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Abstract— Autoencoder (AEC) networks have recently
emerged as a promising approach to perform unsupervised
hyperspectral unmixing (HU) by associating the latent
representations with the abundances, the decoder with the
mixing model, and the encoder with its inverse. AECs are
especially appealing for nonlinear HU since they lead to
unsupervised and model-free algorithms. However, existing
approaches fail to explore the fact that the encoder should
invert the mixing process, which might reduce their robustness.
In this letter, we propose a model-based AEC for nonlinear
HU by considering the mixing model a nonlinear fluctuation
over a linear mixture. Different from previous works, we show
that this restriction naturally imposes a particular structure to
both the encoder and decoder networks. This introduces prior
information in the AEC without reducing the flexibility of the
mixing model. Simulations with synthetic and real data indicate
that the proposed strategy improves nonlinear HU.

Index Terms— Autoencoder (AEC), deep neural networks
(NNs), hyperspectral data, nonlinear unmixing.

I. INTRODUCTION

YPERSPECTRAL unmixing (HU) consists of unveiling

the spectral signatures of pure materials, called end-
members (EMs), and the proportions (also called abundances)
with which they appear at every pixel of a hyperspectral
image (HI) [1]. Although some HU methods assume the EMs
spectra to be known a priori [2], [3], most applications require
unsupervised algorithms, which estimates the EMs from the HI
[4], [5]. The linear mixing model (LMM) represents
the reflectance of an observed pixel as a linear combination
of the reflectance of the spectral signatures of the EMs,
weighted by their corresponding abundance proportion. How-
ever, the LMM fails to account for nonlinear interactions
between different materials commonly seen in real scenes due
to complex radiation scattering among several EMs [1].
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HU strategies considering nonlinear mixtures can be gen-
erally divided into model-based and model-free methods.
Model-based nonlinear HU assumes that the mixing process is
known a priori. Common examples include algorithms based
on, e.g., the bilinear mixing model (BLMM) or the post-
nonlinear mixing model (PNMM) [1]. However, the mixing
mechanisms can be complex in practice, and an appropriate
model is rarely available. This motivated the consideration
of model-free nonlinear HU, which employs more flexible
nonlinear mixing models that are able to represent the mixing
process in practice and can be learned directly from the
observed HI [1], [6]. Examples include the use of graph-based
approximate geodesic distances [7] and kernel-based algo-
rithms [6], [8], the latter of which provides nonparametric
function spaces that can represent arbitrary nonlinear mixtures.

Recently, the use of unsupervised neural networks (NNs)
based on autoencoders (AECs) has become widespread in
HU [9]-[11]. AECs consist of encoder—decoder structured
NNs originally devised for nonlinear dimensionality reduction.
By associating the low-dimensional latent representation of the
input pixels with the abundances and the decoder structure of
the network with the mixing model, HU can be performed
by training the AEC on the observed HI [10]. The learned
encoder is then applied to each image pixel to compute the
abundances. Several AEC-based strategies have been proposed
for linear HU, using denoising AECs to reduce noise and
outliers [9], [12], [13], exploring sparsity constraints [11], [14],
using a near-orthogonality prior over the abundances
[15], [16] and convolutional architectures for spectral-spatial
data processing [17], or using AECs as generative models to
account for the spectral variability of the EMs [18], [19].

More recently, AEC architectures have also shown promis-
ing performance in nonlinear HU, leading to algorithms
that are unsupervised and model-free. For instance, in [20],
a decoder network was proposed as the composition of an
EM matrix and nonlinear NN layers to learn postnonlinear
mixtures. In [16], an AEC was proposed to account for bilinear
mixtures by representing the abundances as the Hadamard
product of two NN-generated estimates. However, the con-
nection to the BLMM is not clear in this architecture. In [21],
another architecture was presented by considering a decoder
composed of a sum of a linear transformation and a multilayer
NN to account for other types of nonlinearity in the mixture.

Despite achieving good performance, existing AEC-based
nonlinear HU algorithms fail to properly explore the fact that
the encoder should invert the mixing process. This may reduce
their robustness, especially when nonlinear NNs with many
degrees of freedom are considered. In this letter, we propose a
model-based AEC for nonlinear HU by considering the mixing
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model a nonlinear fluctuation over a linear mixture. Different
from previous works, we show that this restriction naturally
imposes a particular structure to both the encoder and the
decoder networks. This introduces important prior information
into the AEC without reducing the flexibility of the mixing
model. Simulations with synthetic and real data indicate that
the proposed strategy significantly improves the performance
of nonlinear HU compared to other state-of-the-art algorithms.

II. PROBLEM FORMULATION

The LMM assumes that each L-band pixel y, € RE,
n=1,...,N, of an N-pixel HI, can be modeled as [1]

a, €S!

(1

where M € RE*P is a matrix whose columns are the P EM
spectral signatures my, a, is the abundance vector, S I — {x €
RP 1 x >0, 1"x = 1} denotes the unity simplex, and e, is
an additive noise term.

Despite its popularity, the LMM fails to represent nonlinear
interactions between the different materials in the scene, which
are commonly observed in real HIs [1]. This requires NLMMs,
which can generally be represented as

y.=f(M,a,) +e,, st )

in which f : REXP x RP — R stands for different
models for the interactions between the materials. Prominent
examples include the BLMM (for macroscopic interactions),
the PNMM (e.g., nonlinearities occurring between the scene
and the sensor), and Hapke (for intimate mixtures) models [1].

Since it can be difficult to specify a precise model for f
in advance of HU, the use of nonparametric approaches based
on, e.g., kernel machines, has received a lot of attention [6],
[8], [22]. Kernel methods have flexibility to model arbitrary
nonlinear mixtures by learning f directly from the data.
In this framework, a particularly interesting approach consists
of assuming that the mixing process can be well represented
as a nonlinear fluctuation ¥ over the LMM [6]

y,=Ma, +e,, st

a, cS'

y,=Ma,+¥(M,a,) +e,, st a,cS. 3)

While the connection between (2) and (3) may not be
straightforward, model (3) allows easier control of the degree
of nonlinearity in the model by penalizing the contribution of
¥ during the HU process. In [6], an HU methodology was
proposed using model (3) by constraining ¥ to belong to a
reproducing kernel Hilbert space, which allowed an efficient
solution as a convex optimization problem (i.e., a least-squares
support vector regression problem). However, this methodol-
ogy is purely supervised and cannot estimate the EMs directly
from the HI.

A. AEC-Based Unsupervised Nonlinear HU

More recently, unsupervised approaches based on AECs
have been proposed for nonlinear HU. Such approaches differ
from the AEC strategies used for linear HU in the sense
that the decoder, which is based on the mixing model, must
be designed to incorporate the nonlinearity seen in, e.g., (2)
or (3). For instance, in [20], a network was proposed based
on the postnonlinear model, where the decoder NN is formed
by a composition of the EM matrix and nonlinear layers.
In [21], a similar idea was used based on model (3), where
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Fig. 1.

Proposed model-based AEC solution.

the decoder NN was a linear combination of a linear layer
(representing the EMs) and a nonlinear NN (representing the
nonlinear interactions). However, both these works use generic
nonlinear network architectures for the encoder, which do not
by themselves guarantee a proper inversion of the nonlinear
HU process. Being HU an inference problem, the objective
is to retrieve both the abundances and EMs by fitting the
model to a given HI. This contrasts with typical machine
learning applications, where training and test sets are required
to be distinct. Hence, the importance of structured models
guarantees the physical interpretability of the retrieved latent
representations.

B. Importance of the Encoder for HU

Although some works have explored the influence of the
encoder, its potential to improve the quality and robustness
of AEC-based HU has not been fully utilized. For instance,
early architectures considered tied weights for the encoder and
decoder [9], which severely limited the performance. More
recent works use almost exclusively untied weights [11], using
more flexible NNs as the encoder. Denoising AECs have also
been included as the first layers of the decoder in order to
act as a preprocessing step before HU and improve the results
[9], [12]. However, these works do not fully explore the facts
that, while the decoder should match the mixing process,
the encoder should be constrained to represent its inverse.
In Section III, we will leverage this knowledge to design the
proposed model-based AEC.

IIT. PROPOSED SOLUTION

In this work, we propose to leverage knowledge about the
physical mixing process to derive an AEC architecture, which
is better able to represent both the nonlinear mixing process
and its inverse to perform HU in real-world applications. Our
contributions in this step are twofold, related to the design of
both the encoder and the decoder. An illustrative depiction is
shown in Fig. 1.

Inspired by (3), we consider an AEC decoder design with an
additive linear and nonlinear part, which is similar to the one
used in [21]. The NN weights for the linear part of the decoder
are directly associated with the EM signatures M. Moreover,
we introduce both the abundances and the EM signatures
as inputs to the nonlinear part of the decoder. Therefore,
by employing an NN architecture with high representation
capacity, we can model arbitrary mixtures. This leads to a

decoder h : R? — REL of the form
h(d,,) = r(Man + wD(an» M; WD)) (4)

where @p is a nonlinear function in the decoder (e.g., an MLP)
with parameters Wy representing the nonlinear part of the
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mixing process, and r : R* — R~ is a function that projects
the decoder results to the nonnegative orthant. Note that, unlike
in multikernel based methods, such as [6], which consider
nonlinearities in the mixing process to be only a function
of M, wp is a function of both the abundances and the EM
signatures, which makes it more general.

The second part of the proposed design concerns the
encoder, which we denote by g : RE — RP. This has
received far less attention from previous works, as discussed
in Section II-B. Although most works adopt general linear or
nonlinear NN to design the encoder function, a better design
can be obtained if we consider that the encoder should in
principle be close to h~'. For the case of linear HU (i.e.,
in which @p = 0), this translates directly into a special
kind of tied architecture, in which the encoder becomes g ~
M [11], where 1 denotes the pseudoinverse operator. Note
that, unlike previous works that consider tied architectures
with g ~ M T[9], the architecture that we mentioned is tied
by the pseudoinverse, which is physically more reasonable.
This has been used to motivate untied architectures, in which
the encoder is left unconstrained [11]. However, this impor-
tant knowledge has not been further employed to design or
constrain neither the linear nor the nonlinear AEC encoder
architecture due to the difficulty it introduces. Nonetheless,
we can leverage this idea for nonlinear HU to make the method
more principled and robust while proposing a tractable training
procedure.

We propose to consider an encoder of the following form:

g(y,) = s(diag@)M"y, + wr(y,: Wr)) 5)

where @g is a function parameterized on Wy representing the
nonlinear part of the encoder, and s : R” — S' is a function
that maps the combinations from the linear and nonlinear
abundance branch estimates to the unity simplex S! = {x €
RP :x >0, 17x = 1} to ensure that the estimated abundances
are physically meaningful. Parameter a € R_’: balances the
contributions of the linear and nonlinear parts of the encoder
and is also a learnable parameter. Note that the nonlinear
parts of the encoder and decoder are closely related, in which,
to achieve small reconstruction errors, the contributions of wg
and wp must be similar.

To illustrate this, suppose that a pixel y, is generated
from the decoder model with abundances a,, r and s are
the identity functions, &« =1, and @p and wg belong to
normed function spaces. Then, to accurately reconstruct the
abundances, we need |la, — g(h(a,))| to be small. Using the
reverse triangle inequality, this can generally be written as

[|an— g(h(an))|
= |la,—M' (Ma,+wp(a,, M; Wp)) — wg(h(a,); Wg)|
= H —Miop(a,, M; Wp) — wp(h(a,); WE)”

‘HwE(h(a,,); WE)| — ||MTwD(a,,,M; WD)M (6)
in which

M wp(a,, M; Wp)|| < |M||ep(a,, M; Wp)||. (7)

v

This implies that, if ||@p|| is small (small amounts of
nonlinearity), we must necessarily have ||@g| small to obtain
a small abundance reconstruction error. More generally, good
abundance reconstruction requires the contributions of @y and
M'®p to be similar for any amount of nonlinearity. Therefore,
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if the norms of wp and wg are bounded above by the norm
of the NN weights, we can account for different degrees of
nonlinearity in a principled way by appropriately regularizing
Wg and Wp. We call the proposed method Model-based
AutoenCoder for hyperspectral Unmixing (MAC-U).

A. Cost Function

The training process now consists of determining the pro-
posed model-based encoder and decoder networks, g and h,
based on the set of available image pixels y,, n =1,..., N.
Note that, HU being an inference problem, we only have a
single data set (i.e., one HI) with N pixels to both learn the
model parameters and perform inference of the abundances
using the AEC (this is in contrast to other traditional AECs
that are trained and tested on separate data sets). Thus, the NN
parameters must be learned using a single HI. A particular
difficulty in learning the model-based AEC described in (4)
and (5) is that it involves both M and its pseudoinverse
M. In order to obtain a more tractable architecture, let us
rewrite (5) equivalently as

g(y,) = s(diag(e) Qy, + @r(y,; Wg)) st. @=M". (8)

The constraint in (8) is, however, difficult to enforce even
for moderate numbers of EMs P. Thus, we rewrite it as

Q=M'=MM)"'M =M MQ=M". (9

Denoting the network parameters by W = {Wp, W} and
the training variables by @ = {M, W, Q, a}, the cost function
can be written as

L(©) =Ey-pflly — h(g))I*} + Rw (W) + R (M)
io|MTME - ML (0)

where the expectation in the first term is taken with respect
to the empirical distributions of the image pixels, supported
at {y;,..., yn}. The constraint (9) was introduced into the
cost function in the form of an additive term. Function
R (W) & /IW(||WD||2F + ||WE||%) is a regularization, which
governs the nonlinear contributions to the encoder and the
decoder, while Raq(M) £ A (m] m”)/(my || |m”|]) con-
strains the spectral angle between the updated EMs and
the initialization M. Parameters Ag, Aw, Apm € Ry bal-
ance the contributions of the regularizing terms in the cost
function.

B. NN Architecture and Cost Function Optimization

For the proposed MAC-U method, we considered the fol-
lowing NN architectures for the nonlinear part of the encoder
and decoder blocks, adapted from the ones used in [21].
For wg, seven fully connected layers were used, with the
leaky ReLU activation function and no bias term in the
last layer. The layers contained L, 2L, L/2, L/4, 4P, P,
and P neurons, with noninteger values rounded up. For wp,
five fully connected layers were used, with the leaky ReLU
activation function and no bias term in the last layer. The
layers contained P(L+1), PL, L, L, and L neurons. Function
r(-) was implemented by a ReLU activation, and function
s(-) was implemented by the normalized absolute value rec-
tification mapping. £ was minimized using the stochastic
optimization method, Adam [23], with hyperparameters set as:
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TABLE I
QUANTITATIVE RESULTS FOR DATA CUBES DC1 AND DC2

DCI data cube

BLMM PNMM
Method RMSE4 | RMSEy | RMSEs | RMSEy Time
FCLS 0.2427 0.0904 0.1608 0.0748 0.85
K-Hype 0.1859 0.0795 0.1523 0.0740 7.54
CDA-NL 0.1965 0.0808 0.1628 0.0745 10.75
MAC-U (Prop.) 0.1050 0.0810 0.0795 0.0747 121.65
MF-AEC 0.3460 0.0891 0.3693 0.0793 163.94
NF-AEC 0.2230 0.0832 0.1047 0.0787 75.34
DC2 data cube
BLMM PNMM
Method RMSE4 | RMSEy | RMSE4s | RMSEy Time
FCLS 0.1674 0.1061 0.0636 0.0769 0.85
K-Hype 0.0992 0.0770 0.0976 0.0759 4.13
CDA-NL 0.0910 0.0780 0.0616 0.0765 6.18
MAC-U (Prop.) 0.0864 0.0895 0.0512 0.0769 103.61
MF-AEC 0.3846 0.3943 0.1913 0.3287 86.15
NF-AEC 0.2337 0.1297 0.1841 0.0876 80.10

gradientDecayFactor = 0.9, squaredGradientDecayFactor =
0.95, and miniBatchSize = 128. Other hyperparameters were
left as the default values in MATLAB. Training was performed
for at least one full epoch and stopped when the relative
change of £ between two iterations was smaller than 0.01.

IV. EXPERIMENTS

This section illustrates the performance of the proposed
method using simulations with both synthetic and real data.
The proposed MAC-U method is compared to the fully con-
strained least squares (FCLS), K-Hype [6], and CDA-NL [24].
We also compare MAC-U with two other AEC-based methods.
The first is a completely model-free AEC architecture (i.e.,
where neither the encoder nor the decoder has linear parts),
which we call MF-AEC. The second is based on our imple-
mentation of the architecture proposed in [21], which uses
a linear model and nonlinear fluctuation only in the decoder
(i.e., with a model-free encoder), which we call NF-AEC. Both
MF-AEC and NF-AEC were implemented using the same
framework and code as MAC-U, with the NN architectures
described in Section III-B. In all experiments, EMs extracted
from the observed HI using the VCA algorithm [25] were used
for FCLS, K-Hype, and CDA-NL, and as initialization for the
different AEC strategies. The performances of the methods
were evaluated using the root mean squared error (RMSE)
between the estimated abundance maps (RMSE,4) and between
the reconstructed images (RMSEy). The RMSE is defined as

RMSEx = ,/||1X — X*||%p / Nx, where Ny denotes the number
of elements in X.

A. Synthetic Data

Two synthetic data sets were considered, namely, Data
Cube 1 (DC1), with 10* pixels, and Data Cube 2 (DC2),
with 2500 pixels. Both DC1 and DC2 contained P = 3
EMs with 224 bands extracted from the USGS Spectral
Library. The abundance maps were sampled from a Dirich-
let distribution for DC1 and from a spatially correlated
Gaussian random field for DC2. The pixel reflectance val-
ues were generated using two nonlinear mixture models,
namely, the BLMM: y, = Ma, + > 7' Zf:iJrl Qp, Gy, jM; ©
m; + e,, where © is the Hadamard product, and the
PNMM: y, = (Ma,)*" + e,, where the exponent is
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K-Hype

FCLS

€4 N3

Fig. 2. Abundance maps for DC2 for the PNMM model.

applied elementwise. The Gaussian noise was added through
e, to result in a signal-to-noise ratio of 20 dB. The parameters
of the methods for each data set were selected using a grid
search within the ranges discussed in the original publications.
For K-Hype, the parameter was selected among the values
u € {0.001, 0.002, 0.005, 0.01,0.02, 0.1, 1}. For MAC-U and
its variants, the parameters were selected by performing
a grid search using the following values: Ag, Aw,Anm €
{1076, 1072, 1} and the learning rate y € {107°, 1074}.

The objective results are summarized in Table I. Fig. 2
presents the abundance maps only for DC2 with the PNMM
due to space limitations. The proposed MAC-U outperformed
the competing algorithms for all datacubes and nonlinearity
models. CDA-NL also provided generally good results for
DCI1, while the performance of K-Hype varied according to
the nonlinearity model. Moreover, the model-free architecture
MEF-AEC did not perform well, while NF-AEC (where the
model is only enforced in the decoder) presented intermediate
results. The proposed model-based architecture significantly
improved the unmixing results among the AEC-based solu-
tions. The RMSEy values for MAC-U were slightly larger
than those of K-Hype but smaller compared to the other
AEC solutions. However, we note that RMSEy is not directly
related to the abundance reconstruction and, thus, not a good
metric to evaluate the unmixing performance, especially when
flexible models are considered. A visual inspection of the
abundance maps in Fig. 2 corroborates the objective results.
The average execution times of MAC-U, as shown in Table I,
were significantly larger than the ones of KHype and CDA-NL
but compatible with those of the other AEC-based strategies.

B. Real Data

To evaluate the algorithms with real data, we considered a
subscene of the Urban HI [22], with L = 162 bands. This
subscene is known to contain three EMs: asphalt, vegetation,
and ground, where multiple scattering is expected to occur.
Fig. 3 presents the abundance maps obtained with all the
competing methods. By visual inspection, one can notice
that almost all methods present well-defined and coherent
abundance maps with exception of MF-AEC, which appar-
ently merged the asphalt and ground EMs but presented
a coherent map for the Tree abundance. This behavior is
expected due to the nonsupervised and nonstructured nature
of this model. Regarding the remaining methods, we can
see an advantage of the proposed MAC-U algorithm for
both the Asphalt and Ground EMs, while K-Hype seems
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MF-AEC MAC-U CDA-NL

Fig. 3. Abundance maps of the urban scene.
TABLE II
QUANTITATIVE RESULTS FOR THE URBAN SCENE
Method FCLS K-Hype | CDA-NL | MAC-U | MF-AEC | NF-AEC
RMSEy 0.02279 | 0.00610 0.00626 0.03756 0.12523 0.04403
Time 0.41 2.41 38.51 168.65 236.30 82.88

to have provided a marginally better Tree abundance map,
with energy concentrated in areas known to have vegetation.
Nevertheless, the remaining methods, including the proposed
MAC-U, also provide relatively accurate/coherent maps for
the Tree EM. The estimated linear scaling coefficients « =
[1.0567,0.9523, 1.0402]" indicate strong contributions of the
linear model. We highlight, however, that a values cannot
directly measure the contribution of the linear parcel of the
model since the parameters of the nonlinear branch can grow
to compensate posterior scaling parameters. The reconstruction
errors of MAC-U, as shown in Table II, were comparable to
those of FCLS and smaller than those of the other AEC-based
architectures. However, the connection between small RMSEy
and abundance reconstruction is not direct.

V. CONCLUSION

In this letter, a model-based AEC network was proposed
for nonlinear HU. Considering the mixing model composed
of a nonlinear fluctuation over a linear mixture, the proposed
AEC can represent arbitrary nonlinear mixtures. Moreover,
different from previous approaches, the fact that the encoder
should invert the mixing process was explicitly explored in
this work. We showed that this restriction naturally imposes
a particular structure to both the encoder and the decoder
networks, which explicitly makes use of the pseudoinverse
of the EM matrix. This introduced prior information into the
AEC without reducing the flexibility of the mixing model.
Simulations with synthetic and real data showed that the
proposed strategy can improve the quality of nonlinear HU.

REFERENCES

[1] N. Dobigeon, J.-Y. Tourneret, C. Richard, J. C. M. Bermudez,
S. McLaughlin, and A. O. Hero, “Nonlinear unmixing of hyperspectral
images: Models and algorithms,” IEEE Signal Process. Mag., vol. 31,
no. 1, pp. 82-94, Jan. 2014.

[2] M.-D. lordache, J. Bioucas-Dias, and A. Plaza, “Sparse unmixing of
hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6,
pp. 2014-2039, Jun. 2011.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

5506105

R. A. Borsoi, T. Imbiriba, J. C. M. Bermudez, and C. Richard, “A fast
multiscale spatial regularization for sparse hyperspectral unmixing,”
IEEE Geosci. Remote Sens. Lett., vol. 16, no. 4, pp. 598-602, Apr. 2019.
R. A. Borsoi, T. Imbiriba, and J. C. M. Bermudez, “A data dependent
multiscale model for hyperspectral unmixing with spectral variability,”
IEEE Trans. Image Process., vol. 29, pp. 3638-3651, 2020.

Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, “Hyperspectral unmixing
via L;/2 sparsity-constrained nonnegative matrix factorization,” IEEE
Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, Nov. 2011.
J. Chen, C. Richard, and P. Honeine, “Nonlinear unmixing of hyperspec-
tral data based on a linear-mixture/nonlinear-fluctuation model,” IEEE
Trans. Signal Process., vol. 61, no. 2, pp. 480-492, Jan. 2013.

R. Heylen, D. Burazerovic, and P. Scheunders, “Non-linear spectral
unmixing by geodesic simplex volume maximization,” [EEE J. Sel.
Topics Signal Process., vol. 5, no. 3, pp. 534-542, Jun. 2011.

T. Imbiriba, J. C. M. Bermudez, C. Richard, and J.-Y. Tourneret,
“Nonparametric detection of nonlinearly mixed pixels and endmem-
ber estimation in hyperspectral images,” IEEE Trans. Image Process.,
vol. 25, no. 3, pp. 1136-1151, Mar. 2016.

R. Guo, W. Wang, and H. Qi, “Hyperspectral image unmixing using
autoencoder cascade,” in Proc. 7th Workshop Hyperspectral Image
Signal Processing, Evol. Remote Sens. (WHISPERS), Tokyo, Japan,
Jun. 2015, pp. 1-4.

B. Palsson, J. Sigurdsson, J. R. Sveinsson, and M. O. Ulfarsson,
“Hyperspectral unmixing using a neural network autoencoder,” IEEE
Access, vol. 6, pp. 25646-25656, 2018.

Y. Qu and H. Qi, “UDAS: An untied denoising autoencoder with sparsity
for spectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 3,
pp. 1698-1712, Mar. 2019.

Y. Su, A. Marinoni, J. Li, J. Plaza, and P. Gamba, “Stacked nonnegative
sparse autoencoders for robust hyperspectral unmixing,” IEEE Geosci.
Remote Sens. Lett., vol. 15, no. 9, pp. 1427-1431, Sep. 2018.

Y. Su, J. Li, A. Plaza, A. Marinoni, P. Gamba, and S. Chakravortty,
“DAEN: Deep autoencoder networks for hyperspectral unmixing,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 7, pp. 4309—4321, Jul. 2019.
S. Ozkan, B. Kaya, and G. B. Akar, “EndNet: Sparse autoencoder
network for endmember extraction and hyperspectral unmixing,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 482-496, Jan. 2019.
Z. Dou, K. Gao, X. Zhang, H. Wang, and J. Wang, “Hyperspectral
unmixing using orthogonal sparse prior-based autoencoder with hyper-
Laplacian loss and data-driven outlier detection,” IEEE Trans. Geosci.
Remote Sens., vol. 58, no. 9, pp. 6550-6564, Sep. 2020.

Z. Dou, K. Gao, X. Zhang, H. Wang, and J. Wang, “Blind hyper-
spectral unmixing using dual branch deep autoencoder with orthogonal
sparse prior,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Barcelona, Spain, May 2020, pp. 2428-2432.

B. Palsson, M. O. Ulfarsson, and J. R. Sveinsson, “Convolutional
autoencoder for spectral—spatial hyperspectral unmixing,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 1, pp. 535-549, Jan. 2021.

R. A. Borsoi, T. Imbiriba, and J. C. M. Bermudez, “Deep generative end-
member modeling: An application to unsupervised spectral unmixing,”
IEEE Trans. Comput. Imag., vol. 6, pp. 374-384, 2020.

R. A. Borsoi, T. Imbiriba, J. C. M. Bermudez, and C. Richard, “Deep
generative models for library augmentation in multiple endmember
spectral mixture analysis,” IEEE Geosci. Remote Sens. Lett., early
access, Jul. 22, 2020, doi: 10.1109/LGRS.2020.3007161.

M. Wang, M. Zhao, J. Chen, and S. Rahardja, “Nonlinear unmixing
of hyperspectral data via deep autoencoder networks,” IEEE Geosci.
Remote Sens. Lett., vol. 16, no. 9, pp. 1467-1471, Sep. 2019.

M. Zhao, M. Wang, J. Chen, and S. Rahardja, “Hyperspec-
tral unmixing via deep autoencoder networks for a generalized
linear-mixture/nonlinear-fluctuation model,” 2019, arXiv:1904.13017.
[Online]. Available: http://arxiv.org/abs/1904.13017

R. A. Borsoi, T. Imbiriba, J. C. M. Bermudez, and C. Richard, “A blind
multiscale spatial regularization framework for kernel-based spectral
unmixing,” IEEE Trans. Image Process., vol. 29, pp. 4965-4979, 2020.
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent. (ICLR), 2015, pp. 1-15.

A. Halimi, P. Honeine, and J. M. Bioucas-Dias, “Hyperspectral unmixing
in presence of endmember variability, nonlinearity, or mismodeling
effects,” IEEE Trans. Image Process., vol. 25, no. 10, pp. 4565-4579,
Oct. 2016.

J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: A
fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote
Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.

Authorized licensed use limited to: Northeastern University. Downloaded on July 12,2022 at 20:50:16 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/LGRS.2020.3007161

