
Journal of Algebra 608 (2022) 325–381
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Double dimer covers on snake graphs from super 

cluster expansions

Gregg Musiker ∗, Nicholas Ovenhouse, Sylvester W. Zhang
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 November 2021
Available online 16 June 2022
Communicated by David Hernandez

MSC:
13F60
17A70
05C70
30F60

Keywords:
Cluster algebras
Snake graphs
Double dimers
Decorated super-Teichmüller spaces

In a recent paper, the authors gave combinatorial formulas for 
the Laurent expansions of super λ-lengths in a marked disk, 
generalizing Schiffler’s T -path formula. In the present paper, 
we give an alternate combinatorial expression for these super 
λ-lengths in terms of double dimer covers on snake graphs. 
This generalizes the dimer formulas of Musiker, Schiffler, and 
Williams.

© 2022 Elsevier Inc. All rights reserved.

Introduction

A marked surface is a surface S with boundary, with a collection of marked points 
M ⊂ ∂S (we require at least one marked point per boundary component). Although it 
is common in the literature to also consider interior marked points (i.e. “punctures”), we 
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will only consider unpunctured surfaces. It is well-known in the theory of cluster algebras 
that the decorated Teichmüller space of S possesses a cluster structure [1], [2], [3]. Given 
a fixed triangulation, with arcs terminating at marked boundary points, the collection of 
λ-lengths gives a set of cluster coordinates. In particular, this means that the λ-length of 
any geodesic arc between marked points is expressible as a Laurent polynomial in these 
coordinates. The “flip” of a triangulation corresponds to cluster mutation, realized by 
the hyperbolic version of Ptolemy’s relation.

There have been many combinatorial ways to enumerate the terms occurring in these 
Laurent expansions. One of the earliest was the notion of T -paths [4], [5]. A few years 
later, a dimer (perfect matching) interpretation was given [6], [7]. There have been other 
combinatorial models (e.g. [8], [9], [10]), but these two will be our main focus in this 
article.

In recent years, there have been efforts to find supersymmetric generalizations of both 
cluster algebras and decorated Teichmüller spaces. On the one hand, there have been a 
couple different attempts to define super cluster algebras formally (see [11] and [12,13]). 
There is also a supersymmetric version of frieze patterns (which are related to cluster 
combinatorics) [14]. On the other hand, in a more geometric setting, Penner and Zeitlin 
have recently introduced decorated super-Teichmüller spaces [15].

In a recent paper, the current authors took a first step in unifying the algebraic, 
combinatorial, and geometric viewpoints mentioned above [16]. In particular, we found 
an analogue of the T -path Laurent formula for decorated super-Teichmüller spaces. We 
also showed that the collection of super λ-lengths and μ-invariants fit into a super frieze 
pattern, as in [14]. Lastly, we explored the connection between our approach and the 
definitions of super cluster algebras given in [13].

The main purpose of the present paper is to give a super analogue of the dimer formu-
las from [6]. Surprisingly, the terms in the super Laurent polynomials are more naturally 
expressed in terms of double dimer covers (rather than ordinary dimer covers). We also 
give double dimer formulas for some (but not all) of the odd variables corresponding to 
triangles. Later sections of the paper give other combinatorial interpretations which can 
be derived from the double dimer model. The structure of the paper is as follows.

• In Section 1, we review background on decorated super-Teichmüller theory of [15].
• In Section 2, we recall some definitions and conventions from our previous paper [16]

regarding triangulations of polygons, and how they are labeled.
• Section 3 defines snake graphs, and gives examples. These graphs will be important 

in our main theorem, which says that any super λ-length can be written as a Laurent 
polynomial whose terms are indexed by double dimer covers on a certain snake graph.

• Section 4 introduces general terms and notations related to double dimer covers.
• Section 5 gives recurrence formulas for double dimer covers on snake graphs. The 

lemmas appearing in this section are the main ingredients of the inductive proof of 
the main theorem later in the paper.



G. Musiker et al. / Journal of Algebra 608 (2022) 325–381 327
• Section 6 presents the main theorem (Theorem 6.2), which says that the Laurent 
expansions of super λ-lengths are sums over weights of double dimer covers on a 
certain snake graph.

• In Section 7, we define a modified version of the super T -paths from [16], and use these 
to give an explicit weight-preserving bijection between super T -paths and double 
dimer covers.

• In Section 8, we discuss dual snake graphs. Looking at these dual snake graphs, we 
get yet another combinatorial description of the Laurent terms, this time in terms 
of lattice paths on the snake graph.

• In Section 9, we discuss how the terms in these Laurent polynomials form a distribu-
tive lattice, and thus can be identified with order ideals of a certain poset.

• In Section 10, we give some examples and illustrations.
• Lastly, in Section 11, we consider super λ-lengths on other surfaces, including the 

once-punctured torus and the annulus with one marked point on each boundary. We 
then discuss super analogues of Fibonacci numbers and end with open problems.

1. Decorated super-Teichmüller theory

In this section, we survey the theory of decorated super-Teichmüller spaces recently 
developed by Penner and Zeitlin [15]. We start with a brief overview of Penner’s classical 
theory of decorated Teichmüller spaces. The readers are referred to [17] for a detailed 
reference.

Consider a surface S with marked points on its boundary,1 such that each boundary 
component contains at least one marked point.

The Teichmüller space of S, denoted T (S), is the space of (equivalence classes of) 
hyperbolic metrics on S with constant negative curvature, with cusps at the marked 
points. More formally, the Teichmüller space of S is defined to be the quotient space

T (S) = Hom(π1(S),PSL(2,R))/PSL(2,R).

The decorated Teichmüller space of S, written T̃ (S), is a trivial vector bundle over 
T (S), with fiber Rn

>0. The fibers represent a choice of a positive real number associated to 
each marked point. At each marked point, we draw a horocycle whose size (or height) is 
determined by the corresponding positive number. Truncating the geodesics using these 
horocycles, it now makes sense to talk about their lengths. If � is the truncated length 
of one of these geodesic segments, then the λ-length (or Penner coordinate) associated 
to that geodesic arc is defined to be

λ := exp(�/2).

1 In general, a surface can also contain marked points on its interior, known as punctures, but we will not 
be concerned with this case, except for a discussion of the once-punctured torus in Section 11.
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Fig. 1. Ptolemy transformation.

Fixing a triangulation of the marked surface, the collection of λ-lengths corresponding 
to the arcs in the triangulation (including segments of the boundary) form a system of 
coordinates for T̃ (S). Choosing a different triangulation results in a different system 
of coordinates, but they are related by simple transformations which are a hyperbolic 
analogue of Ptolemy’s theorem from classical Euclidean geometry. If two triangulations 
differ by the flip of a single arc as in Fig. 1, then the λ-lengths are related by: ef = ac +bd.

In a recent paper [15], Penner and Zeitlin gave a supersymmetric analogue of the 
above mentioned decorated Teichmüller theory. The decorated super-Teichmüller space
of S is a superalgebra, generated by even elements corresponding to the λ-lengths and 
odd elements, called μ-invariants, associated to the triangles.

To understand the multiplication of the anti-commutative μ-invariants, we need ad-
ditional combinatorial data called a spin structure. Connected components of the super-
Teichmüller space ST (S) are indexed by the set of spin structures on S, which are 
formulated as the set of isomorphism classes of Kasteleyn orientations of a certain graph 
embedded on a deformation retract of S [18,19]. These Kasteleyn orientations correspond 
to equivalence classes of orientations of a fatgraph spine of S. For our purpose, we use the 
dual of this formalism, where the spin structures will be identified with the equivalence 
classes of orientations of edges of a triangulation, under the equivalence relation ∼ which 
we describe right now.

Choose a triangulation T with an orientation τ on its edges. For any triangle t, consider 
the transformation which reverses the orientation of the three sides of t. We say that 
two orientations are equivalent τ ∼ τ ′ if they are related by a sequence of these moves.

Now we are ready to state the super version of the Ptolemy relations. Note that here 
and in the sequel, we will use Latin letters to denote λ-lengths and Greek letters to 
denote μ-invariants.

ef = ac + bd +
√
abcd σθ (1)

σ′ = σ
√
bd− θ

√
ac√

ac + bd
(2)

θ′ = θ
√
bd + σ

√
ac√ (3)
ac + bd
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Fig. 2. Super Ptolemy transformation.
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Fig. 3. Flip effect on spin structures. Here εx denotes the orientation of an edge x.

Note that in Equation (1), the order of multiplying the two odd variables σ and θ
is determined by the orientation of the edge being flipped (see the arrow in Fig. 2). 
In addition, it was shown in [16, Proposition 6.3] that equations (2) and (3) can be 
simplified as follows.

σ′ = σ
√
bd− θ

√
ac√

ef
(2*)

θ′ = θ
√
bd + σ

√
ac√

ef
(3*)

In Fig. 2, the orientations of the edges around the boundary of the quadrilateral are not 
indicated, but the super Ptolemy transformation does affect the boundary orientations, 
where three of the four edges are unchanged and only the orientation of the edge labeled
b is changed (see Fig. 3).

Note the super Ptolemy relation is not an involution. As depicted in Fig. 3, flipping an 
edge twice results in reversing the orientations around the top triangle, and additionally 
negating the μ-invariant. Hence μ-invariants are well-defined only up to sign.

In our paper, we mostly consider marked disks with a triangulation such that every 
triangle has a boundary (see Section 3 for an explanation), in which case the orientations 
of the boundary edges will not affect our calculation of super λ-lengths. Therefore we 
can often ignore the boundary orientations. The following lemma from [16] tells us that 
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for any spin structure, the corresponding equivalence class of orientations will exhaust 
all possible interior orientations after ignoring the boundary.

Lemma 1.1 (Proposition 4.1 of [16]). Fix a triangulation of a polygon in which every 
triangle has at least one boundary edge. Then there is a unique spin structure after 
ignoring the boundary edges. In particular, this means that, from any representative 
orientation of a fixed spin structure, one can obtain all other orientations on the interior 
diagonals, without changing the spin structure.

Remark 1.2 (Remarks 4.2 and 4.3 of [16]). Note that the equivalence relation guarantees 
that the result after flipping twice represents the same spin structure, but algebraically 
it has the effect of negating the μ-invariant of that triangle (θ �→ −θ in Fig. 3). This 
means that the specific μ-invariants are not a feature of the triangulation and spin 
structure alone, but also the choice of representative orientation. Choosing a different 
orientation corresponds to changing the sign of some of the μ-invariants. On the other 
hand, the expressions of λ-lengths in terms of an initial triangulation are independent 
of the orientation of the arc as part of a spin structure, and of the flip sequence used to 
obtain a triangulation containing that arc. This is proven in [15] in the case of surfaces 
without boundaries. In [16], the authors proved the well-definedness of super λ-lengths 
for marked disks by deriving a super Pentagon relation (see [16, Appendix A.]).

2. Fan decomposition, default orientation, and positive order

In this section, we recall some definitions and conventions used in [16]. In particular, 
given a triangulation of a polygon, and an (oriented) arc i → j not in the triangulation, 
we define an orientation of the arcs in the triangulation called the default orientation, 
and a total order on the set of triangles (and odd generators of the super algebra) called 
the positive order.

Let P be a polygon with n + 3 vertices, i.e. a disk with n + 3 marked points on the 
boundary. Let a and b be two non-adjacent vertices on the boundary and let (a, b) be 
the arc that connects a and b. Without loss of generality, we assume that (a, b) crosses 
all internal diagonals of T . (For the purpose of λ-length calculation, triangles that do 
not intersect with the arc (a, b) can simply be removed from the picture.)

2.1. Decomposing a triangulation into fans

A triangulation is called a fan if all the internal diagonals share a common vertex. We 
will introduce a canonical way to break any triangulation T of P into smaller ones that 
are fans. For this purpose, certain vertices of P will be distinguished as fan centers.

Definition 2.1. The intersections of arc (a, b) and internal diagonals of T create small 
triangles (colored yellow in Fig. 4), whose vertices in P are called fan centers. We set 
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Fig. 4. Centers of fan segments. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

a = c0 and b = cN+1 and as a convention we will name these centers c1, · · · , cN such 
that

1. The edge (ci, ci+1) is in T which crosses (a, b) for 1 ≤ i ≤ N − 1;
2. The intersection (ci, ci+1) ∩ (a, b) is closer to a than (cj , cj+1) ∩ (a, b) if i < j.

Now the polygon P is broken into smaller polygons by the edges (ci, ci+1), each of which 
comes with a fan triangulation induced from T . Moreover, the sub-triangulation of T
bounded by ci−1, ci and ci+1 is called the i-th fan segment of T , whose center is said to 
be ci.

2.2. Default orientation and positive order

For a triangulation T of P and the (directed) arc (a, b) which crosses all internal 
diagonals of T , we define a default orientation. Such orientation determines an ordering 
of the μ-invariants, which we call the positive order, in which the super λ-length expansion 
has positive coefficients. Note that we will omit the orientation of boundary edges because 
only the orientation of interior edges affects our calculation of super λ-lengths.

Definition 2.2. When the triangulation is a single fan with c1 being the center, every 
interior edge is oriented away from c1. When T is a triangulation with N > 1 fans, 
where c1, · · · , cN are the centers, the interior edges within each fan segment are oriented 
away from its center. The edges where two fans meet each other are oriented as c1 →
c2 → · · · → cN−1 → cN . See Fig. 5.

Remark 2.3. As mentioned above, the definition of default orientation depends on the 
choice of direction a → b. In particular, choosing the opposite direction b → a would 
change the labeling so that ci becomes cN−i. The effect is that the orientation of the 
diagonals within a fan are unchanged, but the diagonals connecting two fan centers would 
have the reverse orientation.
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Fig. 5. The default orientation of a generic triangulation where each fan segment is colored differently. The 
faces are labeled by their μ-invariants.

Definition 2.4. We define the positive ordering inductively, triangle-by-triangle, as fol-
lows: Let the triangles be labeled θ1, θ2, . . . , θn in order from a to b. For each triangle θk, 
we look at the edge separating θk and θk+1:

1. If the edge is oriented so that θk is to the right, then we declare that θk > θi for all 
i > k.

2. Otherwise, if θk is to the left, we declare that θk < θi for all i > k.

For example, in Fig. 5, the positive ordering on the faces is

α1 > α2 > α3 > γ1 > γ2 > γ3 > δ2 > δ1 > β2 > β1.

Remark 2.5. Note that inside each of the fan segments, the triangles are ordered coun-
terclockwise around the fan center. For a more detailed description of the positive order, 
see Section 4 of [16].

From now on, we will always assume our triangulation has the default orientation 
on its interior diagonals, and state our theorems under this assumption. This is allowed 
because of Lemma 1.1. If we start with an arbitrary orientation, we can first apply a 
sequence of equivalence relations (reversing the arrows around a triangle and negating 
the μ-invariant) to get to the default orientation, and apply our theorems therein.

Remark 2.6. At first glance, it seems there is an ambiguity in Definition 2.2 which actu-
ally allows for two different choices of “default orientation”. This ambiguity is whether 
to include the first triangle (closest to a = c0) in a larger fan segment, or to consider the 
first triangle as its own fan. Fig. 6 illustrates the two possibilities.

The differences are the addition of one extra fan center, and the diagonal separating 
the first and second triangles has reversed orientation. In light of Remark 1.2 and Fig. 3, 
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Fig. 6. Two choices of default orientation, and their positive orders.

the two choices represent the same spin structure, as they differ by reversing the orien-
tations of the sides of the first triangle, and thus one configuration can be obtained from 
the other by a sequence of flips. Consequently, we have that ψ = −ϕ.

The difference in positive orders is that while ϕ is the largest element in the order, 
ψ is the smallest. However, since the odd variables anti-commute, and since ψ = −ϕ, 
this means the two positive orders are consistent with each other, in the sense that for 
any monomial x, the positively ordered product is well-defined, and does not depend on 
which of these two choices of “default orientation” we choose.

3. Snake graphs

Definition 3.1. A snake graph is a planar graph consisting of a sequence of square tiles, 
each connected to either the top or right side of the previous tile. Given a snake graph 
G, the word of G, denoted W (G), is a string in the alphabet {R,U} (standing for “right” 
and “up”) indicating how each tile is connected to the previous. See Fig. 7 for examples.

We will now review a construction from [6], which associates to each arc of a triangu-
lated polygon a labeled snake graph. In the remainder of this section, we assume we are 
given a polygon with n sides, and a chosen triangulation. As in [16], we label the edges 
and triangular faces of the triangulation with the corresponding generators of the super 
algebra.

Definition 3.2. Let γ be a diagonal of the polygon. We will construct a snake graph 
Gγ . Suppose vertices a and b are the endpoints of γ. If we traverse γ from a to b, let 
x1, . . . , xk be the labels of the diagonals crossed by γ, in order. Without loss of generality, 
we suppose that γ is a longest edge, in which case k = n − 3. From now on, we will draw 
our polygons so that a is at the bottom and b is at the top (the arc γ is oriented 
bottom-to-top).
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W (G) = ∅ W (G) = RR W (G) = UR W (G) = RUR

Fig. 7. Examples of snake graphs.
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Fig. 8. Tiles corresponding to diagonals in a triangulation.

There will be one tile of Gγ for each diagonal xi. For each i, the diagonal xi is 
the common side of two triangles in the triangulation, and is thus the diagonal of a 
quadrilateral. We make a square tile Ti whose four sides are labeled the same as the 
sides of this quadrilateral. If i is odd, then the orientation of Ti matches that of the 
triangulation, and if i is even, then the orientation of Ti is reversed. Examples are shown 
in Fig. 8. By convention, we draw the first tile T1 so that the endpoint of γ is the bottom 
left corner.

Although we do not draw the diagonals in the snake graph tiles, we still speak of 
xi as being “the diagonal of tile Ti”. These diagonals, although not drawn, should be 
thought of as separating the θi’s labeling the triangles. These θ labels are positioned in 
the corners of the tiles corresponding to their position in the triangulation.

By construction, tiles Ti and Ti+1 share a triangle in common. Two of the sides of 
this triangle are the diagonals xi and xi+1. Let e denote the label on the third side of 
this triangle. The tiles Ti and Ti+1 will both have a side labeled e (which will be either 
the top or right edge of Ti). We will glue the tiles along the edge e.

Examples of snake graphs are pictured in Fig. 9.
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Fig. 9. Snake graph corresponding to a diagonal γ (drawn dashed).

Definition 3.3. Let γ = (i, j) be a diagonal of a triangulated polygon. Define cross(γ) =
cross(i, j) to be the monomial x1x2 · · ·xk, the product of all diagonals which cross γ.

Theorem 3.4 (Theorem 3.1 of [6]). Let A be the cluster algebra coming from a polygon, 
with initial seed given by a chosen triangulation, and let γ = (i, j) be a diagonal of the 
polygon. Then

xij = 1
cross(γ)

∑
M∈D(Gγ)

wt(M).

Here, D(Gγ) denotes the collection of dimer covers on the snake graph Gγ. In par-
ticular, each M is a subset of edges on Gγ such that every vertex of Gγ is incident to 
exactly one edge of M . The weight of M , denoted as wt(M), is the product of all edge 
labels for all edges in M . In the next section, we extend these definitions to the case of 
double dimer covers.

4. Double dimer covers

Definition 4.1. If G is a planar bipartite graph, a double dimer cover of G is a multiset M
of edges such that each vertex of G is incident to exactly two edges from M (which are 
allowed to be two copies of the same edge). Given a double dimer cover M , we call each 
element of M a dimer. Dimers will be pictured as wavy orange lines, and two overlapping 
dimers (called a double dimer) will be pictured as a solid blue line.
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Definition 4.2. Let G be a snake graph, and let T denote the last tile of G. Then we 
define:

• D(G) is the set of all double dimer covers on G.
• DR(G) is the set of M ∈ D(G) which use two dimers on the right edge of T .
• DT (G) is the set of M ∈ D(G) which use two dimers on the top edge of T .
• Dtr(G) is the set of M ∈ D(G) which use single dimers on the top and right edges 

of T .
• Dr(G) is the set of M ∈ D(G) which use at least one dimer on the right edge of T .
• Dt(G) is the set of M ∈ D(G) which use at least one dimer on the top edge of T .

Looking at the top-right vertex of the last tile, we see that D(G) is the disjoint union

D(G) = DR(G) ∪DT (G) ∪Dtr(G)

Remark 4.3. Note that Dr(G) = DR(G) ∪Dtr(G) and Dt(G) = DT (G) ∪Dtr(G).

Definition 4.4. If G is a snake graph, and M ∈ D(G), we will define the weight of M , 
denoted wt(M), as a monomial of the super algebra. The weight of a dimer (an element 
of the multiset M) is the square root of the label of the corresponding edge of G. Let 
c(M) be the set of cycles formed by the edges of M . For a cycle C ∈ c(M), let θi be 
the odd variable corresponding to the triangle in the bottom-left corner of C, and θj for 
the top-right corner. We define the weight of the cycle to be wt(C) = θiθj . Finally, we 
define the weight of M as

wt(M) :=
∏
e∈M

wt(e)
∏

C∈c(M)

wt(C)

where the products are taken under the positive order of the underlying triangulation.
Note that by Remark 2.6, wt(M) is independent of which of the two choices of default 

orientation we choose.

See for instance the first and last figures in Example 10.2 where the contribution to 
the weight of the double dimer cover consisting of a single cycle on the third tile is θ4θ3, 
and the contribution to the weight of two cycles (on the first and third tiles) is θ1θ2θ4θ3.

Note that we can map any dimer cover of G to a double dimer cover of G by turning 
each dimer edge into a double dimer, i.e. a doubled edge. For such M ’s, the weight of M , 
as defined here, versus following the definition from Theorem 3.4 coincide. Thus there is 
no abuse in notation for using wt(M) in both settings.
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5. Double dimer recurrences

In this section, we give some recurrences for double dimer covers on snake graphs. In 
particular, we establish bijections between each of the sets DR(G), DT (G), and Dtr(G)
with certain subsets of double dimer covers on smaller snake graphs. We also give explicit 
expressions for how the weights transform under these bijections.

Remark 5.1. Although we usually start with a triangulation, and build a snake graph 
from it (as in Definition 3.2), in this section we instead start with a labeled snake graph. 
It is not hard to see that the construction of Definition 3.2 can be reversed, and the 
triangulation can be reconstructed from the snake graph. As such, we will still speak 
of the “diagonal” of a tile, meaning the label on the corresponding diagonal of the 
triangulation.

Definition 5.2. Define G(−k) to be the snake graph G with the last k tiles removed.

Lemma 5.3.

(a) If W (G) ends in “R”, then there is a bijection f : D(G(−1)) → DR(G), satisfying 
wt(f(M)) = a · wt(M), where “a” is the label on the right edge of the last tile. In 
particular, ∑

M∈D(G(−1))

wt(M) = 1
a

∑
M∈DR(G)

wt(M).

(b) If W (G) ends in “U”, then there is a bijection f : D(G(−1)) → DT (G), satisfying 
wt(f(M)) = a · wt(M), where “a” is the label on the top edge of the last tile. In 
particular, ∑

M∈D(G(−1))

wt(M) = 1
a

∑
M∈DT (G)

wt(M).

Proof. A double dimer cover in D(G(−1)) can be uniquely extended to a double dimer 
cover in DR(G) (resp. DT (G)) by adjoining two copies of the edge labeled a. See 
Fig. 10. �
Lemma 5.4.

(a) If W (G) ends with an alternating string of letters, i.e. in either “. . . RR(UR)n” or 
“. . . U(UR)n” (of length k ≥ 2, where k = 2n + 2 or 2n + 1, respectively), then there 
is a bijection f : D(G(−k)) → DT (G) satisfying wt(f(M)) = be2 · · · ek ·wt(M), where 
e1, . . . , ek are the diagonals of the last k tiles in reverse order, and b is the label on 
the top side of the last tile. In particular,
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Fig. 10. Parts of double dimer covers which use the edge a twice.

∑
M∈D(G(−k))

wt(M) = 1
be2 · · · ek

∑
M∈DT (G)

wt(M).

(b) If W (G) ends in either “. . . UU(RU)n” or “. . . R(RU)n” (of length k ≥ 2), then 
there is a bijection f : D(G(−k)) → DR(G) satisfying wt(f(M)) = be2 · · · ek ·wt(M), 
where e1, . . . , ek are the diagonals of the last k tiles in reverse order, and b is the 
label on the right side of the last tile. In particular,

∑
M∈D(G(−k))

wt(M) = 1
be2 · · · ek

∑
M∈DR(G)

wt(M).

Proof. Supposing the snake graph ends in a staircase which ends with “R”, then the last 
k tiles of G look like the picture in Fig. 11. Note that because of the snake graph, i.e. see 
Definition 3.2, if ei is the label of the diagonal of the ith tile counting from the end (e.g. 
e1 is the label of the diagonal of the last tile), then the W edge or S edge (depending 
on whichever is a boundary edge) of the succeeding tile is labeled ei. Similarly, the N 
edge or E edge of the previous tile is labeled ei. It is easy to see that if the top edge of 
the last tile is occupied by two dimers, then the opposite edge (the bottom) must also 
have a double edge. Consequently, the left side of the previous tile must use a double 
edge. Going on, one can see that this uniquely determines a double dimer cover on the 
rest of the staircase segment where one edge of each corner is used. This is pictured in 
Fig. 11 (Left). It is easily seen that the weight of these dimers is the product be2 · · · ek. 
Removing the last k tiles leads to G(−k) as pictured in Fig. 11 (Right). �
Lemma 5.5.

(a) If W (G) = (RU)nR or W (G) = (UR)n, then DT (G) contains a unique double dimer 
cover with weight bce2 · · · ek (with k = 2n + 2 or k = 2n + 1), where e1, . . . , ek are 
the diagonals of the last k tiles in reverse order, b is the label on the top side of the 
last tile, and c is the label on the left or bottom edge of the first tile.

(b) If W (G) = (UR)nU or W (G) = (RU)n, then DR(G) contains a unique double dimer 
cover with weight bce2 · · · ek (with k = 2n + 2 or k = 2n + 1), where e1, . . . , ek are 
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Fig. 11. Parts of double dimer covers ending in a “staircase” which use the edge b twice.
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c

Fig. 12. The unique double dimer cover on a “staircase” using the edge b twice.

the diagonals of the last k tiles in reverse order, b is the label on the right side of the 
last tile, and c is the label on the left or bottom edge of the first tile.

Proof. The proof is essentially the same as for Lemma 5.4, using Fig. 12 which illustrates 
the case of part (a). �

We will now define an involution on the set of monomials of the super-algebra A =
R[x±1/2

ij | θk], given by toggling θn.

Definition 5.6. Let x ∈ A be a monomial, written in the positive order. If x contains θn, 
then x∗ is defined as x with θn removed. If x does not contain θn, then x∗ is defined by 
inserting θn such that the positive order is preserved.

Example 5.7. Let n = 4, and suppose the positive order is θ1 > θ3 > θ4 > θ2. Then 
(θ1θ3θ2)∗ = θ1θ3θ4θ2, and (θ1θ4)∗ = θ1.

Lemma 5.8. Suppose that G contains (n − 1) tiles, so that θn−1 (resp. θn) labels the 
bottom-left (resp. top-right) triangle of the last tile. Let x† and x∗ denote the involutions 
corresponding to θn−1 and θn, respectively.
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f
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Fig. 13. Proof of Lemma 5.8.

(a) If W (G) ends in “R”, then there is a bijection f : Dr(G(−1)) → Dtr(G) satisfying 

wt(f(M)) =
√

abc
d

(
wt(M)†

)∗, where “d” is the label on the left edge of the last tile, 
and a, b, c are the labels on the other three sides. In particular,

∑
M∈Dr(G(−1))

wt(M) =
√

d

abc

∑
M∈Dtr(G)

(wt(M)∗)† .

(b) If W (G) ends in “U”, then there is a bijection f : Dt(G(−1)) → Dtr(G) satisfying 

wt(f(M)) =
√

abc
d

(
wt(M)†

)∗, where “d” is the label on the bottom edge of the last 
tile, and a, b, c are the labels on the other three sides. In particular,

∑
M∈Dt(G(−1))

wt(M) =
√

d

abc

∑
M∈Dtr(G)

(wt(M)∗)† .

Proof. Suppose W (G) ends in “R”. Let M ∈ Dr(G(−1)). Then we define f(M) by first 
erasing a dimer from the right edge of the last tile of G(−1), and then add single dimers 
on the top, right, and bottom edges of the last tile of G. This is illustrated in Fig. 13. 
Clearly, this has the effect of multiplying the weight of M by a factor 

√
abc
d . But it also 

changes the odd variables, since the cycles at the end surround a different set of tiles.
There are two cases, corresponding to the two pictures in Fig. 13. First consider the top 

picture, corresponding to M ∈ DR(G(−1)). Since M does not contain a cycle surrounding 
the last tile, wt(M) does not include the variable θn−1. Looking at the figure, we see 
that f(M) contains a cycle around just the last tile, which means we must multiply by 
θn−1θn. This is the same as applying both the † and ∗ involutions (the † multiplies by 
θn−1 and the ∗ multiplies by θn). Following Definition 5.6, the odd variables, including 
θn−1 and θn, are written in the positive order.

In the second case, M has a cycle surrounding the last tile of G(−1), and so wt(M)
includes a factor of θn−1. The effect of f is to extend the cycle around the last tile of 
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G. So we need to exchange θn−1 for θn. Again applying both involutions achieves this 
effect, since † will remove θn−1, and then ∗ will add θn in the proper place relative to 
positive order. �
6. The main formula

In this section we give a double dimer interpretation for the terms of the Laurent 
expansion of λ-lengths and certain types of μ-invariants. The proof will induct on the 
number of triangles in the polygon (equivalently, the number of tiles of the corresponding 
snake graph). There are several cases to consider, with subtle differences, depending on 
the following factors:

• Whether there are an even or odd number of triangles/tiles. This affects whether the 
last tile of the snake graph has either normal or reversed orientation.

• Whether the word W (G) of the snake graph ends in “R” or “U”. This affects which 
versions (parts (a) or (b)) of Lemmas 5.3–5.5,5.8 must be used in the induction. This 
will correspond to interchanging DT (G) and DR(G) in the recursion formulas.

• Whether the top-most fan center is on the left (as in Fig. 14 (a)) or the right. This 
affects which edge (c or d in Fig. 14) crosses more diagonals.

Rather than go through the proof for all possible cases, we will make particular choices 
for the factors listed above, so that we are in the case pictured in Fig. 14. Namely, 
we assume that the top-most fan center (the vertex labeled j in Fig. 14) is on the 
left (adjacent to edge a, and not b), and that the triangulation has an odd number of 
triangles. This actually determines the third condition (whether W (G) ends with “R” or 
“U”), which we now explain in the following lemma.

Lemma 6.1.

(a) Suppose a triangulated polygon is oriented as in Fig. 14, so that the top-most fan 
center (vertex j) is on the left side of the polygon. Then W (G) ends in “R” if and 
only if there are an odd number of triangles (even number of tiles in G), and W (G)
ends in “U” if and only if there are an even number of triangles (odd number of tiles 
in G).

(b) Suppose a triangulated polygon is oriented opposite of Fig. 14, so that the top-most 
fan center is on the right side of the polygon. Then W (G) ends in “R” if and only if 
there are an even number of triangles (odd number of tiles in G), and W (G) ends in 
“U” if and only if there are an odd number of triangles (even number of tiles in G).

Proof. In the case of a fan triangulation (i.e. j is the only fan center), this is easy to see. 
By the construction outlined in Definition 3.2, the assumption that the fan center j is 
on the left implies that W (G) always begins with a “R”. The result then follows for the 
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d c
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Fig. 14. (a) Triangulation T with n triangles. (b) Ptolemy relation in the quadrilateral ijkl.

case of a single fan segment. The argument for part (b) in a single fan is the same, since 
W (G) will always begin with “U” in that case.

Now we will induct on the number of fan segments. Suppose parts (a) and (b) are 
true for all triangulations with n − 1 fan segments. We will consider the case of n fan 
segments. Let G′ be the smaller snake graph corresponding to the longest arc in the 
polygon containing only the first n − 1 fan segments. Decompose W (G) as W (G′)W ′, 
where W ′ is the remainder of W (G). Note that by the construction in Definition 3.2, 
the first letter of W ′ is the same as the last letter of W (G′). This means if W ′ has odd 
length, then W (G) and W (G′) end in the same letter, and if W ′ has even length, then 
W (G) and W (G′) end in the opposite letter.

Also note that if W ′ has even length, then the parity of the numbers of tiles of G and 
G′ are the same, while if W ′ has odd length, the parity of the numbers of tiles in G and 
G′ are opposite. Combining these observations with the induction assumption gives the 
result. �
Theorem 6.2. Consider a triangulation as pictured in Fig. 14 where f = (i, k) is the 
longest arc, with corresponding snake graph G. In particular, we assume that a and b
are boundary edges, the top-most fan center j is on the left. When using it in a formula, 
we will also use the letter f to denote the (super) λ-length associated to this arc and its 
expansion in terms of λ-lengths and μ-invariants of the initial triangulation. Then

(a) f = 1
cross(f)

∑
wt(M).
M∈D(G)
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abcd σθ

Fig. 15. The three double dimer covers on a single-tile snake graph.

(b) If the polygon has an odd number of triangles,2 then

√
df ϕ = 1

cross(f)

√
e

b

∑
M∈Dt(G)

wt(M)∗,

where ϕ is the μ-invariant corresponding to the triangle (i, j, k), d and e signify both 
arcs and the expansions of their corresponding λ-lengths, and x �→ x∗ is the involution 
toggling θn (the top-most triangle). If there are an even number of triangles, then the 
sum is over Dr(G) instead of Dt(G).3

Proof. We will prove this by induction on the number of triangles.

Base case The base case is a quadrilateral, in which case W (G) is the empty word. 
Assume the quadrilateral is labeled as in Fig. 2. Then the snake graph G (corresponding 
to the diagonal f) is just a single tile. It is easy to see that there are only three double 
dimer covers on the square graph. These are pictured in Fig. 15, along with their weights. 
There is only one diagonal in this triangulation (the edge e), and so cross(f) = e. We 
see then that the weights of these three double dimer covers (after being divided by e) 
are precisely the three terms in the super Ptolemy relation (Equation (1)). This confirms 
part (a) in the base case.

Next, we consider part (b) for the base case. We are interested in what is called θ′

in the super Ptolemy relation (Equation (3)). Recall that Dr(G) = DR(G) ∪Dtr(G). In 
the case of a single tile, Dr(G) consists of the second and third double dimer covers in 
Fig. 15. In this case the x∗ involution corresponds to θ, and we have

(bd)∗ = bd θ and (
√
abcd σθ)∗ =

√
abcd σ.

As noted above, cross(f) = e, and so the right-hand side of part (b) in the case of a 
single tile is

1
cross(f)

√
e

b

∑
M∈Dr(G)

wt(M)∗ = 1√
be

(
bd θ +

√
abcd σ

)
.

2 By Lemma 6.1, this implies that W (G) ends with “R”.
3 This is because, by Lemma 6.1, W (G) ends with “U” in this case.
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On the other hand, the left-hand side of part (b) (using the notations of Fig. 2) is

√
df θ′ =

√
df√
ef

(√
bd θ +

√
ac σ

)
= 1√

e

(
d
√
b θ +

√
acd σ

)
= 1√

be

(
bd θ +

√
abcd σ

)
.

This confirms the base case for part (b).

Induction Assumptions Now we assume the formulas in parts (a) and (b) for triangula-
tions with fewer than n triangles, for some n > 2.

As mentioned above, we assume the triangulation to be pictured as in Fig. 14, so that 
the top-most fan center j is on the left. The argument for the other case (that the top-
most fan center is on the right) is similar: we would need to use part (b) of Lemma 6.1
rather than part (a), and the roles of the edges labeled c and d in Fig. 14 would be 
swapped.

We will also assume that the polygon has an odd number of triangles (equivalently, 
the snake graph has an even number of tiles). By Lemma 6.1, this implies that the snake 
graph ends with “R”. Because G has an even number of tiles, this means the last tile of 
G has orientation opposite of the polygon. These assumptions imply that the end of the 
snake graph looks as follows:

h

b

a

e2

e

θn

θn−1

θn−1

On the other hand, if the triangulation has an even number of tiles (the snake graph has 
an odd number of tiles), then the snake graph ends with “U” by Lemma 6.1, and the 
end of the snake graph would instead look as follows:

a

b

h

e2

θn

θn−1

θn−1

We will assume the former case for the remainder of the proof. The argument for the 
latter case is similar: occurrences of DR(G) and Dr(G) would need to be replaced by 
DT (G) and Dt(G).
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Induction for part (b) First we prove part (b). Looking at Fig. 14, the super Ptolemy 
relation gives the following expression for ϕ:

ϕ = 1√
ef

(√
bd θ +

√
ac σ

)
.

Multiplying by 
√
df gives

√
df ϕ =

√
d

e

(√
bd θ +

√
ac σ

)
= d

√
b

e
θ +

√
acd

e
σ.

Recall that Dt(G) = DT (G) ∪Dtr(G). We claim that the two terms on the right-hand 

side correspond to DT (G) and Dtr(G). Consider the first term, d 
√

b
e θ. The elements 

b, e, θ are all in the initial triangulation, but d might not be. Since d is a diagonal in a 
smaller triangulation, we may use induction and say that

d = 1
cross(d)

∑
M∈D(G(−k))

wt(M),

where k is the number of diagonals in the top fan segment.
Note that G(−k) is G with the last maximal “staircase” removed. Let e1, . . . , ek be the 

last k internal diagonals of the last fan segment (with e1 = e). These appear on the snake 
graph in the positions indicated in Fig. 11 (Left). Then cross(f) = e1 · · · ek · cross(d). 
Substituting the expression for d into the expression we had before, we get that the first 
term is

d

√
b

e
θ = e1 · · · ek

cross(f)

√
b

e

∑
M∈D(G(−k))

wt(M) θ = e2 · · · ek
cross(f)

√
be

∑
M∈D(G(−k))

wt(M) θ.

Here we need to check that the multiplication puts θ at the correct place in the 
positive order. By the induction hypothesis, the μ-invariants in the monomials wt(M)
are already written in the positive order with respect to T . Depending on the orientation 
of edge e, the μ-invariant θ can possibly be at either the beginning or end of the order 
(Definition 2.4). Because of the construction in Definition 4.4, the monomial wt(M)
contains an even number of odd variables for any choice of M . Thus θ commutes with 
wt(M), and the resulting product can always be written in the correct order without 
changing its sign.

Now we use Lemma 5.4 to conclude that∑
M∈D(G(−k))

wt(M) = 1
be2 · · · ek

∑
M∈DT (G)

wt(M).

Making this substitution gives
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d

√
b

e
θ = 1

cross(f)

√
e

b

∑
M∈DT (G)

wt(M) θ.

Note that since elements of DT (G) cannot have a cycle around the last tile, wt(M) θ =
wt(M)∗. So we get that the first term is the contribution from DT (G), as claimed.

Next, we examine the second term, 
√

acd
e σ. Recall that we assume c is the second-

longest edge (crosses all but the last diagonal), as in Fig. 14. Also let h be the boundary 
side of the polygon adjacent to the endpoint of c, as in the figure. Note that 

√
cd σ is 

precisely the left-hand side of the expression in part (b) for the triangle σ (in the role 
of ϕ). Let x �→ x† denote the toggle involution for θn−1. Then by induction, since σ is 
in a smaller polygon, we will assume the formula from part (b). Since there is one less 
triangle in this smaller polygon, the sum is over Dr rather than Dt. So we get

√
acd

e
σ =

√
a

e

1
cross(c)

√
e2

h

∑
M∈Dr(G(−1))

wt(M)†

=
√
ae

cross(f)

√
e2

h

∑
M∈Dr(G(−1))

wt(M)†,

where the products are already in the correct positive order by induction. Finally, we use 
Lemma 5.8 to substitute the summation over Dr(G(−1)) for a summation over Dtr(G):

∑
M∈Dr(G(−1))

wt(M)† =
∑

M∈Dtr(G)

√
h

abe2
wt(M)∗.

Making this substitution cancels the 
√

ae2
h factors, and gives the result:

√
acd

e
σ = 1

cross(f)

√
e

b

∑
M∈Dtr(G)

wt(M)∗.

Induction for part (a) Consider the Ptolemy relation Equation (1) on the quadrilateral 
(i, j, k, l):

f = ac

e
+ bd

e
+

√
abcd

e
σθ. (4)

First we examine the first term in Equation (4): ac/e. Since c is the longest arc in the 
smaller polygon with one less triangle, we have by induction that

c = 1
cross(c)

∑
(−1)

wt(M), (5)

M∈D(G )



G. Musiker et al. / Journal of Algebra 608 (2022) 325–381 347
where G(−1) is the snake graph for c, which is obtained by removing the last tile from 
G. Now multiply Equation (5) by a/e, noting that cross(f) = e · cross(c), to get

ac

e
= 1

cross(f)
∑

M∈D(G(−1))

wt(M)a.

By Lemma 5.3, double dimer covers in G(−1) are exactly those in D which have two 
dimers on edge a of the last tile (see Fig. 11). Hence we have:

ac

e
= 1

cross(f)
∑

M∈DR(G)

wt(M). (6)

Next we examine the term bd/e in Equation (4). Recall that by induction, d is given 
by

d = 1
cross(d)

∑
M∈D(G(−k))

wt(M). (7)

Multiply Equation (7) by b/e to get

bd

e
= 1

cross(d) · b
e

∑
M∈D(G(−k))

wt(M).

Since cross(f) = cross(d)ee2e3 · · · ek, we have

bd

e
= 1

cross(f)
∑

M∈D(G(−k))

wt(M)be2e3 · · · ek.

Now by Lemma 5.4, double dimer covers in D(G(−k)) are in bijection with those in 
DT (G) up to multiplying by the weight of edges in the first k tiles ee2e3 · · · ek (see 
Fig. 11). Hence we have:

bd

e
= 1

cross(f)
∑

M∈DT (G)

wt(M). (8)

Note that in Equations (6) and (8), the products of μ-invariants are taken under the 
positive order by induction.

Lastly we examine the term 
√
abcd
e σθ in Equation (4). By the induction hypothesis of 

part (b) we have

√
cdσ = 1

cross(c)

√
e2

h

∑
(−1)

wt(M)†. (9)

M∈Dr(G )
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Here G(−1) has an even number of tiles, therefore the sum is over Dr(G(−1)) rather than 
Dt(G(−1)). Right multiply Equation (9) by 

√
ab
e θ we get

√
abcd

e
σθ = 1

cross(c) ·
√
ab

e
·
√

e2

h

∑
M∈Dr(G(−1))

wt(M)†θ

= 1
cross(f)

√
abe2

h

∑
M∈Dr(G(−1))

wt(M)†θ.

Since we assumed that the direction of edge e is from left to right as depicted in 
Fig. 14, θ will appear at the end of the positive order of T , hence right-multiplication 
of θ will result in the correct order. In the other situation where the edge e goes from 
right to left, the product in Equation (4) would be θσ instead, giving the positive order 
in that case.

Note that for M ∈ Dr(G(−1)), we have wt(M)†θ = (wt(M)†)∗. Hence applying the 
bijection in Lemma 5.8, we get

√
abcd

e
σθ = 1

cross(f)
∑

M∈Dtr(G)

wt(M). (10)

Finally, combining Equations (6), (8) and (10) gives us

f = 1
cross(f)

∑
M∈D(G)

wt(M),

which completes the proof. �
7. Relationship between different combinatorial models for super λ-lengths

In this section, we relate the combinatorial interpretation of super λ-lengths given 
by double dimer covers of snake graphs, as in Theorem 6.2 (a), to our previous com-
binatorial interpretation given in [16] by super T -paths. As a by-product of our efforts 
towards this comparison, we introduce an additional family of combinatorial objects, 
which we call twisted super T -paths, that yield the same elements of the super algebra 
A = R[x±1/2

ij | θk].

7.1. Twisted super T -paths

Recall from Section 4 of [16] that we distinguished certain vertices of a triangulation T
to be fan centers and consequently defined an auxiliary graph from this data. To match 
our notation to that of [16], we fix a choice of arc (a, b), noting this is the arc whose super 
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Fig. 16. The auxiliary graph as defined in [16].

λ-length we wish to compute, i.e. λab. Then recall by restricting to a sub-triangulation 
T (a, b) ⊂ T if necessary, we assume (a, b) is the longest arc in T (a, b).

For a triangulation T and a pair of vertices a and b, the auxiliary graph is the graph 
of the triangulation T with some additional vertices and edges.

1. For each face of the triangulation T , we place an internal vertex, which lies on the 
arc (a, b). We denote the internal vertices using θ1, · · · , θn+1, such that θi is closer 
to a than θj if and only if i < j.

2. For each face of T , we add an edge σi := (θi, cj) connecting the internal vertex θi to 
the center of the fan segment which contains θi. We denote by σ the set of all such 
edges.

3. For each θi and θj with i < j, we add an edge connecting θi and θj . We denote the 
collection of these edges as τ = {τij : i < j}. For simplicity the τ -edges are drawn to 
be overlapping.

See Fig. 16 for an example. Note that we continue to follow the convention of Def-
inition 3.2 and assume that the longest edge (a, b) traverses the triangulation T from 
bottom-to-top.

We now define a twisted auxiliary graph Γa,b
T that we use to define twisted super 

T -paths. For our alternative twisted definition we introduce new σ-edges by using the 
complements of the fan centers. More precisely, given a triangulation T admitting longest 
edge (a, b) as above, for every triangle we associate two σ-edges (rather than one) and 
note that one of these two σ-edges is closer to the starting vertex a while the other is 
closer to the ending vertex b. We color the former in thick blue and call it a σA-edge 
and color the latter in cyan and call it a σB-edge. For each θi and θj with i < j, Γa,b

T

contains the edge τij : i < j just as before. See Fig. 17 for an example.
Just as super T -paths follow edges of the auxiliary graph, as defined in [16], we will 

define twisted super T -paths to follow edges of this newly defined twisted auxiliary graph 
Γa,b
T .
We define twisted super T -paths from a to b axiomatically as follows.
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Fig. 17. The twisted auxiliary graph Γa,b
T .

Definition 7.1. A twisted super T -path t from a to b is a sequence

t = (a0, a1, · · · , a�(t)|t1, t2, · · · , t�(t))

such that

(T1) a = a0, a1, · · · , a�(t) = b are vertices on Γa,b
T .

(T2) For each 1 ≤ i ≤ �(t), ti is an edge in Γa,b
T connecting ai−1 and ai.

(T3) ti 
= tj if i 
= j.
(T4) �(t) is odd.
(T5’) ti crosses (a, b) if i is even. The τ -edges are considered to cross (a, b), and any step 

along a τ -edge must end further from endpoint a and closer to endpoint b.
(T6’) ti ∈ σ only if i is odd, ti ∈ τ only if i is even.
(T7) If i < j and both ti and tj cross the arc (a, b), then the intersection ti ∩ (a, b) is 

closer to the vertex a than the intersection tj ∩ (a, b).

We define Ta,b to be the set of twisted super T -paths from a to b.

Remark 7.2. This is a slight variant of Definition 4.2 of [16] with the only difference 
being that we replaced the previous axioms

(T5) ti crosses (a, b) if i is even. The σ-edges are considered to cross (a, b).
(T6) ti ∈ σ only if i is even, ti ∈ τ only if i is odd,

with the axioms (T5’) and (T6’), thereby switching the parity of σ-steps and τ -steps.

We also define new weights for such twisted super T -paths. (Note that the weights of 
σ-edges differ from Definition 4.8 of [16] since σ-edges are now assumed to be odd steps 
rather than even steps.)

Definition 7.3. Let t ∈ Tab be a twisted super T -path which uses edges t1, t2, . . . in the 
twisted auxiliary graph ΓT

a,b. We will assign to each edge ti a twisted weight, which will 
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be an element in the super algebra R[x± 1
2

1 , · · · , x± 1
2

2n+3 | θ1, · · · , θn+1] (where θi’s are the 
odd generators) as follows. For the parity of edges ti ∈ σ or τ , we recall axiom (T6’) of 
Definition 7.1.

twt(ti) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xj if ti ∈ T , with λ-length xj , and i is odd
x−1
j if ti ∈ T , with λ-length xj , and i is even√
xkxl

xj
θs if ti ∈ σ and the face containing ti is as pictured below

(i must be odd)
1 if ti ∈ τ (i must be even)

θs

ti
xlxk

xj

Here, θs is the μ-invariant associated to the face containing ti. Finally, we define the 
(twisted) weight of a twisted super T -path to be the product of the (twisted) weights of 
its edges

twt(t) =
∏
ti∈t

twt(ti)

where the product of μ-invariants is taken under the positive order.

We use this to arrive at an analogue of Theorem 4.9 of [16].

Theorem 7.4. Under the default orientation, the λ-length of (a, b) is given by

λa,b =
∑

t∈Ta,b

twt(t),

where we use twisted super T -paths on the twisted auxiliary graph, and with twisted 
weights of each of the steps.

Before proving this theorem, we construct a weight-preserving bijection between super 
T -paths, as defined in [16], and twisted super T -paths, as introduced in Definition 7.1. 
For this bijection, it will also be useful to define twisted super steps in analogy to super 
steps in [16].

Definition 7.5. A triple of steps along a twisted super T -path which consist of a σ-edge, 
followed by a τ -edge, and then a second σ-edge will be called a twisted super step.
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Table 1
Weights of pieces of a super T -path (Left) or 
twisted super T -path (Right), respectively.

ORIGINAL TWISTED

(i)
√

a

bc
θi

1
b
·
√

ab

c
θi

(ii) b ·
√

a

bc
θi

√
ab

c
θi

(iii)
√

x

yz
θj

1
y

·
√

xy

z
θj

(iv) y ·
√

x

yz
θj

√
xy

z
θj

Lemma 7.6. Given a triangulation T of a polygon such that (a, b) is its unique longest arc, 
there is a weight-preserving bijection ψ that maps every super T -path t = (t1, t2, . . . , t�(t))
to a twisted super T -path ψ(t) = (t′1, t′2, . . . , t′�(t)′) through the auxiliary graph Γa,b

T . 
Furthermore, for each super T -path t, the weight of t, i.e. wt(t) =

∏�(t)
i=1 wt(ti), and the 

twisted weight of ψ(t) = t′, i.e. twt(t′) =
∏�(t′)

i=1 twt(t′i), coincide.

Proof. We construct a bijection between super T -paths and twisted super T -paths via 
the following:

Recall that a non-ordinary super T -path, as defined in [16], involves super steps, which 
consists of the three-step combination of σiτijσj where σi is the incoming edge to the 
face center corresponding to θi, τij is the teleportation between the face centers for θi
and θj , and σj is the outgoing edge to the face center corresponding to θj. Further, we 
assume that σi and σj are even steps while τij is an odd step.

In our bijection, we either replace two out of three steps of a super step with either 
a single step or a three step combination. The consequence of this map switches the 
parity of σ-steps as needed while adding (or deleting) an ordinary step. The parity of 
the τij steps is similarly switched from odd to even. These switches are also local in the 
sense that the remainder of the super T -paths may be left alone. Locally, there are four 
possible cases, and they are each illustrated in Fig. 18. Traversing the twisted auxiliary 
graph Γa,b

T from bottom-to-top, in cases (i) and (ii), we illustrate the two ways a super 
T -path (resp. super T -path) may enter the triangle with face center θi followed by a 
τij-step. (Blue or cyan steps correspond to odd-indexed steps while red steps correspond 
to even-indexed steps.) Cases (iii) and (iv) illustrate the analogous options for exiting 
the triangle with face center θj proceeding after a τij-step.

Furthermore, comparing weights to twisted weights, this transformation is weight-
preserving. We verify this case-by-case following Fig. 18. In particular, we see the weights 
of the σ-step (or corresponding two steps) on the left-hand-side (respectively right-hand-
side) are as in Table 1.

Comparing these expressions, we see that these weights on the left- and right-hand 
sides indeed agree. Since τ -steps are unweighted, notice that changing the parity of the 
τ -step does not affect the weight of the super or twisted super T -path. We thus first 
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ORIGINAL TWISTED

(iii)

x
y

z

σj

θj

x
y

z

σj

θj

(iv)

x
y

z

σj

θj

x
y

z

σj

θj

(i)

a
b

c

σiθi

a
b

c

σiθi

(ii)

a
b

c

σiθi

a
b

c

σiθi

Fig. 18. Illustration of the bijection between super T -paths and twisted super T -paths; here the vertical 
steps through edge c (or respectively z) indicate the beginning (resp. ending) of a τ-step, i.e. teleportation.

apply this transformation to a σ-step in the triangle corresponding to the μ-invariant 
θi, as illustrated in case (i) or (ii). Then second, we switch the parity of the τ -step 
τij without changing the weight. Finally, third, we apply the same transformation to a 
σ-step in the triangle corresponding to the μ-invariant θj, as illustrated in case (iii) or 
(iv). Thus we have replaced a super step with a twisted super step, or vice-versa.

These transformations can be applied either from left-to-right (original to twisted 
super T -paths) or instead from right-to-left, thus providing the inverse map for this 
bijection. �
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As a consequence of this bijection, we obtain important constraints on σ-steps of a 
twisted super T -paths that go beyond the axioms listed above.

Corollary 7.7. In addition to axioms (T1), (T2), (T3), (T4), (T5’), (T6’), and (T7), we 
can deduce that in any twisted super T -path, we have the following two properties:

(i) we only allow edges moving from a boundary vertex to a face center along a σA-edge
or allow edges moving from a face center to a boundary vertex along a σB-edge.

(ii) any τ -edge, e.g. τij between face center θi and face center θj, must be immediately 
preceded by the edge σA

i and immediately followed by the edge σB
j .

As a consequence of this corollary, twisted super steps must specifically have the form 
of the edge σA

i followed by τij and then σB
j . Thus we may be more precise than in 

Definition 7.5.

Proof of Theorem 7.4. This is now an immediate consequence of combining Lemma 7.6
and Theorem 4.9 of [16]. �
7.2. Bijection between twisted super T -paths and double dimer covers

In this subsection we use the new combinatorial objects presented in the previous 
subsection to give a weight-preserving bijection between double dimer covers on snake 
graphs and super T -paths. In light of the bijection from Lemma 7.6, it is sufficient to 
provide a weight-preserving bijection between twisted super T -paths and double dimer 
covers.

Theorem 7.8. Given the hypotheses of Lemma 7.6, i.e. a triangulation T with longest arc 
(a, b), we build the corresponding snake graph G following the construction in Defini-
tion 3.2. Then we have a weight-preserving bijection between twisted super T -paths and 
double dimer covers of G.

Proof. As indicated in Corollary 7.7, every teleportation step, i.e. τ -edge, of a twisted 
super T -path is preceded by a σA-edge and followed by a σB-edge. We thus are able 
to decompose any twisted super T -path into building blocks of three different possible 
types:

(i) Odd-indexed edges ti that travel along either a boundary edge or internal diagonal 
of triangulation T . We will refer to such edges as blue steps.

(ii) Even indexed edges ti that must travel along an internal diagonal of triangulation 
T . We will refer to such edges as red steps.

(iii) Twisted super steps, which are triples (σA
i , τij , σ

B
j ) such that σA

i (resp. σB
j ) is an 

entering (resp. exiting) σ-step, and τij is a teleportation step between the two asso-
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ciated face centers θi and θj . By Axiom (T6’) in Definition 7.1, the steps σA
i and σB

j

are odd-indexed while τij is even-indexed.

We map twisted super T -paths to double dimer covers in G, the snake graph associated 
to arc γ and triangulation T , via these building blocks. First off, we map twisted super 
steps to pieces in double dimer covers that correspond to a cycle around a connected 
sub-snake graph. More precisely, consider a twisted super step (σA

i , τij , σ
B
j ) such that 

τij teleports from the face center associated to θi to the face center associated to θj. 
Then there is a unique tile of the snake graph G that contains a triangle in the lower left 
corner labeled by θi and a unique tile of G that contains a triangle in the upper right 
corner labeled by θj . Further, this second tile is to the northeast of the first tile since 
the jth face center is closer to the end of γ than the ith face center, due to axiom (T5’). 
The cycle circumscribes the connected sub-snake graph beginning and ending at these 
two tiles.

Since a twisted super step must begin and end with an odd-indexed step, a twisted 
super T -path cannot contain two twisted super steps immediately following one another. 
Instead, unless they lie at the beginning or end of the twisted super T -path, they must 
be immediately preceded and followed by a red edge. Excluding twisted super steps and 
these accompanying red edges, the remaining connected pieces of a twisted super T -path 
all consist entirely of blue and red edges, and are each of odd-length. Due to the axioms 
of Definition 7.1, these connected pieces are ordinary T -paths of a subtriangulation S of 
T with longest diagonal γ′. It thus suffices to apply the bijection from [6] to obtain dimer 
covers of sub-snake graphs associated to such ordinary T -paths on subtriangulation S
and longest diagonal γ′. If γ′ starts on the bottom of the triangle with face center θi and 
ends at the top of the triangle with face center θj, we get a dimer cover on the connected 
sub-snake graph between the tile with lower-left corner θi and upper-right corner θj. We 
duplicate each of the edges in this dimer cover to obtain a double dimer cover.

Lastly, we note that the red edges immediately preceding or following a twisted super 
step correspond to blank tiles in the snake graph G such that if the red edge is on the 
diagonal τk, then the blank tile in G is the unique one with diagonal xk.

Every diagonal of T is either crossed by one of these ordinary T -paths, by one of 
the red edges preceding or following a twisted super step, or by the τ -step as part of a 
twisted super step. Hence every tile of G is respectively either covered by doubled edges, 
a blank tile, or a cycle of single edges. The inverse map combines the inverse map in 
[6] to get ordinary T -paths from double dimer covers on a connected sub-snake graph 
consisting exclusively of doubled edges and sending cycles to the unique twisted super 
step defined by the face centers associated to the beginning and ending tiles.

With this combinatorial bijection defined, we wish to also verify that the weights of 
twisted super T -paths agree with weights of the associated double dimer covers. Again, 
we utilize the decomposition of a twisted super T -path into blue edges, red edges and 
twisted super steps. The weights of blue edges correspond to the weights of the associated 
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dimer in G, using the fact that we map blue edges in a twisted super T -path to a doubled-
edge in G but then weight it by a square-root.

Similarly, the weights of red edges do not contribute anything to the numerator but 
either correspond to a piece of an ordinary T -path or to a blank tile associated to the 
edge preceding or following a twisted super step. Either way, the weights of such red 
edges agree with the contributions to the weight of the double dimer cover given by the 
crossing monomial in the denominator.

Finally, a twisted super step consists of a σA
i -step, an unweighted τ -step, and a σB

j -
step. As illustrated in the right-hand-side of Fig. 18, in cases (ii) and (iv), the weight of 
the σA

i -edge is 
√

ab
c θi while the weight of the σB

j -edge is 
√

xy
z θj .

Letting γAB denote the arc starting from the source of the σA
i -edge and ending at 

the target of the σB
j -edge, let GγAB

be the corresponding snake graph, as defined in 
Definition 3.2. By construction, a and b are the weights of the SW edges of the first tile 
in GγAB

while x and y are the weights of the NE edges of the last tile.
Following Theorem 3.4, we consider the denominator cross(γAB) which is the product 

of the weights of all diagonals in GγAB
. However, the snake graph and its edge-weighting 

is also constructed so that the following is true:
(∗) For every4 diagonal edge in GγAB

, the N or E edge of the previous tile has the 
same weight, as does the S or W edge of succeeding tile. In both cases, we pick the one 
edge out of the two which is a boundary (as opposed to internal) edge of the snake graph.

As a consequence, the product of the square root of edge weights of all boundary 

edges of GγAB
exactly equals 

√
ab · cross(γAB)2

cz · xy where c (respectively z) denotes the 
diagonal of the first (resp. last) tile of GγAB

. We include θi and θj in this product, 
corresponding to the beginning and end of the twisted super step; or the first and last 
triangles of the corresponding snake graph.

In conclusion, the weight contributed to a twisted super T -path by a twisted super 
step consisting of (σA

i , τij , σ
B
j ) agrees with the weight contributed to a double dimer 

cover via a cycle of single edges around the associated sub-snake graph. �
8. Lattice paths and dual snake graphs

8.1. Duality of snake graphs

In this section, we describe an involution on the set of all snake graphs which was 
described in [20], and also discussed extensively in [10]. Under this involution, dimer 
covers are taken to lattice paths. By a lattice path on a snake graph, we mean a path 
from the bottom-left corner of the first tile to the top-right corner of the last tile, such 
that every step goes either right or up.

4 Exluding the diagonal edges corresponding to the first and last tiles of GγAB
.
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Fig. 19. Relation between tile labeling in G and G.

Definition 8.1. Define an involution x �→ x on the set {R, U} given by R = U and U = R.

Definition 8.2. Define an involution w �→ w on the set of words in the alphabet 
{R, U} as follows. If w = w1w2w3 · · ·w2n or w = w1w2w3 · · ·w2n+1, then define 
w = w1w2w3 · · ·w2n or w1w2w3 · · ·w2nw2n+1. In other words, the involution toggles 
the odd-numbered letters.

Definition 8.3. The involution on snake graphs is defined by applying the involution to 
the word W (G). In other words, for a snake graph G, we define the dual snake graph G

so that W (G) = W (G).

If the snake graph G is labeled, then G inherets a labeling in the following way. Recall 
the tiles Ti of G alternate in orientation, so that T2k+1 has usual orientation, and T2k
has reversed orientation. For the dual snake graph, if i is odd, then the bottom and left 
sides of T i are labeled the same as Ti, but the top and right labels are swapped. If i is 
even, then the top and right sides of T i are the same as Ti, and the bottom and left are 
swapped. This is illustrated in Fig. 19. An example of two dual snake graphs is pictured 
in Fig. 20.

There is a bijection, described in [20] and [10], between perfect matchings (dimer 
covers) of G and lattice paths in G going from the bottom left to the top right corner. 
With the labeling convention described above for G, this bijection is weight-preserving, 
where the weight of a lattice path is the product of the weights of the edges in the path. 
An example of this correspondence is pictured in Fig. 21.

8.2. Double lattice paths

Recall that a double dimer cover is a multiset of edges such that each vertex is incident 
to exactly two edges from the multiset. Another way of describing it is as follows. Let 
C(G) be the set of dimer covers of a snake graph G. There is a natural map π : C(G) ×
C(G) → D(G). For each pair of dimer covers, π maps the pair to the corresponding 
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Fig. 20. Two dual snake graphs.
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Fig. 21. Correspondence between dimer covers of G and lattice paths in G.

multiset. This map is not in general injective, and different pairs can result in the same 
double dimer cover. Despite this non-uniqueness, it is often convenient to think of double 
dimer covers as simply pairs of dimer covers.

In the previous section, we described a bijection which takes dimer covers on G to 
lattice paths on G. Let �(G) be the set of lattice paths on G, and let f : C(G) → �(G)
be this bijection. We then naturally get a map f × f : C(G) × C(G) → �(G) × �(G). As 
before, we have a map π′ from �(G) × �(G) to the set of multisets of edges on G.

Definition 8.4. Given a snake graph G, define the set L(G) to be the image of the map 
π′. Its elements are called double lattice paths on G.

In other words, we want to think of a double lattice path as the superposition of 
two lattice paths (despite the fact that, as with double dimer covers, this is not always 
unique).

As with double dimer covers, we draw edges of a lattice path as wavy orange lines, 
where a solid blue line indicates two edges superimposed.

The following is a convenient way of specifying a double lattice path.
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Definition 8.5. Given a snake graph G, consider all ways to label each tile with one of 
the numbers 0, 1, or 2. Let ai be the label of tile Ti. Let X(G) be the subset of labellings
such that:

• If Ti+1 is to the right of Ti, then ai ≤ ai+1.
• If Ti+1 is above Ti, then ai ≥ ai+1.

Theorem 8.6. There is a bijection between X(G) and L(G).

Proof. Given a double lattice path, choose a pre-image of π′ in �(G) × �(G). In other 
words, choose a pair of lattice paths which represents the double lattice path. Label each 
tile according to how many of the two lattice paths go above this tile. Because the lattice 
paths can only go up and right, this ensures the inequalities, so this gives an element of 
X(G). Conversely, given a choice of labels 0, 1, or 2 for each tile, the double lattice path 
can uniquely be reconstructed. �
Definition 8.7. The weight of a double lattice path P is the product of the square roots 
of all edge labels in P , times the product of odd variables corresponding to the beginning 
and end of each cycle in P . The product of odd variables is taken in the positive order.

The following is immediate from the weight-preserving bijection mentioned in the 
previous section.

Theorem 8.8. Let G be the snake graph of a diagonal γ = (i, j) in a triangulated polygon. 
Then

xij = 1
cross(i, j)

∑
P∈L(G)

wt(P ).

9. Order ideals and distributive lattices

It was shown in [21] that the set of dimer covers of a planar graph forms a distributive 
lattice, whose cover relations are local moves called twists. By Birkhoff’s theorem, every 
distributive lattice is isomorphic to the lattice of order ideals of some poset. For a poset 
P , let J(P ) denote the lattice of order ideals in P (ordered by inclusion). For the example 
of the lattice of dimer covers of a snake graph G, a description of this poset was given 
in [22] (and also studied in [10] and [23]).

Using the bijection described earlier between dimer covers of G and lattice paths of 
G, it will be easier to use the latter description. We will describe a bijection between 
lattice paths of G and lower order ideals of a certain poset P (G). The Hasse diagram 
of P (G) is constructed as follows. Put a vertex inside each tile of G, and connect two 
vertices with an edge (a cover relation in P (G)) if the tiles share a side. Finally, rotate 
this picture clockwise 45◦ to get the Hasse diagram of P (G). This is pictured in Fig. 22.
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Fig. 22. The Hasse diagram of the poset P (G).

Fig. 23. A lattice path in G and its corresponding order ideal in P (G).

We define an order relation on the set of lattice paths in G as follows. The minimal 
lattice path is the one which follows the bottom-right edges of the boundary of G, and 
the maximal path is the one which uses the top-left edges of the boundary. If a lattice 
path uses both the bottom and right edge of some tile, then this path is covered by the 
path which swaps those for the top and left edges of the same tile.

The bijection between lattice paths and order ideals is as follows. As described above, 
the elements of P (G) correspond to the tiles of G. For each lattice path, there is some 
subset of tiles which are underneath the path. The corresponding subset of vertices of 
the Hasse diagram of P (G) is an order ideal. The minimal lattice path has no tiles 
underneath it, and so corresponds to the empty set. An example is pictured in Fig. 23.

We can extend this idea to the current situation of double dimer covers and double 
lattice paths. Let P (G) be the product of P (G) with a chain of length 2 (with elements 
0 < 1). The following is the double dimer analogue of the situation described above.

Theorem 9.1. There is a poset isomorphism L(G) ∼= J(P (G)), between the set of double 
lattice paths in G and the lattice of lower order ideals in P (G).

Proof. Since P (G) = P (G) × {0, 1}, we will write elements as (x, 0) or (x, 1), where 
x ∈ P (G).

We already have a bijection between L(G) and X(G). So we will give a bijection 
between X(G) and J(P (G)). The tiles in the snake graph correspond to the elements of 
the poset P (G). Let pi be the element of the poset corresponding to the tile Ti. Given 
a labeling from X(G), we will construct an order ideal. If Ti is labeled 0, then neither 
(pi, 0) nor (pi, 1) are in the order ideal. If Ti is labeled 1, then (pi, 0) is in the order ideal, 
but (pi, 1) is not. If Ti is labeled 2, then both (pi, 0) and (pi, 1) are in the order ideal. 
The inequalities defining X(G) guarantee that this is an order ideal. The inverse to this 
map is obvious, and it is clearly a bijection.
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Fig. 24. Poset isomorphism between L(G) and J(P(G)).

To see that this bijection is order-preserving, note that the cover relations in terms 
of X(G) are simply changing the label of a tile by increasing its value by 1. Under the 
bijection described above, this corresponds to adding a single element (either (pi, 0) or 
(pi, 1)) to the order ideal, which is a cover relation in the lattice of order ideals. �
Example 9.2. An example of the poset isomorphism from Theorem 9.1 is shown in Fig. 24.

10. Examples

Example 10.1. Consider the triangulated pentagon, with edges oriented as illustrated.
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3 4
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a b
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d

e
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θ2
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λ2,5 = acx1
x1x2

+ abd
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+ b
√
ade

x1
√
x2
θ1θ2 + a

√
bcd√

x1x2
θ2θ3 +

√
abce√
x1x2

θ1θ3.

Using a snake graph consisting of two tiles, and edge labels as below, we obtain 
the following double dimer interpretations corresponding to the six terms in the super 
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lambda length λ2,5. Note that the leftmost tile has diagonal x1 = λ13 while the rightmost 
tile has diagonal x2 = λ14.
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Next, we picture the same six terms as double lattice paths on the dual snake graph.
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Finally, we illustrate the three non-ordinary twisted super T -paths and their weights:
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Example 10.2. Consider the following triangulation of a hexagon. Its snake graph and 
dual snake graph are also pictured. We remind the reader of our convention of going 
bottom-to-top (i.e. the first tile of the snake graph corresponds the bottom triangles in 
the hexagon).
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The following figures show, for each non-ordinary T -path (i.e. those that include super 
steps), a comparison of all the combinatorial models discussed in the present paper: super 
T -paths, twisted super T -paths, double dimer covers, and lattice paths.
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11. Super Fibonacci numbers from annuli and once-punctured tori

In this section, we generalize our formulas to two special classes of surfaces, the annuli 
and the once-punctured tori, which gives rise to a sequence of Grassmann numbers which 
we call super Fibonacci numbers.

We first look at the decorated super-Teichmüller space of a once punctured torus, 
which has been systematically studied in [24].5 An ideal triangulation Δ of a once punc-
tured torus creates two different triangles on the surface. This can be seen by presenting 
a torus by a piece of its universal cover — a rectangle, and letting the four ‘vertices’ of 
the rectangle be the puncture. Then an ideal triangulation decomposes the surface into 
two triangles (one white, the other gray), using three arcs:

The quadrilaterals where a flip is taking place can be realized by taking a = c and 
b = d in Fig. 2. We also choose a spin structure such that the edges around both triangles 
are oriented cyclically as in Fig. 25. The super Ptolemy transformation in Equations (1)
to (3) now takes the following form (see Fig. 25 for the edge labels).

ef = a2 + b2 + ab σθ (11)

σ′ = bσ − aθ

a2 + b2
and θ′ = bθ + aσ

a2 + b2
(12)

Notice that the ideal arcs surrounding both θ and θ′ are counterclockwise, and those 
surrounding both σ and σ′ are clockwise. In other words, we obtain the same oriented 

5 The third author also studied this situation in an undergraduate research project, which motivates much 
of the current section.
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Fig. 25. Cyclic orientation is preserved under flips.
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θ

σ a
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e

e

b′
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Fig. 26. Effect of flipping edges a and b.

triangulation after the flip as before. This means flipping any of the three arcs will always 
result in the same relations (11) and (12), and will always result in the same oriented 
triangulation. Fig. 26 illustrates the result of flipping the other two edges (a and b).

Since any sequence of flips results in the same oriented triangulation, then for any 
edge, σ′ will always be on the right and θ′ on the left. Since σθ = σ′θ′, the Ptolemy 
relation will always take the form

ef = a2 + b2 + ab ε (13)

where ε = σθ. We can therefore forget the original μ-invariants and just use the variable 
ε.

In the classical (non-super) case, applying the Ptolemy transformation on two of the 
edges alternately gives rises to odd-indexed Fibonacci numbers. In the same spirit, start-
ing with one of the four oriented triangulations of the once punctured torus illustrated 
in Fig. 26, setting a = Z1, b = Z2, e = 1, and flipping the edges a and b alternatively 
will give us a sequence of elements of the super algebra, {Zm} satisfying the recurrence 
relation:

ZmZm−2 = Z2
m−1 + Zm−1ε + 1 (14)
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+ + +

Fig. 27. Triangulation of a marked annulus and its universal cover.

for m ≥ 3.
One can derive equation (14) in an alternative way, using the decorated super-

Teichmüller space of an annulus. Consider an annulus with two marked points, one on 
each boundary component, with orientation as depicted in Fig. 27. Similar to the torus 
case, if we set the λ-lengths of the boundary arcs to be 1 and set a = Z1 and b = Z2, 
then flipping the edges a and b alternately gives the same sequence {Zm} satisfying the 
same recurrence equation (14).

Similar to the case of the once-punctured torus, the relative spin structure is preserved 
in both orders: either flipping a then b or flipping b first. However, the two orders work in 
a slightly different way. Flipping a first would only alter the boundary orientations and 
leave the interior ones unchanged, while flipping b first does change the orientations on 
the interior edges. In particular, see how the spin structure is affected by flips in Figs. 28
and 29.

For the remainder of this section, we will give an explicit solution of recurrence (14)
in the special case that Z1 = a = 1 and Z2 = b = 1. The solution is given by the double 
dimer partition functions of snake graphs as discussed earlier. Although we have only 
defined snake graphs for arcs in a polygon, the construction of Definition 3.2 can easily 
be generalized to arcs in surfaces with nontrivial topology as in [6]. The arcs obtained 
from the flip sequence described above yield snake graphs with words W (G) = R2n+1 =
RR · · ·R. In other words, the resulting snake graphs are horizontal rows of tiles (with 
an odd number of tiles). Since the arcs cross the same triangles multiple times, the 
μ-invariants in the corners of the tiles will repeat. With this construction in mind, we 
define the following.
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Fig. 28. Flipping a (Top) then b (Bottom) of a marked annulus, labeled as above, only changes orientation 
on the boundaries.
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Fig. 29. On the other hand, flipping b (Top) then a (Bottom) of a marked annulus, labeled as above, changes 
orientation of internal arcs.

Definition 11.1. Let Gm be the snake graph with m tiles in a horizontal row, where all 
edges have weight 1, and all tiles have the same two μ-invariants σ and θ:

· · ·
σ

θ

θ

σ

σ

θ
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Remark 11.2. This snake graph Gm from Definition 11.1 can also be obtained from a 
triangulated polygon by specializing some of the variables. Specifically, take a polygon 
with a “zig-zag” triangulation (see e.g. Example 10.2 for the m = 3 case). Then the 
construction from Definition 3.2 will give a snake graph with the word W (G) = RR · · ·R, 
and the snake graph will be a horizontal row of boxes. Finally, setting θ1 = θ3 = · · · =
θ2n−1 and θ2 = θ4 = · · · = θ2n will give the correct μ-invariants.

Let xm be the number of double dimer covers of Gm which do not include cycles. 
These are in bijection with ordinary (i.e. not double) dimer covers. Hence the sequence 
of xm’s coincide with every-other Fibonacci number (see e.g. Section 2 of [25]). More 
precisely, if we index the Fibonacci numbers Fn by F1 = F2 = 1 and Fn = Fn−1 + Fn−2
for n ≥ 3, then xm = Fm+2 for m ≥ 1. Let ym be the number of double dimer covers of 
Gm which include a single cycle of odd length. Finally, we define pm = xm + ymε, where 
ε = σθ. We will denote the odd-indexed pm’s by zn = p2n−5 and denote the even-indexed 
pm’s by wn = p2n−4. See Remark 11.18 below.

Remark 11.3. Note that ym is not defined as the total number of double dimer covers 
containing a cycle, but only those with a single cycle of odd length. Because every tile 
of Gm contains the same μ-invariants σ and θ, a cycle of even length would contain a 
factor σ2 or θ2, and so such a double dimer cover would have weight zero. Similarly, a 
double dimer cover with more than one cycle would also contain multiple factors of σθ. 
So indeed pm = xm + ymε is the double dimer partition function for Gm.

Recall that the super λ-lengths in an annulus (for the flip sequence described earlier) 
are denoted by the Zm’s.

Proposition 11.4. The super algebra elements Zm’s defined above agree with the zm’s, 
which, as explained in Remark 11.3, are the double dimer partition functions for G2m−5. 
Here, G2m−5 is the snake graph with μ-invariants as defined in Definition 11.1.

We will prove this proposition in steps using a sequence of lemmas.

Lemma 11.5. If m is even, then

pm = pm−1 + pm−2 + (pm−2 + pm−4 + · · · + p2 + 1) ε.

If m is odd, then

pm = pm−1 + pm−2 + (pm−2 + pm−4 + · · · + p1 + 1) ε.

Proof. This is easily seen by the fact that D(Gm) = DR(Gm) ∪ DT (Gm) ∪ Dtr(Gm). 
The fact that the terms in pm−1 correspond to the elements of DR(Gm) follows from 
Lemma 5.3. The fact that the terms in pm−2 correspond to the elements of DT (Gm)
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follows from Lemma 5.4. Finally, consider the elements of Dtr(Gm). They must have a 
cycle which surrounds the last tile. As mentioned earlier, there can only be one cycle, 
which must have odd length. The weight contributed by the cycle is ε. If the cycle 
surrounds only one tile, then there can by any double dimer cover from D(Gm−2) on the 
remaining part of the snake graph. If the cycle surrounds three tiles, the remaining part 
can have any double dimer cover from D(Gm−4), etc. When m is odd, these contributions 
continue until the case of a cycle surrounding all of G. On the other hand, if m is even, 
the last contribution is the case of a cycle of surrounding (m −1) tiles and the remaining 
part must be a double dimer on the leftmost vertical edge of G. In either case, there is 
exactly one such way to complete the double dimer cover beyond the cycle of length m
(respectively (m − 1)). �
Lemma 11.6. If m is odd, then

pm = pm−1 + pm−2 + pm−1ε = (1 + ε)pm−1 + pm−2.

If m is even, then

pm = pm−1 + pm−2 + (pm−1 − 1)ε = (1 + ε)pm−1 + pm−2 − ε.

Proof. In light of the previous lemma, we only need to check that (pm−2 + pm−4 + · · ·+
p2+1)ε is equal to pm−1ε (resp. (pm−2+pm−4+· · ·+p1+1)ε is equal to (pm−1−1)ε) when 
m is odd (resp. even). By multiplying by ε, all terms in either of these identities already 
containing an ε vanish. Hence, we only need to check that xm−2 + xm−4 + · · · + x2 + 1
is equal to xm−1 (resp. xm−2 + xm−4 + · · · + x1 + 1 is equal to xm−1 − 1. As observed 
above, the xm’s coincide with the Fibonacci numbers. We thus prove our desired result 
via induction using the Fibonacci recurrence.

Consider the base case when m = 3. We have x1 = F3 = 2, hence x1+1 = 3 = F4 = x2. 
Inductively for m odd, xm−2+(xm−4+xm−6+· · ·+x1+1) = xm−2+xm−3 = Fm+Fm−1 =
Fm+1 = xm−1.

For the m even case, we consider the base case when m = 4. We have x2 = F4 = 3, 
hence x2 + 1 = 4 = F5 − 1 = x3 − 1. Inductively for m even, xm−2 + (xm−4 + xm−6 +
· · · + x2 + 1) = xm−2 + (xm−3 − 1) = Fm + (Fm−1 − 1) = Fm+1 − 1 = xm−1 − 1. �
Lemma 11.7. The zn’s satisfy the recurrence

zn = (3 + 2ε)zn−1 − zn−2 − ε.

Note that in the absence of the ε’s, this is the usual linear recurrence satisfied by 
every-other Fibonacci number.

Proof. Written in terms of p’s, this becomes

p2n−5 = (3 + 2ε)p2n−7 − p2n−9 − ε.
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First, since 2n − 5 is odd, we have

p2n−5 = (1 + ε)p2n−6 + p2n−7.

Since 2n − 6 is even, we have

p2n−6 = (1 + ε)p2n−7 + p2n−8 − ε.

Substituting this in the previous equation yields

p2n−5 = (1 + ε)2p2n−7 + (1 + ε)p2n−8 − (1 + ε)ε + p2n−7

= (2 + 2ε)p2n−7 + (1 + ε)p2n−8 − ε.

Finally, we note that since 2n − 7 is odd, we have the relation

(1 + ε)p2n−8 = p2n−7 − p2n−9.

Substituting this in the equation above gives the desired result. �
Lemma 11.8. The zn’s satisfy the relation

znzn−2 = z2
n−1 + zn−1ε + 1.

Proof. We follow the methodology used to prove Proposition 1 of [25] in the ordinary 
(non-super) case. Using Lemma 11.7, we can rewrite the product znzn−2 as

znzn−2 =
(

(3 + 2ε)zn−1 − zn−2 − ε

)
zn−2

= (3 + 2ε)zn−1zn−2 −
(
z2
n−2 + εzn−2

)
.

By induction, we may rewrite

zn−1zn−3 = z2
n−2 + εzn−2 + 1,

and hence

znzn−2 = (3 + 2ε)zn−1zn−2 −
(
zn−1zn−3 − 1

)
= zn−1

(
(3 + 2ε)zn−2 − zn−3

)
+ 1.

We use Lemma 11.7 again, noting that zn−1 = (3 + 2ε)zn−2 − zn−3 − ε, and conclude 
that



G. Musiker et al. / Journal of Algebra 608 (2022) 325–381 373
znzn−2 = zn−1

(
zn−1 + ε

)
+ 1

= z2
n−1 + εzn−1 + 1,

as desired. �
Proof of Proposition 11.4. Comparing Equation (14) and Lemma 11.8, we see that the 
zn’s satisfy the same recurrence as the λ-lengths. We need only verify that they have 
the same initial conditions. We observe that z3 and z4 are defined combinatorially as 
the double dimer partition functions for G1 and G3, respectively. Comparing this with 
Z3 and Z4, as defined via recurrence (14) and Z1 = Z2 = 1, we indeed see that Z3 =
(Z2

2 + εZ2 + 1)/Z1 = 2 + ε = z3 and Z4 = (Z2
3 + εZ3 + 1)/Z2 = 5 + 6ε = z4. �

Remark 11.9. In the more general case where Z1 = a and Z2 = b are not set to be 1, we 
conjecture that the solution to recurrence (14) is still given as the double dimer partition 
function of the snake graphs G2m−5’s, while taking into account edge weights.

For example, letting z1 = a, z2 = b, we calculate double dimer partition functions for 
G1, G2, and G3 respectively as

p1 = z3 = b2 + 1
a

+ b

a
ε,

p2 = b2 + a2 + 1
ab

+ b + a

ab
ε and

p3 = z4 = b4 + 2b2 + a2 + 1
a2b

+ 2b3 + 2b + ab2 + a

a2b
ε.

In particular, z2z4 = z2
3 + εz3 + 1 in this case, hence zm = Zm is still a solution to 

recurrence (14) for 1 ≤ m ≤ 4 in this more general case.

Above we defined pm = xm + ymε based on counting the number of double dimer 
covers on the 2 × (m + 1) grid graph Gm with m tiles with μ-invariants repeating 2-
periodically. Recall that xm = Fm+2 counts the double dimer covers with no cycles and 
hence is in bijection with dimer covers of Gm. The ym’s count the number of double 
dimer covers containing exactly one cycle, and the cycle must be of odd length. We now 
give several different compact algebraic formulae for the ym’s. First we express them in 
terms of Fibonacci numbers. Second, as a double-sum over binomial coefficients. Finally, 
as a single sum utilizing binomial coefficients.

Lemma 11.10. Define gm as the self-convolution of the Fibonacci sequence6:

gm =
m∑

k=1

FkFm−k+1.

6 gm is the OEIS sequence A001629.

https://oeis.org/A001629


374 G. Musiker et al. / Journal of Algebra 608 (2022) 325–381
Then ym can be expressed as the sum7

ym =
�m/2�∑
j=0

gm−2j .

Proof. We will first show that gm as the number of double dimer covers of the graph Gm

which contain exactly one cycle and that cycle is of exactly length one. The placement 
in the graph Gm of the unique cycle bisects the graph. Consequently, a double dimer 
cover is completed by picking the equivalent of a dimer cover on the left side of Gm

and a dimer cover on the right side of Gm. Summing over the possibilities gives us 
gm =

∑m
k=1 FkFm−k+1 as desired.

Since ym counts all double dimers containing a cycle, rather than only those of length 
one, we next count the double dimer covers containing a cycle of length three, five, etc. 
In each of these cases, counting the number of double dimer covers with a cycle of length 
(2j +1) on Gm is equivalent to counting the number of double dimer covers with a cycle 

of length 1 on Gm−2j . Consequently, we get the formula ym =
∑�m

2 �
j=0 gm−2j . �

Lemma 11.11. The values of gm satisfy the recurrence

gm = gm−2 + gm−1 + xm−2

for m ≥ 3.

Proof. We use F1 = 1, xm−2 = Fm, and Lemma 11.10 to expand the right-hand-side as

gm−2 + gm−1 + xm−2 =
m−2∑
k=1

FkFm−1−k +
m−1∑
k=1

FkFm−k + FmF1

=
m−2∑
k=1

FkFm−1−k

+
(

m−2∑
k=1

FkFm−k + Fm−1F1

)
+ FmF1.

Note that the two sums involving (m − 2) terms each can now be combined using the 
Fibonacci recurrence as

m−2∑
k=1

Fk(Fm−1−k + Fm−k) =
m−2∑
k=1

FkFm+1−k.

Consequently, we see

7 ym is the OEIS sequence A054454 as well as the third column of the triangular array A054453.

https://oeis.org/A054454
https://oeis.org/A054453
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gm−2 + gm−1 + xm−2 =
(

m−2∑
k=1

FkFm+1−k

)
+ Fm−1F1 + FmF1.

However, using the equality F1 = F2, we can rewrite this as

gm−2 + gm−1 + xm−2 =
m−2∑
k=1

FkFm+1−k + Fm−1F2 + FmF1 =
m∑

k=1

FkFm+1−k = gm,

where the last equality follows from Lemma 11.10. �
Lemma 11.12. The Fibonacci numbers can also be expanded in terms of binomial coeffi-
cients as

xm = Fm+2 =
�m+1

2 �∑
j=0

(
m + 1 − j

j

)
.

Proof. This identity goes back to Lucas [26] and appears explicitly in Hoggatt-Lind [27]. 
Here we give a combinatorial proof analogous to that of Lemma 11.10. We recall that 
a double dimer cover with no cycles is in bijection with a dimer cover, and utilize this 
throughout.

Observe that the graph Gm has m possible tiles on which to place a pair of horizontal 
dimers but (m + 1) possible vertical edges in which to place a vertical dimer. Hence a 
dimer cover of Gm with exactly 2j horizontal dimers consists of j tiles which contain a 
pair of horizontal dimers as well as m + 1 − 2j vertical dimers. Writing out this dimer 
cover as a word of j + (m + 1 − 2j) = m + 1 − j letters consisting of j instances of H
and (m + 1 − 2j) instances of V , we see such dimer covers are indeed counted by the 
binomial coefficient 

(
m+1−j

j

)
. �

Proposition 11.13. The values of gn can be expressed compactly via the algebraic formula

gn =
�n+1

2 �∑
j=1

j

(
n + 1 − j

j

)
.

Proof. This formula appears in the notes on the page for OEIS sequence A001629. See 
also [28]. However, here we give a self-contained proof.

Induction and Lemmas 11.11 and 11.12 allow us to rewrite

gm = gm−2 +gm−1 +xm−2 =
�m−1

2 �∑
j=1

j

(
m− 1 − j

j

)
+

�m
2 �∑

j=1
j

(
m− j

j

)
+

�m−1
2 �∑

j=0

(
m− 1 − j

j

)

=
(
m− 1

0

)
+

�m−1
2 �∑

(j + 1)
(
m− 1 − j

j

)
+

�m
2 �∑

j

(
m− j

j

)
.

j=1 j=1

https://oeis.org/A001629
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At this point, we divide into cases, based on the parity of m. First consider the case 
when m = 2k is even. Then �m−1

2 � = k − 1 and �m
2 � = k, and so we have

gm = 1 +
k−1∑
j=1

(j + 1)
(
m− 1 − j

j

)
+

k∑
j=1

j

(
m− j

j

)

= 1 +
k∑

j=2
j

(
m− j

j − 1

)
+

k∑
j=1

j

(
m− j

j

)

= 1 +
(
m− 1

1

)
+

k∑
j=2

j

[(
m− j

j − 1

)
+

(
m− j

j

)]

= m +
k∑

j=2
j

(
m− j + 1

j

)
.

Finally, note that m = 1 ·
(
m−1+1

1
)
, and also k = �m+1

2 �, so this agrees with the desired 
formula in the case m = 2k.

Next, we consider the case where m = 2k + 1 is odd. In this case, �m−1
2 � = �m

2 � = k, 
so we have

gm = 1 +
k∑

j=1
(j + 1)

(
m− 1 − j

j

)
+

k∑
j=1

j

(
m− j

j

)

= 1 +
k+1∑
j=2

j

(
m− j

j − 1

)
+

k∑
j=1

j

(
m− j

j

)

= 1 +
(
m− 1

1

)
+ (k + 1)

(
m− k − 1

k

)
+

k∑
j=2

j

[(
m− j

j − 1

)
+
(
m− j

j

)]

= m + (k + 1) +
k∑

j=2
j

(
m− j + 1

j

)
.

As before, m = 1 ·
(
m−1+1

1
)

gives the j = 1 term, and since m = 2k+1 we see additionally 
k + 1 = (k + 1)

(
m−(k+1)+1

k+1
)

is the j = k + 1 term. Since �m+1
2 � = k + 1, this gives the 

result. �
Corollary 11.14. Hence the parameter ym can also be expressed compactly as

ym =
�m

2 �∑ �n+1
2 �∑

j

(
n + 1 − j

j

)
.

n=0 j=1
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Proposition 11.15. We can express

xn + yn =
{
gn+1 if n is even,
gn+1 + 1 if n is odd.

Proof. We will prove this result by induction on n. For n = 1, we have xn + yn = 3, 
and g2 + 1 = F1F2 + F2F1 + 1 = 1 · 1 + 1 · 1 + 1 = 3. For n = 2, xn + y2 = 5, and 
g3 = F1F3 + F 2

2 + F3F1 = 1 · 2 + 12 + 2 · 1 = 5. So the base cases are confirmed.
For the inductive step we will make use of the fact that D(Gn) = DT (Gn) ∪GR(Gn) ∪

Dtr(Gn). However, we require a slight modification. Let D̂(G) denote the set of double 
dimer covers with non-zero weight (and similarly for D̂R(G), D̂T (G), and D̂tr(G)). Note 

that with this notation, we have xn + yn =
∣∣∣D̂(Gn)

∣∣∣.
Lemma 5.3 and Lemma 5.4 easily generalize to give bijections D̂R(Gn) → D̂(Gn−1)

and D̂T (Gn) → D̂(Gn−2). This means

∣∣∣D̂R(Gn) ∪ D̂T (Gn)
∣∣∣ = xn−1 + yn−1 + xn−2 + yn−2 = 1 + gn−1 + gn, (15)

where the last equality follows by induction.
Finally, we consider D̂tr(Gn). Note that elements of Dtr(G) have a cycle around the 

last tile. But since elements of D̂(Gn) can only have a single cycle (of odd length), 
this means the cycle around the last tile is the only cycle. If the cycle at the end of Gn

surrounds 2k+1 tiles, then the remaining part of the double dimer cover is an element of 
D(Gn−2−2k) which contains no cycles. Recall that these are counted by xn−2−2k, which 
by Lemma 11.12 is equal to Fn−2k. So we have

∣∣∣D̂tr(Gn)
∣∣∣ =

�n+1
2 �∑

k=1

Fn−2k.

Using the identities 
∑k

i=1 F2i−1 = F2k and 
∑k

i=1 F2i = F2k+1 − 1, just like in the proof 
of Lemma 11.6, we get two cases depending on the parity:

∣∣∣D̂tr(Gn)
∣∣∣ =

⎧⎨⎩Fn+1 − 1 = xn−1 − 1 if n is even,

Fn+1 = xn−1 if n is odd.
(16)

Finally, recall that xn + yn =
∣∣∣D̂(Gn)

∣∣∣ =
∣∣∣D̂R(Gn) ∪ D̂T (Gn)

∣∣∣ +
∣∣∣D̂tr(Gn)

∣∣∣. Combining 

Equation (15), Equation (16), and Lemma 11.11, gives the result. �
The following result was conjectured by the third author in an unpublished work (see 

Footnote 5).
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Proposition 11.16.

y2m =
m∑

k=0

(2k)
(
m + k + 1

2k + 1

)

y2m+1 =
m∑

k=0

(2k + 1)
(
m + k + 2

2k + 2

)

Note that these two expressions can be combined to give a formula for all yn:

yn =
�n/2�∑
k=0

(n− 2k)
(
n− k + 1
n− 2k + 1

)
.

Proof. We will prove the formula for y2m+1. The calculation for y2m is completely anal-
ogous.

Using Propositions 11.13 and 11.15, respectively, we write

g2m+2 =
m+1∑
j=1

j

(
2m + 3 − j

j

)
= x2m+1 + y2m+1 − 1.

Then, using Lemma 11.12, we can rearrange the above equation to obtain

y2m+1 = 1 +
m+1∑
j=1

j

(
2m + 3 − j

j

)
−

m+1∑
j=0

(
2m + 2 − j

j

)
.

By peeling off the last term, and then shifting the index in the second sum, we get

y2m+1 = 1 +

⎛⎝m+1∑
j=1

(
j

(
2m + 3 − j

j

)
−

(
2m + 3 − j

j − 1

))⎞⎠−
(
m + 1
m + 1

)
.

By applying the classical binomial coefficient identity 
(
n
k

)
= n+1−k

k

(
n

k−1
)

to the expres-
sions above, we can see that j

(2m+3−j
j

)
= (2m + 4 − 2j)

(2m+3−j
j−1

)
. Subtracting 

(2m+3−j
j−1

)
from both sides, we see that the summands are each equal to (2m + 3 − 2j)

(2m+3−j
j−1

)
. 

We can thus rewrite the equation above as

y2m+1 =
m+1∑
j=1

(2m + 3 − 2j)
(

2m + 3 − j

j − 1

)
.

Finally, to get the desired result, we let k = m + 1 − j and run through the sum 
backwards. �
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Remark 11.17. Recall that for n ≥ 3, the xn’s are the Fibonacci numbers when x1 =
x2 = 1. In the cluster algebra associated to an annulus with a marked point on each 
boundary, where {x1, x2} is the initial cluster consisting of two formal variables, then the 
values of zn = x2n−5 are the corresponding cluster variables associated to other possible 
arcs around the annulus.

One can also focus on the even-indexed entries, but instead of corresponding to cluster 
variables, the x2n−4’s correspond to the lambda lengths of peripheral arcs which start 
at the marked point on the inner boundary, wind around (n − 1) times, and end at 
the marked point on the inner boundary. Such peripheral arcs have self-crossings, in 
particular (n − 2) such self-intersections, when n ≥ 3. See [29].

Remark 11.18. As explained above after Remark 11.2, for n ≥ 3, x2n−4’s have a com-
binatorial interpretation as the (weighted) number of dimer covers in the snake graph 
G2n−4. Additionally, as we just saw in Remark 11.17, such numbers (resp. expressions) 
have interpretations as lambda lengths of peripheral arcs in the annulus.

Defining wn = p2n−4 = x2n−4 + y2n−4, we see that for n ≥ 3, wn = p2n−4 counts 
the (weighted) number of double dimer covers in G2n−4. For example, as computed in 
Remark 11.9, we see that w3 = p2 = b2+a2+1

ab + b+a
ab ε. Comparison with the classical case 

motivates the following conjecture.

Conjecture 11.19. If we let w1 = w2 = 1 (or if we let w1 = a and w2 = b), the values 
of wn = p2n−4 correspond to the super λ-lengths of a peripheral arc in an annulus, 
as described in Remark 11.17, except in the context of the decorated super-Teichmüller 
space.

The main obstruction to proving 11.19 and such a geometric significance is that unlike 
the ordinary case, we only have μ-invariants attached to triangles in a triangulation. To 
be able to compute the super λ-length of an arc with self-intersections would require 
a super analogue of the skein relations for resolving a crossing rather than simply a 
super analogue of the Ptolemy exchange relation for flipping a diagonal in an oriented 
quadrilateral.

Nonetheless, since we have the candidate of wn’s for the peripheral arcs in an annulus, 
along with a conjectured combinatorial interpretation that would allow us to calculate 
the corresponding expressions, perhaps it is possible to reverse engineer how to properly 
define super skein relations in the context of decorated super-Teichmüller space.

Another natural follow-up question to the above work involves super-Markov numbers.

Remark 11.20. The super λ-lengths of a once-punctured torus are studied by Huang, 
Penner, and Zeitlin in [24] where triples of arcs in a triangulation have super λ-lengths 
satisfying the super analogue of the Markoff equation (cf. [24, equation 26])

x2 + y2 + z2 + (xy + yz + xz)ε = 3(1 + ε)xyz,
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where ε = σθ. This motivates the following conjecture.

Conjecture 11.21. Begin with an oriented triangulation of the once-punctured torus like 
in Fig. 26. However, in this case, keep e as a formal variable instead of setting it to 
be 1. Allowing flips in all three directions iteratively yields all possible arcs in a once 
punctured torus. We claim that the super λ-lengths of such arcs are super analogues of the 
Markoff numbers, and have combinatorial interpretations using double dimer covers of 
the snake graphs appearing in Section 7 of [20] in the presence of appropriately specialized 
μ-invariants.

We end with the following questions.

Question 11.22. Assuming the validity of Conjecture 11.21, do the coefficients of the ε’s 
in super Markoff numbers have compact algebraic formulae analogous to the formula for 
the ym’s as coefficients of ε’s in super Fibonacci numbers (see Proposition 11.16)?

Question 11.23. Going beyond the annulus with one marked point on each boundary, or 
the once punctured torus, can we find formulae for super λ-lengths of arcs on unpunctured 
surfaces (or certain punctured surfaces) that have combinatorial interpretations as double 
dimer covers of snake graphs, using the same snake graphs interpreting ordinary λ-lengths 
of arcs as in [7]?

Before approaching Question 11.23, we note that it is not obvious for every triangula-
tion and every arc that there is a corresponding spin structure (i.e. oriented triangulation 
relative to the boundary and equivalence on triangles) and flip sequence that preserves 
positive expansion formulas as one iterates the computation. Nonetheless, the above com-
binatorial interpretation would at least give a candidate for what algebraic expressions 
may be reasonable to try.
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