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Optimal metrology with programmable 
quantum sensors

Christian D. Marciniak1,5, Thomas Feldker1,5, Ivan Pogorelov1, Raphael Kaubruegger2,3, 
Denis V. Vasilyev2,3, Rick van Bijnen2,3, Philipp Schindler1, Peter Zoller2,3, Rainer Blatt1,2 & 
Thomas Monz1,4 ✉

Quantum sensors are an established technology that has created new opportunities 
for precision sensing across the breadth of science. Using entanglement for quantum 
enhancement will allow us to construct the next generation of sensors that can 
approach the fundamental limits of precision allowed by quantum physics. However, 
determining how state-of-the-art sensing platforms may be used to converge to these 
ultimate limits is an outstanding challenge. Here we merge concepts from the field of 
quantum information processing with metrology, and successfully implement 
experimentally a programmable quantum sensor operating close to the fundamental 
limits imposed by the laws of quantum mechanics. We achieve this by using 
low-depth, parametrized quantum circuits implementing optimal input states and 
measurement operators for a sensing task on a trapped-ion experiment. With 26 ions, 
we approach the fundamental sensing limit up to a factor of 1.45 ± 0.01, 
outperforming conventional spin-squeezing with a factor of 1.87 ± 0.03. Our approach 
reduces the number of averages to reach a given Allan deviation by a factor of 
1.59 ± 0.06 compared with traditional methods not using entanglement-enabled 
protocols. We further perform on-device quantum-classical feedback optimization to 
‘self-calibrate’ the programmable quantum sensor with comparable performance. 
This ability illustrates that this next generation of quantum sensor can be used 
without previous knowledge of the device or its noise environment.

Quantum sensing, that is using quantum systems to enable or enhance 
sensing, is arguably the most mature quantum technology so far. Quan-
tum sensors have already found applications in many disciplines. Most 
of these sensors are ‘quantum-enabled’, that is, they use the properties 
of a quantum system to perform a metrological task. Such applications 
have expanded rapidly in fields such as biology1,2, medicine3, chemistry4 
or precision navigation5 alongside traditional applications in physics 
such as inertial sensing6–8 or timekeeping9. Quantum-enabled sensors 
perform close to or at the standard quantum limit (SQL) that originates 
from the quantum noise of the classical states used to initialize them. 
The latest generation of sensing technologies is going beyond the SQL 
by using entangled states. These ‘quantum-enhanced’ sensors are used 
in gravitational wave astronomy10, enable the long-standing photo-
damage limit in life science microscopy to be exceeded11 and promise 
improved atomic clocks12. However, these existing quantum-enhanced 
sensors, while beating the SQL, do not come close to what is ultimately 
allowed by quantum mechanics13. Convergence to this ultimate bound 
is an open challenge in sensing14.

A parallel development in quantum technology that has seen mas-
sive progress alongside quantum sensing is quantum information 
processing, pursuing a ‘quantum advantage’ in computation and simu-
lation on near-term hardware15. A crucial capability that has been devel-
oped in this context is the targeted creation of entangled many-body 

states16–20. A promising strategy is to use low-depth variational quan-
tum circuits through hybrid quantum-classical algorithms21–24. Inte-
grating this ability to program tailored entanglement into all aspects 
of sensing—including measurement protocols25,26—will allow the con-
struction of the next generation of sensors, able to closely approach 
fundamental sensing limits. The concept of such a ‘programmable 
quantum sensor’ can be implemented on a great variety of hardware 
platforms, and is applicable to a wide range of sensing tasks. Moreover, 
their programmability makes such sensors amenable to on-device 
variational optimization of their performance, enabling an optimal 
usage of entanglement even on noisy and non-universal present-day 
quantum hardware.

Here we demonstrate the experimental implementation of a pro-
grammable quantum sensor27 performing close to the optimal with 
respect to the absolute quantum limit in sensing. We consider optimal 
quantum interferometery on trapped ions as a specific but highly per-
tinent example that promises applications ranging from improving 
atomic clocks and the global positioning system to magnetometry and 
inertial sensing. Our general approach is to define a cost function for the 
sensing task relative to which optimality is defined. We use low-depth 
variational quantum circuits to search for and obtain optimal input 
states and measurement operators on the programmable sensor. This 
allows us to apply on-device quantum-classical feedback optimization, 
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or automatic ‘self-calibration’ of the device, achieving a performance 
close to the fundamental optimum.

Optimal quantum interferometry
Our study aims to use optimal Ramsey interferometry to estimate a 
phase ϕ (Fig. 1a). In this context, we aim to identify a suitable metro-
logical cost function to quantify optimality. An established metric 
here is the mean squared error (MSE(ϕ)) whose minimization yields 
the best average signal-to-noise ratio for phase estimation at fixed 
signal. Traditionally, the optimization is done locally, that is, for a small 
neighbourhood of phases around an a priori-specified value. This is 
achieved in the Fisher information approach, which underlies the dis-
cussion of Ramsey interferometry with squeezed spin states (SSSs)28 
and, in particular, Greenberger–Horne–Zeilinger (GHZ) states29. In 
this local approach, the GHZ states are shown to saturate the so-called 
Heisenberg limit30.

By contrast, we are interested in an optimization for a finite phase 
range δϕ, given by the desired dynamic range of the interferometer13,31. 
This choice is motivated by applications using single-shot measure-
ments such as in atomic clocks14,32. We highlight that in frequency esti-
mation applications the phase ϕ acquired during interrogation is not 
restricted to the [− π, π) interval. Therefore the effect of the phase slip-
ping outside this interval has to be taken into account as it leads to a 
permanent error in the frequency estimation14,32,33. Under these cir-
cumstances, the optimization may be accomplished in a Bayesian 
approach to optimal interferometry33 in which a prior distribution of 
the phase, P ϕ( )δϕ , with width δϕ defined as the standard deviation, is 
updated by the measurement to a posterior distribution with smaller 
width Δϕ. Consequently, as the metrological cost function C we find 
the Bayesian MSE (BMSE), ∫ ϕ ϕ ϕ≡ d MSE( ) ( )δϕC P  (Fig. 1b–e), that is, 
the posterior MSE characterizing the phase probability distribution 
given the measurement outcome m, the minimum of which we identify 
here with Δϕ( )2. The optimal quantum interferometer (OQI) is thus 
obtained by minimization of the cost C, that is the BMSE, over all entan-
gled input states ψ| ⟩in , general measurements M and estimator func-
tions ϕ m( )est  (ref. 33). We emphasize that the OQI with large δϕ will 

differ greatly from SSS or GHZ state-based interferometers, which 
optimize for local phase sensitivity δϕ → 0 (refs. 14,33).

Our goal here is to closely approach the OQI on programmable quan-
tum sensors. We pursue a variational approach to optimal quantum 
metrology14 using a limited set of quantum operations available on a 
specific sensor platform. We consider a generalized Ramsey interfer-
ometer with an entangling operation EnU  preparing an entangled state 
ψ| ⟩in  from the initial product state ↓ N⊗  of N particles, and a decoding 
operation DeU  transforming a typical observable, for example z projec-
tion of collective spin, into a general measurement (Fig. 1a and the 
Methods section ‘Variational Ramsey interferometer’). The variational 
approach consists of an ansatz in which both EnU  and DeU  are approxi-
mated by low-depth quantum circuits. These are built from ‘layers’ of 
basic resource gates, which are given here by collective Rabi oscillations 
(qubit rotations) and collective entangling operations, commonly 
called infinite-range one-axis twisting interactions34 (see the Methods 
section ‘Ramsey sequence’; equation (9)) owing to their action on the 
Bloch sphere. These resources are available in many atomic or 
trapped-ion systems12,35. A quantum sensor is then programmed by 
specifying variational quantum circuits through θU ( )En  and ( )DeU ϑ , 
consisting of nEn and nDe ‘layers’, respectively. These circuits define the 
conditional probability θ ϑp m ϕ( | ),

, which describes the statistics of 
measurement outcomes m given an input phase ϕ. Together with a 
choice of phase estimator ϕ m( )est , it determines the MSE, and in turn, 
together with the prior δϕP , it also determines the cost function C. By 
varying the parameter vectors θ and ϑ we can therefore optimize the 
programmable quantum sensor for a given sensor platform and task. 
We refer to the section Variational Ramsey interferometer in the  
Methods for a technical summary and to ref. 14. for details and intuitive 
explanation of the method.

We implement the optimal Ramsey interferometry mentioned on a 
compact trapped-ion quantum computing platform17. This platform 
is used as a programmable quantum sensor, in which a linear chain of 
up to 26 40Ca+ ions is hosted in a Paul trap. Optical qubits are encoded in  
the ground state  S m|4 , = − 1/2⟩J1/2  and excited state  D m|3 , = − 1/2⟩,J1/2
which are connected through an electric quadrupole clock transition 
near 729 nm. Technical details of the implementation can be found in 
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the Supplementary Information, in particular state preparation and 
readout (Supplementary Methods section 1), implementation and 
calibration of unitaries using the Mølmer–Sørensen interaction (Sup-
plementary Methods 2) and technical restrictions imposed on the 
scheme (Supplementary Methods 3).

We study the performance of the variationally optimized Ramsey 
sequences for four different choices of entangling and decoding layer 
depths n n( , )En De  generating four distinct circuits: (0, 0) being a classi-
cal coherent spin state (CSS) interferometer30 as the baseline com-
parison. All other sequences have been variationally optimized, with 
(1,0) being similar to a SSS interferometer30, (0,2) with a CSS input state 
and tailored measurement and finally (1,2) with both tailored input 
and measurement.

Direct theoretical parameter implementation
Following the execution of a Ramsey sequence (equation (1) in the 
Methods section ‘Variational Ramsey interferometer’, or Supplemen-
tary Methods 2) we perform projective measurements at different 
Ramsey phases ϕ to reconstruct the expectation value of the total spin 
z projection, Jz (Fig. 2a). From the measurements we construct the MSE 
(Fig. 2b) using the linear estimator function ϕ am=est  with slope a, 
which minimizes the cost function C obtained from integration accord-
ing to equation (4) (see Supplementary Methods 4 and Supplementary 
Table 1 for the calculation, and Supplementary Discussion 9 for discus-
sion of other estimators). Qualitatively, Ramsey sequences with input 
state squeezing n( > 0)En  dip below the CSS around ϕ = 0, as seen in 

Fig. 2b. This dip is a manifestation of reduced projection noise. 
Sequences with optimized measurement operators n( > 0)De  show a 
broader range of ϕ values for which the MSE is comparable to the ϕ = 0 
value. This is a consequence of the enhanced dynamic range that the 
non-trivial decoding unitaries impart: that is, the range over which the 
expectation value J ħ⟨ ⟩/z  remains well-approximated by the linear esti-
mator (Fig.  2a). Combining tailored input and measurements 
n n( , > 0)En De  yields an MSE that is both lower and wider than the CSS 

baseline.
To study this behaviour quantitatively as a function of the prior width 

δϕ and particle number N, we calculate the BMSE scaled to the prior 
width δϕ used. This is a convenient measure as δϕ encapsulates prior 
knowledge of ϕ and Δϕ encapsulates posterior knowledge after meas-
urement. Their ratio Δϕ δϕ/  is therefore bounded on the interval [0, 1]. 
We investigate this quantity for δϕ ∈ [0.2, 1] rad  as a representative 
sample of the parameter space, because no information is gained as 
δϕ → 0, owing to quantum projection noise overwhelming the signal, 
or δϕ → π, owing to phase slips outside the interval of unambiguous 
phase estimation (Fig. 2c). For more details, see the section ‘Bounds 
on BMSE’ in the Methods.

All variationally optimized sequences outperform the CSS in this 
measure (Fig. 2c). The effect of change in dynamic range is evident in the 
location of a sequence’s minimum. Minima of sequences with decod-
ing layers shift towards larger prior widths with respect to the CSS, 
whereas for the direct spin-squeezing (1,0) they shift towards smaller 
values. Sequences with a larger number of operations deviate more 
strongly from the theoretical predictions due to accumulation of gate 
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errors. This behaviour is consistent across a range of particle numbers 
(Fig. 2c inset). The deviation decreases as the system size decreases. We 
attribute this to the decrease in the fidelity of entangling operations17.

The (1,2) scheme outperforms all others despite the increased com-
plexity. In particular, it outperforms the simple spin-squeezing (1,0) 
scheme at both the optimal δϕ for (1,2) and (1,0) approaching the OQI 
closely (Table 1). Specifically, for 26 particles and at their respective 
optimal prior widths, the (1,0) sequence approaches the OQI up to a 
factor of 1.87 ± 0.03 (or 2.73 ± 0.07 dB), and the (1,2) sequence up to a 
factor of 1.45 ± 0.01 (or 1.61 ± 0.02 dB). At this optimal prior width, the 
(1,2) sequence would reduce the required number of averages to achieve 
the same Allan deviation as a classical Ramsey sequence by a factor of 
1.59 ± 0.06. A pictorial interpretation, in terms of the Wigner distribu-
tion, of the optimized (optimal) interferometer can be found in ref. 14.

For atomic clock settings Δϕ can be rescaled to calculate the Allan devi-
ation of a deadtime-free clock (see Methods section ‘Allan deviation’),  
as shown in Fig. 2d given the same raw data.

On-device feedback optimization
We further investigate the parameter ‘self-calibration’ of the scheme 
in a regime in which manual calibration is challenging, such that we 
expect direct application of theoretically optimal angles to no longer 
perform well. In particular, this is a regime in which accurately 

calibrating the twisting parameters in ϑθ( , ) is no longer feasible. Min-
imization of the cost function is therefore achieved by a feedback loop 
in which a classical optimization routine proposes new parameter sets 
to trial on the basis of measurements performed on the quantum sen-
sor. We use a global, gradient-free optimization routine with an inter-
nal representation or ‘meta-model’ of the cost function (Supplementary 
Methods 5).

The meta-model uses the known structure of the resource opera-
tions to learn an estimate of the cost function landscape on the 
basis of the measurements, as seen in Fig. 3a for a 26-ion chain and 
the (1,2) circuit. Calibration of twisting angles is performed at a 
lower ion number (20), and then approximately scaled to the larger  
number. The cost function estimates are below the competing CSS 
(0,0) and direct spin-squeezing (1,0) after approximately 20 measure-
ments despite this lack in accurate calibration. A full iteration of the  
algorithm is completed after approximately 50 measurements in 
Fig. 3a.

Measurement points that the algorithm deems promising candi-
dates for a minimum are resampled using ‘fine’ scans (Supplementary 
Methods 6). Fine scans serve to increase the algorithm’s confidence 
about predictions made on sparse data by better sampling and relax-
ing symmetry assumptions of ‘coarse’ scans. Fine scans show conver-
gence towards the theoretical optimum as the algorithm progresses 
(Fig. 3b). Convergence is achieved more rapidly for the (1,0) sequence 
(Fig. 3c) because of the lower number of variational parameters and 
the consequently smaller parameter space. This convergence in both 
sequences, despite the inability to accurately calibrate, is a manifesta-
tion of the optimizer’s ability to learn and correct for correlated gate 
(calibration) errors.

Frequency estimation
All measurements up to this stage were taken by driving rotations R ϕ( )y  
with resonant laser pulses as a consequence of our technical imple-
mentation (Supplementary Methods 2). This allows for deterministic 
mapping of the ϕ space, but in atomic clock experiments the phase ϕ 
would instead be imparted by the residual detuning of the drive from 
the atomic reference under the influence of noise. To gauge the per-
formance of a clock, we perform frequency estimation experiments. 
We calculate the variance of the frequency estimator from the known 

Table 1 | Comparison of measured values of ΔΔ δδ/ϕϕ ϕϕ at two 
values of δδϕϕ corresponding to the minima of the (1,0) 
(smaller ϕϕδδ ) and (1,2) (larger δδϕϕ) scheme, respectively

N = 12 N = 26

δϕ 0.6893 0.792 0.5480 0.7403

(0,0) −3.56 ± 0.03 −3.63 ± 0.08 −3.22 ± 0.03 −4.53 ± 0.03

(1,0) −4.61 ± 0.12 −4.34 ± 0.04 −5.63 ± 0.07 −5.39 ± 0.02

(1,2) −5.06 ± 0.11 −5.18 ± 0.08 −5.84 ± 0.09 −6.75 ± 0.02

OQI −5.86 −8.36

Note that the location of the minimum for (1,2) and (0,0) is identical to within the measurement 
resolution presented. For reference, the minimum of the OQI (border to shaded red region in 
Fig. 2c) is also given. Values are given in dB.
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injected noise for a standard CSS interferometer and the (1,2) interfer-
ometer optimized for a prior width δϕ ≈ 0.69  (Supplementary  
Methods 7).

The optimized sequence outperforms the CSS for all considered 
Ramsey times (Fig. 4). In particular, this demonstrates robustness of 
the scheme with respect to variations in the prior width (Ramsey time, 
Supplementary Methods 8). The deviation between experimental and 
theoretical predictions can be explained by two observations. First, 
we independently measured predominantly frequency flicker noise 
of bandwidth b ≈ 2π × 6 Hzα  (Supplementary Methods 7) on the laser, 
which is not present in the simple simulation. Second, the MSE used in 
the simulation is the ideal, theoretically achievable one, whereas the 
experiment has deviations from the theory such as in Fig. 2b. Simulat-
ing the metrology experiments with these additional noise sources 
restores a good match between data and prediction. We note that this 
problem is not apparent in the BMSE or the Allan variance plots  
(Fig. 2c, d) because it arises solely in the zR  operation we use here, 
whereas ϕ was imparted by yR  in those plots.

Discussion and outlook
Intermediate-scale quantum devices, acting as quantum sensors, pro-
vide the toolset to program entanglement and collective measurements 
to approach the ultimate limits of parameter estimation compatible 
with the laws of quantum physics. The present work has demonstrated 
the programming of a close-to-optimal quantum interferometer with 
(up to) N = 26 entangled atoms on a trapped-ion quantum computer. A 
key element of our work has been to identify a pathway towards optimal 
quantum sensing by formulating it as a variational quantum algorithm, 
in which circuits of increasing depths allow convergence towards the 
ultimate sensing limit. This limit is approached by optimizing the cir-
cuits using a task-specific cost function. The shallow quantum circuits 
used here are built from native, imperfect trapped-ion quantum opera-
tions and are already shown to yield results close to optimal metrol-
ogy. In a broader context, this suggests that the variational approach 
to optimal quantum sensing is both flexible and hardware efficient. 

When combined with the linearly growing solution Hilbert space, this 
indicates the potential to scale to significantly larger particle numbers.

Variational optimal metrology is immediately applicable to a wide 
range of sensing tasks. Our demonstration of generalized Ramsey 
interferometry is relevant for atomic clocks, and we discuss the pro-
jected gains in Allan deviation in the Supplementary Discussion 10. 
Furthermore, the prevalence of Ramsey interferometry in metrology 
renders our approach relevant to the measurement of magnetic fields36, 
inertia37, displacement and electric fields38, as well as force measure-
ments39. Even though we demonstrated quantum estimation of a single 
parameter here, the present technique of variational optimal metrology 
readily generalizes to the multi-parameter case40.

Furthermore, our approach is immediately applicable to other 
sensing platforms. Variational quantum metrology can, for exam-
ple, be implemented on programmable quantum simulators27 with 
well-established capabilities, in particular in higher spatial dimensions. 
Although these readily scale to large particle numbers, they provide 
only non-universal entanglement operations through finite-range 
interactions. The ‘on-device’ optimization of the metrological cost 
function, as demonstrated in the present work, does not just serve to 
find optimal input states and measurement protocols in the presence of 
‘real-world’ device imperfections and noise. It then also addresses the 
underlying computationally hard problem of preparation and manipu-
lation of many-body quantum states. For increasing particle numbers 
this provides an example of a quantum device operating in a regime 
of relevant quantum advantage, in which many-body quantum states 
are both prepared and subsequently exploited in optimal metrology.
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Methods

Variational Ramsey interferometer
In variational Ramsey interferometry, the quantum sensor is initially 
prepared in the collective spin down state, and it subsequently executes 
the variational Ramsey sequence given by

θ θU R U R U Rϑ ϑ   












ϕ ϕ( , , ) =
π
2

( ) ( ) ( )
π
2

, (1)x z yR De En

where x y z, ,R  are collective Rabi oscillations, and U ( )En θ  and U ( )De ϑ  are 
entangling and decoding circuits, respectively, with control parameters 
θ and ϑ (see section Ramsey sequence). In between the two operations, 
the sensor interacts with an external field that imprints a phase ϕ onto the 
constituent particles. It is important to note that the Ramsey sequence is 
2π-periodic in ϕ and hence phases can only be distinguished modulo 2π.

After executing ϕ( , , )R ϑθU , we perform projective measurements 
of the collective spin yielding outcomes m (difference of particles in 
↑  and ↓ ). The phase ϕ is estimated from m by means of a linear phase 

estimator ϕ m am( ) =est , which is optimal for the variational interfer-
ometer14 and near-optimal for CSS and SSS interferometers at the  
particle numbers considered here41. We provide a quantitative com-
parison between the different estimation functions in Supplementary 
Discussion 9.

The goal is to find parameters ,θ ϑ and a that give the best possible 
performance of the sensor. The performance of the sensor intended 
to correctly measure a given phase ϕ can be quantified by the MSE

∑ϕ ϕ ϕ m p m ϕMSE( ) = − ( ) ( | ), (2)
m

est

2

,θ
  ϑ

where

U θθp m ϕ m ϕ( | ) = | ( , , ) ↓ | (3)N
, R

⊗ 2ϑϑ

is the probability of observing a measurement outcome m given ϕ, for 
given circuit parameters θand ϑ.

In Bayesian phase estimation we are interested in a sensor that per-
forms well for a range of phases ϕ, occurring according to a prior dis-
tribution ϕ( )δϕP . We assume ϕ( )δϕP  to be a normal distribution with 
variance δϕ( )2  and zero mean throughout, which is a choice particularly 
relevant for applications such as atomic clocks. Note that the normal 
distribution has a finite probability for phase slips outside the unam-
biguous phase interval, determined by the period of RU . Phase slips 
contribute to the MSE, and dominate for δϕ ≳ 1 (see section ‘Bounds 
on BMSE’).

A meaningful cost function for the sensor’s overall performance is the 
average MSE, weighted according to the prior phase distribution Pδϕ,

θ θC Pϑ ϑ∫a ϕ ϕ ϕ( , , ) = d MSE( , , ) ( ), (4)δϕ

known as the BMSE.
In this work, the parameters a( , , )θ ϑ  are optimized with respect to 

the cost function C, either numerically (Fig. 2) or on-device in a varia-
tional feedback loop (Fig. 3). For on-device optimization, the param-
eter a is held fixed at the numerically calculated optimal value.

To evaluate the cost function C in the variational feedback loop, we 
run the Ramsey sequence while exposing the sensor to a sequence of 
known injected phases ϕi. The cost function value is then estimated as

∑a ϕ ϕ w( , , ) MSE( ) ( ) , (5)
i

i δϕ i iθ ϑ ≃C P

where wi are Hermite Gaussian integration weights (Supplementary 
Methods 4).

The minimum of the cost function Δϕ( ) = min a
2

, ,θ ϑ C  can be inter-
preted42 as

∑Δϕ Δϕ p m( ) ≈ ( ) ( ) (6)
m

m
2 2

that is, the variances Δϕ( )m
2  of the posterior distributions p ϕ m( | )  

averaged according to the probability p m( ) of observing the measure-
ment outcome m. Therefore, we refer to Δϕ as the posterior width.

Ramsey sequence
Following ref. 14, the explicit forms of the entangling and decoding 
unitaries are

∏ θ θ θ= ( ) ( ) ( ) (7)
k

n

x k x k z kEn
=1

3 2 1
En

U R T T

U T T Rϑ ϑ ϑ∏= ( ) ( ) ( ). (8)
k

n

z k x k x kDe
=1

1 2 3
De

Here Rx y z, ,  are collective Rabi oscillations and x y z, ,T  are one-axis 
twisting operations. Mathematically, these operations can be repre-
sented as

R Tβ χ( ) = e , ( ) = e (9)x y z
βJ

x y z
χ J

, ,
−i

, ,
−ix y z, , x y z, ,

2

where β and χ  are angles that depend on the interaction strength and 
time and Jx y z, ,  are collective spin operators in the Cartesian basis. We 
denote the collection of the three operations in equations (7) and (8) 
with the same subscript as one layer, and we denote by nEn and nDe the 
number of entangling and decoding layers, respectively.

Effects of resource restrictions
The globally optimal variational parameter sets depend on the ion num-
ber via the prior width. However, we may additionally restrict them on 
the basis of platform constraints of a fundamental or practical nature 
to find sets optimal with respect to device capabilities. This adds to the 
adaptability inherent to the scheme: we tailor the cost function to the 
sensing task and the sequence resources, whereas parameter ranges are 
constrained by the experimental hardware. When combined, this assists 
with assessing and interpretation of attainable results given real-world 
constraints.

Furthermore, in systems of moderate size of order 50 and above this 
leads to the Allan deviation scaling down with particle number N or 
Ramsey time TR at close to the (π-corrected) Heisenberg limit13,43 up to a 
logarithmic correction14,44. This is of great practical use in situations in 
which measurements are made with a fixed budget in particle number 
or measurement time.

Bounds on BMSE
In the Bayesian framework, a bound on the BMSE in the limit of a narrow 
prior, δϕ 1≪ , is imposed by quantum measurement fluctuations as 
captured by van Trees’ inequality45,

I
Δϕ

F
( ) ≥

1
+

. (10)
ϕ

2

Here the first term in the denominator is the Fisher information of 
the conditional probability, F m ϕ p m ϕ= ∑ [∂ log ( | )] ( | )ϕ m ϕ

2P , averaged 
over the prior distribution, P∫F ϕ ϕ F= d ( )ϕ ϕ . The second term is the 
Fisher information of the prior distribution, ∫ ϕ ϕ ϕ= d ( )[∂ log ( )]ϕ

2I P P , 
representing the prior knowledge.

For pure states of N spin-1/2 particles, that is, in the absence of deco-
herence, the Fisher information is limited by F N≤ϕ

2, which defines the 



Heisenberg limit30. In the case of uncorrelated states of atoms, the 
Fisher information limit reads F N≤ϕ  and corresponds to the SQL30. 
This results in SQL and Heisenberg limits on the BMSE, which read, 
respectively,

Δϕ N δϕ( ) = [ + ( ) ] , (11)SQL
2 −2 −1

Δϕ N δϕ( ) = [ + ( ) ] . (12)HL
2 2 −2 −1

Here we used the Fisher information of a normal distribution with 
variance δϕ( )2 for the prior and and thus I δϕ= ( )−2. Equations (11) and 
(12) define the corresponding limits in Fig. 2c, d.

One can similarly define the π-corrected Heisenberg limit13 for the 
BMSE. This fundamental limit, however, is a tight lower bound only 
asymptotically in the number of atoms N. It becomes applicable for 
particle numbers, N ≳ 100, far beyond the size of our present experi-
ment. Further details can be found in ref. 14.

A different kind of bound on the BMSE arises in the limit of large prior 
widths, δϕ ≳ 1, which we denote as the phase slip limit (PSL). The PSL 
is caused by phase slipping outside the interval of unambiguous phase 
estimation because of the tails of the prior distribution extending 
beyond the phase interval [ − π, π). We model the PSL as

∫Δϕ ϕ ϕ δϕ( ) = (2π) × 2 d ( ) + ( ) , (13)δϕPSL
2 2

π

∞ −1
−2

−1




















P

which is composed of the probability of phase slipping outside the 
[− π, π) interval multiplied by the minimum squared error of (2π)2 asso-
ciated with the slip. The PSL gives rise to the increase of the Δϕ δϕ/  
values at δϕ ≳ 1 in Fig. 3c, d.

Allan deviation
In atomic clock settings, the (Gaussian) prior distribution width δϕ 
can be related to the experimental system parameters, specifically the 
width of the distribution of expected phases after a Ramsey interroga-
tion time TR subject to a noisy reference laser14. For a noise power spec-
tral density S f f( ) ∝ α1−  of bandwidth bα, the functional form is given by

δϕ b T= ( ) . (14)α
α

R
/2

On the basis of this equation, we can link the BMSE Δϕ( )2  to the  
Allan deviation as an established figure of merit in frequency metrol-
ogy. For clock operation without deadtime, and with an averaging time 
τ, the Allan deviation σ τ( ) is given by

σ τ
ω

Δϕ

T
T
τ ω

Δϕ

T n
( ) =

1
=

1
(15)

A

M

R

R

A

M

R

Δϕ Δϕ
Δϕ
δϕ

= / 1 − , (16)
M

2

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






where ΔϕM is the effective measurement uncertainty of one cycle of 
clock operation46. Here n τ T= / R is the number of measurements per 
averaging time, and ωA is the (atomic) reference frequency. For a vari-
ational Ramsey sequence without decoder, that is, n = 0eD , and in the 
limit of small δϕ, ΔϕM is determined by the Wineland squeezing param-
eter47 ξW, that is, Δϕ ξ N→ /M W . The equality holds as long as the Allan 
deviation is dominated by projection noise and will break down once 
the contribution from laser coherence becomes appreciable.
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