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Quantum optimal control of ten-level nuclear spin qudits in 87Sr
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We study the ability to implement unitary maps on states of the I = 9/2 nuclear spin in 87Sr, a d = 10
dimensional (qudecimal) Hilbert space, using quantum optimal control. Through a combination of nuclear spin
resonance and a tensor ac Stark shift, by solely modulating the phase of a radio-frequency magnetic field, the
system is quantum controllable. Alkaline-earth-metal atoms, such as 87Sr, have a very favorable figure of merit
for such control due to narrow intercombination lines and the large hyperfine splitting in the excited states. We
numerically study the quantum speed limit, optimal parameters, and the fidelity of arbitrary state preparation and
full SU(10) maps, including the presence of decoherence due to optical pumping induced by the light-shifting
laser. We also study the use of robust control to mitigate some dephasing due to inhomogeneities in the light
shift. We find that with an rf Rabi frequency of �rf and 0.5% inhomogeneity in the the light shift we can prepare
an arbitrary Haar-random state in a time T = 4.5π/�rf with average fidelity 〈Fψ 〉 = 0.9992, and an arbitrary
Haar-random SU(10) map in a time T = 24π/�rf with average fidelity 〈FU 〉 = 0.9923.
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Ultracold ensembles of Alkaline-earth-metal atoms
trapped in optical lattices or arrays of optical tweezers are
a powerful platform for quantum information processing
(QIP), including atomic clocks and sensors [1–5], simulators
of many-body physics [6–11], and general purpose quantum
computers [7,12,13]. The ability to optically manipulate co-
herence in single atoms via ultranarrow optical resonances on
the intercombination lines, together with the ability to create
high-fidelity entangling interactions between atoms when they
are excited to high-lying Rydberg states [14–16], provides
tools that make this system highly controllable for such
applications. In addition, fermionic species have nuclear spin.
As the ground state is a closed shell, there is no electron angu-
lar momentum, and the nuclear spin with its weak magnetic
moment is highly isolated from the environment. Such nuclear
spins in Alkaline-earth-metal atoms are thus natural carriers
of quantum information given their long coherence times
and our ability to coherently control them with magnetic and
optical fields. Nuclear spins are also seen as excellent carriers
of quantum information in the solid state as demonstrated in
pioneering experiments including in nitrogen-vacancy (NV)
centers [17] and dopants in silicon [18–21].

Using magneto-optical fields, [22] recently demonstrated
the control of qubits encoded in two nuclear spin magnetic
sublevels in 87Sr. The nuclear spin in this atomic species, how-
ever, is not a two-level system; the spin is I = 9/2 and there
are d = 2I + 1 = 10 nuclear magnetic sublevels. Such qudits,
here “qudecimals,” have potential advantage for QIP. First
and foremost, one can encode a D = dnd = 2n2 dimensional
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Hilbert space associated with n2 qubits in nd = n2/ log2 d
qudits. While only a logarithmic saving, this is meaningful for
the qudecimal (log2 d = 3.32), especially when trapping and
control of each atom is at a premium. This savings extends
to algorithmic efficiency, in that the number of elementary
two-qudit gates necessary to implement a general unitary

map scales as O(n2
dD

2) = O( n2
2D

2

(log2 d )2 ) [23]. Moreover, qudit
architectures can show increased resilience to noise [24] and
additional routes to quantum error correction [25]. For exam-
ple, one can protect against dephasing errors by encoding a
qubit in a nuclear spin qudit [26]. In addition, fault-tolerant
operation of a quantum computer may be more favorable
based on qudit vs qubit codes [27,28].

While QIP with qudits has great potential, there are
substantial hurdles. State preparation and readout are more
challenging for systems with d > 2. Moreover, quantum logic
with qudits is more complex. Universal quantum logic with
qubits can be achieved with a set of logic gates that includes
the unitary generators of SU(2) on each qubit, plus one en-
tangling gate between qubits pairwise. In the case of qudits,
in addition to the entangling gate, we require unitary genera-
tors of SU(d) for each subsystem [23,29–31]. Unlike qubits,
the Lie algebra of such gates is not spanned by the native
Hamiltonians, and thus implementation of this generating set
is not straightforward. Different approaches have been studied
to implement SU(d) gates [32–36]. One approach is to specify
an arbitrary SU(d) unitary matrix through a sequence of so-
called Givens rotations acting between pairs of levels [37]. In
a landmark experiment, the Innsbruck group employed this
construction to experimentally demonstrate universal quan-
tum logic with qudits in a trapped ion [38], with performance
similar to qubit quantum processors.
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An alternative powerful approach to implementing univer-
sal quantum logic is to employ the tools of quantum optimal
control. In this paradigm, one numerically searches for a time-
dependent waveform that achieves the desired SU(d) unitary
map when one has access to a Hamiltonian that makes the
system universally “controllable” [39–45]. Optimal control
is a powerful and flexible approach that does not require
specific pairwise Givens rotations, can be high-fidelity, and
can be made robust to imperfections such as inhomogeneities
through the tools of robust control [41,42,46,47]. In a seminal
work, the Jessen group used optimal control to demonstrate
high-fidelity control of qudits encoded in the hyperfine spin
levels of ground-state cesium [48,49]. This flexible con-
trol has found potential application in studies of quantum
simulation [50].

In this paper we build on this approach to study implemen-
tation of SU(10) gates on the nuclear spin of 87Sr based on
quantum optimal control. A nuclear spin encoding may have
long-term advantages compared to hyperfine states that couple
electron and nuclear spins, in its strongly reduced sensitivity
to background magnetic fields and resilience against deco-
herence driven by photon scattering from optical tweezers or
lattices [13,51]. Weak coupling to the environment, of course,
comes with increased challenges of weak coupling to control
fields. We will show, nonetheless, that with reasonable experi-
mental parameters one can implement high-fidelity qudecimal
logic, with low decoherence.

We consider open loop control in a Hilbert space with fi-
nite dimension d , governed by a Hamiltonian H[c(t )] = H0 +∑

λ cλ(t )Hλ where c(t ) = {cλ(t )} is the set of time-dependent
classical control waveforms. The system is said to “control-
lable” if the set of Hamiltonians, {H0,Hλ}, are generators
of the Lie algebra SU(d). Then ∃ c(t ) such that U [c,T ] =
T ( exp{−i

∫ T
0 H[c(t )]dt}) = Utar for any target unitary matrix

Utar = SU(d) in this space. The minimal time T for which this
is possible is known as the “quantum speed limit” (QSL) [52].
See Supplemental Material [53] for additional details of the
quantum control protocol used here.

One can achieve quantum controllability of the nuclear
spin qudecimal through magneto-optical interactions. We
combine magnetic spin resonance in the presence of an off-
resonant laser field as depicted in Fig. 1. The Hamiltonian
acting on the nuclear spin in the 5s2 1S0 ground state takes
the form H = Hmag + HLS. Here Hmag = −μ · B(t ) is the
magnetic spin-resonance Hamiltonian, with μ = gIμNI the
nuclear magnetic dipole vector operator and B(t ) = B‖ez +
BT Re[(ex + iey)e−i[ωrft+φ(t )]] the magnetic field consisting of
a strong bias defining the quantization axis ez and a trans-
versely rotating rf magnetic field with a time-dependent phase
φ(t ). Taken alone, the Hmag generates only SU(2) rotations
of nuclear spin. To achieve full SU(d) control we add a
light-shift Hamiltonian due to the ac Stark effect, HLS =
−αzz(ωL )|E0|2/4 where αzz(ωL ) is the zz component of the
atomic ac polarizability tensor operator for a laser field at
frequency ωL linearly polarized along the quantization axis,
EL(t ) = ezRe(E0e−iωLt ). The form of αzz depends on the
atomic structure and the detuning of the laser from atomic res-
onance. In particular, when the detuning is not large compared
to the hyperfine splitting in the excited state, the polarizabil-
ity has an irreducible rank-2 tensor component αzz = α(2)I2

z

FIG. 1. Schematic for magneto-optical control. The qudecimal
is encoded in the ten magnetic sublevels of the nuclear spin, | −
9/2〉 → |9/2〉, in the 5s2 1S0 ground state. Their levels are shifted by
a linear Zeeman effect due to a bias magnetic field and a quadratic
tensor ac Stark effect induced by an off-resonant laser beam, po-
larized along the quantization axis, and detuned 	 between the
hyperfine levels of the 5s5p 3P1 intercombination line. Control of the
qudecimal is then achieved with a phase modulated radio-frequency
magnetic field, corotating at the bare Larmor precession frequency,
the amplitude of which causes Rabi rotations at frequency �rf . The
figure of merit for the control is the ratio of the ac Stark shift to the
photon scattering, κ , shown in the inset (see text).

(there is also a trivial scalar term proportional to the identity)
[54]. This quadratic spin twist together with the linear Lar-
mor precession yields a set of control Hamiltonians {Ix, Iy, I2

z }
sufficient to generate the Lie algebra SU(2I + 1) for an arbi-
trary spin I [55]. Such control was first demonstrated in the
alkali-metal atom cesium, for the hyperfine spin F = 3 in the
electronic ground state, in order to generate nonclassical spin
states in the d = 7 dimensional Hilbert space [48].

Importantly, the size of tensor polarizability α(2) depends
on the ratio of the excited-state hyperfine splitting to the laser
detuning [54], achieving its maximum when these are of the
same order. Thus, to achieve high-fidelity control, one must
tune sufficiently close to resonance, while avoiding photon
scattering that leads to decoherence. Critically, in alkaline-
earth atoms, the first excited 3P1 states have long lifetimes
and large hyperfine splittings. This leads to a very favorable
figure of merit for optimal control, as measured by the ratio
of the characteristic tensor light shift to the photon scattering
rate γs, κ ≡ α(2)|E0|2/4γs. For example, in 87Sr, the hyperfine
splitting between the F = 7/2 and 9/2 levels in the singly
excited 5s5p 3P1 state is ωHF/2π = 1130 MHz, while the
spontaneous emission linewidth is �/2π = 7.5 kHz. For a
scattering rate averaged over all magnetic sublevels [54], we
find that when we detune about halfway between these reso-
nances, we obtain the maximum figure of merit κ = 6.8 × 103
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(see Fig. 1). In contrast, κ = 18.6 for F = 3 hyperfine spin
in the cesium ground state when the laser is tuned halfway
between the F = 3 and 4 hyperfine levels in the excited 6P1/2

D1 resonance. This small figure of merit limited the fidelity to
around 0.85 for the arbitrary state preparation. A factor of 364
increase in the figure of merit for Alkaline-earth-metal atoms
shows the potential power of this approach to yield high-
fidelity quantum optimal control of the nuclear spin qudit.

We consider control of the nuclear spin qudecimal with on-
resonance rf fields on resonance with the Zeeman splitting,
	E0 = |gI |μNB‖, where gIμN/h = −184 Hz/G in 87Sr [56].
In the rotating frame, the control Hamiltonian is

H (t ) = �rf{cos[c(t )π ]Ix + sin[c(t )π ]Iy} + βI2
z , (1)

where �rf = −gIμNBT is the rf Rabi frequency and β =
α(2)|E0|2/4 is the strength of the tensor light shift (here and
to follow, h̄ = 1). Note, for a rotating rf field, there is no
rotating wave approximation, and this Hamiltonian is valid
even when �rf � ωrf. Here the control waveform is solely the
rf phase c(t ) ≡ φ(t )/π . It was proven in [57] that varying c(t )
is sufficient to achieve universal control of the system.

We consider two classes of quantum control tasks, prepa-
ration of a target pure state |ψtar〉 and implementation of a
unitary map Utar. Optimal control follows by maximizing the
relevant fidelity:

Fψ [c,T ] = |〈ψtar|U [c,T ]|ψ0〉|2, (2)

FU [c,T ] = ∣∣Tr
(
U †

tarU [c,T ]
)∣∣2

/d2. (3)

This is achieved by discretizing the control waveform and then
numerically maximizing the fidelity with gradient ascent. In
a series of works, the Rabitz group showed that the fidelity
landscape is favorable for this purpose [58,59]. We choose
here a piecewise constant parametrization (as in [57]) and
write the control function as a vector c = {c(t j )| j = 1, . . . , n}
where t = j	t and n = T/	t , parametrizing waveforms that
are constant over the duration 	t . A minimal choice of n
depends on the number of parameters necessary for the control
task; for state maps nmin = 2d − 2 and for arbitrary SU(d)
maps nmin = d2 − 1. In practice, we choose n to be larger than
nmin which improves the fidelity landscape when T is close to
the QSL. To numerically optimize F we use a variation of the
well-known GRAPE algorithm [60]. See Supplemental Mate-
rial [53] for further details on the choice of parametrization
and optimization.

For a fixed value of �rf, the optimal choice of β and total
time T are found empirically. Figures 2(a) and 2(b) show the
infidelity, 1 − F , for state preparation (unitary maps), when
averaged over 20 Haar-random target vectors (ten random
unitary maps). As expected, when T → ∞ the infidelity is
essentially zero. The QSL is highly dependent on the value of
β. As expected, the optimal choice is β ≈ �rf as this provides
the optimal mixing between Larmor precession and one-axis
twisting. The characteristics of state preparation and unitary
maps are similar in nature. The major difference between
these two cases is that unitary mapping requires more time for
the simple reason that unitary mapping has d2 − 1 parameters
compared to 2d − 2 for the state preparation. The quantum

FIG. 2. Fidelity of objectives found by optimal control as a func-
tion of the strength of ac Stark shift, β, and the total time T , in units
of the rf Rabi frequency �rf. Predictions based on closed-unitary
evolution for state maps (a) and SU(10) unitary maps (b) averaged
over 120 Haar-random target states and ten Haar-random target
SU(10) matrices, respectively. The control waveforms are piecewise
constant, over times δt = T/n. For state maps we choose n = 120
time steps; for unitary maps we take n = 500. The bottom layer
gives similar figures in the presence of decoherence using the master
equation, Eq. (5): state fidelity (c), Eq. (6), and process fidelity (d).

speed limit at β = �rf is T∗ ≈ 1.5π/�rf for state preparation
and T∗ ≈ 8π/�rf for SU(10) unitary maps.

In principle, one can achieve arbitrarily high fidelity with
increasing T . In practice T is limited by the coherence time of
the system. Here, the coherence time is fundamentally limited
by decoherence arising from photon scattering and optical
pumping due to the off-resonant light-shift laser. We model
the effects of decoherence in the state preparation protocols
using the Lindblad master equation [54],

dρ[c, t]
dt

= −i{Heff[c]ρ[c, t]} + �
∑

i

Wqρ[c, t]W †
q

≡ L[c]{ρ[c, t]}, (4)

where the jump operator for optical pumping between mag-
netic sublevels describing absorption followed by emission of
a q-polarized photon is

Wq =
∑

F ′

�/2

	FF ′ + i�/2
(e∗

q.DFF ′ )(�εL.D†
FF ′ ). (5)

Here D†
FF ′ are the dimensionless dipole raising operators from

the ground-state manifold F = I to the excited-state manifold
F ′, as defined in [54]. Heff[c] = H[c] − i�

∑
qW

†
q Wq/2 is the

non-Hermitian control Hamiltonian, Eq. (4), now including
absorption of the laser light.

For gates, we define a d2 × d2 superoperator matrix act-
ing on the density matrix. For the open quantum system,
the superoperator describing the evolution of an arbitrary
input state is the completely positive (CP) map, E[c,T ] =
T ( exp{∫ T

0 L[c(t ′)]}dt ′), where L is the Lindbladian superop-
erator of the master equation, defined implicitly in Eq. (4).
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We compared the output in the open quantum system
dynamics given the ideal control solution c found in closed-
system optimization. The fidelities for state preparation and
full SU(10) maps are, respectively,

Fψ [c,T ] = Trρψtarρ[c,T ], (6)

FU [c,T ] = ∣∣TrE†
Utar

E[c,T ]
∣∣/d2. (7)

Here ρψtar = |ψtar〉〈ψtar| is the target state and ρ[c, T ] is the
solution to the master equation. EUtar = U ∗

tar ⊗Utar is the CP
map corresponding to the target unitary gate and E[c,T ] is
the CP map with decoherence. Equation (7) is the “process fi-
delity,” a key quantity of interest in determining the thresholds
for fault-tolerant quantum computation [61].

Numerical results are given in Fig. 2 for both state prepa-
ration and unitary mapping. In contrast to closed-system
control, Figs. 2(c) and 2(d) show that there is an island where
the infidelity is smallest. This reflects the tradeoff between
coherent control and decoherence. There is an optimal total
time of evolution T larger than the QSL but not too large
when compared to the optical pumping time. In addition,
the optimal choice of β is now smaller than we found for
the closed quantum system, as increased tensor-light shift is
accompanied by increased photon scattering. Including deco-
herence, for the case of state preparation, averaged over 20
random states, we find the fidelity 〈Fψ 〉 ≈ 0.9997. Here the
island of high fidelity is large, occurring for β < 1.2. For
the case of unitary mapping the island of lowest infidelity
occurs for β < 1.2 where the fidelity 〈FU 〉 ≈ 0.9970, which is
averaged over ten Haar-random unitaries. We emphasize that
these qudecimal maps act on a ten-dimensional Hilbert space.
Thus a fair comparison of the effective fidelity acting on qubits
is 〈F〉qubit = 〈F〉0.3

qudecimal, since, in principle, one can encode
more than three qubits in a qudecimal

Coherence is also limited when there are inhomogeneities
arising from uncertainties in the Hamiltonian parameters such
as the laser intensity and detuning. When the decoherence
time is longer than the inhomogeneous dephasing time, one
can mitigate this with the numerical tools of robust control
[46,62,63]. We consider here an uncertainty in the tensor
light shift arising from the thermal velocity of the atoms. To
perform robust control, we replace the control Hamiltonian
by H[c] → H ′[c, ε] = H[c] + εI2

z , where ε is the variation in
β around the fiducial value, and define a new objective func-
tion as the average fidelity, 〈F[c,T ]〉 = ∫

dε p(ε)F [c,T, ε].
While in principle one can design inhomogeneous control
with detailed knowledge of the probability distribution p(ε),
in practice, when the standard deviation of the distribution δ is
sufficiently narrow, it is sufficient to simultaneously optimize
at two points [46], and choose the objective function as

〈F[c,T ]〉 = (F[c,T, ε = +δ] + F[c,T, ε = −δ])/2. (8)

The numerical results of robust control are shown in Fig. 3
for β = 0.4�rf and an error of δ = 0.005β. We see that robust
control outperforms the bare waveforms, even in presence
of decoherence, but one does not reach the fidelity without
any inhomogeneity due to optical pumping occurring over the
extended time of the control pulses. For the parameters chosen
here, we find that for state preparation one could achieve a

FIG. 3. Comparison of infidelity with and without decoherence
and robust control to counteract dephasing due to inhomogeneities
at the level of 0.5% of β and β = 0.4�rf . (a) State preparation
(averaged over 20 Haar-random target states). (b) SU(10) mapping
(averaged over ten Haar-random unitary matrices). Robust control
can largely remove dephasing and achieve almost the same infidelity
seen due solely to decoherence.

fidelity of 〈Fψ 〉 ≈ 0.9992 in a time T = 4.5π/�rf, and for
unitary mapping one achieved a fidelity 〈FU 〉 ≈ 0.9923 in a
time T = 24π/�rf. Other practical considerations such as the
bandwidth needed for rapidly varying the waveform may limit
the speed of operation (see Supplemental Material [53]).

We have shown that in the presence of fundamental deco-
herence and small inhomogeneities, quantum optimal control
allows for the realization of high-fidelity arbitrary state maps
and SU(10) qudecimal gates acting on nuclear spin in the
ground state of 87Sr. While we proposed one protocol that
leverages the strong tensor light shift induced by a laser tuned
near the 3P1 hyperfine manifold, the richness of magneto-
optical controls in87Sr provides multiple possible approaches,
e.g., by employing the tensor light shift when tuned near the
3P0 clock state. Quantum optimal control of nuclear spins
should find a variety of applications in QIP, including metro-
logical enhancement with qudits [64], quantum simulation
[50,65], and universal quantum computation [7]. For the latter
additional components are necessary. One must enable read-
out of all ten magnetic sublevels though appropriate shelving
and fluorescence protocols [66]. Most importantly, we must
study the implementation of entangling gates consistent with
qudit logic. Advances in Rydberg-state control for alkaline-
earth atoms show great promise in this direction [12]. Finally,
while we have studied here two extremes of the control tasks,
state preparation and SU(10) maps, optimal control allows
for arbitrary partial isometries to encode a d ′ < 10 qudit in
the qudecimal. For example one can encode a qubit in the
logical states |0〉 = |mI = 9/2〉 and |1〉 = |mI = −9/2〉 and
potentially protect it from dephasing noise, analogous to a
cat code [26] or other encodings of a qubit in a large spin
that leverages the available interactions and dominant error
channels [67]. The flexibility of arbitrary control provides
avenues to explore the best approach to encoding and error
mitigation.
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