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Federated Learning for Indoor Localization via Model Reliability With Dropout
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Abstract— In this letter, we propose a novel model weight
update method that accounts for the reliability of the local
clients in FL-based indoor localization. FL shows degraded
localization performance than centralized learning because of the
non-independent and identically distributed (non-IID) data con-
figuration. Thus, we aim to improve the localization performance
by applying the reliability of the local clients, which is quantified
by the model uncertainty of the local models. Bayesian models
provide a framework for capturing model uncertainty but usually
requires a substantial computational cost as well, particularly for
high-dimensional learning problems. In order to resolve this com-
putational issue, the proposed scheme applies Monte Carlo (MC)
dropout to approximate the Bayesian uncertainty quantification
with enhanced computational efficiency. Our simulation results
show that the proposed learning method improves localization
performance compared to the existing model, federated averaging
(FedAvg), and close to the centralized learning performance.

Index Terms— Federated learning (FL), indoor localization,
model uncertainty, Bayesian approximation.

I. INTRODUCTION

F INGERPRINTING localization is a conventional indoor
localization scheme for estimating a location using a

wireless signal feature (such as its received signal strength,
RSS) [1], [2]. In the context of RF fingerprinting, neural
network (NN) models have been widely considered to deal
with large-scale datasets. One of the challenges is to acquire
the fingerprinting database, which can be a time-consuming
and costly process. In parallel, as the size of the dataset
increases, the localization system typically demands a more
complex model with increased computational burden [3], [4].
In order to address this problem, researchers have focused
on developing parallel computation techniques with divided
datasets and crowd-based solutions [5].
As an alternative, federated learning (FL) has recently

emerged as distributed learning scheme, which addresses
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privacy aspects in distributed processing and power efficiency
by potentially leveraging edge computing [6]. In the con-
text of fingerprint-based localization and FL, deep models
are employed to exploit the relevant features from the RF
signal. The use of FL approaches to train NN models has
been considered over non-independent and identically dis-
tributed (non-IID) datasets and unbalanced local datasets [7].
Thanks to the aforementioned advantages, researchers consid-
ered the adoption of FL into advanced wireless communica-
tions and indoor navigation [8]–[10].
As a consequence of each client collecting RSS finger-

prints through their own devices, the resulting large-scale
dataset features heterogeneous characteristics caused by a
large number of clients and limited communication environ-
ments. Such client heterogeneity characteristics might lead to
performance degradation if not properly addressed, with the
current work addressing this problem through client selection
approaches [11]. The limitation of other solutions to this
problem is that those do not consider the heterogeneous char-
acteristics and that the collected dataset might not be employed
due to the exclusion of some clients, ultimately resulting in
unexplored areas as well. In our approach, we aggregate the
local model weights with the reliability of the local client
through a FL scheme, where such reliability is quantified by
the uncertainty of the local model in predicting the measure-
ments collected by the corresponding client [12].
In this letter, we propose the first FL-based indoor local-

ization technique that considers the model uncertainty as
a measure of reliability. The reliability of the local client
is reciprocal with the model uncertainty, which is related
to the variance of the prediction error. The computation of
such model uncertainty can be obtained by using Bayesian
deep learning models, which turns to be impractical in some
situations due to its computational burden, thus requiring
substantial run-time and computational complexity. We verify
the proposed approach through simulation experiments using
real-world WiFi RSS fingerprint dataset [13]. Furthermore,
we present improvements in localization error of the proposed
method compared to existing methods.
The main contributions of this letter are the following:

1) the first FL-based indoor localization system with con-
sideration of the uncertainty of the local client, 2) the
reliability of the local client is quantified by the uncer-
tainty of the local model, which is implemented by using
MC dropout to mitigate the computation of implementing a
Bayesian NN, and 3) the performance of the proposed FL
system is investigated through experiments with a real-world
dataset.
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Fig. 1. The local model is trained with given train dataset. As a conse-
quence by using MC dropout, distribution of the predicted output can be
approximated.

II. FEDERATED LEARNING FOR INDOOR LOCALIZATION

In this section we describe fingerprint data collection with
crowdsourcing clients and then iterative model weight update
in local clients and global server side for FL-based indoor
localization system.

A. Data Collection

We assume that there are K fixed WiFi APs and C crowd-
sourcing clients during RSS fingerprint collection. The avail-
able localization area covered by the fingerprint localization
system includes N reference locations L = {�i|i = 1, . . . , N}
where �i is 2 × 1 dimensional vector composed of x and
y coordinates of the i-th reference location. The c-th client
collects the reference fingerprint xc,j = [r1c,j , . . . , r

K
c,j]

T ∈
R

K×1 from the WiFi APs where rk
c,j is the RSS value

collected by the c-th client from the k-th AP at the j-th
reference location. Here, the c-th client visits a subset of
the reference locations Lc = {yc,j|j = 1, . . . , N r

c }, so that
Lc ⊆ L and L =

⋃C
c=1 Lc, where N r

c is the number of
reference locations visited by the c-th clients [1]. The dataset
of the c-th client Dc = {Xc,Yc} includes the RSS fingerprint
as input Xc = [xc,1, . . . ,xc,Nr

c
] ∈ R

K×Nr
c , and the location

as output Yc = [yc,1, . . . ,yc,Nr
c
] ∈ R

2×Nr
c .

B. Iterative Model Weight Update

In the FL framework, there are two weight updates: local
weight update and global model weight update. The c-th
client trains its local model wc using its own database Dc.
These trained local models are then send to the server, which
assembles the various local model weights and updates the
global model weight g. Here, all clients without exclusion,
send their model weights trained with a database collected
from the localization areas they have visited. Other schemes
where only a set of users transmit their weights or do it through
some duty-cycling are possible, but these considerations are
considered out of the scope of this letter which is to investigate
the potential performance gains.
1) Local Client: The local client trains each model with the

non-IID fingerprint and reference dataset. The training of the
c-th local client is formulated by way of minimizing the local

objective function of the c-th client F (wc), which is presented
as follows:

min
wc

F (wc), F (wc) :=
1

N r
c

Nr
c∑

j=1

f(wc;xc,j,yc,j), (1)

where wc is the local model weight of the c-th client and f(·)
is the loss function for the local model [14]. The local model
weights are updated repeatedly in the direction of decreasing
the value of the local objective function, depending on the
optimizer and the loss function designed by the localization
system. After each local client completes its local training
with several iterations, they transmit local model weights to
the server.
2) Global Server: As the server receives the optimized local

model weights w̃c, the global model weight g is updated as
follows

g =
C∑

c=1

ucw̃c, (2)

where uc is the linear combination coefficient of the c-th client
with condition of uc ≥ 0 and

∑C
c=1 uc = 1. By repeating the

rounds, the global model is updated with each of the local
client’s characteristics. In further sections, we describe the
novel approach to setting the uc term, a crucial parameter
for the FL-based localization performance.

III. UNCERTAINTY IN NEURAL NETWORKS

This section describes the computation of model uncertainty
using MC dropout as an approximation for Bayesian NN
model. Then we analyze the relationship between the variance
of prediction error and the produced uncertainty.

A. Monte Carlo Dropout as a Bayesian approximation

Bayesian deep learning makes it possible to measure the
uncertainty of a NN with a probabilistic approach [12]. The
probability of the predicted output y∗, given train datasetX,Y
and the new input x∗, is characterized by

p(y∗|x∗,X,Y) =
∫

p(y∗|x∗,w)p(w|X,Y) dw, (3)

where x∗ and y∗ are the input and output that are not
included in the training dataset X, respectively. The probabil-
ity p(y∗|x∗,X,Y) can be solved with variational inference
and MC integration, as in the approach in [15] and the
uncertainty can be quantified as the variance of the probability
distribution.
Even if Bayesian deep learning can optimally measure

the uncertainty in NN, it is difficult to apply in FL system
because of substantial computational resources. MC dropout,
which efficiently approximates Bayesian NNs in terms of
computation, makes it possible to measure the uncertainty
by using a simpler NN model [15]. Thus we apply the MC
dropout method to the proposed FL system to calculate model
uncertainty with lower computational cost. The dropout nodes
in NN model are chosen over a Bernoulli distribution with the
probability of pd, where the dropout rate is 1− pd. As shown
in Fig. 1, MC dropout generates different predicted output
from the local model. The randomness of dropout enables to
produce a distribution for the predicted output.
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Fig. 2. An illustration of the federated learning based localization system
with reliability.

B. Variance Decomposition of Uncertainty

The predicted output of the NN is affected by two fac-
tors: noise and model structure. Due to these two factors,
uncertainty in NN is described by aleatoric uncertainty and
epistemic uncertainty [16]. In deep learning, the observed
output y is represented by a sum of a single noiseless ideal
predictions o(x) which is a deterministic value of input x and
a random additive noise term distributed as N (0, σ2

α). y
∗ is

the predicted output vector of NN model. Both output y and
y∗ are sampled from random variables Y and Y ∗, respectively.
Since the Y and Y ∗ are independent variables generated from
different datasets, the variance of the prediction error can be
decomposed and quantified with two uncertainties as follows

Var (Y − Y ∗) = E

[
(Y − o(x) + o(x) − Y ∗)2

]
= E

[
(Y − o(x))2

]
+ E

[
(o(x) − Y ∗)2

]
= σ2

α + σ2
e , (4)

where σ2
α and σ2

e represent aleatoric and epistemic uncer-
tainty respectively. From this decomposition, we show that
the variance of the predicted output can be decomposed
by the summation of two uncertainties. The variance represents
the reliability of each client and is used to update the global
model in the FL localization system, as described next.

IV. FL LOCALIZATION WITH RELIABILITY

In this section, we describe the proposed algorithm which
consists of system initialization, reliability calculation, and
global model weight update.

A. System Initialization

In FL localization system, every round operates sequentially
in local client-side and global server-side side until the global
model weight converges. Fig. 2 shows that clients send local
model weights trained with their own collected data and sever
updates global model weights by the uncertainty of each client.
Before the FL training, the global model in the server

initializes the global model weight g. Also, the validation
dataset Dv = {Xv,Yv} is prepared in server database,

Algorithm 1 Updating Global Model Weight With Local
Model Uncertainty

Input : Client index c = 1, 2, . . . , C; Training data of
the c-th local client Dc = {Xc,Yc} where the
inputs and outputs are RSS fingerprints and
locations; Validation data Dv = {Xv,Yv}

Output: Optimized global model weight
1 Initialization: Initialize global model weight g1

2 for γ = 1, 2, . . . until convergence of global model do
3 Initialize the local model weight wγ−1

c with the
global model weight gγ

4 for c = 1, 2, . . . , C do
5 Update the local model weight wγ

c using Dc

6 Compute the client uncertainty Uγ
c and reliability

Rγ
c using (7)

7 end
8 Update the global model weight gγ+1 using (8)
9 end

which includes Xv = [xv
1 , . . . ,x

v
Nv ] ∈ R

K×Nv

and Yv =
[yv

1 , . . . ,y
v
Nv ] ∈ R

2×Nv

for the purpose of calculating local
models uncertainty, where Nv is the number of the pair of
fingerprint and location in Dv. The i-th fingerprint in Dv

is denoted by xv
i = [rv,1

i , . . . , rv,K
i ]T ∈ R

K×1 and the i-th
location in Dv is represented by yv

i , i = 1, . . . , Nv .

B. Reliability Calculation With Monte Carlo Dropout

When the γ-th round starts, the c-th client initializes local
modelweight wγ−1

c with the global model weight gγ received
from the server and starts local training with local training
dataset Dc. After the local training is completed as described
in Subsection II-B.1, the client transmits the trained local
models weightwγ

c to database in global server. Then the server
computes each predicted location ŷv

c,i of the i-th fingerprint xv
i

in the validation dataset Dv with the c-th local model weights
wγ

c which is stored in the server database. By repeatedly
predicting validation dataset T times with MC dropout for
the c-th client local model weight, T localization errors for
one validation fingerprint are obtained.
The localization error for the i-th validation fingerprint of

the c-th client is represented by

ec,i =
∥∥ŷv

c,i − yv
i

∥∥
2
. (5)

Hereafter, the localization error ec,i is expressed as a random
variable Ec,i. By MC random sampling, we can approximate
the distribution of random variable Ec,i with T localization
error samples. The variance of prediction error of the i-th
validation input σ2

c,i is calculated as follows

σ2
c,i = E

[(Ec,i − Ēc,i

)2]
, (6)

where Ēc,i is the mean of the prediction error of the i-th
validation input. Each client has Nv variances corresponding
to the number of validation dataset, and the uncertainty of
the c-th client Uc is the mean of the variances for the entire
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Fig. 3. The localization error of the four localization methods tested.

Fig. 4. Training loss versus round.

validation inputs, which is given by

Uc =
1

Nv

Nv∑
i=1

σ2
c,i. (7)

Finally, we propose the reliability of the c-th client which
is calculated by Rc = (1/Uc)α; the value of reliability gets
larger when the client has a certain model. The reliability is
reciprocal with uncertainty, and α is an exponent parameter
of inverse of uncertainty.

C. Global Model Weight Update

After the server calculates the reliabilityRγ
c with the trained

local model weight in the γ-th round, the global model updates
the global weight gγ+1. Our proposed FL system applies the

normalized reliabilityRγ
c /

∑C
c=1 Rγ

c as the linear combination
coefficient of the c-th client uγ

c in (2). The global model weight
of the next round is updated as follows

gγ+1 =
C∑

c=1

Rγ
cw

γ
c∑C

c=1Rγ
c

. (8)

As these processes repeat, the server updates the global model
weights which are biased toward the local client with high
reliability. To sum up the whole system, the uncertainty of
the local model is approximated using MC dropout. Then, the
server applies the client reliability into updating the global
model, where the reliability is a value that is inversely pro-
portional to local model the uncertainty. Algorithm 1 presents
the details of summary for the proposed scheme.

V. SIMULATION RESULTS

In this section, we present settings for FL fingerprint local-
ization and then evaluate the performance of the proposed FL
localization system with the real-life WiFi RSS dataset.

Fig. 5. Localization error versus the exponent parameter α.

Fig. 6. Localization error versus the MC dropout rate pd.

1) Simulation Setup: UJIIndoorLoc dataset was collected
in the multi-building and multi-floor indoor environment over
three buildings of about 110,000 m2. In order to reduce
the effort required for data collection, more than 20 mobile
clients used different 25 devices to collect crowdsourced RSS
fingerprints, which is appropriate in the FL system [13].
We utilized only two subsets in the dataset: training and
testing. The validation dataset which is needed to calculate
the uncertainty of local models is randomly selected from the
testing dataset by the ratio of 0.2. To divide the local dataset
for distributed learning, we used the labeled training data
which is already categorized by 18 different mobile clients.
We present the localization performance compared to fed-

erated averaging (FedAvg), non-FL models with DNN and
k-nearest neighbor (kNN) with k = 4 [13]. The value k =
4 was the one providing the best performance among several
tested. FedAvg is a typical approach for implementing FL,
where uγ

c in (2) is set to uγ
c = Nγ

c /
∑C

c=1 Nγ
c [17]. In training

the FedAvg and DNN deep learning models, MC dropout
is not considered. Recall that kNN is a machine learning
algorithm that does not employ a NN, which is a standard
method of estimating client location in fingerprint localization
systems. The simulation parameters are shown in Table I.
Also the localization error is defined as root mean squared
error (RMSE).
2) Localization Performance: Fig. 3 presents the localiza-

tion error of the proposed algorithm compared to FedAvg,
DNN and kNN results. In this simulation, the MC dropout
rate of the proposed algorithm is set to 0.1, and the exponent
parameter is α = 2. The kNN shows the worst localization
performance with a value of 7.18 m, where deep learning
based method seems better than conventional methods. Since
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TABLE I

SIMULATION PARAMETERS

there is no process of repeatedly aggregating local model
weights in DNN, the localization error of DNN is a constant
value of 5.61 m over entire rounds. The DNN model has
the optimal localization performance because it is centralized
learning with fingerprints collected by all users. Compared
to DNN and kNN, localization error of two FL approaches
decrease and finally converge to 7.76 m in FedAvg and
6.06 m in the proposed algorithm at round 50. Although the
performance degradation in FL is taken for granted because
clients possess part of the dataset, the proposed algorithm
improves the localization error by applying the reliability of
clients compared to FedAvg.
3) Training Loss and Performance Evaluation With α and

MC Dropout Rate: Fig. 4 shows the training loss for the
training iterations. The proposed scheme considers the same
assumptions as the FedAvg convergence conditions [18]. The
training loss shows that the proposed algorithm can achieve
better performance in terms of convergence time and accuracy,
where the proposed algorithm converges about 2.5 after round
30, and the FedAvg converges 3.4 after round 37. Moreover
the proposed algorithm introduces two system parameters:
exponent parameter α and MC dropout rate. In Fig. 5 and
Fig. 6, we present the impact of the exponent parameter and
MC dropout rate on localization performance. The results of
DNN, FedAvg, and kNN are constant values across those
parameters since they do not depend on those, which is the
same with the Fig. 3. At α = 2, the localization error of the
proposed algorithm is about 5.83 m, which achieves the best
localization performance. For the MC dropout rate, the model
uncertainty increases as the MC dropout ratio, which can lead
to lower accuracy. Through this system parameter analysis,
we observe that the proposed algorithm outperforms FedAvg,
and that proper parameter adjustment can yield to a better
localization performance.

VI. CONCLUSION

In this letter, we propose an improved FL approach by
applying the reliability of mobile clients in the FL localization
system. The reliability is quantified as the predicted variance of
the local models that can be obtained by Bayesian deep learn-
ing. We designed the FL system to compute such approximate
Bayesian deep learning by applying a Monte Carlo dropout for

efficient computation. By introducing such reliability measure
to the FL system, the resulting global model is biased towards
the local model with higher reliability. The proposed approach
can be generally applicable to FL schemes, while this letter
focus on its use within an indoor fingerprinting-based local-
ization system. Our simulation results show that the proposed
algorithm has 1.7 m more accurate localization performance
than the existing approaches.
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