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Abstract—It is well-known that Wiener and Kalman filter (KF)
like techniques are sensitive to misspecified covariances, uncer-
tainties in the system matrices, filter initialization or unwanted
system behaviors. A possible solution to robustify these estimation
techniques is to impose linear constraints (LCs). In this article: i)
we introduce a general class of linearly constrained KF (LCKF),
where a set of non-stationary LCs can be set at every time step, ii)
explore the use of such LCs to mitigate modeling errors in general
mismatched linear discrete state-space models, and iii) provide
the theoretical formulation to show that the gain-constrained KF
is a particular instance of the proposed LCKF. Because such
LCs can be taken into account in any KF generalization this sets
the basis for a new robust filtering framework. An illustrative
example is provided to support the discussion.

Index Terms—Robust filtering, model mismatch, linearly con-
strained Kalman filter, mitigation, robustness, distortionless.

I. INTRODUCTION

THE well-known Kalman filter (KF) is the recursive form
of the Wiener filter (WF) for linear discrete state-space

(LDSS) models. The sensitivity of the achievable mean square
error (MSE) to modelling errors is a well-known intrinsic issue
for any WF implementation [1]–[3]. Then the KF’s achievable
performance also strongly depends on the accurate knowledge
of the system model, initial state and noise statistics [3]–
[5]. In many applications dealing with parameter estimation
[1, § 6.6], [2], linearly constrained WFs (LCWFs) have been
developed in which linear constraints (LCs) are imposed to
robustify WFs. Robustness is understood as the ability to
achieve close-to-optimal performance with imperfect, incom-
plete or erroneous system knowledge, while minimal impact
on performance under nominal conditions is caused.

In that perspective, it has been shown in [6] that adding a
distortionless constraint to WF in the context of LDSS models
yields to the linear minimum variance distortionless response
filter (LMVDRF), a suboptimal filter in the MSE sense, but it
does not depend on the prior knowledge on the initial state.
Remarkably, LMVDRF exists under more general conditions
than the information filter (IF) form of KF [6, §V.C], a well
established solution to cope with a lack of prior initial state
information [3, §6.2]. However, since LMVDRF only differs
from KF in its initialization, sharing then the same recursion,
it also shares the same sensitivity.
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The family of LCs for which LCWF can be computed
recursively in the form of KF, leading to a linearly constrained
KF (LCKF), was identified in a preliminary study [7], [8],
and is discussed in Sec. III. We show that this family of
LCs encompasses the gain-constrained KF (GCKF) derived
for a restricted subset of real-valued LDSS models [9, (2.32)],
revisited from a different perspective in Sec. IV to establish
its connection to LCKF. From this new derivation we identify
that once a constraint is imposed it is implicitly propagated.

We focus on the exploitation of LCs in order to robustify
KF. In that context, we provide a detailed analysis of the robust
LCKF capabilities against mismatches on LDSS models. This
analysis relies on two particularly features of LCKF, i.e, easy
to implement and fully adaptive in the context of sequential
estimation. Indeed, LCKF allows optional addition of LCs that
can be triggered by a preprocessing of each new measurement.
This is a key feature in numerous real-life applications.

State estimation is an important component in many appli-
cations such as indoor positioning, power systems, machine
learning, communication systems, vehicle control, or navi-
gation systems to name a few [10]–[14]. So far, in those
applications where the state and measurement noise statistical
properties are not accurately known, it has been common
practice to use H∞ filters [3, §10] [15]–[17], which do not
make assumptions on the noise distribution and attempt to
minimize the worst-case estimation error. Other possible ways
to robustify the KF to noise mismodeling via unbiased finite
impulse response (UFIR) [18], p-shift FIR [19] [20, §11] or
minimum variance UFIR [21] filters, were introduced. These
algorithms have the KF predictor/corrector form, may ignore
initial estimation errors and the statistics of the noise, but
become virtually optimal as the length of the FIR window
increases, which in practice is a tuning factor. It is also worth
pointing out that if the system is only affected by outliers, an
efficient solution is to resort to robust statistics [22]. Other
robust solutions based on moving-horizon or simultaneous
state and system parameters/inputs estimation also exist [23].

LCKF provides an alternative solution to H∞ and UFIR
filters to robustify KF which is worth knowing, since LCKF is
able to cope with a quite general class of mismatches without
need of heuristically tuning the filter parameters. However, the
disadvantage of LCs is that additional degrees of freedom are
used by LCKF in order to satisfy them, which increases the
minimum MSE achieved. Last, LCs can be used in any existing
KF generalization [3, §7]: correlated/colored noises; fading
memory; state constraints; or prediction/smoothing extensions;
therefore setting the basis for a new robust filtering framework.
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II. GENERAL MISMATCHED SYSTEM MODEL

The LDSS models considered in this article are defined by
the following three dynamic systems mismatched set:

Nominal :
{

xk = Fk−1xk−1 + uk−1 + wk−1
yk = Hkxk + ck + vk

(1a)

Assumed :

{
x′k = F̂k−1x

′
k−1 + ûk−1 + wk−1

yk = Ĥkx
′
k + ĉk + vk

(1b)

True :

{
x′′k = Fk−1x

′′
k−1 + uk−1 + wk−1 + ηk−1

yk = Hkx
′′
k + ck + vk + jk

(1c)

which encompass several types of model mismatches. Indeed,
throughout this paper, we consider the situation where a prac-
titioner wants to estimate the state of a so-called “nominal”
model (1a) which contains the information of interest. How-
ever, firstly, a perfect knowledge of the “nominal” model may
not be accessible in some cases, compelling the practitioner to
assume a model, the so-called “assumed” model (1b), which
is believed to be as representative as possible of the “nominal”
one. Secondly, some unwanted disturbances may also be
present (ηk−1 and/or jk), e.g., due to harsh environments
malicious interferences or system noise statistics uncertainty,
impairing the “nominal” model and leading to the actual
observed model, the so-called “true” model (1c). The variables
in (1a)-(1c) are: i) xk,x

′
k and x′′k ∈ CPk , the nominal, assumed

and true states; ii) yk ∈ CNk the observation vector at time
k; iii) F̂k and Ĥk the assumed model matrices. Fk and Hk

are their nominal/true counterpart; iv) noise sequences {wk}
and {vk} are random vectors with known covariance/cross-
covariance; v) uk, ck, ûk and ĉk are nominal/true and assumed
system inputs; and vi) ηk and jk represent the unwanted
disturbances. Standardly, the practitioner performs estimation
based on the assumed knowledge, expecting that i) F̂k, Ĥk, ûk
and ĉk are close enough to the nominal ones in (1a) to obtain
reasonably good performance, and ii) there are no unwanted
disturbances (ηk−1 = 0 and jk = 0), that is, (1a)=(1c).
However, in practice other situations may arise, and we can
distinguish three general scenarios: 1) {Assumed = True}, the
ideal case with no mismatch and no unwanted disturbances,
2) {True = Nominal}, no unwanted disturbances but possible
mismatch, and 3) {Assumed = Nominal}, no mismatch but
possible unwanted disturbances. In any of these situations, the
ultimate goal is to estimate the nominal state xk (1a), which is
the information of interest, based on the (true) measurements
yk (1c) and our knowledge of the model dynamics (1b).

III. LINEARLY CONSTRAINED WIENER/KALMAN FILTER

We consider first the ideal case where {Assumed = True}
((1b)=(1c) ⇒ (1b)=(1a)) with state/measurement equations,

xk = Fk−1xk−1 + wk−1 (2a)
yk = Hkxk + vk (2b)

with k ≥ 1, and Fk, Hk known model matrices. Noise
sequences, as well as x0, are random vectors with known

covariance and cross-covariance. Then the linear minimum
MSE (LMMSE) estimator of xk (k ≥ 2) is the WF1

x̂bk|k = Kbkyk, Kbk = argmin
Kk

{Pk|k(Kk)} = Cxk,yk
C−1yk

,

Pk|k (Kk) = E[ (Kkyk − xk) (·)H ], (3)

where y>k =
(
y>1 , . . . ,y

>
k

)
∈ CNk , Nk =

∑k
l=1Nl. Since

Kalman’s work [3], it is known that, if {wk,vk,x0} verify
certain uncorrelation conditions, lately extended in [6],

Cwk−1,yk−1
= 0, Cvk,yk−1

= 0, ∀k ≥ 2, (4)

then x̂bk|k (3) admits a convenient recursive form (k ≥ 2),

x̂bk|k =
(
I−Kb

kHk

)
Fk−1x̂

b
k−1|k−1 + Kb

kyk (5)

so-called KF estimate of xk [3], where the gain Kb
k ∈ CPk×Nk

verifies Kb
k = argmin

Kk

{PJ
k|k (Kk)}, with PJ

k|k (Kk) the

general form of Joseph covariance update equation,

PJ
k|k (Kk) = (I−KkHk)Pb

k|k−1 (I−KkHk)
H

+ KkCvk
KH
k − (I−KkHk)Cxk,vk

KH
k

−KkC
H
xk,vk

(I−KkHk)
H
. (6)

Thus Kb
k is computed in its most general form as [6],

Pb
k|k−1 = Fk−1P

b
k−1|k−1F

H
k−1 + Cwk−1

+ Fk−1C
H
wk−1,xk−1

+ Cwk−1,xk−1
FHk−1 (7a)

Sbk|k−1 = HkP
b
k|k−1H

H
k + Cvk

+ HkC
H
vk,xk

+ Cvk,xk
HH
k

Kb
k = (Pb

k|k−1H
H
k + CH

vk,xk
)(Sbk|k−1)

−1 (7b)

Pb
k|k = (I−Kb

kHk)P
b
k|k−1 −Kb

kCvk,xk
. (7c)

The above recursion (5)-(7c) is also valid for k = 1 provided
that Pb

0|0 = Cx0 and x̂b0|0 = 0 [6]. Notice that the “standard
LDSS model” in monographs [24, §9.1] [3, §7.1] satisfies

Cx0,wk
= 0, Cx0,vk

= 0, Cwl,wk
= Cwk

δlk,

Cvl,vk
= Cvk

δlk, Cwl,vk
= Cwk−1,vk

δl+1
k , (8)

which has long been regarded as leading to the general form
of KF including correlated process and measurement noise,
and is in fact a special case of (4).

A. Linearly Constrained WF/KF Formulation

We assume that the WF estimate of xk (3) exists which
implies that Cyk

is invertible. Introducing a set of LCs, i.e.,
KkΛk = Tk, into model (3) yields a LCWF [2],

x̂bk|k = Lbkyk, Lbk = argmin
Lk

{Pk|k (Lk)} s.t. LkΛk = Tk,

Lbk = Kbk + (Tk −KbkΛk)(Λ
H

k C−1yk
Λk)

−1Λ
H

k C−1yk
. (9)

Let us assume the following block matrix decomposition:
Lk = [Jk−1 Lk] where Jk−1 ∈ CPk×Nk−1 and Lk ∈ CPk×Nk

leading to Lkyk = Jk−1yk−1 + Lkyk. It appears [7] that the

1In Sec. III and IV, for the sake of legibility and without loss of generality,
we assume that E [x0] = 0 and no system inputs i.e., uk−1 = 0 and ck = 0,
in the KF/LCKF derivation. The estimate of xk based on measurements up to
time k is denoted x̂k|k , x̂k|k (y1, . . . ,yk). The superscript (.)b denotes
that the considered value is the “best” one according to a given criterion.
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subset of LCs LkΛk = Tk leading to a recursion similar to
(5) for the LCWF estimate of xk (9), that is,

x̂bk|k =
(
I− LbkHk

)
Fk−1x̂

b
k−1|k−1 + Lbkyk, k ≥ 1, (10)

consists of the following three types of LCs:

C1k : [Jk−1 Lk]

[
0

∆k

]
= Tk (11a)

C2k : [Jk−1 Lk]

[
Λk−1

HkFk−1Tk−1

]
= Fk−1Tk−1 (11b)

C3k : [Jk−1 Lk]

[
Λk−1

HkFk−1Tk−1

0

∆k

]
= [Fk−1Tk−1 Tk]

(11c)

where:
• C1k is dedicated to introduce a first subset of LCs at k,
• C2k corresponds to the implicit propagation at k via

recursion (10) of the LCs already set from 1 to k − 1,
• C3k combines C2k and C1k , propagation of previously set

LCs before k and addition of a new subset of LCs at k.
Under C2k , the gain is given by Lbk = argmin

Lk

{PJ
k|k (Lk)},

and can be computed from the “unconstrained” KF recursion
(7a)-(7c). Under C1k and C3k , Lbk is the solution of

Lbk = argmin
Lk

{PJ
k|k (Lk)} s.t. Lk∆k = Tk, (12)

which is given by (Pb
k|k−1, Sbk|k−1 and Kk as in (7a)-(7b))

Γk = Tk −Kk∆k, Ψk = ∆H
k (Sbk|k−1)

−1∆k (13a)

Lbk = Kk + ΓkΨ
−1
k ∆H

k (Sbk|k−1)
−1 (13b)

Pb
k|k = (I−KkHk)P

b
k|k−1 −KkCvk,xk

+ ΓkΨ
−1
k ΓHk

(13c)

Interestingly, the recursive formulation of LCWF for LDSS
models introduced is fully adaptive in the context of sequential
estimation as it allows at each new observation to incorporate
or not new LCs. Since KF is the recursive form of WF for
LDSS models, it makes sense to denote LCKF the recursive
form of LCWF for such LDSS models.

B. Validity of the Predictor/Corrector Form

The general LCKF can be revisited by expressing the KF
recursion in the so-called “predictor/corrector” form, that is,
as a function of the a priori estimates of xk and yk, for k ≥ 1,

x̂bk|k = x̂bk|k−1 + Kb
kε
b
k|k−1 (14a)

εbk|k−1 = yk − ŷbk|k−1 (14b)

ŷbk|k−1 = Hkx̂
b
k|k−1, x̂bk|k−1 = Fk−1x̂

b
k−1|k−1, (14c)

where Pb
k|k−1 = E[(x̂bk|k−1 − xk)(·)H ]. Then, εbk|k−1 is

called the innovations’ vector and Sbk|k−1 = E[εbk|k−1ε
bH
k|k−1].

Interestingly enough, this formalism is still valid for LCKF.
Indeed, if LCs are set between time 1 and time k, LCKF of
xk is the solution to

x̂bk|k = Lbkyk, Lbk = argmin
Lk

{Pk|k (Lk)} s.t. LkΛk = Tk.

Then, leveraging (9), it is easy to check that

FkLbk = argmin
Mk

{E[δ̂ (Mk) δ̂
H
(Mk)]} s.t.

MkΛk = FkTk, δ̂ (Mk) = Mkyk − Fkxk.

Moreover, under (4) we have that

Pk+1|k (Mk) = E[(Mkyk − xk+1) (·)H ]

= Cwk
+ FkCxk,wk

+ Cwk,xk
FHk + E[δ̂ (Mk) δ̂

H
(Mk)],

and FkLbk = argmin
Mk

{Pk+1|k (Mk)} s.t. MkΛk = FkTk,

which means that x̂bk+1|k = Fkx̂
b
k|k = FkLbkyk has become a

constrained a priori estimate of xk. Likewise, it follows that

Hk+1FkLbk = argmin
Mk

{E[ζ̂ (Mk) ζ̂ (Mk)
H
]} s.t.

MkΛk = HkFkTk, ζ̂ (Mk) = Mkyk − yk+1,

which means that ŷbk+1|k = Hk+1Fkx̂
b
k|k = Hk+1FkLbkyk

has become a constrained a priori estimate of yk, leading to
a constrained innovations’ vector εbk+1|k = yk+1 − ŷbk+1|k.

In conclusion, once a subset of LCs has been introduced
by C1k , all the subsequent filter estimates, a priori estimates
and innovations’ vector are linearly constrained, even if no
new subset of LCs are explicitly introduced via C3k . Notice
that this is a noteworthy property of LCKFs which cannot be
highlighted with the gain-constrained approach in [9].

IV. LCKF VERSUS GAIN-CONSTRAINED KF

A. Revisiting the Gain-constrained KF

Let us consider LCKF defined by the sequence of LCs
{C11 , C32 , . . . , C3k−1} such that (11a)-(11c),

∆k = Ek, Tk = DR
k Fk + (I−Πk)

(
KkEk −DR

k Fk
)
,

where Kk is the classical Kalman gain (7b), Πk =

Ξ−1k DH
k

(
DkΞ

−1
k DH

k

)−1
Dk is an oblique projector on

Ξ−1k DH
k , Ξk ∈ CPk×Pk is a Hermitian positive definite

weighting matrix, Dk ∈ CQk×Pk , Qk ≤ Pk, is a right in-
vertible matrix whose right inverse is DR

k = DH
k (DkD

H
k )−1,

Ek ∈ CNk×Rk , Rk ≤ Nk, is a left invertible matrix whose left
inverse is EL

k = (EH
k Ek)

−1EH
k , and Fk ∈ CQk×Rk . Then,

from (13b):

Lbk = Kk + (Tk −KkEk)Ψ−1k EH
k (Sbk|k−1)

−1

= Kk + (Tk −KkEk)EL
kΩk

Ωk = Ek(E
H
k (Sbk|k−1)

−1Ek)
−1EH

k (Sbk|k−1)
−1

where Ωk is an oblique projector on Ek, that is,

Lbk = Kk −Πk

(
Kk −DR

k FkE
L
k

)
Ωk, DkL

b
kEk = Fk,

which is also the solution of [9, (2.6)-(2.7)]:

Lbk = argmin
Lk

{tr(PJ
k|k (Lk)Ξk)} s.t. DkLkEk = Fk, (15)

so-called GCKF [9, (2.32)], derived for real-valued LDSS
models in the restricted case where Pk = P , Nk = N ,
Qk = Q, Rk = R and the “minimal” uncorrelation conditions
[3, §7.1], which is the restricted case of the “standard LDSS
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model” (8) where Cwl,vk
= 0. Hence, GCKF (15) is actually a

particular case of LCKF. This observation allows to generalize
the existence of GCKF to the complex-valued LDSS models
under more general uncorrelation conditions (4).

B. An Insightful Understanding of KF Behavior under LCs

In comparison with GCKF released in [9], the proposed
approach, that is, the identification of LCs (11a)-(11c) for
which LCWF can be formulated in a recursive LCKF form,
is more general and yields to additional insights: i) from
[9] it is not obvious to link GCKF with LCWF, since the
formulation of LCs as in (15) cannot be easily linked to
LCs as in (11c), ii) the key role of (11b) within the “un-
constrained” KF recursion, in the propagation of previously
set LCs, cannot be highlighted by the unconstrained solution
of (15), Lbk = argmin

Lk

{(x̂k|k − xk)
HΞk(x̂k|k − xk)}. As

a consequence, neither the main result of Section III-B nor
the connection of the LMVDRF with the LCKF, and hence
with the GCKF, can be established with the original GCKF
approach. From a broader perspective, from [9] the GCKF
cannot be linked to the recursive linearly constrained minimum
variance filter (LCMVF) recently proposed in [8]. Indeed, the
recursive LCMVF is the special case of LCKF incorporating a
distortionless constraint [8], which simply amounts to consider
at time k = 1 LCs of the form L1Λ1 = Γ1, {Λ1 = H1, Γ1 =
I} or {Λ1 = [H1 Ω1] , Γ1 = [I Υ1]}, since the distortionless
property propagates through (11b).

Once the connection between LCMVF and LCKF has been
made, it opens access to the abundant literature on LCMVF
in the deterministic framework [1, § 6.7], where LCMVF has
been developed to robustify MVDRF against various types
of measurement mismatch. For instance, in array processing
LCMVF is used to cope with i) array perturbation and/or
direction of arrival mismatch leading to a misspecified Hk,
and ii) jamming and/or inaccurate estimation of thermal noise,
leading to a misspecified Cvk

.
Without the connection between GCKF and LCMVF, au-

thors of [9] have mainly investigated the ability of GCKF to
reformulate the solution of known state estimation problems,
such as: i) enforcing a linear equality constraint in the state
vector, ii) enforcing unbiased estimation for systems with un-
known inputs, and iii) simplification of the estimator structure
for large-scale systems (yielding the spatially constrained KF).

V. MITIGATION OF MODELLING ERRORS IN GENERAL
MISMATCHED LDSS MODELS

The previous recursive WF (KF) and LCKF are obtained
in the ideal case (no mismatch, no unwanted disturbances)
where the LDSS models are of the form (2a)-(2b), that is,
the three system models in Section II, (1a)-(1c) coincide. In
the general case, E [x0] 6= 0 or uk−1 6= 0 or ck 6= 0;
thus one has to resort to the affine formulation of the WF
which takes into account known mean values and simply
yields x̂b0|0 = E [x0], x̂bk|k−1 = Fk−1x̂

b
k−1|k−1 + uk−1,

ŷbk|k−1 = Hkx̂
b
k|k−1 + ck, whatever (unconstrained) KF or

LCKF is considered. Therefore, the estimation error in the
ideal case is always

x̂k|k (Lk)−xk = x̂bk|k−1−xk+Lk(yk−ŷbk|k−1) = Lkvk+

(I− LkHk)(Fk−1((x̂
b
k−1|k−1 − xk−1)−wk−1), (16)

leading to the general form of Joseph covariance update
equation PJ

k|k (Lk) (6), which can be minimized in the uncon-
strained case (7a)-(7c) or in its constrained counterpart (13a)-
(13c), computed with the LDSS model (2a)-(2b). In real-life
applications, the system models in (1a)-(1c) may not coincide,
and therefore the goal is to estimate the nominal state xk
(1a) based on the (true) measurements yk (1c) and our model
knowledge (1b). Let us denote{

Fk−1 = F̂k−1 + dFk−1 ; Hk = Ĥk + dHk

uk−1 = ûk−1 + duk−1 ; ck = ĉk + dck
,

and dFk−1 = [dFk−1 duk−1], dHk = [dHk dck], which
gather the possible modelling errors on state, respectively
measurement, matrices and/or input values. Recall that we are
not looking to follow the approach in [9] to constrain the state
or measurements, but rather exploit the use of LCs to robustify
KF under model mismatch, thus leading to a new robust LCKF
framework for the mismatched set in (1a)-(1c).

A. Impact of Modelling Errors in Mismatched LDSS Models

At time k ≥ 2, provided that LCs (11a)-(11c) are consid-
ered, any LCKF of xk is given by the Kalman-like recursion

x̂k|k (Lk) = (I− LkĤk)x̂
b
k|k−1 + Lk(yk − ĉk) (17)

x̂bk|k−1 = F̂k−1x̂
b
k−1|k−1 + ûk−1,

where again Lk , Lbk is obtained from the unconstrained
(7a)-(7c) or constrained (13a)-(13c) recursions, but in this case
computed with the assumed LDSS model (1b). Incorporating
(1a)-(1c) in (17) yields the “mismatched” form of (16)

x̂k|k (Lk)− xk = Lkvk+ (18a)

(I− LkĤk)(F̂k−1(x̂
b
k−1|k−1 − xk−1)−wk−1) + εk (Lk) ,

where εk (Lk) in its most general form is given by

εk (Lk) = LkĤk(F̂k−1 + dFk−1)
(
x′′k−1 − xk−1

)
− (I− LkĤk) (dFk−1xk−1 + duk−1)

+ LkdHk (wk−1 + ûk−1 + duk−1)

+ LkdHk((F̂k−1 + dFk−1)x
′′
k−1 + ηk−1)

+ Lk(Ĥkηk−1 + jk + dck). (18b)

Then, if the subset of gain matrices

Lk = {L ∈ CPk×Nk | εk (L) = 0}, (19)

is non empty, then for any Lk ∈ Lk (18a) reduces to

x̂k|k (Lk)− xk = Lkvk+

(I− LkĤk)(F̂k−1(x̂
b
k−1|k−1 − xk−1)−wk−1). (20)
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Without any additional assumptions, the best Lk ∈ Lk in the
MSE sense is the one that verifies

Lbk = argmin
Lk

{PJ
k|k (Lk)} s.t. Lk ∈ Lk, (21)

and is computed according to (13a)-(13c), relying in part on
the knowledge of

Cwk−1,xk−1
= Cwk−1,xk−2

FHk−2 + Cwk−1,wk−2
(22a)

Cxk,vk
= Fk−1Cxk−1,vk

+ Cwk−1,vk
. (22b)

We can distinguish two possible cases (#1 and #2):
#1) dFk−1 6= 0, that is, Fk−1 6= F̂k−1. In that situation, we
have only access to the knowledge of{

Ĉwk−1,xk−1
= Cwk−1,xk−2

F̂Hk−2 + Cwk−1,wk−2

Ĉxk,vk
= F̂k−1Cxk−1,vk

+ Cwk−1,vk

.

Then, we must restrict to the “standard” LDSS model which
satisfies (8), and we have that Cwk−1,xk−1

= 0 and Cxk,vk
=

Cwk−1,vk
, leading to Ĉwk−1,xk−1

= 0 and Ĉxk,vk
=

Cwk−1,vk
. In this case, PJ

k|k (Lk) (6) reduces to

PJ
k|k (Lk) = (I− LkĤk)Pk|k−1(I− LkĤk)

H

+ LkCvk
LHk − (I− LkĤk)Cwk−1,vk

LHk

− LkC
H
wk−1,vk

(I− LkĤk)
H , (23a)

Pk|k−1 = F̂k−1P
b
k−1|k−1F̂

H
k−1 + Cwk−1

, (23b)

Pb
k−1|k−1 = E[(x̂bk−1|k−1 − xk−1) (·)H ], (23c)

and the solution of (21) only depends on F̂k−1, Ĥk, Cwk
,

Cvk
, Cwk−1,vk

, Cx0 and mx0 .

#2) dFk−1 = 0, that is, Fk−1 = F̂k−1. In that situation,
we have access to the knowledge of Cwk−1,xk−1

and Cxk,vk
,

which means that we can use the most general form of
PJ
k|k (Lk) (6) derived under (4) and that the solution of (21)

is given by (13a)-(13c).
To conclude, we analyze what happens at time k = 1. Again,
we can distinguish two cases (#3 and #4):
#3) If mx0

and Cx0
are (perfectly) known, then (17) is used,

leading to (18a)-(18b) written as:

x̂1|1 (L1)− x1 = (I− L1Ĥ1)(F̂0(mx0
− x0)− û0

−w0) + L1ĉ1 + L1v1 + ε1 (L1) (24)

ε1 (L1) = L1(Ĥ1η0 + j1 + dc1) + L1dH1 (x1 + η0)

− (I− L1Ĥ1) (dF0x0 + du0) (25)

#4) If mx0
and/or Cx0

are (partially) unknown, then a Fisher
initialization is used thus leading to:

x̂1|1 (L1)− x1 = L1v1 + ε1 (L1) s.t. L1Ĥ1 = I

ε1 (L1) = η0 + L1dH1 (x1 + η0) + L1 (j1 + dc1) . (26a)

In this case, η0 6= 0 ⇒ ε1 (L1) = ∅. Therefore a necessary
condition to allow ε1 (L1) 6= ∅ is η0 = 0, leading to

ε1 (L1) = L1dH1x1 + L1 (j1 + dc1) . (26b)

Finally, it is important to notice that if: 1a) mx0
and Cx0

are
(perfectly) known and L1, where ε1 (L1) is given by (25), is

non empty; or 1b) mx0
and/or Cx0

are (partially) unknown,
η0 = 0, and L1, where ε1 (L1) is given by (26b), is non
empty; and 2) Lk, where εk (Lk) is given by (18b), is non
empty at each time k ≥ 2; then LCKF computed from the
assumed LDSS model (1b) is matched to the true observations
yk (1c), and the recursion (13a)-(13c) minimizes the MSE
associated with the nominal state xk (1a). We then obtain the
performance of LCKF for the assumed LDSS model (1b) with
an increase of the achievable MSE due to the introduction of
additional LCs (19). The problem still remaining is how to
define the set of constraints, associated to an appropriate non
empty subset of gain matrices, to allow the mitigation of errors
induced by the model mismatch, which is detailed in the sequel
for several special cases of interest in many applications.

B. Mitigation in LDSS Models where {True = Nominal}
We first consider the case where (1c)=(1a), that is {True =

Nominal}. In other words, there are no unwanted disturbances
into the system model (ηk−1 = 0, jk = 0,x′′k = xk), then the
mismatch is only on the partially unknown system matrices
and input values, and (18b) reduces to

εk (Lk) = LkdHkxk + Lkdck

− (I− LkĤk) (dFk−1xk−1 + duk−1) . (27a)

In that case, a first constraint LkdHk = 0 leads to

εk (Lk) = Lkdck − (I− LkĤk)(dFk−1xk−1 + duk−1)

then the complete set of constraints to have εk (Lk) = 0 is

Lk[dHk dck] = LkdHk = 0

(I− LkĤk)[dFk−1 duk−1] = (I− LkĤk)dFk−1 = 0
(27b)

There are two possible cases:
• Case 1) rank (dFk−1) = Pk

In this case, we have in (27b) that,

{(I− LkĤk)dFk−1 = 0, rank (dFk−1) = Pk}

which implies that I−LkĤk = 0, then leading to a degener-
ated form of the LCKF recursion (17)

x̂k|k (Lk) = Lk(yk − ĉk), (28a)

x̂bk|k = Lbk(yk − ĉk), (28b)

Lbk = argmin
Lk

{
LkCvk

LHk
}

s.t. Lk[Ĥk dHk] = [I 0] . (28c)

Thus if rank (dFk−1) = Pk, the introduction of LCs to
mitigate modelling errors in state matrices dFk−1 removes
the KF main merit, that is, the ability to combine previous
observations to improve the estimation of the current state.
• Case 2) rank (dFk−1) < Pk

In this case, (27b) can be recast as {LkdHk =
0, Lk(ĤkdFk−1) = dFk−1}, and the LCKF recursion (17)
does not degenerate as above. More specifically, let dFk−1 =
Uk−1dΦk−1 be the SVD of dFk−1, where Uk−1 ∈ CPk×Rk−1

has full rank Rk−1 < Pk and dΦk−1 ∈ CRk−1×Pk . Then

(I− LkĤk)Uk−1dΦk−1 = 0, ∀dΦk−1.
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Since Uk−1 has full rank the constraint above is equivalent to

(I− LkĤk)Uk−1 = 0 ⇔ Lk(ĤkUk−1) = Uk−1

and (27b) becomes

Lk[dHk ĤkUk−1] = [0 Uk−1] ⇒ εk (Lk) = 0. (29)

Within the context of constrained filtering for the the case
where (1c)=(1a), it is worth noting the following previous con-
tributions: i) [25, (8)] mentions the LCs (I− LkHk) duk−1 =
0 where duk−1 = Gk−1uk−1 and uk−1 are unknown inputs;
ii) considering uk−1 and ck unknown inputs, the LCs

(I− LkHk) duk−1 = 0, duk−1 = Gk−1uk−1,
Lkdck = 0, dck = Γkdk,

are mentioned in [26], [27] and [9, Sec. III.E].

C. Mitigation in LDSS Models where {Assumed = Nominal}
The second case of interest is when (1b)=(1a), that is
{Assumed = Nominal}. In other words, there is no mismatch
on the system matrices and input values (dFk−1 = 0, dHk =
0, duk−1 = 0, dck = 0), but we have unwanted disturbances
in the true system model (1c), and (18b) reduces to

εk (Lk) = LkHkFk−1(x
′′
k−1 − xk−1) + Lk(Hkηk−1 + jk)

(30a)
The set of constraints to mitigate the error is

Lk
[
HkFk−1 Hkηk−1 jk

]
= 0 ⇒ εk (Lk) = 0. (30b)

D. Generalization of the {True = Nominal} Case: Mitigation
in LDSS Models where only ηk−1 = 0

In some cases it may be interesting to consider that we have
a mismatch on system matrices and input values, and unwanted
disturbances appear only on the observation equation (i.e.,
jammers), ηk−1 = 0,x′′k = xk, and (18b) reduces to

εk (Lk) = Lk (dHkxk + jk + dck)

− (I− LkĤk) (dFk−1xk−1 + duk−1) , (31a)

which is of the same form as (27a). By analogy, the set of
constraints to mitigate the error is given by

Lk [dHk jk] = 0

(I− LkĤk)dFk−1 = 0

}
⇒ εk (Lk) = 0, (31b)

which yields updated versions of (28c) or (29) according to
rank (dFk−1). If rank (dFk−1) < Pk, then (31b) becomes

Lk[dHk jk ĤkUk−1] = [0 0 Uk−1] ⇒ εk (Lk) = 0. (31c)

E. Generalization of the {Assumed = Nominal} Case: Miti-
gation in LDSS Models where only dFk−1 = 0

It may be a reasonable assumption of interest to consider a
mismatched model where only the process equation is correct,
that is, dFk−1 = 0. In this case, (18b) reduces to

εk (Lk) = LkdHkx
′′
k − (I− LkĤk)duk−1+

Lk(ĤkFk−1(x
′′
k−1 − xk−1) + Ĥkηk−1 + jk + dck), (32a)

which is of the same form as (27a) and (31a). Again, by
analogy, the set of mitigation constraints is

Lk[dHk Ĥkηk−1 jk ĤkFk−1] = 0

(I− LkĤk)duk−1 = 0

}
⇒ εk (Lk) = 0

(32b)
which yields, by replacing dFk−1 by duk−1, updated versions
of (28c) or (29) according to rank (duk−1).

F. Mitigation of System Disturbances or Noises Uncertainty

For the sake of legibility, in the previous sections possible
LCs to mitigate unwanted disturbances were summarized as

Lkjk = 0, LkHkηk−1 = 0, LkĤkηk−1 = 0. (33a)

More precisely, LCs can mitigate unwanted and unknown
disturbances if they lie in a known vector subspace. Indeed,
if jk = Ψkik, Ψk known and ik unknown, and/or ηk−1 =
Φk−1gk−1, Φk−1 known and gk−1 unknown, then

LkΨk = 0 ⇒ Lkjk = 0,
LkHkΦk−1 = 0 ⇒ LkHkηk−1 = 0,

LkĤkΦk−1 = 0 ⇒ LkĤkηk−1 = 0.

(33b)

Interestingly enough, ηk−1 and jk may also account for
system noises uncertainty where the uncertainties lie in known
vector subspaces. Indeed, if we consider for instance the
measurement noise, (vk + jk) models a misspecification of
the nominal/assumed measurement covariance matrix in com-
parison with the true one, i.e., a misspecification of the form

Cvk+jk = Cvk
+ ΨkCjkΨH

k + Cvk,jkΨH
k + ΨkC

H
vk,jk

,

with Ψk known and {Cjk ,Cvk,jk} unknown. In this situation
LCs as in (33b) mitigate the measurement noise misspecifica-
tion since LkΨk = 0 ⇒ CLk(vk+jk) = CLkvk

. A similar
rationale can be brought to light for the state noise.

G. Unbiased (and Biased) Minimum Variance Estimation for
Misspecified LDSS Systems

It is important to remark that the previous mitigation strate-
gies, i.e., using LCs to cancel the error term εk (Lk), can also
be used to obtain an unbiased minimum variance estimation
filter for misspecified LDSS models. Indeed, notice that

εk (Lk) = 0⇒ E [εk (Lk)] = 0. (34)

Or simply, one can directly resort to the set of LCs for which
E [εk (Lk)] = 0. In that case,

E [εk (Lk)] = LkĤk(F̂k−1 + dFk−1)(mx′′k−1
−mxk−1

)

− (I− LkĤk)
(
dFk−1mxk−1

+ duk−1
)

+ LkdHk (ûk−1 + duk−1)

+ LkdHk((F̂k−1 + dFk−1)mx′′k−1
+ E

[
ηk−1

]
)

+ Lk(Ĥkηk−1 + E [jk] + dck), (35a)

and the optimal gain matrix corresponds to

Lbk = argmin
Lk

{PJ
k|k (Lk)} s.t. E [εk (Lk)] = 0, (35b)
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where the solution is obtained from PJ
k|k (Lk) computed with

the assumed LDSS model (1b). This implies that the proposed
new LCKF approach allows to obtain an unbiased filter w.r.t.
the nominal state, for which the MSE performances are the
ones obtained for LCKF considering the assumed LDSS model
(1b). In other words, this allows to obtain an unbiased filter
under model mismatch. The main effect of LCs is then to
recenter the assumed state, x′k, into the nominal one, xk.

In conclusion, we can also interpret that using (35b)
one obtains an optimal biased minimum-variance estimation
framework for misspecified LDSS systems, that is, from the
assumed LDSS model (1b) this leads to a minimum MSE filter
centred to the nominal state, xk.

VI. ILLUSTRATIVE EXAMPLE: ROBUST NAVIGATION

In order to show the validity of the proposed robust LCKF
we assess its performance in a navigation problem where the
system is affected by a state input mismatch, duk 6= 0, and a
mismatched system model calibration, dHk 6= 0.

The benchmark example in [28], [9, VI-A] is explored,
where the 2D position and velocity of a vehicle is estimated,
xk = (px,k, py,k, vx,k, vy,k)

>, and the state is controlled by
an acceleration command input uk,

xk+1 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

F

xk +


0
0

T sin(θ)
T cos(θ)


︸ ︷︷ ︸

G(θ)

uk + wk

with T = 1 s, θ the vehicle heading angle and wk a zero-mean
Gaussian noise with covariance Q. The vehicle is following a
specific North-East direction (i.e., heading angle θ), thus the
state noise is constrained to this direction (σ2

p = 1, σ2
v = 0.1),

Q =


σ2
p tan

2(θ) σ2
p tan(θ) 0 0

σ2
p tan(θ) σ2

p 0 0
0 0 σ2

v tan
2(θ) σ2

v tan(θ)
0 0 σ2

v tan(θ) σ2
v

 .

The system has access to two (potentially not well calibrated)
sensors which provide position and velocity estimates on a dif-
ferent reference frame, then relative to the vehicle orientation
ψ. The measurement equation is (ψ = (ψ1, ψ2)

>)

yk = H(ψ)xk + nk, H(ψ) =

[
H1(ψ1)
H2(ψ2)

]
,

Hi(ψi) =


cos(ψi) sin(ψi) 0 0
− sin(ψi) cos(ψi) 0 0

0 0 cos(ψi) sin(ψi)
0 0 − sin(ψi) cos(ψi)

 ,
and nk a zero-mean Gaussian noise with covariance R =
diag(10, 10, 1, 1, 1, 1, 0.1, 0.1). The initial state is x0 =
(0, 0, 10 sin(θ), 10 cos(θ))> (i.e., velocity = 36 km/h in the
heading direction), and the filters are initialized at x̂0|0 =
(100, 100, 15, 15)> and P0|0 = diag(50, 50, 5, 5).

In [9], [28] the heading angle θ was assumed to be perfectly
known, but in practice we may have a real trajectory with
a deviation from the nominal (i.e., wrong heading angle

estimation), then θ̂ = θ + dθ̂, which corresponds to an
input mismatch. In addition, we consider a sensor platform
calibration error on the second sensor measurement reference
system, ψ̂2 = ψ2 + dψ̂2 (i.e., ψ̂ = (ψ1, ψ̂2)

>). Then we have
the following Nominal-Assumed LDSS pair:

Nominal :
{

xk+1 = Fxk + G(θ)uk + wk

yk = H(ψ)xk + nk

Assumed :

{
xk+1 = Fxk + G(θ̂)uk + wk

yk = H(ψ̂)xk + nk

Both G(θ) and H(ψ) can be approximated as

G(θ) '


0
0

T sin(θ̂)

T cos(θ̂)

−


0
0

T cos(θ̂)

−T sin(θ̂)

 dθ̂,

Hi(ψi) ' Hi(ψ̂i)−

[
D(ψ̂i)

> 0

0 D(ψ̂i)
>

]
dψ̂i,

with D (ψi) =

[
− sin(ψi) − cos(ψi)
cos(ψi) − sin(ψi)

]
. If we define r =

(0, 0, T cos(θ̂),−T sin(θ̂))>, then ûk = ruk and duk =
rukdθ̂. Because rank (duk) < Pk the input part of the
constraint (29) is LkHk(ψ̂)r = r. In order to mitigate the
measurement model mismatch, the LCs (29) is given by
LkdHk = 0, which in this case simply deletes the mismatched
measurement from the LCKF estimate, which is not what we
are looking for. Because this is a {True = Nominal} case (i.e.,
ηk = 0, jk = 0), instead of looking for the LCs for which
εk (Lk) = 0, we can enforce that E [εk (Lk)] = 0 (refer
to Section V-G for unbiased minimum variance estimation),
which leads to LkdHkmxk

= 0, and therefore the complete
set of LCs for the robust LCKF is Lk∆k = Tk with

∆k =

H(ψ̂)r

 0 0

D>(ψ̂2) 0

0 D>(ψ̂2)

mxk

 ,Tk = [r 0] .

Results for a 5 minutes trajectory are obtained with the fol-
lowing setup: i) true heading angle θ = 60◦ and true platform
orientation ψ1, ψ2 ∈ [−π, π], ii) alternate acceleration input
uk changing from +1 m/s2 to −1 m/s2 every 30 seconds, and
iii) dθ̂ ∈ [−2π/10, 2π/10], max. error of 36◦ w.r.t. θ, and
dψ̂2 = 3.6◦ w.r.t. ψ2. We compare the following algorithms:
1) optimal KF with true knowledge of the system θ and ψ2, 2)
mismatched KF which considers θ̂ and ψ̂2, 3) a LCKF which
only mitigates the impact of θ̂ (LCKF1), 4) a LCKF which
only mitigates the impact of ψ̂2 (LCKF2), and 5) a LCKF
which mitigates the impact of both θ̂ and ψ̂2 (LCKF3).

A trajectory example and the corresponding estimates are
shown in Figure 1 (top). The 2D total mean RMSE over the
trajectory for the different methods is: 1) RMSE optimal KF
= 0.3, 2) RMSE mismatched KF = 10.36, 3) RMSE LCKF1 =
9.64, 4) RMSE LCKF2 = 1.87, and 5) RMSE LCKF3 = 0.33.

We can see that only mitigating the mismatched input
(LCKF1), the filter is able to mitigate the fluctuations induced
by the wrong acceleration but not the misalignment with
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the true coordinate frame. In contrast, mitigating the miscal-
ibration error (LCKF2), the filter preserves the appropriate
coordinate frame but does not correctly deal with the acceler-
ation fluctuations induced by the input mismatch. Exploiting
both constraints (LCKF3) the filter is able to mitigate both
input and calibration mismatches, which confirms the LCKF
performance improvement in mismatched LDSS models. To
complete the discussion, the 2D RMSE w.r.t. the trajectory
time is shown in Figure 1 (bottom). This result confirms the
remarkable impact that a model mismatch may have on the
final mismatched KF performance, and the interest of using
appropriate LCs within the new LCKF framework.
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Fig. 1. (Top) Example of horizontal (x,y) trajectory and the corresponding
estimates. (Bottom) 2D RMSE w.r.t. trajectory time using both optimal KF
(no mismatch), mismatched KF and different LCKFs.

VII. CONCLUSION

It is well-know that KF is very sensitive to model mismatch,
that is, misspecified covariances, uncertainties in system matri-
ces, filter initialization, uncertain inputs or unwanted system
behaviors. In this contribution we explored the use of LCs
for KF robustification. First, we introduced a general class of
LCKFs, which allows at every time step to include or not
non-stationary constraints. These LCKFs generalize previous
results on information filtering, MVDR, GCKF, and can also
be used to obtain unbiased minimum-variance estimators. In
contrast to previous contributions, the goal was not to constrain
the state or measurements, but rather use LCs to robustify
KF under model mismatch. For that purpose, the impact of
possible model mismatch was shown and how to use the LCKF
in order to mitigate such mismatch was thoroughly discussed.
Notice that these results may be of broad interest given that

are derived from the most general KF form. Indeed, because
such LCs can be taken into account in any KF generalization,
this work sets the basis for a new robust filtering framework.
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