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Quantum sensors are an established technology that has created new opportunities
for precision sensing across the breadth of science. Using entanglement for quantum
enhancement will allow us to construct the next generation of sensors that can
approach the fundamental limits of precision allowed by quantum physics. However,
determining how state-of-the-art sensing platforms may be used to converge to these
ultimate limits is an outstanding challenge. Here we merge concepts from the field of
quantum information processing with metrology, and successfully implement
experimentally a programmable quantum sensor operating close to the fundamental

limitsimposed by the laws of quantum mechanics. We achieve this by using
low-depth, parametrized quantum circuits implementing optimal input states and
measurement operators for a sensing task on a trapped-ion experiment. With 26 ions,
we approach the fundamental sensing limit up to afactor of1.45+ 0.01,
outperforming conventional spin-squeezing with afactor of 1.87 + 0.03. Our approach
reduces the number of averages to reach a given Allan deviation by a factor of

1.59 £ 0.06 compared with traditional methods not using entanglement-enabled
protocols. We further perform on-device quantum-classical feedback optimization to
‘self-calibrate’ the programmable quantum sensor with comparable performance.
This ability illustrates that this next generation of quantum sensor can be used
without previous knowledge of the device or its noise environment.

Quantumsensing, thatis using quantum systems to enable or enhance
sensing, is arguably the most mature quantum technology so far. Quan-
tumsensors have already found applications in many disciplines. Most
ofthese sensors are ‘quantum-enabled’, that is, they use the properties
of aquantumsystem to performametrological task. Such applications
have expanded rapidly in fields such as biology'?, medicine?, chemistry*
or precision navigation® alongside traditional applications in physics
such as inertial sensing®® or timekeeping®. Quantum-enabled sensors
perform close to or at the standard quantum limit (SQL) that originates
from the quantum noise of the classical states used to initialize them.
Thelatest generation of sensing technologies is going beyond the SQL
by using entangled states. These ‘quantum-enhanced’ sensors are used
in gravitational wave astronomy'®, enable the long-standing photo-
damage limit in life science microscopy to be exceeded" and promise
improved atomic clocks'. However, these existing quantum-enhanced
sensors, while beating the SQL, do not come close to what is ultimately
allowed by quantum mechanics®. Convergence to this ultimate bound
is an open challenge in sensing™.

A parallel development in quantum technology that has seen mas-
sive progress alongside quantum sensing is quantum information
processing, pursuing a‘quantum advantage’in computation and simu-
lation on near-term hardware®. A crucial capability that has been devel-
opedinthis contextis the targeted creation of entangled many-body

states'®?°, A promising strategy is to use low-depth variational quan-
tum circuits through hybrid quantum-classical algorithms?*, Inte-
grating this ability to program tailored entanglementinto all aspects
of sensing—including measurement protocols**—will allow the con-
struction of the next generation of sensors, able to closely approach
fundamental sensing limits. The concept of such a ‘programmable
quantum sensor’ can be implemented on a great variety of hardware
platforms, andis applicable to awide range of sensing tasks. Moreover,
their programmability makes such sensors amenable to on-device
variational optimization of their performance, enabling an optimal
usage of entanglement even on noisy and non-universal present-day
quantum hardware.

Here we demonstrate the experimental implementation of a pro-
grammable quantum sensor? performing close to the optimal with
respect to the absolute quantum limit in sensing. We consider optimal
quantuminterferometery ontrappedions asaspecific but highly per-
tinent example that promises applications ranging from improving
atomic clocks and the global positioning system to magnetometry and
inertial sensing. Our general approachis to define a cost function for the
sensing task relative to which optimality is defined. We use low-depth
variational quantum circuits to search for and obtain optimal input
states and measurement operators on the programmable sensor. This
allows usto apply on-device quantum-classical feedback optimization,
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Fig.1|Measurement and feedback concept for variational quantum Ramsey
interferometry circuits. a, Aprogrammable quantum sensor executes a
generalized Ramsey sequence with entangling and decoding unitaries Ug,, and
Upeon N particles. The unitaries are made fromarepeating sequence of sensor
resource gates, here collective qubitrotations R, ,,and infinite-range one-axis
twistings 7, , , with parameter sets {6, 9}. b, Measurement of the collective spinz
projectionresultsinadifference mof particlesin|*)and|V)states. Thisisused
toproduceanestimate of the phase ¢ using alinear phase estimator ¢, with
slopea. Priorknowledge of ¢ is encoded via the distribution P, taken here as

or automatic ‘self-calibration’ of the device, achieving a performance
close to the fundamental optimum.

Optimal quantum interferometry

Our study aims to use optimal Ramsey interferometry to estimate a
phase ¢ (Fig. 1a). In this context, we aim to identify a suitable metro-
logical cost function to quantify optimality. An established metric
here is the mean squared error (MSE(¢)) whose minimization yields
the best average signal-to-noise ratio for phase estimation at fixed
signal. Traditionally, the optimizationis donelocally, thatis, for asmall
neighbourhood of phases around an a priori-specified value. This is
achievedintheFisherinformationapproach, which underlies the dis-
cussion of Ramsey interferometry with squeezed spin states (SSSs)*
and, in particular, Greenberger-Horne-Zeilinger (GHZ) states®. In
thislocal approach, the GHZ states are shown to saturate the so-called
Heisenberg limit*.

By contrast, we are interested in an optimization for a finite phase
range 6¢), given by the desired dynamic range of the interferometer™*.,
This choice is motivated by applications using single-shot measure-
ments such as in atomic clocks™*, We highlight that in frequency esti-
mation applications the phase ¢ acquired during interrogation is not
restricted to the[- 1, ) interval. Therefore the effect of the phase slip-
ping outside this interval has to be taken into account as it leads to a
permanent error in the frequency estimation'*>*, Under these cir-
cumstances, the optimization may be accomplished in a Bayesian
approach to optimal interferometry> in which a prior distribution of
the phase, Ps,(¢), with width 6¢ defined as the standard deviation, is
updated by the measurement to a posterior distribution with smaller
width 4¢. Consequently, as the metrological cost function C we find
the Bayesian MSE (BMSE), C= [ dgMSE(¢)Ps,(¢) (Fig. 1b-e), thatis,
the posterior MSE characterizing the phase probability distribution
giventhe measurement outcome m, the minimum of which we identify
here with (4¢)?. The optimal quantum interferometer (OQI) is thus
obtained by minimization of the cost C, thatis the BMSE, over all entan-
gledinputstates|¢. ), general measurements M and estimator func-
tions qbest(m) (ref.>%). We emphasize that the OQIl with large 6¢ will

Gaussian with variance (6¢)?and zero mean. ¢, The conditional probability

Dy o(mip) = |<m|RX(g)Z/{De(8) e ¥z L{En(G)Ry(g) 14y®¥2 canbe evaluated
numerically or sampledinthe experimentto calculate aMSE withrespect to the
true phase and the used estimator.d, An operational cost function Ccanbe
defined to quantify the interferometer performance for a variational sequence
parameter set {6, 9}. e, Minimization of the cost functionis achieved by
determining new parameter sets{@’, 9} and comparing the associated costs
either on-device or using classical simulation.

differ greatly from SSS or GHZ state-based interferometers, which
optimize for local phase sensitivity 5¢p > O (refs.***3).

Our goal hereisto closely approach the OQl on programmable quan-
tum sensors. We pursue a variational approach to optimal quantum
metrology™ using a limited set of quantum operations available on a
specific sensor platform. We consider a generalized Ramsey interfer-
ometer withan entangling operation U, preparing an entangled state
|, from the initial product state |4 Y®" of N particles, and a decoding
operation Up, transforming a typical observable, for example z projec-
tion of collective spin, into a general measurement (Fig. 1a and the
Methods section ‘Variational Ramsey interferometer’). The variational
approach consists of an ansatz in which both ¢4, and U4, are approxi-
mated by low-depth quantum circuits. These are built from ‘layers’ of
basic resource gates, which are given here by collective Rabi oscillations
(qubit rotations) and collective entangling operations, commonly
calledinfinite-range one-axis twisting interactions* (see the Methods
section ‘Ramsey sequence’; equation (9)) owing to their action on the
Bloch sphere. These resources are available in many atomic or
trapped-ion systems'>*. A quantum sensor is then programmed by
specifying variational quantum circuits through 4;,(8) and U.(9),
consisting of ng,and np, ‘layers’, respectively. These circuits define the
conditional probability p6’19(m|¢), which describes the statistics of
measurement outcomes m given an input phase ¢. Together with a
choice of phase estimator ¢, (m), it determines the MSE, and in turn,
together with the prior P, it also determines the cost function C. By
varying the parameter vectors @ and & we can therefore optimize the
programmable quantum sensor for a given sensor platform and task.
We refer to the section Variational Ramsey interferometer in the
Methods for atechnical summary and to ref.™. for details and intuitive
explanation of the method.

Weimplement the optimal Ramsey interferometry mentioned ona
compact trapped-ion quantum computing platform”. This platform
isused as a programmable quantum sensor, in which a linear chain of
upto26*°Ca*ionsishostedinaPaultrap. Optical qubits areencodedin
thegroundstatel4 S, ,, m;=-1/2)andexcitedstate|3 D,,,, m;=-1/2),
which are connected through an electric quadrupole clock transition
near 729 nm. Technical details of the implementation can be found in
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Fig.2|Generalized Ramsey sequence performance measurements. Markers
areexperimental datawith 1o statistical uncertainties and solid lines are from
theorywithno free parameters.a, Al6ion chainexpectation value of spin
operator{/,)/hasafunctionof evaluation pulse phase ¢. Fifty experiments are
averaged per point, and five full traces are recorded to calculate the mean and
standard deviation of each curve. b, MSE calculated from tracesin a for optimal
linear estimator ¢, .. Overlaid ingrey is the prior distribution Psy(¢p) with
6¢=0.79 (minimum of BMSE versus 6@). ¢, Ap/6¢ as afunction of prior width
S¢for12ionsinthefourvariational sequences. The blueshaded region
corresponds roughly to classical Ramsey sequences. Thered shaded regionis

the Supplementary Information, in particular state preparation and
readout (Supplementary Methods section 1), implementation and
calibration of unitaries using the Mglmer-Sgrensen interaction (Sup-
plementary Methods 2) and technical restrictions imposed on the
scheme (Supplementary Methods 3).

We study the performance of the variationally optimized Ramsey
sequences for four different choices of entangling and decoding layer
depths (ng,, np.) generating four distinct circuits: (0, 0) being a classi-
cal coherent spin state (CSS) interferometer as the baseline com-
parison. All other sequences have been variationally optimized, with
(1,0) being similar to a SSSinterferometer?, (0,2) witha CSSinput state
and tailored measurement and finally (1,2) with both tailored input
and measurement.

Direct theoretical parameterimplementation

Following the execution of a Ramsey sequence (equation (1) in the
Methods section ‘Variational Ramsey interferometer’, or Supplemen-
tary Methods 2) we perform projective measurements at different
Ramsey phases ¢ toreconstruct the expectation value of the total spin
zprojection, /, (Fig.2a). From the measurements we construct the MSE
(Fig. 2b) using the linear estimator function ¢, = am withslope a,
which minimizes the cost function C obtained fromintegration accord-
ingtoequation (4) (see Supplementary Methods 4 and Supplementary
Table1for the calculation, and Supplementary Discussion 9 for discus-
sion of other estimators). Qualitatively, Ramsey sequences with input
state squeezing (g, > 0) dip below the CSS around ¢ = 0, as seen in
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inaccessible to single-shot measurement schemes, where the boundary
corresponds to the OQI**. Each point is produced by numerically integrating
curvesasinbover¢asperequation (2). The OQl, the SQL and the phase slip
limit (PSL) are indicated by black lines (Bounds on BMSE). The inset shows

A /6¢ as afunction of particlenumber at the prior widthindicated by the
dashedline. N=16 points calculated fromdatainb.d, Allan deviation
normalized to noise bandwidth b,, averaging time rand reference frequency w,
asafunction of prior width with PSL, SQL, Heisenberg limit (HL) and optimal
quantum clock based onthe OQl areindicated by black lines (Allan deviation).
Raw data, colour scheme and markers fromec.

Fig. 2b. This dip is a manifestation of reduced projection noise.
Sequences with optimized measurement operators (n,, > 0) show a
broader range of ¢ values for which the MSE is comparabletothe ¢ = 0
value. This is a consequence of the enhanced dynamic range that the
non-trivial decoding unitariesimpart: thatis, the range over which the
expectationvalue(J,)/hremains well-approximated by the linear esti-
mator (Fig. 2a). Combining tailored input and measurements
(ngy, npe > 0) yields an MSE that is both lower and wider than the CSS
baseline.

Tostudy this behaviour quantitatively asafunction of the prior width
6¢ and particle number N, we calculate the BMSE scaled to the prior
width 6¢) used. This is a convenient measure as 6¢ encapsulates prior
knowledge of ¢ and A¢ encapsulates posterior knowledge after meas-
urement. Theirratio 4¢p/6¢p is therefore bounded on theinterval [0, 1].
We investigate this quantity for 6¢ € [0.2,1]rad as a representative
sample of the parameter space, because no information is gained as
6¢ ~> 0, owing to quantum projection noise overwhelming the signal,
or ¢ > 1, owing to phase slips outside the interval of unambiguous
phase estimation (Fig. 2c). For more details, see the section ‘Bounds
on BMSE’in the Methods.

All variationally optimized sequences outperform the CSS in this
measure (Fig. 2c). The effect of change indynamicrangeis evidentinthe
location of a sequence’s minimum. Minima of sequences with decod-
ing layers shift towards larger prior widths with respect to the CSS,
whereas for the direct spin-squeezing (1,0) they shift towards smaller
values. Sequences with a larger number of operations deviate more
strongly fromthe theoretical predictions due to accumulation of gate



Table 1| Comparison of measured values of A¢/d¢ at two
values of 5¢p corresponding to the minima of the (1,0)
(smaller 3¢) and (1,2) (larger 5¢p) scheme, respectively

N=12 N=26
3¢ 0.6893 0.792 0.5480 0.7403
(0,0) -3.56+£0.03 -3.63+0.08 -3.22+0.03 -4.53+0.03
(1,0) -4.61+0.12 -4.34+£0.04 -5.63+0.07 -5.39+£0.02
(1,2) -5.06+0.11 -518+0.08 -5.84+0.09 -6.75+0.02
oQl -5.86 -8.36

Note that the location of the minimum for (1,2) and (0,0) is identical to within the measurement
resolution presented. For reference, the minimum of the OQI (border to shaded red region in
Fig. 2c) is also given. Values are given in dB.

errors. Thisbehaviour is consistent across arange of particle numbers
(Fig.2cinset). The deviation decreases as the systemssize decreases. We
attribute this to the decrease in the fidelity of entangling operations”.

The (1,2) scheme outperformsall others despite the increased com-
plexity. In particular, it outperforms the simple spin-squeezing (1,0)
scheme at both the optimal 6¢ for (1,2) and (1,0) approaching the OQI
closely (Table 1). Specifically, for 26 particles and at their respective
optimal prior widths, the (1,0) sequence approaches the OQlup to a
factor of 1.87 £ 0.03 (or 2.73 £ 0.07 dB), and the (1,2) sequence up toa
factor of1.45+0.01 (or1.61+ 0.02 dB). At this optimal prior width, the
(1,2) sequence would reduce the required number of averages to achieve
the same Allan deviation as a classical Ramsey sequence by a factor of
1.59 £0.06. A pictorialinterpretation, in terms of the Wigner distribu-
tion, of the optimized (optimal) interferometer can be found in ref. ™,

ForatomicclocksettingsA¢ canberescaledto calculatethe Allan devi-
ation of adeadtime-free clock (see Methods section ‘Allan deviation’),
asshownin Fig. 2d given the same raw data.

On-device feedback optimization

We further investigate the parameter ‘self-calibration’ of the scheme
in a regime in which manual calibration is challenging, such that we
expectdirect application of theoretically optimal angles to no longer
perform well. In particular, this is a regime in which accurately

calibrating the twisting parametersin (8, 9) is no longer feasible. Min-
imization of the cost functionis therefore achieved by afeedback loop
inwhichaclassical optimization routine proposes new parameter sets
totrial onthe basis of measurements performed onthe quantumsen-
sor. We use a global, gradient-free optimization routine with aninter-
nal representation or ‘meta-model’ of the cost function (Supplementary
Methods 5).

The meta-model uses the known structure of the resource opera-
tions to learn an estimate of the cost function landscape on the
basis of the measurements, as seen in Fig. 3a for a 26-ion chain and
the (1,2) circuit. Calibration of twisting angles is performed at a
lower ion number (20), and then approximately scaled to the larger
number. The cost function estimates are below the competing CSS
(0,0) and direct spin-squeezing (1,0) after approximately 20 measure-
ments despite thislack in accurate calibration. A full iteration of the
algorithm is completed after approximately 50 measurements in
Fig. 3a.

Measurement points that the algorithm deems promising candi-
dates foraminimumare resampled using ‘fine’ scans (Supplementary
Methods 6). Fine scans serve to increase the algorithm’s confidence
about predictions made on sparse data by better sampling and relax-
ing symmetry assumptions of ‘coarse’ scans. Fine scans show conver-
gence towards the theoretical optimum as the algorithm progresses
(Fig.3b). Convergenceis achieved more rapidly for the (1,0) sequence
(Fig. 3¢) because of the lower number of variational parameters and
the consequently smaller parameter space. This convergence in both
sequences, despite theinability to accurately calibrate, is amanifesta-
tion of the optimizer’s ability to learn and correct for correlated gate
(calibration) errors.

Frequency estimation

Allmeasurements up to this stage were taken by driving rotations R ,(¢)
with resonant laser pulses as a consequence of our technical imple-
mentation (Supplementary Methods 2). This allows for deterministic
mapping of the ¢ space, but in atomic clock experiments the phase ¢
would instead be imparted by the residual detuning of the drive from
the atomic reference under the influence of noise. To gauge the per-
formance of a clock, we perform frequency estimation experiments.
We calculate the variance of the frequency estimator from the known
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Fig.3|0n-device hybrid quantum-classical optimization performance
with26ionsaté¢p = 0.74 (minimum BMSE versus 6¢). All error bars are 1o
statistical uncertainties. a, Optimizer cost function Casafunction of
measurementindex (runs). The estimate is based onintegration using ten
Hermite-Gauss nodes (Supplementary Methods 4) and 100 repetitions per
point. Dashed linesindicate the achievable performance with theindicated

Phase ¢ of evolution pulse (rad)

sequences. Red crosses correspond to the automated fine scans displayedinb.
b, Automated fine scans (see Supplementary Methods 6) of the MSE with

20 nodesand 250 repetitions for three measurementindices. ¢, Analogous fine
scans from the optimizer runusing the (1,0) sequence. Estimates are based on
21nodesand 250 repetitions per point.
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Fig.4|Frequency measurementusing12ions withastandard and
variationally optimized Ramsey sequence. The standard deviation of the
difference betweenknowninjected and estimated frequency detuning.
Markers are experimental data with uncertainty (finite sampling and
projection noise) (see Supplementary Methods 7). Dashed lines are theoretical
simulations with no free parameters, solid lines show a simulation of
measurement performance including aresidual laser flicker noise of

b, =21 x 6 Hzand shadingindicates the error margin of the simulation.

injected noise for astandard CSSinterferometer and the (1,2) interfer-
ometer optimized for a prior width 6¢ =0.69 (Supplementary
Methods 7).

The optimized sequence outperforms the CSS for all considered
Ramsey times (Fig. 4). In particular, this demonstrates robustness of
the scheme with respect to variationsin the prior width (Ramsey time,
Supplementary Methods 8). The deviation between experimental and
theoretical predictions can be explained by two observations. First,
we independently measured predominantly frequency flicker noise
of bandwidth b, = 21t x 6 Hz (Supplementary Methods 7) on the laser,
whichis not presentin the simple simulation. Second, the MSE used in
the simulation is the ideal, theoretically achievable one, whereas the
experiment has deviations from the theory such asin Fig. 2b. Simulat-
ing the metrology experiments with these additional noise sources
restores agood match between data and prediction. We note that this
problem is not apparent in the BMSE or the Allan variance plots
(Fig. 2c, d) because it arises solely in the R, operation we use here,
whereas ¢ was imparted by R, in those plots.

Discussion and outlook

Intermediate-scale quantum devices, acting as quantum sensors, pro-
videthetoolsetto program entanglement and collective measurements
to approach the ultimate limits of parameter estimation compatible
withthe laws of quantum physics. The present work has demonstrated
the programming of a close-to-optimal quantum interferometer with
(upto) N=26 entangled atoms onatrapped-ion quantum computer. A
key element of our work has beento identify a pathway towards optimal
quantumsensing by formulating it as a variational quantum algorithm,
inwhich circuits of increasing depths allow convergence towards the
ultimate sensing limit. This limit is approached by optimizing the cir-
cuits using a task-specific cost function. The shallow quantum circuits
used here arebuilt fromnative, imperfect trapped-ion quantum opera-
tions and are already shown to yield results close to optimal metrol-
ogy. Inabroader context, this suggests that the variational approach
to optimal quantum sensing is both flexible and hardware efficient.
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When combined with the linearly growing solution Hilbert space, this
indicates the potential to scale to significantly larger particle numbers.

Variational optimal metrology isimmediately applicable to awide
range of sensing tasks. Our demonstration of generalized Ramsey
interferometry is relevant for atomic clocks, and we discuss the pro-
jected gains in Allan deviation in the Supplementary Discussion 10.
Furthermore, the prevalence of Ramsey interferometry in metrology
renders our approach relevant to the measurement of magnetic fields®,
inertia¥, displacement and electric fields*, as well as force measure-
ments®. Even though we demonstrated quantum estimation of asingle
parameter here, the present technique of variational optimal metrology
readily generalizes to the multi-parameter case*’.

Furthermore, our approach is immediately applicable to other
sensing platforms. Variational quantum metrology can, for exam-
ple, be implemented on programmable quantum simulators” with
well-established capabilities, in particular in higher spatial dimensions.
Although these readily scale to large particle numbers, they provide
only non-universal entanglement operations through finite-range
interactions. The ‘on-device’ optimization of the metrological cost
function, as demonstrated in the present work, does not just serve to
find optimal input states and measurement protocolsin the presence of
‘real-world’ device imperfections and noise. It thenalso addresses the
underlying computationally hard problem of preparation and manipu-
lation of many-body quantum states. For increasing particle numbers
this provides an example of a quantum device operating in a regime
of relevant quantum advantage, in which many-body quantum states
are both prepared and subsequently exploited in optimal metrology.
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Methods

Variational Ramsey interferometer

In variational Ramsey interferometry, the quantum sensor is initially
preparedinthe collective spindown state, and it subsequently executes
the variational Ramsey sequence given by

L

Ue(,,9) = RX( ’

juDe<s)Rz<¢)uEn(omy(g) W

where R, , , are collective Rabi oscillations, and U;,(8) and Up(8) are
entangling and decoding circuits, respectively, with control parameters
6 and 9 (see section Ramsey sequence). In between the two operations,
thesensorinteracts with an externalfield thatimprintsa phase ¢ ontothe
constituent particles. Itisimportant to note that the Ramsey sequence is
2mn-periodicin ¢ and hence phases can only be distinguished modulo 21t.

After executing Uy(¢, 6, 9), we perform projective measurements
of the collective spin yielding outcomes m (difference of particles in
[?>and|¥)). The phase ¢ is estimated from m by means of alinear phase
estimator ¢, (m) =am, which is optimal for the variational interfer-
ometer™ and near-optimal for CSS and SSS interferometers at the
particle numbers considered here*'. We provide a quantitative com-
parison between the different estimation functions in Supplementary
Discussion 9.

The goalis to find parameters 8, 9 and a that give the best possible
performance of the sensor. The performance of the sensor intended
to correctly measure agiven phase ¢ can be quantified by the MSE

MSE(@) = Y [~ 0, (m) | By, (i), o)

where
Py, o(ml®) = mitie(, 8, )14V 2 3)

isthe probability of observing ameasurement outcome mgiven ¢, for
given circuit parameters @and 9.

In Bayesian phase estimation we are interested in a sensor that per-
forms well for arange of phases ¢, occurring according to a prior dis-
tribution Pg,(¢p). We assume Pgy(¢p) tobe a normal distribution with
variance (6¢)? and zero mean throughout, whichisa choice particularly
relevant for applications such as atomic clocks. Note that the normal
distribution has a finite probability for phase slips outside the unam-
biguous phase interval, determined by the period of /4;. Phase slips
contribute to the MSE, and dominate for 6¢ = 1 (see section ‘Bounds
on BMSE’).

Ameaningful cost function for the sensor’s overall performanceisthe
average MSE, weighted according to the prior phase distribution Pg,,

C(6,9,0)= [ dpMSE(¢, 8, 9)Ps(0), )

known as the BMSE.

In this work, the parameters (0, 9, a) are optimized with respect to
the cost function C, either numerically (Fig. 2) or on-device in a varia-
tional feedback loop (Fig. 3). For on-device optimization, the param-
eter ais held fixed at the numerically calculated optimal value.

To evaluate the cost function Cin the variational feedback loop, we
run the Ramsey sequence while exposing the sensor to a sequence of
knowninjected phases ¢.. The cost function value is then estimated as

c0,9,a)~ Z MSE(9,) Ps,( @) w;, )

where w; are Hermite Gaussian integration weights (Supplementary
Methods 4).

The minimum of the cost function (4¢))* = ming 4 ,C canbe inter-
preted*as

4p)*~ % 4¢,)’p(m) (6)

that is, the variances(Agl)m)2 of the posterior distributions p(¢|m)
averaged according to the probability p(m)of observing the measure-
ment outcome m. Therefore, we refer to A¢ as the posterior width.

Ramsey sequence
Following ref. ™, the explicit forms of the entangling and decoding
unitaries are

Ngn
Usn= [1 RAODTAONT,(6)) %)
k=1
o 1 2 3
Upe= [1 T TP Rx(90)- ®)
k=1
Here R, , , are collective Rabi oscillations and 7, , , are one-axis

twisting operations. Mathematically, these operations can be repre-
sented as

Rx,y,z(ﬁ) = e-iﬁ!x,y,z’ Tx,y,z(X) = e—i)(jf(,y,, 9

where fand y are angles that depend on the interaction strength and
time and Je, are collective spin operators in the Cartesian basis. We
denote the collection of the three operations in equations (7) and (8)
with the same subscript as one layer, and we denote by ng,and np, the
number of entangling and decoding layers, respectively.

Effects of resourcerestrictions

Theglobally optimal variational parameter sets depend on theion num-
ber via the prior width. However, we may additionally restrict them on
the basis of platform constraints of a fundamental or practical nature
tofind sets optimal with respect to device capabilities. This adds to the
adaptability inherent to the scheme: we tailor the cost function to the
sensingtask and the sequence resources, whereas parameter ranges are
constrained by the experimental hardware. When combined, this assists
with assessing and interpretation of attainable results given real-world
constraints.

Furthermore, in systems of moderate size of order 50 and above this
leads to the Allan deviation scaling down with particle number N or
Ramsey time T at close to the (ri-corrected) Heisenberg limit®**uptoa
logarithmic correction™**, Thisis of great practical use in situationsin
which measurements are made with afixed budget in particle number
or measurement time.

Bounds on BMSE

Inthe Bayesian framework, abound onthe BMSE in the limit of anarrow
prior, 6¢p < 1, isimposed by quantum measurement fluctuations as
captured by van Trees’ inequality®,

1
Fy+T

(4p)?* > (10)

Here the first term in the denominator is the Fisher information of
the conditional probability, f, =%, [0, log P(m|@)1*p(m|¢), averaged
over the prior distribution, F, :Id¢P(¢)F¢ .The second term s the
Fisherinformation of the prior distribution, I:jd¢P(¢)[6¢logP(¢)]z,
representing the prior knowledge.

For pure states of Nspin-1/2 particles, that s, in the absence of deco-
herence, the Fisher informationislimited by F, < N2 which defines the



Heisenberg limit®. In the case of uncorrelated states of atoms, the
Fisher information limit reads F, < N and corresponds to the SQL*.
This results in SQL and Heisenberg limits on the BMSE, which read,
respectively,

Ay =IN+(5¢) 717, 1)

Ap,,)* = IN*+ (617 12)

Here we used the Fisher information of a normal distribution with
variance((‘)‘q))2 forthe priorandandthus Z= (6(1))‘2. Equations (11) and
(12) define the corresponding limits in Fig. 2c, d.

One can similarly define the m-corrected Heisenberg limit"™ for the
BMSE. This fundamental limit, however, is a tight lower bound only
asymptotically in the number of atoms N. It becomes applicable for
particle numbers, N2 100, far beyond the size of our present experi-
ment. Further details can be found in ref. ™.

Adifferent kind of bound on the BMSE arises in the limit of large prior
widths, ¢ = 1, which we denote as the phase slip limit (PSL). The PSL
is caused by phase slipping outside the interval of unambiguous phase
estimation because of the tails of the prior distribution extending
beyond the phaseinterval[ - 1, Tt). We model the PSL as

oo -1 1
(A, )= ((zmlxzj“n do 7:54,(@] 02| 13)

which is composed of the probability of phase slipping outside the
[- T, ) interval multiplied by the minimum squared error of (21r)%asso-
ciated with the slip. The PSL gives rise to the increase of the A¢/6¢
values até¢ = 1inFig. 3¢, d.

Allan deviation
In atomic clock settings, the (Gaussian) prior distribution width 6¢
canberelated to the experimental system parameters, specifically the
width of the distribution of expected phases after aRamsey interroga-
tion time T subject to anoisy reference laser™. For anoise power spec-
tral density S(f) «fl_“ of bandwidth b, the functional formis given by
60 = (b, Tp)™". (14)
On the basis of this equation, we can link the BMSE (4¢)? to the
Allan deviation as an established figure of merit in frequency metrol-
ogy. For clock operation without deadtime, and withan averaging time
7, the Allan deviation o(7) is given by

A A
o(1) = Lﬂ JLT - L ¢M
w, R T wTxdn

(15)

(16)

where 4¢,, is the effective measurement uncertainty of one cycle of
clock operation*. Here n=t/Ty is the number of measurements per
averaging time, and w, is the (atomic) reference frequency. For a vari-
ational Ramsey sequence without decoder, that is, np, = 0, and in the
limitofsmall6¢, A¢,,is determined by the Wineland squeezing param-
eter’ &, thatis, 4p,, > &,/~/N.The equality holds as long as the Allan
deviation is dominated by projection noise and will break down once
the contribution from laser coherence becomes appreciable.

Data availability

All data obtained in the study are available from the corresponding
author upon request. Source data are provided with this paper.

41.  André, A., Serensen, A. & Lukin, M. Stability of atomic clocks based on entangled atoms.
Phys. Rev. Lett. 92, 230801(2004).

42. Demkowicz-Dobrzanski, R., Jarzyna, M. & Kotodynski, J. Quantum Limits in Optical
Interferometry Vol. 60 of Progress in Optics (Elsevier, 2015).

43. Chabuda, K., Dziarmaga, J., Osborne, T. J. & Demkowicz-Dobrzatski, R. Tensor-network
approach for quantum metrology in many-body quantum systems. Nat. Commun. 11, 250
(2020).

44. Borregaard, J. & Sgrensen, A. S. Near-Heisenberg-limited atomic clocks in the presence
of decoherence. Phys. Rev. Lett. 111, 090801 (2013).

45. Trees, H. L. V. Detection, Estimation and Modulation (Wiley, 1968).

46. Leroux, I. D. et al. On-line estimation of local oscillator noise and optimisation of servo
parameters in atomic clocks. Metrologia 54, 307 (2017).

47.  Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. Squeezed atomic states and
projection noise in spectroscopy. Phys. Rev. A. 50, 67-88 (1994).

Acknowledgements We acknowledge funding from the EU H2020-FETFLAG-2018-03 under
grant agreement no. 820495. We also acknowledge support by the Austrian Science Fund
(FWF), through the SFB BeyondC (FWF Project No. F7109), and the IQI GmbH. P.S.
acknowledges support from the Austrian Research Promotion Agency (FFG) contract 872766.
P.S., .M. and R.B. acknowledge funding by the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects Activity (IARPA), through US ARO grant no.
W91TINF-16-1-0070 and W9O1INF-20-1-0007, and the US Air Force Office of Scientific Research
(AFOSR) via IOE grant no. FA9550-19-1-7044 LASCEM. R.K., DV.V. and P.Z. are supported by the
US Air Force Office of Scientific Research (AFOSR) through IOE grant no. FA9550-19-1-7044
LASCEM, DV by a joint-project grant from the FWF (grant no. 104426, RSF/Russia 2019), R.v.B
and P.Z. by the European Union’s Horizon 2020 research and innovation programme under
grant agreement no. 817482 (PASQuanS) and R.v.B by the Austrian Research Promotion Agency
(FFG) contract 884471 (ELQO). P.Z. acknowledges funding by the the European Union’s Horizon
2020 research and innovation programme under grant agreement no. 731473 (QuantERA
through QTFLAG), and by the Simons Collaboration on Ultra-Quantum Matter, which is a grant
from the Simons Foundation (651440). Innsbruck theory is a member of the NSF Quantum
Leap Challenge Institute Q-Sense. The computational results presented here have been
achieved (in part) using the LEO HPC infrastructure of the University of Innsbruck. All
statements of fact, opinions or conclusions contained herein are those of the authors and
should not be construed as representing the official views or policies of the funding agencies.

Author contributions Ch.D.M. was the lead writer of the manuscript with assistance from R.K.,
DVV., Rv.B.and P.Z., and input from all coauthors. Ch.D.M., T.F. and I.P. built the experiment.
Ch.D.M. and T.F. performed measurements. R.K., DVV. and P.Z. conceived of the method and
provided theory. R.K. and R.v.B. developed the optimizer routines and implementation. Ch.D.M.
and R.K. analysed the data. P.S., R.B. and T.M. supervised the experiment.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-022-04435-4.

Correspondence and requests for materials should be addressed to Thomas Monz.

Peer review information Nature thanks the anonymous reviewers for their contribution to the
peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.


https://doi.org/10.1038/s41586-022-04435-4
http://www.nature.com/reprints

	Optimal metrology with programmable quantum sensors

	Optimal quantum interferometry

	Direct theoretical parameter implementation

	On-device feedback optimization

	Frequency estimation

	Discussion and outlook

	Online content

	Fig. 1 Measurement and feedback concept for variational quantum Ramsey interferometry circuits.
	Fig. 2 Generalized Ramsey sequence performance measurements.
	Fig. 3 On-device hybrid quantum-classical optimization performance with 26 ions at (minimum BMSE versus δϕ).
	Fig. 4 Frequency measurement using 12 ions with a standard and variationally optimized Ramsey sequence.
	Table 1 Comparison of measured values of at two values of corresponding to the minima of the (1,0) (smaller ) and (1,2) (larger ) scheme, respectively.




