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Abstract— The recent evolution of hyperspectral imaging tech-
nology and the proliferation of new emerging applications press
for the processing of multiple temporal hyperspectral images.
In this work, we propose a novel spectral unmixing (SU) strategy
using physically motivated parametric endmember (EME) rep-
resentations to account for temporal spectral variability. By rep-
resenting the multitemporal mixing process using a state-space
formulation, we are able to exploit the Bayesian filtering machin-
ery to estimate the EME variability coefficients. Moreover,
by assuming that the temporal variability of the abundances
is small over short intervals, an efficient implementation of the
expectation-maximization (EM) algorithm is employed to esti-
mate the abundances and the other model parameters. Simulation
results indicate that the proposed strategy outperforms state-of-
the-art multi-temporal SU (MTSU) algorithms.

Index Terms—Endmember (EME) variability, expectation—
maximization (EM), hyperspectral, Kalman filter, multitemporal
unmixing.

I. INTRODUCTION

PECTRAL unmixing (SU) aims to decompose a hyper-

spectral image (HI) into its pure spectral components,
termed endmembers (EMEs), and the proportional abun-
dances to which they contribute to the reflectance in each
pixel [1]. Although the interaction between light and the
EMEs can be complex and nonlinear [2]-[4], the linear mixing
model (LMM) is still widely used due to its simplicity and
good performance [1].
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Spectral variability (SV) consists of changes in EME spectra
occurring both within a single image and between images
acquired at different time instants. They can be caused by
differences in atmospheric, illumination, or seasonal condi-
tions [5], [6]. Early approaches have considered large libraries
of spectral signatures to represent variable EME spectra [5],
[7]-[9]. More recently, different extensions of the LMM have
been proposed to account for the SV within a given HI,
by considering, e.g., additive [10] and multiplicative [11]-[13]
scaling factors or by parameterizing SV using deep generative
models [14].

Multi-temporal SU (MTSU) has recently become a subject
of great interest due to the possibility of leveraging time infor-
mation in HI sequences, allowing for monitoring the dynami-
cal evolution of the materials and their distributions [15]-[17].
However, the influence of SV in multitemporal scenarios
can be significantly stronger than in the case of a single HI.
This introduces a challenge to multitemporal SU since EME
variability must be carefully modeled to achieve a good per-
formance. Previous works have considered different strategies
to incorporate dynamical information about the EMEs, often
based on parametric models originally devised to account for
variations within a single HI. These include constraining the
EMEs in adjacent time instants to be scaled versions of each
other [18] or to be represented as a mean EME matrix with
small, additive perturbations [19]-[21]. However, these works
disregard important information as they do not account for
the low-dimensional structure that often underlies the changes
observed in EME spectra when representing its evolution.

In this letter, we propose a new algorithm for a MTSU
that is based on a dynamical model for the EME time
variability. Especially, we couple the representation power
of recently proposed parametric EME models (which were
originally devised to operate within a single HI, such as [12])
with a Bayesian filtering methodology to reliably estimate
the EMEs in HI sequences. Instead of operating directly
on the EME spectral space, we make use of a parametric
EME model to represent EME dynamics indirectly through
vectors of parameters that capture the time variations of each
material. The Bayesian filtering and smoothing are combined
with the expectation—maximization (EM) algorithm to estimate
the required parameters given a window of observations in
time. The initialization of the resulting Kalman filter is also
estimated in the process, which improves convergence for
short image sequences. Under some approximations about the
temporal variation of the abundances, the proposed algorithm
is able to blindly estimate the EMEs, the average abundances,
and the remaining model parameters from the observed HI
data. Finally, a unique abundance matrix is estimated for each
time instant using the resulting EME model. Simulation results
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show that, for small abundance variations over time (which
can be usually satisfied in small time windows), the proposed
method is able to outperform state-of-the-art algorithms in
both EME and abundance estimation accuracy.

II. MULTITEMPORAL SU

The multitemporal LMM [1] represents an HI with L-band
and N pixels at time 7 as

Y, =M,A, +E, st1 A, =1", A >0 (1)

where Y, € RL*N ig the observed HI, the columns of
M, € REXP are the P EME spectral signatures, A, € RP>*N
contains the abundances for each pixel, and E; represents
additive noise, all indexed at time ¢ € {1,...,T}.

An important challenge related to the use of representa-
tion (1) regards the consideration of SV, which causes the
signatures of the EMEs in M; to change due to, e.g., seasonal,
illumination, or acquisition variations [5]. SV occurs both
in space (within the same HI) and time. Spatial-domain SV
has been addressed in several works (see [5], [6], [10]-[14]
and references therein). For simplicity, this work assumes only
variations of EMEs in time. EME variation within the same HI
can be later incorporated into the proposed model, for instance,
by adapting models, such as the one in [12], to represent the
space—time dynamical behavior of the EMEs.

A straightforward way to perform SU under time variability
is to do it for each image separately. However, such an
approach disregards the temporal information and the time
dynamics of the SV, which can be exploited to enhance both
the abundance and EME estimation performance. Different
SU algorithms accounting for EME time variability have
been recently proposed; most of them are inspired by models
designed to account for SV within a single image. For instance,
Henrot et al. [18] constrain the EME matrices at each time
instant to be scaled versions of a reference EME matrix.
Thouvenin et al. [19] model the EMEs at each time instant
by a mean EME matrix plus small perturbations, which are
assumed to be temporally smooth. All variables are then
estimated using a stochastic approach. This latter model was
later extended for distributed unmixing with additional sparsity
constraints in [20] and to include sparse additive residual
terms to represent abrupt spectral variations in the HI using
a hierarchical Bayesian framework in [21]. However, these
works do not provide a satisfactory means of modeling the
dynamical evolution of the EMEs since they operate directly
in the input spectral space, ignoring the fact that SV can often
be represented more accurately using physically meaningful
parameterizations of EME spectra.

Different models have been recently proposed to model
EME spatial variability as a parametric function of reference
spectral signatures as

M = f(Mo, ¥) (2
where f is a parametric function, My € RL*F contains
reference/average spectral signatures, and ¥ is a vector of
parameters of the variability model. Such models include addi-
tive perturbations [10], spectrally uniform [11] or spectrally
varying [12], [13] scaling factors, and parameterizations using
deep neural networks learned from the observed HI [14]. Such
parametric models are especially interesting for building a
dynamical model to consider EME time variability.

III. DYNAMICAL PARAMETRIC EME MODEL

In this letter, we consider a multitemporal extension of the
parametric EME model (2). We assume a fixed reference EME
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matrix Mo and model the time variations in M, through a
time varying ¥,, t = 1,...,T. By assuming that temporally
adjacent images are acquired at reasonably short time intervals,
we model the difference ¥, — ¥,_; as a small zero-mean
vector. Thus, we assume the following model for ¥,:

v, =v,1+4q, (3)
where ¥, is a vector containing the parameters of the EME
model at time 7 and g, ~ N(0, Q) contains the innovations
that describe its dynamical evolution. Note that ¢, is only con-
strained to be zero mean on statistical and not temporal aver-
age, which means that each realization of the sequence {gq,},
which is learned from the observed HIs, can exhibit behavior,
such as trends and complex dynamic evolution. Moreover,
the Gaussian assumption is only made in the model parame-
ters ¥, and not on the EME signatures themselves, which
allows for the use of complex EME distributions through the
pushforward measure obtained using the function f, as done
in [14]. This generalizes the parametric EME model (2) to
the multitemporal setting as M; = f(My, ¥,), where the
parametric function f now relates the EME matrices and the
vectors of parameters at each time instant. Considering this
model, the multitemporal LMM can be represented as

Y, = f(Mo,¥,)A; + E;. 4)
Next, one must choose a function f for (4) that establishes a
good compromise between mathematical tractability and per-
formance. The generalized LMM (GLMM) [12], [22] is able to
represent arbitrary SV by considering spectrally varying multi-
plicative scaling factors, introducing a connection between the
amount of SV and the amplitude of EME reflectance spectra
at each band. The GLMM introduces a matrix ¥ € RE*P
of scaling factors with nonnegative entries [¥]; x > 0O acting
individually at each wavelength. This leads to the following
representation for the ¢th observed HI:

Y, =MoOV¥,)A, + E, (5)

where © is the Hadamard (elementwise) product. Using the
vectorization property, (5) can be expressed as
yi = vec(Yy) = (A ® 1) diag(mo)¥, +e;  (6)

with mo = vec(Mo) and ¢, = vec(¥,) and e¢; = vec(E,).

We write the abundance matrix A; as A; = A + AA;,
where AA; represents small random fluctuations over the
average abundance matrix A. Considering AA; to be small
for a time window ¢ € {ty, ..., 19 + T} Vto, these variations
can be incorporated into the observation noise, leading to the
following model:

Y, = H(A) diag(mo)¥, +r, (7
where H(A) = AT ® I, and r, = e + (AA,T ®
I1)diag(mo)y,. Note that the observation noise r; in (7) is
correlated with the state ¥,. In the following, we will use a
signal-independent noise approximation, which provides com-
petitive performance at a modest computational cost. Further
discussion on the impact of such an approximation can be
found in the Supplementary Material, also available in [23].

IV. PROPOSED METHOD

In this section, we present the proposed dynamical meth-
odology that connects the Kalman smoother with EM
approach. For this, we assume that, for a given time window
of duration 7', the abundance variation is small, but the EMEs
can vary due to different seasonal or acquisition conditions.
Then, we employ a time-varying state-space formulation to
model the SV, which naturally leads to a Kalman filter-based
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formulation. We couple a Kalman smoother, used to obtain
accurate estimations for the state variables, with the EM
estimation of model parameters, such as the abundance matrix
and the noise power. Assuming the abundances fixed over a
time window ¢ € {fg,...,t + T}, we use (3) and (7) to form
the linear state-space model

V. =v¥,_1+4q,, y, = H(A)diagmo)y, +r;. (8)
Neglecting the dependence of r; on ¥, and assuming ¢, and
r; to be Gaussian, this system can be solved using the classical
Kalman filter and smoothing equations. Next, we present the
Kalman filter and smoother equations followed by the EM
strategy to estimate the abundances and noise power.

A. Kalman Filter EME Model

The Bayesian filtering computes marginal posterior distri-
butions of the states by assuming Markovity over the state
sequence. When the dynamical and measurement models are
linear and Gaussian, the solution is given in the form of the
Kalman filter, which can be expressed in a set of equations
for the Prediction

Vi1 =¥—1—1> Prp—1=Proyp—1+ Q )
and for the Update step
v=y — By,

S; = BPtltleT +R
Kl‘ = Pt|[7]BTS;1
Vi = Vi1 + Kooy
Py = Py—1 — K, S, K (10)
where Py, is the covariance matrix of ¢, conditioned on y,
for 1y < 1n, B = H(A)diag(mo) = (AT ® I1)diag(mo), and
R is the covariance matrix of r; in (8). Solving (10) requires
to construct and invert matrix S; of size NL x NL, which
is impractical. To circumvent this issue, we assume that the
noise covariance matrix satisfies R = arzl ~NL- Thus, using the
Woodbury identity for the inverse of sum of matrices, the right
part of the third term in (10) is written as
To-1 —2pT —4nT - 2pTp\~lpT
B 'S, =0,"B —o0, "B B(Pm | to °B B) B
which now involves only the inverse of a PL x P L matrix.

B. Kalman Smoother

The objective of the Bayesian smoothers is to provide a
marginal posterior distribution of state ¥, assuming knowl-
edge of the measurements y, in an observation window of
duration 7', that is, p(¥,|y;,, - - - » ¥47)- For the model in (8),
the smoother solution can be implemented very efficiently by
iteratively updating the conditional distributions obtained by

the Kalman filter backwards in time, for 1o+ 7, .. ., fo. In this
case, the smoother equations are given by
¢t+1\t = '/’t|t’ Pt+1\t = Pt\t + Q» G, = Pt|tPt_+11|,
'/’f = '/’t|t + Gf[wf+l - ¢t+1\t]
P{ = Py +G/[P — Pii1)]G/. (11)

C. EM Algorithm

Estimation of the sequence {¢,} of EME model parameters
using (9)—(11) requires that A, @, and R, as well as the
initializations Pojo and ¥ )9, be known in advance. Let us
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denote these parameters by § = {A, Pop, O, R, 1&0‘0}.
Instead of fixing @ with values known a priori, we can view
it as unobserved latent variables of model (8), which can
be estimated by maximizing the conditional marginal likeli-
hood p(y;y,---» y,0+T|0) using the EM algorithm. Starting
with an initial guess 09, the EM algorithm finds a local
maximum of p(y,, ..., y,1r|0) by repeating the following
steps:

a) E-step: compute (010"

b) M-step: compute gkt = argmax (e, 0(k))

for k = 1,..., Knpax, with K, being the number
of iterations and Q(0|0(k)) = Ec{log p(¥sps o> ¥rgi75 Vi
"’yt0+T|0)} with ¢ - p(wtow" "ﬁto-‘rT yto""

Yo +T|0( )) being the expectation of the logarithm of the
data likelihood, taken with respect to the full joint posterior
given the parameters 6 ) . Although the EM algorithm is very
general and not always easy to solve, for a linear model
such as (8), we can find closed-form solutions, leading to
more efficient implementation in high-dimensional settings.
Furthermore, for the linear Gaussian model, Q(@, 0(k)) can
be computed based on the Kalman smoother results obtained
using 6 k) as the system parameters. This leads to an elegant
solution that consists of the successive application of the
smoother and estimation of the parameters. For the model (8),
Q(0,0") is given by Sirkki [24]

Q0.6
= S (w{PGPy+ (B~ Vo) (W -
+u{R[Zs - Z3HA)" —
+H(A)T H(A)']}
+u{Q7'[Z1 - 24— 2] + 2]}

+ log{| QR|" | Popl}) + C
where C is a constant term and

T T
T =S Py, T =S PG vy
=1 t=1

T T
T=D P+ Vi, Ei= ZJ’z'ﬁfT

=1 =1

T
X5 = Z)’ty;r
t=1

Under the assumption that R = 0,21 NL, optimizing
Q(8,0") with respect to Pojo, @, R, and Yoo is relatively
straightforward and can be done as [24]

(12)

Yoo) 1}

H(A)X]

PGo = Po+ (¥ — Yoo) (¥ — ‘PO\O)T (13)

Q" =3 -3,—-3] +3% (14)
=t {25 —2H(A)X; + H(A)Z H(A)"}/(LN)

(15)

Yoo = Yo (16)

The optimization with respect to H(A) is, however, more
complex due to the structure of this matrix. Since R = o1
for some o, > 0, the problem can be stated as

A =argmin w{H(A)X HA)" —233H(A)'} (17)
A
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Algorithm 1 Kalman Filter and Smoother for MTSU

T 0 0 0
Input : {y,}/_ . AQ, y©, Moy 0@, 5, P{),
A
1fori=1,..., Knix do
2 | Estimate ¢, using (9)—(10) fort =1,...,T;
3 | Estimate ¥; and PY using (11) forr=T7,...,1;
4 | Estimate P(()llz), Q(i), a,(l), '/’(()l&)’ AW

using (13)—(16), (21);
5 end
6 Estimate the temporal abundance variations according
to (22);
7 return A = A,, M* = Mo © vec™ ! (¢), for
t=1,...,T

In order to solve (17) efficiently, we rewrite its terms in the
following to explore the structure of H(A). For the first term
tr{HA)S HA) ) =u{(AQ I )(AT QI)%;)}

= w{(AAT ® I1)X1) (18)
where X = diag(mo) X diag(mg). To explore the properties
of the Kronecker product and simplify the solution to this
Eroblem, we assume that ¥ can be decomposed as [25], [26]

= >8,C® Dy, Cr € RP*P) Dy e REXL, and
using the properties of the Kronecker product, we have
K
r{(AAT @ 1T} = D u{(AATCo)}r{Dy).
k=1
Similarly, for the second term, we have tr{H (A)ET}
tr{(AT ® IL)E3} where 3 = %3 dlag(mo) Decomposing
35 as in [25] and [26] leads to ¥ = zk 1 Ci®Dy, Cje

19)

RVN*P Dy e REXL| and using the properties of the Kro-
necker product, we have
K>
~ ~T ~
w{(AT @ 1)) =D uw{(ATC)}u (D). ©0)
k=1

By substituting (19) and (20) in (17), taking the derivative of
the cost function with respect to A and setting it equal to zero,
we obtain the following solution for A

K -1 K>
A= [z tr{ D} (Cr + C,(T)} [22& {D,f}c,f]. 1)
k=1 k=1

Although the approach presented in Sections IV-A-IV-C
provides an estimate A of the average abundances, the tem-
poral abundance variations AA; can make A an inaccurate
approximation of A; for some image sequences (e.g., when
sudden changes are present). To mitigate this issue, we com-
pensate the abundance variations A A; by solving using a fully
constrained least-squares (FCLS) problem

min ¥, — (Mo © ¥) A7 + 214, — All}
t

st. A, >0, 174, =1" (22)
fort =1,...,T, where @t is the matrix-ordered version of
the estimated states ¥§ and A > 0 is a regularization parameter.
The proposed methodology is summarized in Algorithm 1.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method by comparing it with the FCLSs and with the online
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TABLE I
QUANTITATIVE SIMULATION RESULTS (VALUES x 100)

| Synthetic Data (average results) | Real Data
‘ NRMSE4 NRMSEp; SAMjps NRMSEy ‘ NRMSEy

FCLS 4.60 3.30 2.47 4.03 8.73
GLMM 4.87 4.25 3.69 2.93 0.15
ou 3.40 2.82 2.05 3.09 3.48
Proposed 2.65 2.06 1.83 3.12 9.02

unmixing (OU) strategy proposed in [19]. To illustrate how
the use of temporal information improves SU, we have also
applied the GLMM algorithm [12] (which considers SV only
within a single HI) to process each HI independently. In all
experiments, the reference EME matrix M was extracted
from the observed HI at + = 1 using the vertex component
analysis (VCA) algorithm [27], and the abundances were
initialized with the corresponding FCLS result. The other
parameters were initialized as 1[}0‘0 =1,0=0.11,0, =0.01,
Poo = I, and 1 = 1078, and five EM iterations were
considered. The parameters of the OU algorithm were searched
in the ranges detailed in the original publication [19].

The performance of the methods is evaluated using the aver-
age normalized root mean squared error (NRMSE) between
the estimated abundances (NRMSE,), EMEs (NRMSEy,)
and between the reconstructed HIs. NRMSE is defined as
NRMSEx = (1/T) 3/ (1X, — X} 1% / [1X:13)"/%, where
X; and X} are a true and an estimated variable, respec-
tively, at time instant f. We also consider the average
spectral angle mapper (SAM) between the estimated EMEs,
defined as SAMy; = (1/7) ZLI Z,‘::] arccos(mlztmz,t/
Il ).

A synthetic data set with L = 173 bands, N = 50 pixels,
and T = 10 frames was created by generating abundance
values sampled from a Dirichlet distribution. HIs containing
three EMEs (vegetation, water, and soil) were generated fol-
lowing the model (5) to generate one different EME matrix for
each time instant. Temporal SV was introduced by performing
a random walk according to the model ¥, = Fy,_| + ¢,
with F = 091, ¥, = 1, p, and covariance 0.011. Finally,
the white Gaussian noise was added to the images, resulting
in an SNR of 30 dB. The SAMj; metric for the GLMM
method was computed by considering the average EME matrix
(across all pixels) for each time instant. In order to evaluate
the performance of the algorithms, we performed 900 Monte
Carlo runs. In addition, we also simulated different amounts
of temporal abundance variability, with the temporal standard
deviatior31 of each pixel being, on average, approximately
3x107°.

The average metrics (across all MC runs and variance
values) are shown in Table I. It can be seen that the proposed
method performs significantly better than other algorithms.
Improvements over OU can be found in NRMSE, (22%),
NRMSEy (27%), and SAMpy (11%). The GLMM provided
the smallest reconstruction error NRMSEy since it has the
largest amount of degrees of freedom. However, this did not
translate into better abundance or EME estimates since spatial
SV was not present in the data, and time information was not
taken into account.

For the simulations with real data, we consider three images
from the Lake Tahoe sequence, originally studied in [19],
acquired on April 10, 2014, June 02, 2014, and April 29,
2015. These images can be seen in Fig. 1 and are composed
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Kalman GLMM FCLS

Bis,
e,
£,

Fig. 1. (Right) Abundance maps for the soil EME and (Left)
representation of the Lake Tahoe HI sequence.

10-04

02-06

29-04

0

visual

of three EMEs: water (a lake) and soil and vegetation (two
crop circles, whose aspect varies considerably between the
three HIs). The images were first downsized to 28 x 38 pixels
for faster processing and contained L = 173 bands. M( and
the OU EME initialization were constructed using the same
signatures as in [19]. The OU parameters were the same as
those used in [19]. The results can be seen in Fig. 1 and
Table I. Due to space limitations, only the soil EME is shown
(more results can be found in the Supplementary Material, also
available in [23]). It can be seen that the proposed algorithm
provides higher abundance values in the regions corresponding
to the soil in the HI, with significantly less confusion in the
vegetation EME compared with the other methods, especially
for + = 2. Similar improvements could be noticed for the
other EMEs as well. The reconstruction error NRMSEy of
the algorithms is generally related to their overall amount
of degrees of freedom, thus being much larger for both the
proposed method and FCLS than for GLMM.

VI. CONCLUSION

We proposed a new MTSU algorithm accounting for SV.
A state-space dynamical model was proposed for the time
evolution of the coefficients encoding the SV of the EMEs.
Bayesian filtering was used to estimate the state variables.
Assuming small abundance variations in short time intervals,
EM employed to efficiently estimate the remaining parame-
ters, including the fractional abundances. Simulation results
indicate that the proposed method can outperform state-of-
the-art MTSU algorithms. A future perspective is the exten-
sion of the method to properly handle abrupt abundance
changes.
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