} [2 cos <7Tt + 5) + 5 cos (27rt - 5)] . (31)

Figure 16(a) shows the distribution of this manufactured solution in the spatial-temporal plane.

We employ neural networks with an architecture [2, M, 1] in the VarPro simulations, where M is varied
systematically in the tests. The two input nodes represent (z,t) and the linear output node represents the
solution field u(z,t). The Gaussian activation function, o(z) = e‘xz, is employed in all the hidden nodes.
A uniform set of Q = Q1 X Q1 collocation points in the spatial-temporal domain is used to train the neural
network with the VarPro method, and @ is varied systematically in the tests. The trained neural network is
evaluated on a larger set of (2 X @2 uniform grid points to attain the field solution, which is then compared
with the analytic solution (31) to compute the errors. The main simulation parameters for this problem are
summarized in Table 7.

Figure 16(b) illustrates the distribution of the absolute error of a VarPro solution in the spatial-temporal
plane. This is computed using a neural network [2,150,1] with a uniform set of @ = 31 x 31 training
collocation points. The VarPro solution can be observed to be quite accurate, with a maximum error on the
order 10~® in the domain.

Figure 17 illustrates the convergence behavior of the VarPro method for solving the Burgers’ equation.
In these tests the neural network is given by [2, M, 1], where M is either fixed at M = 100 or varied between
M =25 and M = 250. A set of Q = @1 X Q1 uniform training collocation points is used, where @Q is either
fixed at @1 = 31 or varied between )1 = 10 and @, = 35. Figure 17(a) shows the maximum/rms errors

of the VarPro solution as a function of @)1, corresponding to a fixed M = 100 for the neural network. The

error behavior is not quite regular. With a smaller @)1 (e.g. 10 or 15) the errors are at a level 1 ~ 10, while

33



—OS—— max error
==--A---- rms error

— 5 maxerror 10°F
----A---- rms error

10°+

....... B P

10&5 1‘0 . 1‘5 .Zb 25 3‘0 . 3‘5 0 5‘0 100 _1‘;")0 . 260 2‘:‘30

Collocation points per direction (a) Number of nodes in hidden layer (b)
Figure 17: Burgers’ equation (with manufactured solution): The maximum /rms errors of the VarPro solution
versus (a) the number of collocation points in each direction (Q1), and (b) the number of nodes in the hidden
layer (M) of the neural network. Neural network [2, M, 1], @ = Q1 x Q1 uniform collocation points. M = 100

in (a) and is varied in (b). @1 = 31 in (b) and is varied in (a).

[—Rpm, R M | VarPro ELM
max-error  Ims-error max-error  rms-error

R,=1 25 3.111F -3 2499FE —4 | 6.382E+0 8.382FE —1
50 1.538E —5 1.890FE —6 | 6.669F —2 1.016E — 2
75 2603F —6 3.222FE —7 | 1.216E —2 1.406F —3
100 | 2.406FE — 6 3471FE —7 | 4.189F —4 6.540FE — 5
125 | 5.894F —7 2.193FE —8 | 1.088E —4 1.099E — 5
150 | 1.131E —8 1.599F —9 | 4.387TFE — 6 5.623E — 7

Ry, =Rpno=09| 25 1.592FE —3 2.150F —4 | 3.501E+0 6.245F —1
50 1.069F —5 1.794E —6 | 1.390E —1 7.607TFE —3
75 3.049F —6 3.576F —7 | 1.948F —2 1.524F —3
100 | 4.831E -6 3.311FE—7 | 7.639F —4 4.780FE —5
125 | 4.163E —7 7.029FE —8 | 5.864F —5 6.823FE —6
150 | 6.063F —8 7.242F —9 | 2.000F —6 2877E -7

Table 8: Burgers’ equation (with manufactured solution): comparison of the maximum/rms errors of the
VarPro and ELM solutions. Neural network [2, M, 1] with M varied; fixed Q = 31 x 31 training collocation
points.

with a larger Q1 (20 and beyond) the errors abruptly drop to a level around 10~8 ~ 1075, We observe that
with the smaller @Q; = 10 and 15 the Newton iteration fails to converge to the prescribed tolerance within
the prescribed maximum number of iterations. Figure 17(b) shows the maximum/rms errors as a function of
M, corresponding to a fixed @@ = 31 x 31 for the collocation points. The errors can be observed to decrease
approximately exponentially with increasing M.

Table 8 provides a comparison of the solution errors obtained using the VarPro method and the ELM
method [19, 15] for the Burgers’ equation. These are computed using a fixed uniform set of @ = 31 x 31
collocation points and a series of neural networks with the architecture [2, M, 1], where M is varied between
M = 25and M = 150. The random hidden-layer coefficients in ELM are set, and the hidden-layer coefficients
in VarPro are initialized, by using R,, = 1 and R,, = R,,0 = 0.9 in the tests. It is evident that the VarPro

method produces significantly more accurate results than the ELM method.
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parameter value parameter value
domain (z,t) € [-1,1] x [0,1.05] block time marching yes

time blocks 7 (uniform) sub-domains/time-block 6 (non-uniform)
sub-domain boundaries « =0, +0.02, +0.1, +1 random seed 10

local neural network [2,250,1] training points/sub-domain 21 x 21
activation function Gaussian testing points/sub-domain 101 x 101
initial guess 6y random values on [—R,, Ry | R = Rimo R0 = 2.0
9 (Algorithm 3) un-used p (Algorithm 3) un-used
max-subiterations 0 (no subiteration) threshold (Algorithm 3) 1E —12
max-iterations-newton 10 tolerance-newton 1E -8

C* continuity C" on sub-domain boundary

Table 9: Burgers’ equation (with exact solution): simulation parameters of the VarPro method.

We next further test the VarPro method using an exact solution with a sharp gradient developed in the
spatial-temporal domain. We consider the spatial-temporal domain, Q, = {(z,t) | z € [-1,1], ¢ € [0,1.05]},

and the following problem on €2, with the Burgers’ equation,

ou ou 0%u

- = 2 =0 32
ot + Yor ~ Vo2 ’ (322)
u(=1,t) =0, wu(l,t) =0, wu(z,0)=—sin(rx), (32b)
where v = ﬁ This initial boundary value problem has an exact solution given by [3],
co . g2
sinm(x — &) F(x —&)e” wid cos(n
u(ayt) = Sz ST O T O I L ey -0 (33)

S Plo = €)e fmde
Figure 18(a) illustrates the distribution of this solution in the spatial-temporal plane, in which a sharp
gradient can be observed to develop in the domain after around ¢ = 0.35.

We solve this problem by the local VarPro method (see Remark 2.6) together with the block time
marching scheme (see Remark 2.5). We partition €2, along the time ¢ into 7 uniform time blocks, with a
temporal dimension 0.15 for each time block, and compute the time blocks individually and successively.
We decompose the spatial-temporal domain of each time block into 6 sub-domains (non-uniform) along the
x direction, with the x coordinates of the sub-domain boundaries given by = = 0, £0.02, +0.1, and =+1.
C' continuity conditions for the local solution fields are imposed along the x direction across the interior
sub-domain boundaries. On each sub-domain we employ a local neural network [2, 250, 1] with the Gaussian
activation function, where the two input nodes denote the (z,t) of the local sub-domain and the single
output node denotes the solution u(z,t) restricted to this sub-domain. We employ a uniform set of 21 x 21
collocation points on each sub-domain in the training of the overall neural network with the VarPro method.
After the network is trained, we evaluate the neural network on a uniform set of 101 x 101 grid points on
each sub-domain to obtain the VarPro solution data, which is then compared with the exact solution (33)
evaluated on the same set of grid points to compute the point-wise errors of the VarPro solution on the
overall spatial-temporal domain €2,. The main parameters for the configuration and the VarPro simulation
of this problem is listed in Table 9. For the initial guess of the hidden-layer coefficients 6y in Algorithm 3,

we have employed the uniform random values generated on the interval [—R,,, R,,], with R,, = R0, where
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Figure 18: Burgers’ equation (with exact solution): Distributions of (a) the exact solution, (b) the VarPro
solution, and (c¢) the absolute error of the VarPro solution in the spatial-temporal plane. Comparison of
profiles of the VarPro and the exact solutions at (d) ¢ = 0.3, (e) ¢ = 0.5, and (f) ¢ = 1.0. Error profiles of
the VarPro solution at (g) ¢ = 0.3, (h) ¢ = 0.5, and (i) ¢t = 1.0. See Table 9 for the simulation parameters.

R0 = 2.0 is the optimal R, for the ELM method obtained using the method of [19] for the problem (32).

Figure 18 summarizes the obtained VarPro solution to the problem (32). The plots (b) and (c¢) depict
the distributions of the VarPro solution and its point-wise absolution error in the spatial-temporal domain,
respectively. Visually one can not discern any difference between the distributions of the VarPro solution
(plot (b)) and the exact solution (plot (a)). The error distribution indicates that the solution obtained by
the VarPro method is quite accurate. On the spatial-temporal domain €2, the maximum error of the VarPro
solution is 2.72 x 10~ and the rms error is 4.47 x 10~°. The plots (d,e,f) compare the profiles (along ) of the
VarPro solution and the exact solution given by (33) at three time instants ¢ = 0.3, 0.5, and 1.0, respectively.
One can observe the sharp gradient of the solution in the middle of the spatial domain at the latter two

instants, which is close to a jump discontinuity. It can also be observed that the VarPro profiles and the

36



1.5E-08
1.4E-08
1.3E-08
1.2E-08
1.1E-08
1.0E-08
9.0E-09
8.0E-09
7.0E-09
6.0E-09
5.0E-09
4.0E-09
3.0E-09
2.0E-09
1.0E-09

OGUdhbhdbhioavwr,ON®

T X

(b)

Figure 19: Nonlinear Klein-Gordon equation: Distributions of (a) the exact solution and (b) the absolute
error of the VarPro solution in the spatial-temporal plane. In (b), 4 uniform time blocks in domain, neural
network [2,200, 1], @ = 21 x 21 uniform collocation points per time block.

exact-solution profiles overlap with each other. The plots (g,h,i) show the corresponding error profiles of
the VarPro solution at these three instants, illustrating the quite high accuracy of the VarPro result. The
results of Figure 18 suggest that, even if the solution field is not quite smooth, the VarPro method is still

capable of producing simulation results with a fairly high accuracy.

3.2.3 Nonlinear Klein-Gordon Equation

In the last example we use the nonlinear Klein-Gordon equation [65] to test the VarPro method. Consider
the spatial-temporal domain, Q = {(z,t) | « € [0,1], ¢t € [0,2]}, and the initial/boundary value problem

with the nonlinear Klein-Gordon equation on €2,

%u  O%u

2 92 +u +sin(u) = f(z,1t), (34a)

U(Oa t) =0 (t)a u(Lt) = g2(t)a (34b)
ou

u(xa 0) = hl(x)’ a ) = h?(x), (340)

where u(z,t) is the field function to be solved for, f(z,t) is a prescribed source term, g; and g, are the
boundary conditions, and h; and ho are the initial conditions. We choose the source term, the boundary

and initial conditions appropriately such that this problem has the following analytic solution,
9 7 9 7
u(z,t) = [2 cos (mc + %) + 7 Co8 <27T:I} + 2—7(;)] [2 cos (ﬂ't + %) + 7 C08 (27rt + 2—7(;)] . (35)

We employ this analytic solution to test the accuracy of the VarPro method. Figure 19(a) shows the
distribution of this analytic solution in the spatial-temporal plane.
We employ the block time marching scheme [15] together with the VarPro method to solve this problem.

We use 4 uniform time blocks in the domain, and on each time block employ a neural network with the
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parameter value parameter value
domain (z,t) €[0,1] x [0,2] time blocks 4
neural network [2, M, 1] training points Q Q1 x Q1
M varied Q1 varied
activation function Gaussian testing points Q2 X Q2
random seed 22 Q2 101
initial guess 6 random values on [—R,,, Ryn] | R 1.0

d (Algorithm 3) un-used p (Algorithm 3) un-used
max-subiterations 0 (no subiteration) threshold (Algorithm 3) 1F — 12
max-iterations-newton 20 tolerance-newton 1F -8

Table 10: Nonlinear Klein-Gordon equation: main simulation parameters of the VarPro method.
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Figure 20: Nonlinear Klein-Gordon equation: the maximum/rms errors of the VarPro solution in the overall
domain versus (a) the number of collocation points per direction (Q1) in each time block, and (b) the number
of nodes in the hidden layer (M) of the neural network. In (a,b), neural network [2, M, 1], with Q@ = Q1 X Q1
training collocation points. M = 200 in (a) and is varied in (b). @; = 31 in (b) and is varied in (a).

architecture [2, M, 1], where M is varied in the tests. The two input nodes represent (z,t), and the linear
output node represents the field solution u(x,t). The Gaussian activation function o(z) = e~ is employed
for all the hidden nodes. On each time block a uniform set of Q = Q1 x @)1 collocation points, where @Q; is
varied, is used to train the neural network. The trained neural network is evaluated on a larger set of Q2 X Q5
uniform grid points to obtain the field solution u(x,t), which is compared with the exact solution (35) to
compute the errors of the VarPro simulation. Table 10 summarizes the main simulation parameters for this
problem.

Figure 19(b) shows the distribution of the absolute error of a VarPro simulation in the spatial-temporal
plane. In this simulation the neural network architecture is given by [2,200, 1], and a uniform set of Q@ =
21 x 21 training collocation points is used on each time block. The maximum error level is around 10~% on
the overall domain, indicating that the VarPro result is quite accurate.

Figure 20 illustrates the convergence behavior of the VarPro method for solving the nonlinear Klein-
Gordon equation. Here we employ the neural network [2, M, 1], and @ = @1 x 1 uniform collocation points
in each time block. In the first group of tests we fix M = 200 and vary ()1 systematically. In the second

group of tests we fix ;1 = 31 and vary M systematically. The maximum and rms errors of the VarPro
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solution in the overall domain are computed for each case. Figure 20(a) shows these errors as a function of
@1 for the first group of tests, and Figure 20(b) shows these errors as a function of M for the second group
of tests. These results indicate that the VarPro errors decrease approximately exponentially with increasing
number of collocation points or with increasing number of nodes in the hidden layer. We also notice some

irregularity in the errors of Figure 20(a) when the number of collocation points is small.

4 Concluding Remarks

In this paper we have presented a variable projection-based method together with artificial neural networks
for solving linear and nonlinear partial differential equations. The basic idea of variable projection (VarPro) is
to distinguish the linear parameters from the nonlinear parameters, and then eliminate the linear parameters
to attain a reduced formulation of the problem. One can then solve the reduced problem for the nonlinear
parameters first, and then compute the linear parameters by the linear least squares method afterwards.

Approximating linear PDEs (with linear boundary /initial conditions) by variable projection and artificial
neural networks is conceptually straightforward. In this case, in the resultant nonlinear least squares problem
the output-layer coeflicients are the linear parameters, and the hidden-layer coefficients are the nonlinear
parameters. The output-layer coefficients are expressed in terms of the hidden-layer coefficients by solving
a linear least squares problem, and they are eliminated from the problem. The reduced problem involves
only the hidden-layer coefficients, and it is solved by a nonlinear least squares method. The main issues
with the VarPro implementation lie in the computations of the residual function and the Jacobian matrix of
the reduced problem. We have discussed in some detail how to implement these computations with neural
networks in Algorithms 1 and 2 and in the Remarks 2.1 and 2.2.

For approximating nonlinear PDEs, or linear PDEs with nonlinear boundary /initial conditions, the vari-
able projection approach cannot be directly used. This is because the resultant nonlinear least squares
problem is not separable. In this case, all the weight/bias coefficients in the neural network become nonlin-
ear parameters, even if the output layer contains no activation function.

To overcome this issue, we have presented a Newton/variable projection (Newton-VarPro) method for
approximating nonlinear PDEs, or linear PDEs with nonlinear boundary /initial conditions. We first linearize
the problem, with a particular linearized form for the Newton iteration. The linearization is formulated in
terms of the updated approximation field, not the increment field. This is critical to the accuracy of the
current Newton-VarPro method. The linearized system is then solved by the variable projection approach
together with artificial neural networks. Therefore, for nonlinear PDEs our method involves an overall
Newton iteration, and within each iteration the variable projection method is used to solve the linearized
problem to attain the updated approximation field. Upon convergence of the Newton iteration, the solution
to the nonlinear problem is represented by the weight/bias coefficients of the neural network.

We have presented ample numerical examples to test the accuracy of the variable projection method.
It is observed that, for smooth field solutions, the errors of the VarPro method decrease exponentially or
nearly exponentially with increasing number of collocation points or with increasing number of output-layer

coefficients. The test results unequivocally show that the VarPro method is highly accurate. Even with
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Test problem neural collocation | VarPro training | ELM training
network | points time (seconds) | time (seconds)
Advection equation | [2,100,1] | 10 x 10 7.4 0.29
15 x 15 15.4 0.31
20 x 20 78.2 0.32
Nonlinear Helmholtz | [2,200,1] | 10 x 10 1.75 2.0
equation 15 x 15 36.5 2.8
20 x 20 78.7 4.0

Table 11: Comparison of the computational cost (network training time) between VarPro and ELM for
solving the advection equation (Section 3.1.2) and the nonlinear Helmholtz equation (Section 3.2.1). The
hidden-layer coefficients in ELM are set/fixed to, and the hidden-layer coefficients in VarPro are initialized
to, uniform random values from [—R,,, R;,] with R,, = 1.0. The cases in this table are selected from and
correspond to those cases in Tables 4 and 6. Please refer to the corresponding cases in Tables 4 and 6 for
the VarPro/ELM errors.

a fairly small number of nodes in the neural network, or with a fairly small set of collocation points, the
VarPro method can produce very accurate simulation results.

In particular, we have compared the current VarPro method with the extreme learning machine (ELM)
method [19], which is arguably the most accurate neural network-based PDE solver so far [15, 19]. Under
the same simulation conditions and settings, VarPro generally leads to significantly more accurate results
than ELM, especially in cases with a fairly small or a moderate number of nodes in the neural network.

While the VarPro method is significantly superior to ELM in terms of the accuracy, its computational
cost (i.e. training time of the neural network) is generally much higher than that of the ELM method. This
is because in VarPro one needs to solve the reduced problem for the hidden-layer coefficients by a nonlinear
least squares computation, apart from the computation for the linear output-layer coefficients. In contrast, in
ELM only the linear output-layer coefficients are computed, while the hidden-layer coefficients are randomly
assigned and fixed. Table 11 illustrates this point with a list of the network training time for VarPro and for
ELM with selected cases in solving the the advection equation (Section 3.1.2) and the nonlinear Helmholtz
equation (Section 3.2.1).

The variable projection method is a powerful technique for training artificial neural networks, providing
a considerably superior accuracy for scientific machine learning, as demonstrated by the numerical examples
in the current paper. The Newton-VarPro method developed herein provides an effective tool and enables
the use of the variable projection strategy to tackle nonlinear problems in scientific machine learning. The
application potential of this technique is enormous. This and related aspects, as well as further studies and

improvements, of this technique will be pursued in a future endeavor.
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Figure 21: Appendix A (Poisson equation): The [*® (i.e. maximum) error (a) and the [? (i.e. rms) error (b)
of the VarPro solution versus the number of collocation points per direction, obtained with 10 random seeds
in the random number generator (RNG). Here the seed for RNG is set to a random integer generated on
[0,10000), with their specific values given in the legends. The statistics (maximum, minimum, median, and
mean) of the 10 random runs for the [* error (c) and for the [? error (d) versus the number of collocation
points per direction. Network architecture [2,200, 1], cosine activation function. The settings and simulation
parameters here follow those of Figure 3(a).

Appendix A: Effect of Seeds in Random Number Generator on
VarPro Errors

As stated in the main text, we have employed fixed seed values in the random number generator (RNG) for
those numerical experiments in Section 3, so that the reported results therein can be exactly reproducible.
In this Appendix we set the seed of the RNG to random values, and study the effect of the random seeds on
the VarPro errors for solving the Poisson equation (Section 3.1.1).

In Section 3.1.1 we have employed a fixed seed value 1 in the RNGs of the Tensorflow library and the
numpy package. In the following tests, we employ the same seed value for the RNGs in Tensorflow and numpy,
and this seed is set to be a random integer generated on the interval [0,10000) by a uniform distribution.
The simulation parameters for VarPro and the problem configuration here follow those of Section 3.1.1.

Figure 21 illustrates the [*° (i.e. maximum) errors and the [? (i.e. rms) errors of the VarPro solution from
10 random runs, and their statistics, with respect to increasing collocation points in the domain, for the
cosine activation function. The numerical experiments, simulation parameters and the configuration here
mirror those in Figure 3(a). Figure 21(a) shows the [ errors as a function of the collocation points in each

direction from the 10 random runs, with the corresponding random seeds given in the legend. Figure 21(b)
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Figure 22: Appendix A (Poisson equation): The [ (i.e. maximum) error (a) and the [? (i.e. rms) error
(b) of the VarPro solution versus the number of collocation points per direction, obtained from 10 random
runs, with the random seeds given in the legends. The statistics (maximum, minimum, median, and mean)
of the 10 random runs for the [*° error (c) and for the [? error (d) versus the number of collocation points
per direction. Network architecture [2,200, 1], Gaussian activation function. The settings and simulation
parameters here follow those of Figure 3(b).

shows the corresponding [? errors from these random runs. Figure 21(c) shows the statistics of the [° error
computed from the 10 random runs as shown in Figure 21(a). For each given number of collocation points,
the maximum, the minimum, the median, and the mean (average) of the [* errors among the 10 random
runs are computed and depicted in Figure 21(c). Figure 21(d) shows the statistical results for the /2 error

corresponding to those of Figure 21(b). We can make the following observations from these results:

e The specific VarPro error values resulting from different random seeds are not the same. But their
error levels are approximately comparable. Their values are distributed in a band around some mean

or median of the errors.

e The error characteristics exhibited by different random runs are similar. The exponential convergence

behavior of the VarPro errors (before saturation) is quite evident.

Figure 22 shows the (® (maximum) errors and the [? (rms) errors from 10 random runs, together with
their statistics, as a function of the number of collocation points obtained with the Gaussian activation
function in the neural network. The settings and the simulation parameters here follow those of Figure 3(b).
The results of this figure are in parallel to those of Figure 21, but for the Gaussian activation function. Note
that Figure 21 is for the cosine activation function. The observations on the VarPro errors from this figure

are similar to those from Figure 21.
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Figure 23: Appendix A (Poisson equation): The [* (i.e. maximum) error (a) and the [? (i.e. rms) error (b)
of the VarPro solution versus the number of nodes in the hidden layer (M), obtained from 10 random runs,
with the random seeds given in the legends. The statistics (maximum, minimum, median, and mean) of
the 10 random runs for the [*° error (c) and for the I* error (d) versus M. Network architecture [2, M, 1]
(M varied), cosine activation function, @ = 21 x 21 uniform collocation points. The settings and simulation
parameters here follow those of Figure 4(a).

Figure 23 illustrates the [*° (maximum) errors and the [? (rms) errors of the VarPro solution from 10
random runs, and their statistics, as a function of the number of nodes in the hidden layer, for the cosine
activation function in the neural network. The tests, the problem settings and the simulation parameters
here follow those of Figure 4(a). The network architecture is given by [2, M, 1], with M varied systematically.
Figures 23(a) and (b) show the [° and [? errors as a function of M from these 10 random runs, respectively,
with the random seeds given in the legends. Figures 23(c) and (d) show the statistical results of the {* error
and the /2 error among these random runs, respectively. The error characteristics exhibited from different
random runs are similar. One can observe that the VarPro errors generally decrease exponentially (before
saturation) with increasing M in the neural network.

Figure 24 shows the [*° and [? errors, and their statistics, from 10 random runs obtained with the
Gaussian activation function in the neural network. The settings and the simulation parameters here follow
those of Figure 4(b). The results of this figure for the Gaussian activation function are in parallel to those
of Figure 23 for the cosine activation function. The exponential convergence of the VarPro errors (before

saturation) is evident.
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Figure 24: Appendix A (Poisson equation): The [* (i.e. maximum) error (a) and the [? (i.e. rms) error (b)
of the VarPro solution versus the number of nodes in the hidden layer (M), obtained from 10 random runs,
with the random seeds given in the legends. The statistics (maximum, minimum, median, and mean) of the
10 random runs for the [*° error (c) and for the (? error (d) versus M. Network architecture [2, M, 1] (M
varied), Gaussian activation function, ) = 21 x 21 uniform collocation points. The settings and parameters
here follow those of Figure 4(b).

Appendix B: Comparison Between VarPro and PINN (Physics-
Informed Neural Network)

This Appendix provides a comparison of the performance between the current VarPro method and the
physics-informed neural network (PINN) method from [56] with the Poisson equation (Section 3.1.1) and
the nonlinear Helmholtz equation (Section 3.2.1). We refer the reader to [15] for a comparison between the
ELM method and the PINN method for several PDEs.

The PINN implementation here follows those in [15, 17, 56], and is based on the Tensorflow and Keras
libraries. In the PINN loss function, we employ a penalty coefficient v,. € (0,1) in front of the boundary
loss term and a penalty coefficient (1 — 7p.) in front of the PDE loss term. The coefficient 7. has been
varied systematically for solving the Poisson equation in Section 3.1.1 and the nonlinear Helmholtz equation
in Section 3.2.1. We observe that v, ~ 0.99 provides the best results for PINN. The results reported below
correspond to Yp. = 0.99 in the PINN simulations. For a rectangular domain €2 in 2D, we employ a uniform
set of Q = Q1 x @ grid points (with @ points in each direction, on each side of the boundary) as the
collocation points in PINN, similar to that in the VarPro simulations. We employ the Adam optimizer [39]
for minimizing the loss function in PINN. The learning rate coefficient (i.e. the parameter « in [39]) in

Adam is decreased linearly from an initial value to an end value within a prescribed number of steps (decay
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Neural collocation VarPro PINN

network | points max-error rms-error  time(secs) | max-error rms-error time(secs)

[2,100,1] | 5x 5 6.470E+1 2422F+1 185E40 | 765E—-1 213E—-1 314E+1
10 x 10 8388E -3 3941F -3 OH5I13E+0 | 1L.11E—-2 203E-3 112E+2
15 x 15 6.018E8 -7 8241F—-8 217E+1 | 183FE -2 257TE -3 143E+2
20 x 20 3.693E -7 4216E—-8 283E+1 | 180E—-2 257TE—-3 181E+42
25 x 25 5.845FE —7 8.004E—-8 464E+1 | 219E—-2 295E -3 246E+2
30 x 30 2.688E -7 2867TE—-8 489E+1 | 167TE—-2 325E—-3 331E+2

[2,200,1] | 5x5 5.948E+0 210240 192E+0 | 1.27TE+0 441EF-1 331E+1
10 x 10 2127TE -2 4398FE -3 237TE+0 | 222E—-2 286E -3 140E+42
15 x 15 6.082F -8 1983FE—-8 520E+0 | 232E—-2 3156E—-3 191E+2
20 x 20 1459E -9 1.203E—-10 215E4+1 | 1.13E—-2 188E -3 299E+2
25 x 25 1.782E -7 T7978E -8 980E+1 | 216E—-2 323E—-3 4.15E+42
30 x 30 3.000E -9 3420E-10 151E+1 | 132E—-2 219FE -3 b588E+2

Table 12: Appendix B (Poisson equation): comparison of the maximum/rms errors and the network training
time (in seconds) obtained using VarPro and PINN (with Adam optimizer). “cos” activation function. The
VarPro error data here correspond to those in Table 2 with R,, = 1. In PINN, the neural network is trained
for 50, 000 epochs; the learning rate coefficient decreases linearly from 0.01 to 10~# in the first 10, 000 epochs,
and then is fixed at 10~* afterwards. Reported here is the best result among several PINN runs with different
random initializations.

steps), and afterwards it is fixed at the end value. We have tried a variety of parameter values in the
learning rate schedule, and settled down on the following values for the Poisson equation and the nonlinear
Helmholtz equation: initial/end learning rate coefficients (0.01,0.0001) with decay steps 10,000. For each
neural network architecture, we have tried a number of (typically 10) PINN runs with different random
initializations. Reported below are the best results among those runs we have obtained with PINN. Upon
completion of network training by the Adam optimizer, the PINN network is evaluated on another finer set
of Qeval = Q2 X Q2 (with Q2 = 101) uniform grid points on the domain to obtain the PINN solution, which
is then compared with the exact solution on the same set of points to compute the maximum/rms errors.
This is similar to the procedure as discussed in Sections 3.1.1 and 3.2.1 for the VarPro method.

Table 12 compares the maximum /rms errors and the network training time between the VarPro method
and the PINN method for solving the boundary value problem (24) with the Poisson equation of Section 3.1.1.
We have considered two network architectures given by [2, 100, 1] and [2, 200, 1], respectively, with the “cos”
activation function for all hidden nodes and a sequence of uniform collocation points ranging from @ =5 x5
to @ = 30 x 30 for network training. The error data for VarPro here correspond to those in Table 2 with
R,, = 1. The PINN data are obtained with the following parameters. The PINN network is trained for
50,000 epochs with the Adam optimizer. As discussed above, the learning rate coefficient decreases linearly
from 0.01 to 10~* in the first 10,000 epochs, and is then fixed at 10~ for the remaining 40,000 epochs.

The data in Table 12 indicate that the VarPro method is considerably more accurate than PINN, with the
VarPro errors typically several orders of magnitude smaller (e.g. 10~% versus 107?), except for the smallest
set of collocation points. The network training time of VarPro is also significantly smaller than that of
PINN. For VarPro we observe some irregularity in the variation of the network training time with respect

to the increase of the collocation points, for example, around 98 seconds for the 25 x 25 collocation points
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collocation VarPro PINN

points max-error rms-error time(secs) | max-error rms-error time(secs)
5x5 1.297TF+2  4.536E +1 349E+0 | 1.58E4+0 592E—-1 201E+42
10 x 10 1.855F — 2 3.955F — 3 1.75E +0 | 9.7T4E —2 1.59F —2 2.58FE + 2
15 x 15 2.868F — 8 3.252E — 9 3656E+1 | 7T98EF -2 1.73E—2 357TE+2
20 x 20 3.67T9FE —10 3.203F —11 787E+1 | 751E—-2 159E —2 5.58E+2
25 x 25 6.014F — 8 3.281E -9 489FE +1 | 719E -2 134FE -2 7.93E+2
30 x 30 5.709F —10 4.576E —-11 178E+2 | 732E—-2 122FE—-2 111E+3

Table 13: Appendix B (Nonlinear Helmholtz equation): comparison of the maximum/rms errors and the
network training time (in seconds) of VarPro and PINN (with Adam optimizer). Network architecture [2,
200, 1], “sin” activation function. The VarPro error data here correspond to those in Table 6 with R,, = 1.
In PINN, the neural network is trained for 100,000 epochs; the learning rate coefficient decreases linearly
from 0.01 to 10~ in the first 10,000 epochs, and then is fixed at 10~* afterwards. Reported here is the best
result among several PINN runs with different random initializations.

versus around 15 seconds for the 30 x 30 collocation points with the network [2,200, 1]. This irregularity is
caused by the irregularity in the triggering of the subiteration procedure for the initial guess perturbation in
Algorithm 3 and the difference in the actual number of subiterations performed. The subiteration procedure
is triggered in some cases, but not in others. The network training time will increase notably once it is
triggered.

Table 13 provides a comparison of the maximum /rms errors and the network training time of the VarPro
and the PINN (Adam optimizer) methods for solving the boundary value problem (28) with the nonlinear
Helmholtz equation in Section 3.2.1. The network architecture is given by [2, 200, 1] with the sine activation
function, and the set of uniform collocation points is varied. The error data for VarPro here correspond to
those in Table 6 with R,, = 1. In PINN the neural network is trained for 100,000 epochs by the Adam
optimizer, with the learning rate coefficient decreasing linearly from 0.01 to 10~ during the first 10,000
epochs and then fixed at 10~* for the remaining iterations. One can again observe that the VarPro errors are
in general considerably smaller than the PINN errors (e.g. 10719 versus 1072), and that the VarPro training

time is also much smaller than the PINN training time.

Appendix C: Comparison Between VarPro and Finite Element Method

In this appendix we provide a comparison between the VarPro method herein and the classical finite ele-
ment method (FEM, second-order, linear elements) for solving the Poisson equation (Section 3.1.1) and the
nonlinear Helmholtz equation (Section 3.2.1).

The FEM implementation employed here follows those in [15, 19]. It is based on Python and the FEniCS
library (https://fenicsproject.org/). In FEM simulations we employ a uniform N x N rectangular mesh, which
consists of 2N? linear triangular elements (each rectangle divided along its diagonal into two triangles) with
a total degrees of freedom N?2. The number of elements in each direction, NN, is varied in the tests.

In VarPro simulations we employ a neural network architecture [2, M, 1], with M = N?2/4. Since the total
number of training parameters in the neural network is 4M, this setting results in the same total number

of degrees of freedom in the VarPro and FEM simulations. The Gaussian activation function is employed
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parameter value parameter value
FEM mesh N x N elements linear
N 10, 12, 14, ..., 30 degrees of freefom N2
VarPro | neural network 2, M, 1] M NZ2/4
activation function Gaussian random seed 1
training points Q1 X Q1 Q1 N/2+1
testing points Q2 X Q2 Q2 101
max-subiterations 1 threshold (Algorithm 3) 1E — 12
0 (Algorithm 3) 1.0 p (Algorithm 3) 0.5
initial guess g random values on [—1,1] | degrees of freedom 4aM

Table 14: Appendix C (Poisson equation): main simulation parameters for VarPro and FEM.

degrees of VarPro FEM

freedom max-error rms-error  time(secs) | max-error rms-error time(secs)
100 3.73E—-1 8.00E—-2 33E+0 445FE -1 1.72E—-1 69E -3
144 193E -1 bH58E—-2 29E+0 3.00E-1 122E—-1 76E—-3
196 1.14EF -1 161E—-2 3.1E+0 228E6—-1 910E—-2 T76E-3
256 234E—-2 430E-3 37E+0 |17E-1 705E—-2 T75E-3
324 279E -3 947E -4 41FE+40 1388 -1 5.62E—-2 86E -3
400 3.59FE -4 912E -5 H52E+40 1.13E -1 459FE -2 94E -3
484 520E -5 174E -5 bJ59FE+0 9.26FE -2 381E—-2 11E-2
576 1188 -5 3.09£—-6 84E+0 | 786E—-2 322E-2 11F-2
676 6.60E -6 28FE—-6 40E+0 |6.69E—-2 275E-2 12E-2
784 1.82E -7 488E -8 42E+0 5.76E —2 238E -2 14FE -2
900 1.80E—-6 131E—-7 6.7TE+0 5.04E -2 2.08E—-2 15E-2

Table 15: Appendix C (Poisson equation): comparison of the maximum/rms errors of VarPro and FEM,
and their computational cost (VarPro network training time, FEM computation time). See Table 14 for the
VarPro/FEM simulation parameter values.

for all the hidden nodes. For network training we employ a uniform set of Q@ = Q1 X Q1 collocation points,
where we set 1 = N/2+ 1 for the linear problem and ¢y = N/2+ 2 for the nonlinear problem. We vary the
degrees of freedom in the VarPro/FEM simulations by varying N systematically between 10 and 30. The
maximum /rms errors of the VarPro/FEM results, as well as the VarPro network training time and the FEM
computation time, are recorded for comparisons.

In Tables 14 and 15 we summarize the VarPro/FEM results for solving the boundary value problem (24)
with the Poisson equation. Table 14 lists the parameter values in the FEM and VarPro simulations for
this problem. Table 15 is a comparison of the maximum/rms errors between VarPro and FEM, and their
computational cost (VarPro network training time, FEM computation time), versus the number of degrees
of freedom in the system. It can be observed that, under the same degrees of freedom, the VarPro method is
considerably more accurate than the FEM, and its computational cost is also much higher than the latter.

Tables 16 and 17 provide a summary of the VarPro/FEM results for solving the boundary value prob-
lem (28) with the nonlinear Helmholtz equation. Table 16 lists the parameter values in the VarPro and FEM
simulations for this problem. Table 17 is a comparison of the maximum/rms errors between VarPro and
FEM, as well as their computational cost (VarPro network training time, FEM computation time), for the

nonlinear Helmholtz equation. We arrive at the same conclusion as with the Poisson equation. The VarPro
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parameter value parameter value
FEM mesh N x N elements linear
N 10, 12, 14, ..., 30 degrees of freedom N?
VarPro | neural network (2, M,1] M NZ2/4
activation function Gaussian random seed 1
training points Q1 X Q1 Q1 N/2+2
testing points Q2 x Q2 Q2 101
max-subiterations 0 threshold (Algorithm 3) 1E — 12
0 (Algorithm 3) not used p (Algorithm 3) not used
initial guess 6y random values on [—1,1] | degrees of freedom 4M
max-iterations-newton 15 tolerance-newton 1E —12

Table 16: Appendix C (Nonlinear Helmholtz equation): main simulation parameters for VarPro and FEM.

degrees of VarPro FEM

freedom max-error rms-error time(secs) | max-error rms-error time(secs)
100 161E—-1 339E—-2 bH5E+0 1.76E -1 741E—-2 20E-2
144 1.07E -1 146E—-2 6.5E+0 1.25EF -1 5.19E -2 24E -2
196 2.06E -2 b549E -3 8T7E40 9.10FE -2 38E -2 28FE-2
256 3736 -3 9.75E—-4 132E+1 | 678E—-2 297TE—-2 29E-2
324 731E -4 144E -4 153E+1 | 556E -2 236E—-2 34E -2
400 1.26EF —4 242E -5 208E+1 | 452E -2 192E—-2 40E-2
484 140E -4 28E-5 192E+1 | 3.70E—-2 160E—-2 45E-2
576 3.84FE -5 438E -6 222E+1 | 3.14E -2 135E—-2 H2E -2
676 482E -6 937TE—-7 259E+1 | 269E—-2 115E—-2 58E—2
784 7T56E -7 108E -7 205E4+1|230E—-2 99FE -3 68E—-2
900 225E—-6 3.76E—-7 220E+1 | 200E—-2 869FE -3 T7T8E -2

Table 17: Appendix C (Nonlinear Helmholtz equation): comparison of the maximum/rms errors of VarPro
and FEM, and their computational cost (VarPro network training time, FEM computation time). See
Table 16 for the VarPro/FEM simulation parameter values.

method is much more accurate than FEM, but its computational cost is also much higher than that of FEM,

under the same degrees of freedom in the system.
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