Journal of Algebra 608 (2022) 325-381

Contents lists available at ScienceDirect

JOURNAL OF

Journal of Algebra

www.elsevier.com/locate/jalgebra

Double dimer covers on snake graphs from super )

cluster expansions

Check for
updates

Gregg Musiker *, Nicholas Ovenhouse, Sylvester W. Zhang

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 18 November 2021
Available online 16 June 2022
Communicated by David Hernandez

In a recent paper, the authors gave combinatorial formulas for
the Laurent expansions of super A-lengths in a marked disk,
generalizing Schiffler’s T-path formula. In the present paper,
we give an alternate combinatorial expression for these super

MSC:
13F60
17A70
05C70
30F60

Keywords:

Cluster algebras

Snake graphs

Double dimers

Decorated super-Teichmiiller spaces

A-lengths in terms of double dimer covers on snake graphs.
This generalizes the dimer formulas of Musiker, Schiffler, and
Williams.

© 2022 Elsevier Inc. All rights reserved.

Introduction

A marked surface is a surface S with boundary, with a collection of marked points

M C 39S (we require at least one marked point per boundary component). Although it

is common in the literature to

* Corresponding author.
E-mail addresses: musiker@umn
swzhang@umn.edu (S.W. Zhang).

also consider interior marked points (i.e. “punctures”), we

.edu (G. Musiker), ovenh001@umn.edu (N. Ovenhouse),

https://doi.org/10.1016/j.jalgebra.2022.05.033
0021-8693/© 2022 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jalgebra.2022.05.033
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2022.05.033&domain=pdf
mailto:musiker@umn.edu
mailto:ovenh001@umn.edu
mailto:swzhang@umn.edu
https://doi.org/10.1016/j.jalgebra.2022.05.033

326 G. Musiker et al. / Journal of Algebra 608 (2022) 325-381

will only consider unpunctured surfaces. It is well-known in the theory of cluster algebras
that the decorated Teichmiiller space of S possesses a cluster structure [1], [2], [3]. Given
a fixed triangulation, with arcs terminating at marked boundary points, the collection of
A-lengths gives a set of cluster coordinates. In particular, this means that the A-length of
any geodesic arc between marked points is expressible as a Laurent polynomial in these
coordinates. The “flip” of a triangulation corresponds to cluster mutation, realized by
the hyperbolic version of Ptolemy’s relation.

There have been many combinatorial ways to enumerate the terms occurring in these
Laurent expansions. One of the earliest was the notion of T-paths [4], [5]. A few years
later, a dimer (perfect matching) interpretation was given [6], [7]. There have been other
combinatorial models (e.g. [8], [9], [10]), but these two will be our main focus in this
article.

In recent years, there have been efforts to find supersymmetric generalizations of both
cluster algebras and decorated Teichmiiller spaces. On the one hand, there have been a
couple different attempts to define super cluster algebras formally (see [11] and [12,13]).
There is also a supersymmetric version of frieze patterns (which are related to cluster
combinatorics) [14]. On the other hand, in a more geometric setting, Penner and Zeitlin
have recently introduced decorated super-Teichmiiller spaces [15].

In a recent paper, the current authors took a first step in unifying the algebraic,
combinatorial, and geometric viewpoints mentioned above [16]. In particular, we found
an analogue of the T-path Laurent formula for decorated super-Teichmiiller spaces. We
also showed that the collection of super A-lengths and p-invariants fit into a super frieze
pattern, as in [14]. Lastly, we explored the connection between our approach and the
definitions of super cluster algebras given in [13].

The main purpose of the present paper is to give a super analogue of the dimer formu-
las from [6]. Surprisingly, the terms in the super Laurent polynomials are more naturally
expressed in terms of double dimer covers (rather than ordinary dimer covers). We also
give double dimer formulas for some (but not all) of the odd variables corresponding to
triangles. Later sections of the paper give other combinatorial interpretations which can
be derived from the double dimer model. The structure of the paper is as follows.

e In Section 1, we review background on decorated super-Teichmiiller theory of [15].

o In Section 2, we recall some definitions and conventions from our previous paper [16]
regarding triangulations of polygons, and how they are labeled.

e Section 3 defines snake graphs, and gives examples. These graphs will be important
in our main theorem, which says that any super A-length can be written as a Laurent
polynomial whose terms are indexed by double dimer covers on a certain snake graph.

e Section 4 introduces general terms and notations related to double dimer covers.

e Section 5 gives recurrence formulas for double dimer covers on snake graphs. The
lemmas appearing in this section are the main ingredients of the inductive proof of
the main theorem later in the paper.
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o Section 6 presents the main theorem (Theorem 6.2), which says that the Laurent
expansions of super A-lengths are sums over weights of double dimer covers on a
certain snake graph.

o In Section 7, we define a modified version of the super T-paths from [16], and use these
to give an explicit weight-preserving bijection between super T-paths and double
dimer covers.

e In Section 8, we discuss dual snake graphs. Looking at these dual snake graphs, we
get yet another combinatorial description of the Laurent terms, this time in terms
of lattice paths on the snake graph.

e In Section 9, we discuss how the terms in these Laurent polynomials form a distribu-
tive lattice, and thus can be identified with order ideals of a certain poset.

e In Section 10, we give some examples and illustrations.

e Lastly, in Section 11, we consider super A-lengths on other surfaces, including the
once-punctured torus and the annulus with one marked point on each boundary. We
then discuss super analogues of Fibonacci numbers and end with open problems.

1. Decorated super-Teichmiiller theory

In this section, we survey the theory of decorated super-Teichmiiller spaces recently
developed by Penner and Zeitlin [15]. We start with a brief overview of Penner’s classical
theory of decorated Teichmiiller spaces. The readers are referred to [17] for a detailed
reference.

Consider a surface S with marked points on its boundary,' such that each boundary
component contains at least one marked point.

The Teichmiller space of S, denoted T (5), is the space of (equivalence classes of)
hyperbolic metrics on S with constant negative curvature, with cusps at the marked
points. More formally, the Teichmiiller space of S is defined to be the quotient space

T(S) = Hom(m(S), PSL(2,R))/ PSL(2, R).

The decorated Teichmiiller space of S, written ’7'(5' ), is a trivial vector bundle over
T(S), with fiber RZ. The fibers represent a choice of a positive real number associated to
each marked point. At each marked point, we draw a horocycle whose size (or height) is
determined by the corresponding positive number. Truncating the geodesics using these
horocycles, it now makes sense to talk about their lengths. If £ is the truncated length
of one of these geodesic segments, then the A-length (or Penner coordinate) associated
to that geodesic arc is defined to be

A :=exp(/2).

1 In general, a surface can also contain marked points on its interior, known as punctures, but we will not
be concerned with this case, except for a discussion of the once-punctured torus in Section 11.
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Fig. 1. Ptolemy transformation.

Fixing a triangulation of the marked surface, the collection of A-lengths corresponding
to the arcs in the triangulation (including segments of the boundary) form a system of
coordinates for 7(S). Choosing a different triangulation results in a different system
of coordinates, but they are related by simple transformations which are a hyperbolic
analogue of Ptolemy’s theorem from classical Euclidean geometry. If two triangulations
differ by the flip of a single arc as in Fig. 1, then the A-lengths are related by: ef = ac+bd.

In a recent paper [15], Penner and Zeitlin gave a supersymmetric analogue of the
above mentioned decorated Teichmiiller theory. The decorated super-Teichmiiller space
of S is a superalgebra, generated by even elements corresponding to the A-lengths and
odd elements, called p-invariants, associated to the triangles.

To understand the multiplication of the anti-commutative p-invariants, we need ad-
ditional combinatorial data called a spin structure. Connected components of the super-
Teichmiiller space ST(S) are indexed by the set of spin structures on S, which are
formulated as the set of isomorphism classes of Kasteleyn orientations of a certain graph
embedded on a deformation retract of S [18,19]. These Kasteleyn orientations correspond
to equivalence classes of orientations of a fatgraph spine of S. For our purpose, we use the
dual of this formalism, where the spin structures will be identified with the equivalence
classes of orientations of edges of a triangulation, under the equivalence relation ~ which
we describe right now.

Choose a triangulation 7" with an orientation 7 on its edges. For any triangle ¢, consider
the transformation which reverses the orientation of the three sides of t. We say that
two orientations are equivalent 7 ~ 7' if they are related by a sequence of these moves.

Now we are ready to state the super version of the Ptolemy relations. Note that here
and in the sequel, we will use Latin letters to denote A-lengths and Greek letters to
denote p-invariants.

ef =ac+ bd+ Vabed ol (1)

,  ovbd—0y/ac

o= ——7—
vac+ bd

_ 0Vbd + o/ac

0/
vac+ bd
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Fig. 2. Super Ptolemy transformation.

€q €p €q —€b
0
# > 0 & o >
o o
€q €c €d €c €d €c

Fig. 3. Flip effect on spin structures. Here €, denotes the orientation of an edge x.

Note that in Equation (1), the order of multiplying the two odd variables o and 6
is determined by the orientation of the edge being flipped (see the arrow in Fig. 2).
In addition, it was shown in [16, Proposition 6.3] that equations (2) and (3) can be

simplified as follows.

o = ovbd — 6+/ac
vef

_ 0Vbd + o\/ac

= T

In Fig. 2, the orientations of the edges around the boundary of the quadrilateral are not

indicated, but the super Ptolemy transformation does affect the boundary orientations,
where three of the four edges are unchanged and only the orientation of the edge labeled

(2%)

o' (3%)

b is changed (see Fig. 3).

Note the super Ptolemy relation is not an involution. As depicted in Fig. 3, flipping an
edge twice results in reversing the orientations around the top triangle, and additionally
negating the p-invariant. Hence p-invariants are well-defined only up to sign.

In our paper, we mostly consider marked disks with a triangulation such that every
triangle has a boundary (see Section 3 for an explanation), in which case the orientations
of the boundary edges will not affect our calculation of super A-lengths. Therefore we
can often ignore the boundary orientations. The following lemma from [16] tells us that
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for any spin structure, the corresponding equivalence class of orientations will exhaust
all possible interior orientations after ignoring the boundary.

Lemma 1.1 (Proposition 4.1 of [16]). Fiz a triangulation of a polygon in which every
triangle has at least one boundary edge. Then there is a unique spin structure after
ignoring the boundary edges. In particular, this means that, from any representative
orientation of a fized spin structure, one can obtain all other orientations on the interior
diagonals, without changing the spin structure.

Remark 1.2 (Remarks 4.2 and 4.3 of [16]). Note that the equivalence relation guarantees
that the result after flipping twice represents the same spin structure, but algebraically
it has the effect of negating the p-invariant of that triangle (6 — —6 in Fig. 3). This
means that the specific p-invariants are not a feature of the triangulation and spin
structure alone, but also the choice of representative orientation. Choosing a different
orientation corresponds to changing the sign of some of the p-invariants. On the other
hand, the expressions of A-lengths in terms of an initial triangulation are independent
of the orientation of the arc as part of a spin structure, and of the flip sequence used to
obtain a triangulation containing that arc. This is proven in [15] in the case of surfaces
without boundaries. In [16], the authors proved the well-definedness of super A-lengths
for marked disks by deriving a super Pentagon relation (see [16, Appendix A.]).

2. Fan decomposition, default orientation, and positive order

In this section, we recall some definitions and conventions used in [16]. In particular,
given a triangulation of a polygon, and an (oriented) arc ¢ — j not in the triangulation,
we define an orientation of the arcs in the triangulation called the default orientation,
and a total order on the set of triangles (and odd generators of the super algebra) called
the positive order.

Let P be a polygon with n + 3 vertices, i.e. a disk with n + 3 marked points on the
boundary. Let a and b be two non-adjacent vertices on the boundary and let (a,b) be
the arc that connects a and b. Without loss of generality, we assume that (a,b) crosses
all internal diagonals of T'. (For the purpose of A-length calculation, triangles that do
not intersect with the arc (a,b) can simply be removed from the picture.)

2.1. Decomposing a triangulation into fans

A triangulation is called a fan if all the internal diagonals share a common vertex. We
will introduce a canonical way to break any triangulation 7" of P into smaller ones that
are fans. For this purpose, certain vertices of P will be distinguished as fan centers.

Definition 2.1. The intersections of arc (a,b) and internal diagonals of T create small
triangles (colored yellow in Fig. 4), whose vertices in P are called fan centers. We set
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a = Cy

b:C3

Fig. 4. Centers of fan segments. (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

a = ¢o and b = cy41 and as a convention we will name these centers ci,--- ,cy such
that

1. The edge (¢, ¢it1) is in T which crosses (a,b) for 1 <i < N —1;
2. The intersection (¢;, ¢;41) N (a,b) is closer to a than (¢;, cj41) N (a,bd) if i < j.

Now the polygon P is broken into smaller polygons by the edges (c;, ¢;+1), each of which
comes with a fan triangulation induced from 7. Moreover, the sub-triangulation of T
bounded by ¢;_1, ¢; and c¢;41 is called the i-th fan segment of T, whose center is said to
be ¢;.

2.2. Default orientation and positive order

For a triangulation 7' of P and the (directed) arc (a,b) which crosses all internal
diagonals of T', we define a default orientation. Such orientation determines an ordering
of the p-invariants, which we call the positive order, in which the super A-length expansion
has positive coefficients. Note that we will omit the orientation of boundary edges because
only the orientation of interior edges affects our calculation of super A-lengths.

Definition 2.2. When the triangulation is a single fan with ¢; being the center, every
interior edge is oriented away from c;. When T is a triangulation with N > 1 fans,
where ¢y, - -+ , ¢y are the centers, the interior edges within each fan segment are oriented
away from its center. The edges where two fans meet each other are oriented as ¢; —
cog — -+ — cN—1 — cn- See Fig. 5.

Remark 2.3. As mentioned above, the definition of default orientation depends on the
choice of direction a — b. In particular, choosing the opposite direction b — a would
change the labeling so that ¢; becomes cy_;. The effect is that the orientation of the
diagonals within a fan are unchanged, but the diagonals connecting two fan centers would
have the reverse orientation.
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C1

Co

C3

Cy Cs

Fig. 5. The default orientation of a generic triangulation where each fan segment is colored differently. The
faces are labeled by their p-invariants.

Definition 2.4. We define the positive ordering inductively, triangle-by-triangle, as fol-
lows: Let the triangles be labeled 61, 0s,..., 0, in order from a to b. For each triangle 6,
we look at the edge separating 0y and € 1:

1. If the edge is oriented so that 6 is to the right, then we declare that 6 > 6, for all
1> k.
2. Otherwise, if 0, is to the left, we declare that 0, < 6; for all i > k.

For example, in Fig. 5, the positive ordering on the faces is
Oé1>Oé2>043>’}/1>72>’73>62>(51>ﬁ2>ﬁ1.

Remark 2.5. Note that inside each of the fan segments, the triangles are ordered coun-
terclockwise around the fan center. For a more detailed description of the positive order,
see Section 4 of [16].

From now on, we will always assume our triangulation has the default orientation
on its interior diagonals, and state our theorems under this assumption. This is allowed
because of Lemma 1.1. If we start with an arbitrary orientation, we can first apply a
sequence of equivalence relations (reversing the arrows around a triangle and negating
the p-invariant) to get to the default orientation, and apply our theorems therein.

Remark 2.6. At first glance, it seems there is an ambiguity in Definition 2.2 which actu-
ally allows for two different choices of “default orientation”. This ambiguity is whether
to include the first triangle (closest to a = ¢g) in a larger fan segment, or to consider the
first triangle as its own fan. Fig. 6 illustrates the two possibilities.

The differences are the addition of one extra fan center, and the diagonal separating
the first and second triangles has reversed orientation. In light of Remark 1.2 and Fig. 3,
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Co Co

C1 C2

N No—

C3 Cq

C2 C3

e>a>0>6>y a>B>6>y>

Fig. 6. Two choices of default orientation, and their positive orders.

the two choices represent the same spin structure, as they differ by reversing the orien-
tations of the sides of the first triangle, and thus one configuration can be obtained from
the other by a sequence of flips. Consequently, we have that ¢ = —.

The difference in positive orders is that while ¢ is the largest element in the order,
1 is the smallest. However, since the odd variables anti-commute, and since ¢ = —p,
this means the two positive orders are consistent with each other, in the sense that for
any monomial z, the positively ordered product is well-defined, and does not depend on
which of these two choices of “default orientation” we choose.

3. Snake graphs

Definition 3.1. A snake graph is a planar graph consisting of a sequence of square tiles,
each connected to either the top or right side of the previous tile. Given a snake graph
G, the word of G, denoted W(G), is a string in the alphabet {R,U} (standing for “right”
and “up”) indicating how each tile is connected to the previous. See Fig. 7 for examples.

We will now review a construction from [6], which associates to each arc of a triangu-
lated polygon a labeled snake graph. In the remainder of this section, we assume we are
given a polygon with n sides, and a chosen triangulation. As in [16], we label the edges
and triangular faces of the triangulation with the corresponding generators of the super
algebra.

Definition 3.2. Let « be a diagonal of the polygon. We will construct a snake graph
G.,. Suppose vertices a and b are the endpoints of v. If we traverse v from a to b, let
z1,...,x be the labels of the diagonals crossed by 7, in order. Without loss of generality,
we suppose that «y is a longest edge, in which case k = n — 3. From now on, we will draw
our polygons so that a is at the bottom and b is at the top (the arc + is oriented
bottom-to-top).
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W(G) =2 W(G) = RR W(G) = UR W(G) = RUR

Fig. 7. Examples of snake graphs.

Ys Ys
04
Ye 3 Ya Ye Ya
03 03
T2 T2
62 02
Z1 1
Y Y3 Y1 Y3
Y2 Y2
T2 T3
0> 03
T : Y1 Y3 Ty B Y3 Y6
61 02
Y2 T1

Fig. 8. Tiles corresponding to diagonals in a triangulation.

There will be one tile of G, for each diagonal z;. For each i, the diagonal z; is
the common side of two triangles in the triangulation, and is thus the diagonal of a
quadrilateral. We make a square tile T; whose four sides are labeled the same as the
sides of this quadrilateral. If 4 is odd, then the orientation of T; matches that of the
triangulation, and if ¢ is even, then the orientation of T; is reversed. Examples are shown
in Fig. 8. By convention, we draw the first tile 77 so that the endpoint of v is the bottom
left corner.

Although we do not draw the diagonals in the snake graph tiles, we still speak of
x; as being “the diagonal of tile T;”. These diagonals, although not drawn, should be
thought of as separating the 6;’s labeling the triangles. These 6 labels are positioned in
the corners of the tiles corresponding to their position in the triangulation.

By construction, tiles 7; and T;y; share a triangle in common. Two of the sides of
this triangle are the diagonals x; and x;4+1. Let e denote the label on the third side of
this triangle. The tiles T; and T;41 will both have a side labeled e (which will be either
the top or right edge of T;). We will glue the tiles along the edge e.

Examples of snake graphs are pictured in Fig. 9.
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Fig. 9. Snake graph corresponding to a diagonal v (drawn dashed).

Definition 3.3. Let v = (i, j) be a diagonal of a triangulated polygon. Define cross(y) =
cross(i, ) to be the monomial x125 - - - 2, the product of all diagonals which cross .

Theorem 3.4 (Theorem 3.1 of [6]). Let A be the cluster algebra coming from a polygon,
with initial seed given by a chosen triangulation, and let v = (i,7) be a diagonal of the
polygon. Then

Tij = # Z Wt(M)

cross(7y) MEDE.)

Here, D(G,) denotes the collection of dimer covers on the snake graph G.. In par-
ticular, each M is a subset of edges on G, such that every vertex of G, is incident to
exactly one edge of M. The weight of M, denoted as wt(M), is the product of all edge
labels for all edges in M. In the next section, we extend these definitions to the case of
double dimer covers.

4. Double dimer covers

Definition 4.1. If G is a planar bipartite graph, a double dimer cover of G is a multiset M
of edges such that each vertex of G is incident to exactly two edges from M (which are
allowed to be two copies of the same edge). Given a double dimer cover M, we call each
element of M a dimer. Dimers will be pictured as wavy orange lines, and two overlapping
dimers (called a double dimer) will be pictured as a solid blue line.
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Definition 4.2. Let G be a snake graph, and let 7' denote the last tile of G. Then we
define:

o D(G) is the set of all double dimer covers on G.

e Dg(G) is the set of M € D(G) which use two dimers on the right edge of T

e Dp(G) is the set of M € D(G) which use two dimers on the top edge of T

e Dy (G) is the set of M € D(G) which use single dimers on the top and right edges
of T.

o D,(G) is the set of M € D(G) which use at least one dimer on the right edge of T'.

e Di(G) is the set of M € D(G) which use at least one dimer on the top edge of T'.

Looking at the top-right vertex of the last tile, we see that D(G) is the disjoint union

D(G) = Dr(G) U Dp(G) U Dy, (G)
Remark 4.3. Note that D,.(G) = Dr(G) U D¢.(G) and Dy(G) = Dr(G) U Dy (G).

Definition 4.4. If G is a snake graph, and M € D(G), we will define the weight of M,
denoted wt(M), as a monomial of the super algebra. The weight of a dimer (an element
of the multiset M) is the square root of the label of the corresponding edge of G. Let
c(M) be the set of cycles formed by the edges of M. For a cycle C € ¢(M), let 6; be
the odd variable corresponding to the triangle in the bottom-left corner of C', and 6; for
the top-right corner. We define the weight of the cycle to be wt(C) = 6;0;. Finally, we
define the weight of M as

wt(M) = [ wt(e) J[ wt(C)

eeM Cec(M)

where the products are taken under the positive order of the underlying triangulation.
Note that by Remark 2.6, wt(M) is independent of which of the two choices of default
orientation we choose.

See for instance the first and last figures in Example 10.2 where the contribution to
the weight of the double dimer cover consisting of a single cycle on the third tile is 6463,
and the contribution to the weight of two cycles (on the first and third tiles) is 61626405.

Note that we can map any dimer cover of GG to a double dimer cover of G by turning
each dimer edge into a double dimer, i.e. a doubled edge. For such M’s, the weight of M,
as defined here, versus following the definition from Theorem 3.4 coincide. Thus there is
no abuse in notation for using wt(A/) in both settings.
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5. Double dimer recurrences

In this section, we give some recurrences for double dimer covers on snake graphs. In
particular, we establish bijections between each of the sets Dg(G), Dr(G), and Dy.(G)
with certain subsets of double dimer covers on smaller snake graphs. We also give explicit
expressions for how the weights transform under these bijections.

Remark 5.1. Although we usually start with a triangulation, and build a snake graph
from it (as in Definition 3.2), in this section we instead start with a labeled snake graph.
It is not hard to see that the construction of Definition 3.2 can be reversed, and the
triangulation can be reconstructed from the snake graph. As such, we will still speak
of the “diagonal” of a tile, meaning the label on the corresponding diagonal of the
triangulation.

Definition 5.2. Define G(—*) to be the snake graph G with the last k tiles removed.

Lemma 5.3.

(a) If W(G) ends in “R”, then there is a bijection f: D(G™V) — Dgr(G), satisfying
wt(f(M)) = a - wt(M), where “a” is the label on the right edge of the last tile. In
particular,

> win =1 Y wi).

MeD(G(-1) MeDR(G)

(b) If W(G) ends in “U”, then there is a bijection f: D(GV) — Dr(G), satisfying
wt(f(M)) = a- wt(M), where “a” is the label on the top edge of the last tile. In
particular,

> wt(M):1 > wi(M).

a
MeD(G(-1) MeD7(G)

Proof. A double dimer cover in D(G(~) can be uniquely extended to a double dimer
cover in DRr(G) (resp. Dr(G)) by adjoining two copies of the edge labeled a. See
Fig. 10. O

Lemma 5.4.

(a) If W(G) ends with an alternating string of letters, i.e. in either “... RR(UR)"” or
“..UUR)"” (of length k > 2, where k = 2n+ 2 or 2n + 1, respectively), then there
is a bijection f: D(GF)) — Dp(G) satisfying wt(f(M)) = beg - - - ex-wt(M), where
e1,...,e, are the diagonals of the last k tiles in reverse order, and b is the label on
the top side of the last tile. In particular,
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€3 a €3
€3 €3

€5 €2 €5 €2

€4 €4
€4 e €4

€6 €6

Fig. 10. Parts of double dimer covers which use the edge a twice.

3 wt(M):ﬁ ST we(M).

MeD(G(—R) MeDr(G)

(b) If W(G) ends in either “..UU(RU)™” or “..R(RU)"” (of length k > 2), then
there is a bijection f: D(G(=F)) — Dr(G) satisfying wt(f(M)) = bey - - - e}, - wt(M),
where eq,...,e, are the diagonals of the last k tiles in reverse order, and b is the
label on the right side of the last tile. In particular,

> Wt(M):b€2+ > wt(M).

ern
MeD(G(-1) k MeDr(G)

Proof. Supposing the snake graph ends in a staircase which ends with “R”; then the last
k tiles of G look like the picture in Fig. 11. Note that because of the snake graph, i.e. see
Definition 3.2, if e; is the label of the diagonal of the ith tile counting from the end (e.g.
ey is the label of the diagonal of the last tile), then the W edge or S edge (depending
on whichever is a boundary edge) of the succeeding tile is labeled e;. Similarly, the N
edge or E edge of the previous tile is labeled e;. It is easy to see that if the top edge of
the last tile is occupied by two dimers, then the opposite edge (the bottom) must also
have a double edge. Consequently, the left side of the previous tile must use a double
edge. Going on, one can see that this uniquely determines a double dimer cover on the
rest of the staircase segment where one edge of each corner is used. This is pictured in
Fig. 11 (Left). It is easily seen that the weight of these dimers is the product bes - - - ej.
Removing the last k tiles leads to G(—*) as pictured in Fig. 11 (Right). O

Lemma 5.5.

(a) IfW(G) =(RU)"R or W(G) = (UR)", then D (G) contains a unique double dimer
cover with weight bceg - - - ey, (with k = 2n + 2 or k = 2n+ 1), where eq, ..., e are
the diagonals of the last k tiles in reverse order, b is the label on the top side of the
last tile, and c is the label on the left or bottom edge of the first tile.

(b) IfW(G) = (UR)™U or W(G) = (RU)™, then Dr(G) contains a unique double dimer
cover with weight bees - - - ey, (with k = 2n + 2 or k = 2n+ 1), where ey, ..., e are
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Fig. 11. Parts of double dimer covers ending in a “staircase” which use the edge b twice.

€3

es

€4

€6

«

Fig. 12. The unique double dimer cover on a “staircase” using the edge b twice.

the diagonals of the last k tiles in reverse order, b is the label on the right side of the
last tile, and c is the label on the left or bottom edge of the first tile.

Proof. The proof is essentially the same as for Lemma 5.4, using Fig. 12 which illustrates
the case of part (a). O

We will now define an involution on the set of monomials of the super-algebra A =
+1/2 . )
Rlz;; " | 0x], given by toggling 0,,.

Definition 5.6. Let x € A be a monomial, written in the positive order. If = contains 6,
then x* is defined as = with 6,, removed. If = does not contain 6, then z* is defined by
inserting 6,, such that the positive order is preserved.

Example 5.7. Let n = 4, and suppose the positive order is 61 > 63 > 6, > 65. Then
(010502)* = 01030402, and (0164)* = 0.

Lemma 5.8. Suppose that G contains (n — 1) tiles, so that 6,_1 (resp. 0,) labels the
bottom-left (resp. top-right) triangle of the last tile. Let ' and x* denote the involutions
corresponding to 0,1 and 0, respectively.
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Fig. 13. Proof of Lemma 5.8.

(a) If W(G) ends in “R”, then there is a bijection f: D,(G"V) — Dy,.(G) satisfying
wt(f(M)) = 4/ 2e (Wt(M)T)*, where “d” is the label on the left edge of the last tile,
and a,b,c are the labels on the other three sides. In particular,

MEeD, (G(-D) MED,,(G)

(b) If W(G) ends in “U”, then there is a bijection f: D;(GV) — Dy.(G) satisfying
wt(f(M)) = /% (Wt(M)T)*, where “d” is the label on the bottom edge of the last
tile, and a,b,c are the labels on the other three sides. In particular,

> wt(M) = 4 (wt(M)*)" .

MEDt(G(fl)) MeDtr(G)

Proof. Suppose W (G) ends in “R”. Let M € D,(G(~1). Then we define f(M) by first
erasing a dimer from the right edge of the last tile of G(-1), and then add single dimers
on the top, right, and bottom edges of the last tile of G. This is illustrated in Fig. 13.

Clearly, this has the effect of multiplying the weight of M by a factor \/% . But it also
changes the odd variables, since the cycles at the end surround a different set of tiles.

There are two cases, corresponding to the two pictures in Fig. 13. First consider the top
picture, corresponding to M € D R(G(_l)). Since M does not contain a cycle surrounding
the last tile, wt(M) does not include the variable 6,,_;. Looking at the figure, we see
that f(M) contains a cycle around just the last tile, which means we must multiply by
0,,—10,,. This is the same as applying both the § and * involutions (the { multiplies by
0,,—1 and the x multiplies by 6,,). Following Definition 5.6, the odd variables, including
f,_1 and 0,,, are written in the positive order.

In the second case, M has a cycle surrounding the last tile of G~ and so wt(M)
includes a factor of 6,,_1. The effect of f is to extend the cycle around the last tile of
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G. So we need to exchange 6,1 for 6,. Again applying both involutions achieves this
effect, since 1 will remove 6,,_1, and then * will add 6,, in the proper place relative to
positive order. O

6. The main formula

In this section we give a double dimer interpretation for the terms of the Laurent
expansion of A-lengths and certain types of p-invariants. The proof will induct on the
number of triangles in the polygon (equivalently, the number of tiles of the corresponding
snake graph). There are several cases to consider, with subtle differences, depending on
the following factors:

o Whether there are an even or odd number of triangles/tiles. This affects whether the
last tile of the snake graph has either normal or reversed orientation.

o Whether the word W(G) of the snake graph ends in “R” or “U”. This affects which
versions (parts (a) or (b)) of Lemmas 5.3-5.5,5.8 must be used in the induction. This
will correspond to interchanging Dr(G) and Dr(G) in the recursion formulas.

o Whether the top-most fan center is on the left (as in Fig. 14 (a)) or the right. This
affects which edge (c or d in Fig. 14) crosses more diagonals.

Rather than go through the proof for all possible cases, we will make particular choices
for the factors listed above, so that we are in the case pictured in Fig. 14. Namely,
we assume that the top-most fan center (the vertex labeled j in Fig. 14) is on the
left (adjacent to edge a, and not b), and that the triangulation has an odd number of
triangles. This actually determines the third condition (whether W (G) ends with “R” or
“U”), which we now explain in the following lemma.

Lemma 6.1.

(a) Suppose a triangulated polygon is oriented as in Fig. 1/, so that the top-most fan
center (vertex j) is on the left side of the polygon. Then W(G) ends in “R” if and
only if there are an odd number of triangles (even number of tiles in G ), and W(Q)
ends in “U” if and only if there are an even number of triangles (odd number of tiles
in G).

(b) Suppose a triangulated polygon is oriented opposite of Fig. 1/, so that the top-most
fan center is on the right side of the polygon. Then W (G) ends in “R” if and only if
there are an even number of triangles (odd number of tiles in G), and W (G) ends in
“U”if and only if there are an odd number of triangles (even number of tiles in G ).

Proof. In the case of a fan triangulation (i.e. j is the only fan center), this is easy to see.
By the construction outlined in Definition 3.2, the assumption that the fan center j is
on the left implies that W(G) always begins with a “R”. The result then follows for the
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(a) (b)

Fig. 14. (a) Triangulation T" with n triangles. (b) Ptolemy relation in the quadrilateral ijkl.

case of a single fan segment. The argument for part (b) in a single fan is the same, since
W(G) will always begin with “U” in that case.

Now we will induct on the number of fan segments. Suppose parts (a) and (b) are
true for all triangulations with n — 1 fan segments. We will consider the case of n fan
segments. Let G’ be the smaller snake graph corresponding to the longest arc in the
polygon containing only the first n — 1 fan segments. Decompose W (G) as W(G" W,
where W’ is the remainder of W(G). Note that by the construction in Definition 3.2,
the first letter of W’ is the same as the last letter of W(G’). This means if W’ has odd
length, then W(G) and W(G’) end in the same letter, and if W’ has even length, then
W(G) and W(G’) end in the opposite letter.

Also note that if W’ has even length, then the parity of the numbers of tiles of G' and
G’ are the same, while if W’ has odd length, the parity of the numbers of tiles in G' and
G’ are opposite. Combining these observations with the induction assumption gives the
result. O

Theorem 6.2. Consider a triangulation as pictured in Fig. 1/ where f = (i,k) is the
longest arc, with corresponding snake graph G. In particular, we assume that a and b
are boundary edges, the top-most fan center j is on the left. When using it in a formula,
we will also use the letter f to denote the (super) A-length associated to this arc and its
expansion in terms of A-lengths and p-invariants of the initial triangulation. Then

1
(a)f:m Z wt(M).

MEeD(G)
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a a . a
0 0 ; (9:

d b d b dd ' b
o o /o !
c c T

ac bd Vabed o6

Fig. 15. The three double dimer covers on a single-tile snake graph.

b) If the polygon has an odd number of triangles,” then
( yg 9

1 e
Vi e = cross(f) \/; Z

wi(M)",
MeD(G)

where @ is the p-invariant corresponding to the triangle (i,7,k), d and e signify both
arcs and the expansions of their corresponding \-lengths, and x — x* is the involution
toggling 6, (the top-most triangle). If there are an even number of triangles, then the
sum is over D,.(G) instead of Dy(G).?

Proof. We will prove this by induction on the number of triangles.

Base case  The base case is a quadrilateral, in which case W(G) is the empty word.
Assume the quadrilateral is labeled as in Fig. 2. Then the snake graph G (corresponding
to the diagonal f) is just a single tile. It is easy to see that there are only three double
dimer covers on the square graph. These are pictured in Fig. 15, along with their weights.
There is only one diagonal in this triangulation (the edge e), and so cross(f) = e. We
see then that the weights of these three double dimer covers (after being divided by e)
are precisely the three terms in the super Ptolemy relation (Equation (1)). This confirms
part (a) in the base case.

Next, we consider part (b) for the base case. We are interested in what is called 6’
in the super Ptolemy relation (Equation (3)). Recall that D, (G) = Dr(G) U Dy,-(G). In
the case of a single tile, D, (G) consists of the second and third double dimer covers in
Fig. 15. In this case the x* involution corresponds to 8, and we have

(bd)* =bd 0 and (Vabed 06)* = Vabed o.

As noted above, cross(f) = e, and so the right-hand side of part (b) in the case of a
single tile is

m \/E Z Wt(M)*:\/%(bd9+\/@J).

MeD,.(G)

2 By Lemma 6.1, this implies that W (G) ends with “R”.
3 This is because, by Lemma 6.1, W (G) ends with “U” in this case.
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On the other hand, the left-hand side of part (b) (using the notations of Fig. 2) is

Vaf 0 = Y (\/—04—\/_00)

:%(dﬁ9+@0)

:\/%<bd9+\/Ma>.

This confirms the base case for part (b).

Induction Assumptions Now we assume the formulas in parts (a) and (b) for triangula-
tions with fewer than n triangles, for some n > 2.

As mentioned above, we assume the triangulation to be pictured as in Fig. 14, so that
the top-most fan center j is on the left. The argument for the other case (that the top-
most fan center is on the right) is similar: we would need to use part (b) of Lemma 6.1
rather than part (a), and the roles of the edges labeled ¢ and d in Fig. 14 would be
swapped.

We will also assume that the polygon has an odd number of triangles (equivalently,
the snake graph has an even number of tiles). By Lemma 6.1, this implies that the snake
graph ends with “R”. Because G has an even number of tiles, this means the last tile of
G has orientation opposite of the polygon. These assumptions imply that the end of the
snake graph looks as follows:

€2

On the other hand, if the triangulation has an even number of tiles (the snake graph has
an odd number of tiles), then the snake graph ends with “U” by Lemma 6.1, and the
end of the snake graph would instead look as follows:

€2 b

We will assume the former case for the remainder of the proof. The argument for the
latter case is similar: occurrences of Dg(G) and D,.(G) would need to be replaced by
Dr(G) and D:(G).
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Induction for part (b) First we prove part (b). Looking at Fig. 14, the super Ptolemy
relation gives the following expression for ¢:

@:%(\/@04—\/&0).

Multiplying by \/df gives

Wgo:\/g(\/@9+\/%a) :d\/geﬂ/@a.

Recall that D;(G) = Dr(G) U Dy-(G). We claim that the two terms on the right-hand

side correspond to Dr(G) and Dy, (G). Consider the first term, d \/g 0. The elements
b,e, 0 are all in the initial triangulation, but d might not be. Since d is a diagonal in a
smaller triangulation, we may use induction and say that

i=—t > wi(M),

cross(d) MeD@ M)

where k is the number of diagonals in the top fan segment.

Note that G(—%) is G with the last maximal “staircase” removed. Let eq, . . ., ex be the
last k internal diagonals of the last fan segment (with e; = e). These appear on the snake
graph in the positions indicated in Fig. 11 (Left). Then cross(f) = e;---ex - cross(d).
Substituting the expression for d into the expression we had before, we get that the first
term is

d\/g —a ek \/E S wt(M)g = . (;’“) Ve > wt(M)9.

MeD(G(=k)) MeD(G(=r))

Here we need to check that the multiplication puts 6 at the correct place in the
positive order. By the induction hypothesis, the u-invariants in the monomials wt(M)
are already written in the positive order with respect to T'. Depending on the orientation
of edge e, the p-invariant 6 can possibly be at either the beginning or end of the order
(Definition 2.4). Because of the construction in Definition 4.4, the monomial wt(M)
contains an even number of odd variables for any choice of M. Thus # commutes with
wt(M), and the resulting product can always be written in the correct order without
changing its sign.

Now we use Lemma 5.4 to conclude that

3 wt(M):ﬁ S wt(M).

MeD(G(=k))

Making this substitution gives
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b e
20— M)@6.
d e cross( \/; Z wi(M) 0

MeD7(G)

Note that since elements of Dr(G) cannot have a cycle around the last tile, wt(M) 0 =
wt(M)*. So we get that the first term is the contribution from Dz (G), as claimed.

Next, we examine the second term, \/@ 0. Recall that we assume c is the second-
longest edge (crosses all but the last diagonal), as in Fig. 14. Also let h be the boundary
side of the polygon adjacent to the endpoint of ¢, as in the figure. Note that Vedo is
precisely the left-hand side of the expression in part (b) for the triangle o (in the role
of ¢). Let z + z denote the toggle involution for #,,_;. Then by induction, since o is
in a smaller polygon, we will assume the formula from part (b). Since there is one less
triangle in this smaller polygon, the sum is over D, rather than D;. So we get

N \f 2T

MeD,(G(-D)
€2
= ,/ M)t
cross( h Z w(M),
MeD,(G(=1)

where the products are already in the correct positive order by induction. Finally, we use
Lemma 5.8 to substitute the summation over D,.(G(~")) for a summation over Dy, (G):

h
t(M)t =
> W)= B Ve
MeD,(G(=D) MeD, (G
Making this substitution cancels the /%2 factors, and gives the result:
acd
= t(M)*.
e 77 cross( \/; Z wi(M)
MeDy, (G)

Induction for part (a) Consider the Ptolemy relation Equation (1) on the quadrilateral
(i,4,k,1):

f= ac + b—d + = adeae. (4)

€ € (&

First we examine the first term in Equation (4): ac/e. Since ¢ is the longest arc in the
smaller polygon with one less triangle, we have by induction that

P S wi(M), (5)

cross(c) MeDEED)
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where G(=1) is the snake graph for ¢, which is obtained by removing the last tile from
G. Now multiply Equation (5) by a/e, noting that cross(f) = e - cross(c), to get

ac 1 Z wt(M)a.

e  cross(f) MeD@D)

By Lemma 5.3, double dimer covers in G(~1) are exactly those in D which have two
dimers on edge a of the last tile (see Fig. 11). Hence we have:

ac 1

T 3 wi(M). (6)

e  cross(f) MED(G)

Next we examine the term bd/e in Equation (4). Recall that by induction, d is given
by

i=—1 > wi(M). (7)

cross(d) MeDG)

Multiply Equation (7) by b/e to get

MeD(G(=R))
Since cross(f) = cross(d)eeses - - - ek, we have

bd 1
— = wt(M)besges - - - ey.
e  cross(f) MED%(—’“))

Now by Lemma 5.4, double dimer covers in D(G(~*)) are in bijection with those in
D7 (G) up to multiplying by the weight of edges in the first k tiles eeses---er (see
Fig. 11). Hence we have:

bd 1 > wi(M). (8)

e cross(f) M@

Note that in Equations (6) and (8), the products of p-invariants are taken under the
positive order by induction.

Lastly we examine the term @06’ in Equation (4). By the induction hypothesis of
part (b) we have

\/agcrosls(c)\/% > wt(M)h (9)

MeD,(G-1)
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Here G~ has an even number of tiles, therefore the sum is over D,.(G(~1) rather than
D, (G=Y). Right multiply Equation (9) by @8 we get

v abed 1 vab es
= . — T
o . / N E wt(M)'0

e cross(c) MeD(e-1)
1 abes
= —— 1\ t(M)T6.
CI‘OSS(f) h MED%(U)W ( )

Since we assumed that the direction of edge e is from left to right as depicted in
Fig. 14, 6 will appear at the end of the positive order of T, hence right-multiplication
of # will result in the correct order. In the other situation where the edge e goes from
right to left, the product in Equation (4) would be fo instead, giving the positive order
in that case.

Note that for M € D,.(G(~V), we have wt(M)"0 = (wt(M)")*. Hence applying the
bijection in Lemma 5.8, we get

v abed 1
o = wt(M). 10
e cross(f) MeDZtT(G) (M) (10)

Finally, combining Equations (6), (8) and (10) gives us

cross(f) MeD(G)
which completes the proof. O
7. Relationship between different combinatorial models for super A-lengths

In this section, we relate the combinatorial interpretation of super A-lengths given
by double dimer covers of snake graphs, as in Theorem 6.2 (a), to our previous com-
binatorial interpretation given in [16] by super T-paths. As a by-product of our efforts
towards this comparison, we introduce an additional family of combinatorial objects,
which we call twisted super T-paths, that yield the same elements of the super algebra
A=RzEY? | 0.

)

7.1. Twisted super T-paths

Recall from Section 4 of [16] that we distinguished certain vertices of a triangulation T
to be fan centers and consequently defined an auxiliary graph from this data. To match
our notation to that of [16], we fix a choice of arc (a, b), noting this is the arc whose super
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Fig. 16. The auxiliary graph as defined in [16].

A-length we wish to compute, i.e. A\gp. Then recall by restricting to a sub-triangulation
T(a,b) C T if necessary, we assume (a,b) is the longest arc in T'(a, b).

For a triangulation 7" and a pair of vertices a and b, the auxiliary graph is the graph
of the triangulation T with some additional vertices and edges.

1. For each face of the triangulation 7', we place an internal vertex, which lies on the
arc (a,b). We denote the internal vertices using 61, --- , 6,41, such that 6; is closer
to a than 6; if and only if i < j.

2. For each face of T, we add an edge o; := (6;, ¢;) connecting the internal vertex 6; to
the center of the fan segment which contains 6;. We denote by o the set of all such
edges.

3. For each 60; and 0; with 7 < j, we add an edge connecting 6; and ;. We denote the
collection of these edges as 7 = {7;; : i < j}. For simplicity the T-edges are drawn to
be overlapping.

See Fig. 16 for an example. Note that we continue to follow the convention of Def-
inition 3.2 and assume that the longest edge (a,b) traverses the triangulation 7' from
bottom-to-top.

We now define a twisted auxiliary graph F‘}’b that we use to define twisted super
T-paths. For our alternative twisted definition we introduce new o-edges by using the
complements of the fan centers. More precisely, given a triangulation T" admitting longest
edge (a,b) as above, for every triangle we associate two o-edges (rather than one) and
note that one of these two o-edges is closer to the starting vertex a while the other is
closer to the ending vertex b. We color the former in thick blue and call it a oc4-edge
and color the latter in and call it a oP-edge. For each 6; and 0; with ¢ < j, I‘“T’b
contains the edge 7;; : ¢ < j just as before. See Fig. 17 for an example.

Just as super T-paths follow edges of the auxiliary graph, as defined in [16], we will
define twisted super T-paths to follow edges of this newly defined twisted auxiliary graph
reb.

We define twisted super T-paths from a to b axiomatically as follows.
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Fig. 17. The twisted auxiliary graph FaT’bA

Definition 7.1. A twisted super T-path t from a to b is a sequence

t = (ap, a1, ,apqlti, ta, s tyw)
such that
4= ag, a1, Q) = b are vertices on Fi}’b.

For each 1 < i < {(t), t; is an edge in FaT’b connecting a;_1 and a;.

)
)
T3) t; £1t; if i # .
)
)

~ e~
—
N

£(t) is odd.

t; crosses (a,b) if ¢ is even. The T-edges are considered to cross (a, b), and any step
along a 7-edge must end further from endpoint a and closer to endpoint b.

(T6’) t; € o only if 7 is odd, ¢; € 7 only if ¢ is even.

(T7) If ¢ < j and both t; and ¢; cross the arc (a,b), then the intersection ¢; N (a,b) is
closer to the vertex a than the intersection ¢; N (a,b).

We define 7, to be the set of twisted super T-paths from a to b.

Remark 7.2. This is a slight variant of Definition 4.2 of [16] with the only difference
being that we replaced the previous axioms

(T5) t; crosses (a,b) if 7 is even. The o-edges are considered to cross (a,b).
(T6) t; € o only if i is even, t; € T only if 7 is odd,

with the axioms (T5’) and (T6’), thereby switching the parity of o-steps and 7-steps.

We also define new weights for such twisted super T-paths. (Note that the weights of
o-edges differ from Definition 4.8 of [16] since o-edges are now assumed to be odd steps
rather than even steps.)

Definition 7.3. Let ¢t € T4, be a twisted super T-path which uses edges t1,ts,... in the
twisted auxiliary graph FaT’b. We will assign to each edge t; a twisted weight, which will
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: +3 +3 ;
be an element in the super algebra Rlz) ?,--- , 25,2 5 | 01, ,0p,41] (where 0;’s are the

odd generators) as follows. For the parity of edges t; € o or 7, we recall axiom (T6’) of
Definition 7.1.

x; if t; € T, with A-length z;, and 7 is odd
acj_l if t; € T, with A-length z;, and i is even
twt(t;) == < /x;—fl 0s if t; € o0 and the face containing ¢; is as pictured below
(¢ must be odd)
1 if ¢; € 7 (¢ must be even)
i
Tk Y
0s
Ly

Here, 0, is the p-invariant associated to the face containing t;. Finally, we define the
(twisted) weight of a twisted super T-path to be the product of the (twisted) weights of
its edges

twt(t) = [ ] twt(t:)

t; €t

where the product of p-invariants is taken under the positive order.
We use this to arrive at an analogue of Theorem 4.9 of [16].

Theorem 7.4. Under the default orientation, the A-length of (a,b) is given by

Aap = Y twi(t),

t€7-a,b

where we use twisted super T-paths on the twisted auziliary graph, and with twisted
weights of each of the steps.

Before proving this theorem, we construct a weight-preserving bijection between super
T-paths, as defined in [16], and twisted super T-paths, as introduced in Definition 7.1.
For this bijection, it will also be useful to define twisted super steps in analogy to super
steps in [16].

Definition 7.5. A triple of steps along a twisted super T-path which consist of a o-edge,
followed by a 7-edge, and then a second o-edge will be called a twisted super step.
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Table 1
Weights of pieces of a super T-path (Left) or
twisted super T-path (Right), respectively.

ORIGINAL TWISTED
1 b
() Nz =2
be b c
b
(4) b/ L6, Py,
be c
1
(i) b :
Yyz
(@) oy e
yz z

(oY
< |
2

Lemma 7.6. Given a triangulation T of a polygon such that (a,b) is its unique longest arc,
there is a weight-preserving bijection ¢ that maps every super T-patht = (ty,t2,... tyy))

/ /

to a twisted super T-path 1(t) = (81,15, ...,t)y) through the auziliary graph F?p’b.
Furthermore, for each super T-path t, the wez;ght of t, i.e. wt(t) = Hf(:ti wit(t;), and the
twisted weight of ¥(t) =1/, i.e. twt(t') = Hé(t )

iy twt(t;), coincide.

Proof. We construct a bijection between super T-paths and twisted super T-paths via
the following:

Recall that a non-ordinary super T-path, as defined in [16], involves super steps, which
consists of the three-step combination of o;7;j0; where o; is the incoming edge to the
face center corresponding to 8;, 7;; is the teleportation between the face centers for 6;
and §;, and o; is the outgoing edge to the face center corresponding to ;. Further, we
assume that o; and o; are even steps while 7;; is an odd step.

In our bijection, we either replace two out of three steps of a super step with either
a single step or a three step combination. The consequence of this map switches the
parity of o-steps as needed while adding (or deleting) an ordinary step. The parity of
the 7;; steps is similarly switched from odd to even. These switches are also local in the
sense that the remainder of the super T-paths may be left alone. Locally, there are four
possible cases, and they are each illustrated in Fig. 18. Traversing the twisted auxiliary
graph F“T’b from bottom-to-top, in cases (¢) and (%), we illustrate the two ways a super
T-path (resp. super T-path) may enter the triangle with face center 6; followed by a
Ti;-step. (Blue or cyan steps correspond to odd-indexed steps while red steps correspond
to even-indexed steps.) Cases (éii) and (iv) illustrate the analogous options for exiting
the triangle with face center 6; proceeding after a 7;;-step.

Furthermore, comparing weights to twisted weights, this transformation is weight-
preserving. We verify this case-by-case following Fig. 18. In particular, we see the weights
of the o-step (or corresponding two steps) on the left-hand-side (respectively right-hand-
side) are as in Table 1.

Comparing these expressions, we see that these weights on the left- and right-hand
sides indeed agree. Since 7T-steps are unweighted, notice that changing the parity of the
T-step does not affect the weight of the super or twisted super T-path. We thus first
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(#)

(iii)

(iv)

Fig. 18. Illustration of the bijection between super T-paths and twisted super T-paths; here the vertical
steps through edge ¢ (or respectively z) indicate the beginning (resp. ending) of a 7-step, i.e. teleportation.

apply this transformation to a o-step in the triangle corresponding to the p-invariant
0;, as illustrated in case (¢) or (é¢). Then second, we switch the parity of the 7-step
7;; without changing the weight. Finally, third, we apply the same transformation to a
o-step in the triangle corresponding to the p-invariant 6, as illustrated in case (47) or
(év). Thus we have replaced a super step with a twisted super step, or vice-versa.

These transformations can be applied either from left-to-right (original to twisted
super T-paths) or instead from right-to-left, thus providing the inverse map for this
bijection. O
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As a consequence of this bijection, we obtain important constraints on o-steps of a
twisted super T-paths that go beyond the axioms listed above.

Corollary 7.7. In addition to axioms (T1), (T2), (T3), (T4), (T5°), (T6’), and (T7), we
can deduce that in any twisted super T-path, we have the following two properties:

(i) we only allow edges moving from a boundary vertex to a face center along a o -edge
or allow edges moving from a face center to a boundary vertex along a

(%) any T-edge, e.g. T;; between face center 6; and face center 6;, must be immediately
preceded by the edge of* and immediately followed by the edge O'JB.

As a consequence of this corollary, twisted super steps must specifically have the form
of the edge 0;-4 followed by 7;; and then ajB . Thus we may be more precise than in
Definition 7.5.

Proof of Theorem 7.4. This is now an immediate consequence of combining Lemma 7.6
and Theorem 4.9 of [16]. O

7.2. Bijection between twisted super T-paths and double dimer covers

In this subsection we use the new combinatorial objects presented in the previous
subsection to give a weight-preserving bijection between double dimer covers on snake
graphs and super T-paths. In light of the bijection from Lemma 7.6, it is sufficient to
provide a weight-preserving bijection between twisted super T-paths and double dimer
covers.

Theorem 7.8. Given the hypotheses of Lemma 7.0, i.e. a triangulation T with longest arc
(a,b), we build the corresponding snake graph G following the construction in Defini-
tion 3.2. Then we have a weight-preserving bijection between twisted super T-paths and
double dimer covers of G.

Proof. As indicated in Corollary 7.7, every teleportation step, i.e. T-edge, of a twisted
super T-path is preceded by a o4-edge and followed by a oP-edge. We thus are able
to decompose any twisted super T-path into building blocks of three different possible

types:

() Odd-indexed edges t; that travel along either a boundary edge or internal diagonal
of triangulation T. We will refer to such edges as blue steps.
(i) Even indexed edges t; that must travel along an internal diagonal of triangulation

T. We will refer to such edges as red steps.
(iii) Twisted super steps, which are triples (07*,7;;,07) such that o;* (resp. of
entering (resp. exiting) o-step, and 7;; is a teleportation step between the two asso-

) is an
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ciated face centers 0; and 6;. By Axiom (T6’) in Definition 7.1, the steps o' and Uf
are odd-indexed while 7;; is even-indexed.

We map twisted super T-paths to double dimer covers in G, the snake graph associated
to arc v and triangulation T, via these building blocks. First off, we map twisted super
steps to pieces in double dimer covers that correspond to a cycle around a connected
sub-snake graph. More precisely, consider a twisted super step (af‘,nj,af ) such that
7i; teleports from the face center associated to 6; to the face center associated to 0;.
Then there is a unique tile of the snake graph G that contains a triangle in the lower left
corner labeled by 6; and a unique tile of G that contains a triangle in the upper right
corner labeled by ;. Further, this second tile is to the northeast of the first tile since
the jth face center is closer to the end of v than the ith face center, due to axiom (T5’).
The cycle circumscribes the connected sub-snake graph beginning and ending at these
two tiles.

Since a twisted super step must begin and end with an odd-indexed step, a twisted
super T-path cannot contain two twisted super steps immediately following one another.
Instead, unless they lie at the beginning or end of the twisted super T-path, they must
be immediately preceded and followed by a red edge. Excluding twisted super steps and
these accompanying red edges, the remaining connected pieces of a twisted super T-path
all consist entirely of blue and red edges, and are each of odd-length. Due to the axioms
of Definition 7.1, these connected pieces are ordinary T-paths of a subtriangulation S of
T with longest diagonal . Tt thus suffices to apply the bijection from [6] to obtain dimer
covers of sub-snake graphs associated to such ordinary T-paths on subtriangulation S
and longest diagonal ~'. If 4/ starts on the bottom of the triangle with face center 6; and
ends at the top of the triangle with face center ¢;, we get a dimer cover on the connected
sub-snake graph between the tile with lower-left corner 6; and upper-right corner 6;. We
duplicate each of the edges in this dimer cover to obtain a double dimer cover.

Lastly, we note that the red edges immediately preceding or following a twisted super
step correspond to blank tiles in the snake graph G such that if the red edge is on the
diagonal 73, then the blank tile in G is the unique one with diagonal zy.

Every diagonal of T is either crossed by one of these ordinary T-paths, by one of
the red edges preceding or following a twisted super step, or by the 7-step as part of a
twisted super step. Hence every tile of G is respectively either covered by doubled edges,
a blank tile, or a cycle of single edges. The inverse map combines the inverse map in
[6] to get ordinary T-paths from double dimer covers on a connected sub-snake graph
consisting exclusively of doubled edges and sending cycles to the unique twisted super
step defined by the face centers associated to the beginning and ending tiles.

With this combinatorial bijection defined, we wish to also verify that the weights of
twisted super T-paths agree with weights of the associated double dimer covers. Again,
we utilize the decomposition of a twisted super T-path into blue edges, red edges and
twisted super steps. The weights of blue edges correspond to the weights of the associated
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dimer in G, using the fact that we map blue edges in a twisted super T-path to a doubled-
edge in G but then weight it by a square-root.

Similarly, the weights of red edges do not contribute anything to the numerator but
either correspond to a piece of an ordinary T-path or to a blank tile associated to the
edge preceding or following a twisted super step. Either way, the weights of such red
edges agree with the contributions to the weight of the double dimer cover given by the
crossing monomial in the denominator.

Finally, a twisted super step consists of a o{-step, an unweighted 7-step, and a Uf-

step. As illustrated in the right-hand-side of Fig. 18, in cases (i) and (iv), the weight of
the ofi-edge is \/%91‘ while the weight of the UJB—edge is \/%T’Gj.

Letting v4p denote the arc starting from the source of the of—edge and ending at
the target of the Uf-edge, let G,,, be the corresponding snake graph, as defined in
Definition 3.2. By construction, a and b are the weights of the SW edges of the first tile
in G,,, while z and y are the weights of the NE edges of the last tile.

Following Theorem 3.4, we consider the denominator cross(y4p) which is the product

of the weights of all diagonals in G However, the snake graph and its edge-weighting

YAB*
is also constructed so that the following is true:

(*) For every® diagonal edge in G.,,,, the N or E edge of the previous tile has the
same weight, as does the S or W edge of succeeding tile. In both cases, we pick the one
edge out of the two which is a boundary (as opposed to internal) edge of the snake graph.

As a consequence, the product of the square root of edge weights of all boundary

ab - cross(yagp)?

o - 2y where ¢ (respectively z) denotes the

edges of G, , exactly equals
diagonal of the first (resp. last) tile of G,,,. We include 6; and 6, in this product,
corresponding to the beginning and end of the twisted super step; or the first and last
triangles of the corresponding snake graph.

In conclusion, the weight contributed to a twisted super T-path by a twisted super
step consisting of (o7, 75,07
cover via a cycle of single edges around the associated sub-snake graph. O

) agrees with the weight contributed to a double dimer

8. Lattice paths and dual snake graphs
8.1. Duality of snake graphs

In this section, we describe an involution on the set of all snake graphs which was
described in [20], and also discussed extensively in [10]. Under this involution, dimer
covers are taken to lattice paths. By a lattice path on a snake graph, we mean a path
from the bottom-left corner of the first tile to the top-right corner of the last tile, such
that every step goes either right or up.

4 Exluding the diagonal edges corresponding to the first and last tiles of G

YAB*
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Fig. 19. Relation between tile labeling in G and G.

Definition 8.1. Define an involution x ++ T on the set {R, U} given by R = U and U = R.

Definition 8.2. Define an involution w + w on the set of words in the alphabet
{R,U} as follows. If w = wiwawsz---wa, O W = wWjwWeWs- - Wapt+1, then define
W = WiWaWs - - - Way OF WiW2W3 - - - WanpWan+1- 1N other words, the involution toggles
the odd-numbered letters.

Definition 8.3. The involution on snake graphs is defined by applying the involution to
the word W (G). In other words, for a snake graph G, we define the dual snake graph G

so that W(G) = W(G).

If the snake graph G is labeled, then G inherets a labeling in the following way. Recall
the tiles T; of G alternate in orientation, so that T5x41 has usual orientation, and 7oy
has reversed orientation. For the dual snake graph, if 7 is odd, then the bottom and left
sides of T'; are labeled the same as T}, but the top and right labels are swapped. If i is
even, then the top and right sides of T; are the same as T}, and the bottom and left are
swapped. This is illustrated in Fig. 19. An example of two dual snake graphs is pictured
in Fig. 20.

There is a bijection, described in [20] and [10], between perfect matchings (dimer
covers) of G and lattice paths in G going from the bottom left to the top right corner.
With the labeling convention described above for G, this bijection is weight-preserving,
where the weight of a lattice path is the product of the weights of the edges in the path.
An example of this correspondence is pictured in Fig. 21.

8.2. Double lattice paths

Recall that a double dimer cover is a multiset of edges such that each vertex is incident
to exactly two edges from the multiset. Another way of describing it is as follows. Let
C(G) be the set of dimer covers of a snake graph G. There is a natural map 7: C(G) x
C(G) — D(G). For each pair of dimer covers, m maps the pair to the corresponding
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W(G) = RRR W(G) = URU
Fig. 20. Two dual snake graphs.
g
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Fig. 21. Correspondence between dimer covers of G and lattice paths in G.

multiset. This map is not in general injective, and different pairs can result in the same
double dimer cover. Despite this non-uniqueness, it is often convenient to think of double
dimer covers as simply pairs of dimer covers.

In the previous section, we described a bijection which takes dimer covers on G to
lattice paths on G. Let £(G) be the set of lattice paths on G, and let f: C(G) — £(G)

be this bijection. We then naturally get a map f x f: C(G) x C(G) — ¢(G) x £(G). As
before, we have a map 7’ from £(G) x £(G) to the set of multisets of edges on G.

Definition 8.4. Given a snake graph G, define the set L(G) to be the image of the map
7', Its elements are called double lattice paths on G.

In other words, we want to think of a double lattice path as the superposition of
two lattice paths (despite the fact that, as with double dimer covers, this is not always
unique).

As with double dimer covers, we draw edges of a lattice path as wavy orange lines,
where a solid blue line indicates two edges superimposed.

The following is a convenient way of specifying a double lattice path.
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Definition 8.5. Given a snake graph G, consider all ways to label each tile with one of
the numbers 0, 1, or 2. Let a; be the label of tile T;. Let X (G) be the subset of labellings
such that:

o If T;4q is to the right of T;, then a; < a;yq.
o If T;44 is above T}, then a; > a;y1.

Theorem 8.6. There is a bijection between X (G) and L(G).

Proof. Given a double lattice path, choose a pre-image of #’ in £(G) x £(G). In other
words, choose a pair of lattice paths which represents the double lattice path. Label each
tile according to how many of the two lattice paths go above this tile. Because the lattice
paths can only go up and right, this ensures the inequalities, so this gives an element of
X (G). Conversely, given a choice of labels 0, 1, or 2 for each tile, the double lattice path
can uniquely be reconstructed. O

Definition 8.7. The weight of a double lattice path P is the product of the square roots
of all edge labels in P, times the product of odd variables corresponding to the beginning
and end of each cycle in P. The product of odd variables is taken in the positive order.

The following is immediate from the weight-preserving bijection mentioned in the
previous section.

Theorem 8.8. Let G be the snake graph of a diagonal v = (i,7) in a triangulated polygon.
Then

1
= > wi(P).
ij cross(i, j) wi(P)

PeL(G)

9. Order ideals and distributive lattices

It was shown in [21] that the set of dimer covers of a planar graph forms a distributive
lattice, whose cover relations are local moves called twists. By Birkhoff’s theorem, every
distributive lattice is isomorphic to the lattice of order ideals of some poset. For a poset
P, let J(P) denote the lattice of order ideals in P (ordered by inclusion). For the example
of the lattice of dimer covers of a snake graph G, a description of this poset was given
n [22] (and also studied in [10] and [23]).

Using the bijection described earlier between dimer covers of G and lattice paths of
G, it will be easier to use the latter description. We will describe a bijection between
lattice paths of G and lower order ideals of a certain poset P(G). The Hasse diagram
of P(G) is constructed as follows. Put a vertex inside each tile of G, and connect two

vertices with an edge (a cover relation in P(G)) if the tiles share a side. Finally, rotate

this picture clockwise 45° to get the Hasse diagram of P(G). This is pictured in Fig. 22.
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Fig. 22. The Hasse diagram of the poset P(G).

Fig. 23. A lattice path in G and its corresponding order ideal in P(G).

We define an order relation on the set of lattice paths in G as follows. The minimal
lattice path is the one which follows the bottom-right edges of the boundary of G, and
the maximal path is the one which uses the top-left edges of the boundary. If a lattice
path uses both the bottom and right edge of some tile, then this path is covered by the
path which swaps those for the top and left edges of the same tile.

The bijection between lattice paths and order ideals is as follows. As described above,
the elements of P(G) correspond to the tiles of G. For each lattice path, there is some
subset of tiles which are underneath the path. The corresponding subset of vertices of
the Hasse diagram of P(G) is an order ideal. The minimal lattice path has no tiles
underneath it, and so corresponds to the empty set. An example is pictured in Fig. 23.

We can extend this idea to the current situation of double dimer covers and double

lattice paths. Let P(G) be the product of P(G) with a chain of length 2 (with elements
0 < 1). The following is the double dimer analogue of the situation described above.

Theorem 9.1. There is a poset isomorphism L(G) = J(P(G)), between the set of double
lattice paths in G and the lattice of lower order ideals in P(G).

Proof. Since P(G) = P(G) x {0,1}, we will write elements as (z,0) or (z,1), where
x € P(G).

We already have a bijection between L(G) and X(G). So we will give a bijection
between X (G) and J(P(G)). The tiles in the snake graph correspond to the elements of
the poset P(G). Let p; be the element of the poset corresponding to the tile T;. Given
a labeling from X (G), we will construct an order ideal. If T; is labeled 0, then neither
(pi, 0) nor (p;, 1) are in the order ideal. If T; is labeled 1, then (p;, 0) is in the order ideal,
but (p;,1) is not. If T; is labeled 2, then both (p;,0) and (p;,1) are in the order ideal.
The inequalities defining X (G) guarantee that this is an order ideal. The inverse to this
map is obvious, and it is clearly a bijection.
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Fig. 24. Poset isomorphism between L(G) and J(P(G)).

To see that this bijection is order-preserving, note that the cover relations in terms
of X(@G) are simply changing the label of a tile by increasing its value by 1. Under the
bijection described above, this corresponds to adding a single element (either (p;,0) or
(pi, 1)) to the order ideal, which is a cover relation in the lattice of order ideals. O

Example 9.2. An example of the poset isomorphism from Theorem 9.1 is shown in Fig. 24.

10. Examples

Example 10.1. Consider the triangulated pentagon, with edges oriented as illustrated.

acry + abd bexo
T1x2 r1x2 T1x2

Ao =

+2ede 9,9, + 24bed 6,9, + vabec §, g,

Using a snake graph consisting of two tiles, and edge labels as below, we obtain
the following double dimer interpretations corresponding to the six terms in the super
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lambda length A5 5. Note that the leftmost tile has diagonal £; = A;3 while the rightmost

tile has diagonal x5 = A14.

14 45 14 45 14 45
12 34 15 12 34 15 12 34 15
23 13 23 13 23 13
acxy abd bexs
T1T2 Tr1T2 T1T2
14 45 14 45 14 45
. A U -
) 0o ) 03 ) 02 3
12¢ 34 15 12 (34 15 12 34 15
L0 6, D6, 02
'A' 'A' 'A'
23 13 23 13 23 13
by adexs 06 av/bedxq 00 Vabcexixo 0.6
T1x2 2 T1T2 3 T1x2 173

Next, we picture the same six terms as double lattice paths on the dual snake graph.

45 45 45
13 15 13 15 13 15
34 34 34
12 14 12 14 12 14
23 23 23
acxry abd bexs
T1T2 T1T2 T1T2

45

45
P

13 15 131’ 631’15
34 02\{
N’X

g N\, g 2.,

‘#91 ) ‘)91 )

23 23

D010, L 0y Seeen .0,

Finally, we illustrate the three non-ordinary twisted super T-paths and their weights:
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d. 1 b
[ee 1. ]2 1y, LY LR LV /2 1. /% g0,
X1 xT1 X2 T ) T2 xy X2

Example 10.2. Consider the following triangulation of a hexagon. Its snake graph and
dual snake graph are also pictured. We remind the reader of our convention of going
bottom-to-top (i.e. the first tile of the snake graph corresponds the bottom triangles in
the hexagon).

g T
H! 94
T x T
8 9 2 T7 3 T2
2 [ 04
0 x4 03
Ty T T3 et
0y 8
0, 02 03 r T
T5 T7 Tg o 8
A

Z5

The following figures show, for each non-ordinary T-path (i.e. those that include super
steps), a comparison of all the combinatorial models discussed in the present paper: super
T-paths, twisted super T-paths, double dimer covers, and lattice paths.
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11. Super Fibonacci numbers from annuli and once-punctured tori

In this section, we generalize our formulas to two special classes of surfaces, the annuli
and the once-punctured tori, which gives rise to a sequence of Grassmann numbers which
we call super Fibonacci numbers.

We first look at the decorated super-Teichmiiller space of a once punctured torus,
which has been systematically studied in [24].° An ideal triangulation A of a once punc-
tured torus creates two different triangles on the surface. This can be seen by presenting
a torus by a piece of its universal cover — a rectangle, and letting the four ‘vertices’ of
the rectangle be the puncture. Then an ideal triangulation decomposes the surface into
two triangles (one white, the other gray), using three arcs:

The quadrilaterals where a flip is taking place can be realized by taking a = ¢ and
b = d in Fig. 2. We also choose a spin structure such that the edges around both triangles
are oriented cyclically as in Fig. 25. The super Ptolemy transformation in Equations (1)
to (3) now takes the following form (see Fig. 25 for the edge labels).

ef =a®+b*>+abaob (11)
bo — ab b0 + ao
"= TR and ¢ = TR (12)

Notice that the ideal arcs surrounding both 6 and 6’ are counterclockwise, and those
surrounding both ¢ and ¢’ are clockwise. In other words, we obtain the same oriented

5 The third author also studied this situation in an undergraduate research project, which motivates much
of the current section.
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Fig. 26. Effect of flipping edges a and b.

triangulation after the flip as before. This means flipping any of the three arcs will always
result in the same relations (11) and (12), and will always result in the same oriented
triangulation. Fig. 26 illustrates the result of flipping the other two edges (a and b).

Since any sequence of flips results in the same oriented triangulation, then for any
edge, o’ will always be on the right and 6’ on the left. Since 0 = ¢’#’, the Ptolemy
relation will always take the form

ef =a*+b*+abe (13)

where € = 06. We can therefore forget the original p-invariants and just use the variable
E.

In the classical (non-super) case, applying the Ptolemy transformation on two of the
edges alternately gives rises to odd-indexed Fibonacci numbers. In the same spirit, start-
ing with one of the four oriented triangulations of the once punctured torus illustrated
in Fig. 26, setting a = Z1, b = Z5, e = 1, and flipping the edges a and b alternatively
will give us a sequence of elements of the super algebra, {Z,,} satisfying the recurrence
relation:

ZnZim—o =22 1\ + Zpp_16+1 (14)

m
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Fig. 27. Triangulation of a marked annulus and its universal cover.

for m > 3.

One can derive equation (14) in an alternative way, using the decorated super-
Teichmdiller space of an annulus. Consider an annulus with two marked points, one on
each boundary component, with orientation as depicted in Fig. 27. Similar to the torus
case, if we set the A-lengths of the boundary arcs to be 1 and set a = Z; and b = Zs,
then flipping the edges a and b alternately gives the same sequence {Z,,} satisfying the
same recurrence equation (14).

Similar to the case of the once-punctured torus, the relative spin structure is preserved
in both orders: either flipping a then b or flipping b first. However, the two orders work in
a slightly different way. Flipping a first would only alter the boundary orientations and
leave the interior ones unchanged, while flipping b first does change the orientations on
the interior edges. In particular, see how the spin structure is affected by flips in Figs. 28
and 29.

For the remainder of this section, we will give an explicit solution of recurrence (14)
in the special case that Z; = a =1 and Zy = b = 1. The solution is given by the double
dimer partition functions of snake graphs as discussed earlier. Although we have only
defined snake graphs for arcs in a polygon, the construction of Definition 3.2 can easily
be generalized to arcs in surfaces with nontrivial topology as in [6]. The arcs obtained
from the flip sequence described above yield snake graphs with words W (G) = R?>"*! =
RR--- R. In other words, the resulting snake graphs are horizontal rows of tiles (with
an odd number of tiles). Since the arcs cross the same triangles multiple times, the
p-invariants in the corners of the tiles will repeat. With this construction in mind, we
define the following.
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Fig. 28. Flipping a (Top) then b (Bottom) of a marked annulus, labeled as above, only changes orientation
on the boundaries.

Fig. 29. On the other hand, flipping b (Top) then a (Bottom) of a marked annulus, labeled as above, changes
orientation of internal arcs.

Definition 11.1. Let G, be the snake graph with m tiles in a horizontal row, where all
edges have weight 1, and all tiles have the same two p-invariants o and 6:
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Remark 11.2. This snake graph G,, from Definition 11.1 can also be obtained from a
triangulated polygon by specializing some of the variables. Specifically, take a polygon
with a “zig-zag” triangulation (see e.g. Example 10.2 for the m = 3 case). Then the
construction from Definition 3.2 will give a snake graph with the word W(G) = RR--- R,
and the snake graph will be a horizontal row of boxes. Finally, setting 8 =03 = --- =
02,1 and O3 = 04 = - - - = O4,, will give the correct p-invariants.

Let z,, be the number of double dimer covers of G,, which do not include cycles.
These are in bijection with ordinary (i.e. not double) dimer covers. Hence the sequence
of z,,,’s coincide with every-other Fibonacci number (see e.g. Section 2 of [25]). More
precisely, if we index the Fibonacci numbers F,, by Fy = Fo =1 and F,, = Fj,_1 + Fj,_2
for n > 3, then z,, = F,,+2 for m > 1. Let y,, be the number of double dimer covers of
G, which include a single cycle of odd length. Finally, we define p,,, = ., + yme, where
e = 0. We will denote the odd-indexed p,,’s by z,, = p2,—5 and denote the even-indexed
Pm’s by wy, = pan—4. See Remark 11.18 below.

Remark 11.3. Note that y,, is not defined as the total number of double dimer covers
containing a cycle, but only those with a single cycle of odd length. Because every tile
of G,, contains the same p-invariants o and 6, a cycle of even length would contain a
factor o2 or 62, and so such a double dimer cover would have weight zero. Similarly, a
double dimer cover with more than one cycle would also contain multiple factors of o6.
So indeed p,, = T + Yme is the double dimer partition function for G,,.

Recall that the super A-lengths in an annulus (for the flip sequence described earlier)
are denoted by the Z,,’s.

Proposition 11.4. The super algebra elements Z,,’s defined above agree with the zy’s,
which, as explained in Remark 11.3, are the double dimer partition functions for Gom_s.
Here, Gop—5 is the snake graph with p-invariants as defined in Definition 11.1.

We will prove this proposition in steps using a sequence of lemmas.
Lemma 11.5. If m is even, then
Pm =DPm—1+DPm—-2+ (Pm—2+Pm-a+- - +p2+1)e
If m is odd, then
Pm = Pm—1+Pm—2+ Pm—2+Pm—a+---+p1+1)c.
Proof. This is easily seen by the fact that D(G,,) = Dr(G) U D7(Gyn) U Dy (G-

The fact that the terms in p,,_; correspond to the elements of Dgr(G,,) follows from
Lemma 5.3. The fact that the terms in p,,_o correspond to the elements of Dr(G,,)
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follows from Lemma 5.4. Finally, consider the elements of Dy.(G,,). They must have a
cycle which surrounds the last tile. As mentioned earlier, there can only be one cycle,
which must have odd length. The weight contributed by the cycle is €. If the cycle
surrounds only one tile, then there can by any double dimer cover from D(G,,,—2) on the
remaining part of the snake graph. If the cycle surrounds three tiles, the remaining part
can have any double dimer cover from D(G,,—4), etc. When m is odd, these contributions
continue until the case of a cycle surrounding all of G. On the other hand, if m is even,
the last contribution is the case of a cycle of surrounding (m — 1) tiles and the remaining
part must be a double dimer on the leftmost vertical edge of G. In either case, there is
exactly one such way to complete the double dimer cover beyond the cycle of length m
(respectively (m —1)). O

Lemma 11.6. If m is odd, then

Pm = Pm—1 + Pm—2 + Pm—16 = (1 + €)pm—1 + Pm—2.

If m is even, then

Pm = Pm—-1+Pm—2~+ Pm-1—1)e =1 +€)pm-1+Pm—2 —¢.

Proof. In light of the previous lemma, we only need to check that (py,—2 + pm—a+- -+
p2+1)e is equal to py,—1€ (resp. (Pm—2+Pm—a+---+p1+1)eis equal to (p,,—1 —1)e) when
m is odd (resp. even). By multiplying by ¢, all terms in either of these identities already
containing an ¢ vanish. Hence, we only need to check that x,,,_o + g+ -+ 22+ 1
is equal to Zp,—1 (r€sp. Tpm—2 + Tym—a + -+ + 1 + 1 is equal to z,,,—1 — 1. As observed
above, the x,,’s coincide with the Fibonacci numbers. We thus prove our desired result
via induction using the Fibonacci recurrence.

Consider the base case when m = 3. We have 1 = F3 = 2, hence z1+1 = 3 = Fy = xo.
Inductively for m odd, Z—o+(Tm—a+Tm—6+: - +x1+1) = Tpp—o+Tm-3 = Fp+Fp_1 =
Fry1=Tm1-

For the m even case, we consider the base case when m = 4. We have x5 = F; = 3,
hence zo + 1 =4 = F5 — 1 = a3 — 1. Inductively for m even, z,,—2 + (Tym—a + Tm—¢ +
"'+CL‘2+1) :l‘m_2+(xm_3—1) :Fm—‘r(Fm_l —1) =Fu+1—1=2,-1—-1. O

Lemma 11.7. The z,’s satisfy the recurrence
Zn = (34 26)zp—1 — 2n—2 — €.

Note that in the absence of the &’s, this is the usual linear recurrence satisfied by
every-other Fibonacci number.

Proof. Written in terms of p’s, this becomes

P2n—s5 = (3 + 26)p2n—7 — Pan—9 — €.
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First, since 2n — 5 is odd, we have
P2an—5 = (1 +€)p2n—6 + P2n—1-
Since 2n — 6 is even, we have
P2n—6 = (1 +€)pan—7 + pan—s — €.
Substituting this in the previous equation yields

pon—s5 = (L+€)?pan—7+ (1 + &)pan—s — (1 + €)e + pan_r7
= (2 + 25)p2n—7 + (1 + €)p2n—8 —E&.

Finally, we note that since 2n — 7 is odd, we have the relation
(1 +&)p2n—s = P2n—7 — P2n—9-
Substituting this in the equation above gives the desired result. 0O
Lemma 11.8. The z,’s satisfy the relation
ZnZn—2 = 272171 +z,_16 + 1.

Proof. We follow the methodology used to prove Proposition 1 of [25] in the ordinary
(non-super) case. Using Lemma 11.7, we can rewrite the product z,z,_2 as

ZnZn—2 = ((3 +26)2p—1 — Zn—2 — 6) Zn—2
=(34+28)zp-12n-2 — <z7212 + EZnQ).
By induction, we may rewrite

2
Zp—1%n—3 = Zp_9 + E€Zn—2 + 1,

and hence
Znipn—2 = (34 2€)2n_12n—2 — (Zn—lzn—?) - 1)
= Zn_1 ((3 +2€)2n—2 — zns) + 1.

We use Lemma 11.7 again, noting that z,_1 = (3+2¢)z,—2 — 2,—3 — €, and conclude
that
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Znin—2 = Zn—1 <Zn—1 + 5) +1
.2
=2z, 1 +ezp_1+1,
as desired. O

Proof of Proposition 11.4. Comparing Equation (14) and Lemma 11.8, we see that the
zpn’s satisfy the same recurrence as the A-lengths. We need only verify that they have
the same initial conditions. We observe that z3 and z4 are defined combinatorially as
the double dimer partition functions for G; and G3, respectively. Comparing this with
Z3 and Zy, as defined via recurrence (14) and Z; = Zs = 1, we indeed see that Z3 =
(222 + ey + 1)/21 =2+4+e=2z3and Z4, = (Z§+EZ3+ 1)/Z2 =5+4+6c=24. 0O

Remark 11.9. In the more general case where Z; = a and Zs = b are not set to be 1, we
conjecture that the solution to recurrence (14) is still given as the double dimer partition
function of the snake graphs Ga,,_5’s, while taking into account edge weights.

For example, letting z; = a, zo = b, we calculate double dimer partition functions for
G1, G2, and G35 respectively as

2+1 b
pL =23 = + —¢,
a a
b2 241 b
pa = ta + —|—a€ and
ab ab

B b4+2b2+a2+1+2b3+2b+ab2+a
N a?b a?b =

P3 = 24

In particular, z02z4 = z§ + e€z3 + 1 in this case, hence z,, = Z,, is still a solution to
recurrence (14) for 1 < m < 4 in this more general case.

Above we defined p,, = x,, + yme based on counting the number of double dimer
covers on the 2 x (m + 1) grid graph G,, with m tiles with p-invariants repeating 2-
periodically. Recall that z,, = F),,+2 counts the double dimer covers with no cycles and
hence is in bijection with dimer covers of G,,. The y,,’s count the number of double
dimer covers containing exactly one cycle, and the cycle must be of odd length. We now
give several different compact algebraic formulae for the y.,,’s. First we express them in
terms of Fibonacci numbers. Second, as a double-sum over binomial coefficients. Finally,
as a single sum utilizing binomial coefficients.

Lemma 11.10. Define g,, as the self-convolution of the Fibonacci sequence’:

m

9m = Z FrpFom ki1
k=1

8 g is the OEIS sequence A001629.


https://oeis.org/A001629
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Then ym, can be expressed as the sum’

Lm/2]

Ym = Z Im—2j-
=0

Proof. We will first show that g, as the number of double dimer covers of the graph G,
which contain exactly one cycle and that cycle is of exactly length one. The placement
in the graph G,, of the unique cycle bisects the graph. Consequently, a double dimer
cover is completed by picking the equivalent of a dimer cover on the left side of G,
and a dimer cover on the right side of GG,,. Summing over the possibilities gives us
Gm = Y peq FuFm—k41 as desired.

Since y,, counts all double dimers containing a cycle, rather than only those of length
one, we next count the double dimer covers containing a cycle of length three, five, etc.
In each of these cases, counting the number of double dimer covers with a cycle of length
(2§ +1) on G, is equivalent to counting the number of double dimer covers with a cycle
of length 1 on G,,—2;. Consequently, we get the formula ¥, = ZJL:%OJ Im—24- O

Lemma 11.11. The values of g,, satisfy the recurrence

Im = 9m—-2+ Gm—-1+ Tm—2
form > 3.

Proof. We use F} =1, x,—2 = F};,, and Lemma 11.10 to expand the right-hand-side as

m—2 m—1

gm—2+Gm1+Tm 2= FiFm 1 k+ Y FiFm o+ FnF
k=1 k=1

m—2
= Z FpFp_1—k
k=1

m—2
+ (Z FyFop, + Fm_1F1> + Py
k=1

Note that the two sums involving (m — 2) terms each can now be combined using the
Fibonacci recurrence as

m—2 m—2
Fo(Fo1—k+ Fr—g) = Z FypFoi—k.
k=1 =

Consequently, we see

" Ym is the OEIS sequence A054454 as well as the third column of the triangular array A054453.
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m—2

Im-2+ gm-1+ Tm—2 = (Z FkaJrlk) + P F1 + Fr Y
k=1

However, using the equality F; = F5, we can rewrite this as

m—2 m
Im-2+ gm—1+Tm—2 = Z FkF7n+1—k + P Fo+ F B = Z Fka+1—k = Jm;
k=1 k=1

where the last equality follows from Lemma 11.10. O

Lemma 11.12. The Fibonacci numbers can also be expanded in terms of binomial coeffi-
cients as

\. mg»l J

tn=Faia= 3 ("7,

=0 J

Proof. This identity goes back to Lucas [26] and appears explicitly in Hoggatt-Lind [27].
Here we give a combinatorial proof analogous to that of Lemma 11.10. We recall that
a double dimer cover with no cycles is in bijection with a dimer cover, and utilize this
throughout.

Observe that the graph G,,, has m possible tiles on which to place a pair of horizontal
dimers but (m + 1) possible vertical edges in which to place a vertical dimer. Hence a
dimer cover of G,, with exactly 2j horizontal dimers consists of j tiles which contain a
pair of horizontal dimers as well as m 4+ 1 — 2j vertical dimers. Writing out this dimer
cover as a word of j + (m + 1 — 2j) = m + 1 — j letters consisting of j instances of H
and (m + 1 — 2j) instances of V, we see such dimer covers are indeed counted by the
binomial coefficient (m+j1*j). O

Proposition 11.13. The values of g, can be expressed compactly via the algebraic formula

Ln+1

gn = i j(n+1._j).

i=1 J

Proof. This formula appears in the notes on the page for OEIS sequence A001629. See
also [28]. However, here we give a self-contained proof.
Induction and Lemmas 11.11 and 11.12 allow us to rewrite

(252 .
Am—1-—
Im = 9m—-2+gm-1+Tm—2 = § ]( . j) +

j=1 J j=1 =0

7]

() e ) ()

j=1 J
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At this point, we divide into cases, based on the parity of m. First consider the case
when m = 2k is even. Then |- | =k —1 and |Z] = k, and so we have

I ot )
() ()
e (M) ()
="

Finally, note that m =1 - (m 1+1) and also k = LTHJ, so this agrees with the desired

formula in the case m = 2k.

Ju

Next, we consider the case where m = 2k + 1 is odd. In this case, |["5=] = |&] =k,

so we have

j=1 j=1 J

k+1 m—j m—j
Vi~

— \J—1 — J

J= J=

As before, m = 1- m_1+1) gives the j = 1 term, and since m = 2k+1 we see additionally

E+1=(k+ 1)(7"_(::11)“) is the j = k + 1 term. Since [ ] = k + 1, this gives the
result. O

Corollary 11.14. Hence the parameter y,, can also be expressed compactly as

()

Il MNB
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Proposition 11.15. We can express

In+1 if n is even,
Tp + Yn = 3 .
gnr1+1  ifnis odd.

Proof. We will prove this result by induction on n. For n = 1, we have z, + y, = 3,
and go +1 = FiFs + FsF1+1=1-1+1-1+1=3. Forn =2, , +y» = 5, and
g3 =\ F3 + F} + F3F; =1-2+12+4+2-1=5. So the base cases are confirmed.

For the inductive step we will make use of the fact that D(G,,) = Dr(G,)UGR(G,)U
Dy (Gy,). However, we require a slight modification. Let lA)(G) denote the set of double
dimer covers with non-zero weight (and similarly for Dp(G), ET(G), and l/jtr(G)). Note

that with this notation, we have x, + y, = ‘E(Gn)‘

Lemma 5.3 and Lemma 5.4 easily generalize to give bijections lA)R(Gn) — ﬁ(Gn_l)
and Dp(G,) — D(Gy—2). This means

~ ~

DR(GTL) U DT(Gn) =Tp_1+ Yn—1+ Tp_2 + Yn—2 = 1+ In—1 + 9n, (15)

where the last equality follows by induction.

Finally, we consider Dy, (G,,). Note that elements of Dy, (G) have a cycle around the
last tile. But since elements of E(Gn) can only have a single cycle (of odd length),
this means the cycle around the last tile is the only cycle. If the cycle at the end of G,
surrounds 2k + 1 tiles, then the remaining part of the double dimer cover is an element of
D(G,—2—21) which contains no cycles. Recall that these are counted by x,,_2_ap, which
by Lemma 11.12 is equal to F,,_ox. So we have

L=5)

= Z Fr_ok.
k=1

1Dir(G)

Using the identities Zle s 1 = F, and Zle Fy; = F;1q1 — 1, just like in the proof
of Lemma 11.6, we get two cases depending on the parity:

Foi1—1=x,1—1 ifniseven,
- (16)

‘Btr<Gn)
Fn+1 = Tn—1 if n is odd.

Finally, recall that ,, + yp = ‘E(Gn)] - ‘IA)R(GH) U Dr(Go)| + ]ﬁtr(an)
Equation (15), Equation (16), and Lemma 11.11, gives the result. O

. Combining

The following result was conjectured by the third author in an unpublished work (see
Footnote 5).
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Proposition 11.16.

- m+k+1

k=0

- m+k+2
mal = 2k +1
Yom+1 kzz;)( +)( 2k:+2)

Note that these two expressions can be combined to give a formula for all y,:
(/2]
n—k+1
n = — 2k .
Y kzzo(n )<n—2k:+1>

Proof. We will prove the formula for y2,,41. The calculation for ys,, is completely anal-
ogous.
Using Propositions 11.13 and 11.15, respectively, we write

& f2m+3—
92m+2 = Z j( j ) = Tom41 + Yom41 — L.
j=1
Then, using Lemma 11.12, we can rearrange the above equation to obtain
m—+1 m—+1 .
2m + 3 2m +2 —
st =143 ( )-z( | J).
— J
J
By peeling off the last term, and then shifting the index in the second sum, we get

m—+1 . .
A2m+3—7 2m+3 -3 m+1
v =1+ (X (i) () ) - ()

Jj=1

By applying the classical binomial coefficient identity (”) = "*i*k ( o 1) to the expres-

sions above, we can see that j(2m';3_j) (2m+4— 2])(2m+3 J) Subtracting (2m+3 ])
2m+3 j).

from both sides, we see that the summands are each equal to (2m + 3 — 2])( i1

We can thus rewrite the equation above as
m—+1 .
~[(2m+3—7
92m+1jzl(2m+321)< j—1 )

Finally, to get the desired result, we let k¥ = m 4+ 1 — j and run through the sum
backwards. O
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Remark 11.17. Recall that for n > 3, the z,’s are the Fibonacci numbers when x; =
zo = 1. In the cluster algebra associated to an annulus with a marked point on each
boundary, where {z1, z2} is the initial cluster consisting of two formal variables, then the
values of z,, = x2,_5 are the corresponding cluster variables associated to other possible
arcs around the annulus.

One can also focus on the even-indexed entries, but instead of corresponding to cluster
variables, the o, _4’s correspond to the lambda lengths of peripheral arcs which start
at the marked point on the inner boundary, wind around (n — 1) times, and end at
the marked point on the inner boundary. Such peripheral arcs have self-crossings, in
particular (n — 2) such self-intersections, when n > 3. See [29].

Remark 11.18. As explained above after Remark 11.2, for n > 3, x4,_4’s have a com-
binatorial interpretation as the (weighted) number of dimer covers in the snake graph
Gon—4. Additionally, as we just saw in Remark 11.17, such numbers (resp. expressions)
have interpretations as lambda lengths of peripheral arcs in the annulus.

Defining w, = pan_4 = Top—_4 + Yon_4a, we see that for n > 3, w, = pop_4 counts
the (weighted) number of double dimer covers in Gs,_4. For example, as computed in
Remark 11.9, we see that ws = py = % + li:r—b“&?. Comparison with the classical case

motivates the following conjecture.

Conjecture 11.19. If we let w; = we = 1 (or if we let wi = a and we = b), the values
of wy, = pan_a correspond to the super A-lengths of a peripheral arc in an annulus,
as described in Remark 11.17, except in the context of the decorated super-Teichmiiller
space.

The main obstruction to proving 11.19 and such a geometric significance is that unlike
the ordinary case, we only have p-invariants attached to triangles in a triangulation. To
be able to compute the super A-length of an arc with self-intersections would require
a super analogue of the skein relations for resolving a crossing rather than simply a
super analogue of the Ptolemy exchange relation for flipping a diagonal in an oriented
quadrilateral.

Nonetheless, since we have the candidate of w,,’s for the peripheral arcs in an annulus,
along with a conjectured combinatorial interpretation that would allow us to calculate
the corresponding expressions, perhaps it is possible to reverse engineer how to properly
define super skein relations in the context of decorated super-Teichmiiller space.

Another natural follow-up question to the above work involves super-Markov numbers.

Remark 11.20. The super A-lengths of a once-punctured torus are studied by Huang,

Penner, and Zeitlin in [24] where triples of arcs in a triangulation have super A-lengths
satisfying the super analogue of the Markoff equation (cf. [24, equation 26])

22 +y? + 22+ (zy +yz +22)e = 3(1 + €)ayz,
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where ¢ = 06. This motivates the following conjecture.

Conjecture 11.21. Begin with an oriented triangulation of the once-punctured torus like
in Fig. 206. However, in this case, keep e as a formal variable instead of setting it to
be 1. Allowing flips in all three directions iteratively yields all possible arcs in a once
punctured torus. We claim that the super A\-lengths of such arcs are super analogues of the
Markoff numbers, and have combinatorial interpretations using double dimer covers of
the snake graphs appearing in Section 7 of [20] in the presence of appropriately specialized
w-invariants.

We end with the following questions.

Question 11.22. Assuming the validity of Conjecture 11.21, do the coefficients of the €’s
in super Markoff numbers have compact algebraic formulae analogous to the formula for
the ym ’s as coefficients of €’s in super Fibonacci numbers (see Proposition 11.16)%

Question 11.23. Going beyond the annulus with one marked point on each boundary, or
the once punctured torus, can we find formulae for super A-lengths of arcs on unpunctured
surfaces (or certain punctured surfaces) that have combinatorial interpretations as double
dimer covers of snake graphs, using the same snake graphs interpreting ordinary A-lengths
of arcs as in [1]?

Before approaching Question 11.23, we note that it is not obvious for every triangula-
tion and every arc that there is a corresponding spin structure (i.e. oriented triangulation
relative to the boundary and equivalence on triangles) and flip sequence that preserves
positive expansion formulas as one iterates the computation. Nonetheless, the above com-
binatorial interpretation would at least give a candidate for what algebraic expressions
may be reasonable to try.
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