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INTRODUCTION

The systematic study of A-hypergeometric D-modules, also known as GKZ-systems, was initiated
by Gelfand, Graev, Kapranov, and Zelevinski [6, 7]. These are systems of linear partial differential
equations in several complex variables that generalize classical hypergeometric equations. They
are determined by a matrix A = (a, --- a,,) = (g; ;) with columns a; € 7% and a parameter vector
B e cY. Let X1, X5, ..., X, be coordinates on C", with corresponding partial derivatives 0, 05, ..., d,,,
so that the Weyl algebra D on C" is generated by x4, ..., x,,,J;, ..., 9, Let

I, := (0" 3" | u,v € N", Au = Av) C C[0,,...,3,]
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denote the toric ideal of A. Denote by E; := Z;’zl a; jx;0; the ith Euler operator of A. The A-

hypergeometric D-module with parameter § € C¢ is the left D-module

M,(B) :=D/D-(I4,E; —B;,-..Eq — Bg)-

For any choice of A and §, the module M ,(B) is holonomic [1, 6]. When 8 € C¢ is generic, the
dimension of the space of germs of holomorphic solutions of M 4(5) at a nonsingular point, also
known as its (holonomic) rank, is equal to the normalized volume vol(A) of the matrix A; see (1.1)
[1, 7]. In general, this is only a lower bound; see [12] for the case when I, is homogeneous and [9]
for the general case. The set

E(A) := {8 € c? | rank(M 4(B)) > vol(A)}

is called the exceptional arrangement of A, which is an affine subspace arrangement of codimen-
sion at least two that is closely related to the local cohomology modules of the toric ring C[d]/14
[9]. A parameter 8 € £(A) is called a rank jumping parameter.

There is a combinatorial formula to compute the rank of M 4() in terms of the ranking lattices
EF of A at 8 [2], with previous results in [4] with d = 2and in [11] when d = 3 or § is simple (see also
Section 2). Unfortunately, the presence of alternating signs in this formula do not yield a strong
upper bound for the rank of M 4(5); however, if 8 is simple, it quickly follows that the rank of
M 4(B)isat most (d — 1)vol(A), see Corollary 2.2. We show that this bound is tight by constructing
a sequence of examples for which the ratio rank(M 4(3))/vol(A) tends to d — 1; see Theorem 3.1.
In addition, we prove that the equality cannot hold for any example with simple parameter § and
that our examples are minimal in certain sense; see Remark 3.4. Another interesting feature of
these examples is that £(A) contains all the lattice points in the convex hull of the columns of A
and the origin.

On the other hand, there are other known upper bounds for the holonomic rank of M 4(8). In
particular,

44.vol(A)  ifI, is homogeneous [12],

rank(M4(8)) < { 49+1 . yol(A) otherwise [3].

It was shown in [5] that these upper bounds are qualitatively effective, that is, there is some a > 1
such that for any d > 3, there is a (d X n)-matrix A; and a parameter §; € C% such that

rank(M,,_(84)) > a’vol(Ay).

However, the maximum possible value of {/rank(M 4(B))/vol(A) that has, up until now, appeared
in the literature is \3/% ~ 1.1187, see [5, Example 2.6], which was first considered in [10]. The
supremum of the value of {/ rank(M 4(f3))/vol(A) over the examples in the current note is \5/_ R~
1.3195, that is, 4/d — 1 for d = 5. It is still an open problem to find the supremum of the set of
values of {/rank(M 4(B))/vol(A) for variation among the set of full-rank (d X n)-matrices A and
Becd ford>3andn >d+2.
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1 | LOWER BOUNDS FOR THE NORMALIZED VOLUME

In this section, we recall the definition of normalized volume of an integer full rank matrix, see
(1.1), and provide some lower bounds for it, see Lemma 1.2 and Corollary 1.5. These bounds will
be used in the proof of Corollary 2.3.

Fix a (d x n)-integer matrix A = (a, --- a,), where q; € Z¢ denotes the ith column of A. With
the convention that 0 € N, assume that ZA := Z;’:l Zaj = 7% and that the affine semigroup
NA = Z?zl Na; is positive, meaning that NA N (—NA) = {0}. We also assume for simplicity that
all the columns of A are distinct from each other and the origin.

Identify A with its set of columns, and for any subset F of A, denote by Ay the convex hull in
R? of the origin and F. We also identity F with its index set {j | a i € F}. Given a lattice A such
that F C A C QF n 74, the normalized volume of F in A is the integer

volpr(Ap)

1,(F) = dim(RF)! - ——RE2F2
volA(F) = dim(RF) [24 N QF : A]

11)

where volg(-) denotes Euclidean volume in RF. We write vol(A) for vol,4(A) = vol,4(A). By
convention, Z@ = {0} and vol;p, (@) = 1.

A subset F of the columns of the matrix A is a face of A, denoted F < A, if R oF is a face of
the cone R (A := Z;’:l Rsoa; and F = AN RF. The codimension of a nonempty face F of A is
codim(F) := d — dim(RF), with the convention that codim(@) = d.

Lemma 1.1. If T is a proper subset of A with A, N A = t, then there exists a column a of A\ T
such that A,y N A = 7 U {a}. Moreover, if A, is not full dimensional, then a may be chosen so that
dim(ATU{a}) = dlm(Af) + 1.

Proof. If A, C R is full dimensional, then choose any column a € A \ 7. Since a & A, the vector
ais a vertex of A 3, and the rest of the vertices of A, are vertices of A. In particular, if there
exists a vector a’ € (A, 3 N A) \ (r U{a}), then a’ is not a vertex of A,y and A, C Ap o &
A gq- Thus, a can be replaced by a’. Also, note that

Aryay N\ (T U’} € Ay N A\ (T U{a}).

We can thus repeat this process of replacement of @ until the equality A, ,n N A = 7 U{a’'} holds
for some a” in A\ 7.

On the other hand, if A, C R is not full dimensional, let a € A \ 7 be such that dim(A,q) =
dim(A,) + 1. Such a choice of a exists because the rank of A is d. Since A_ is a facet of A3 and
A; N A =7,nopointin (A, N A) \ 7isin the affine span of 7. Thus, if there exists a vector a e
(Arygey N A) \ (7 U{a}), we can replace a by a’ and repeat the process until Ay N A) =t Uf{al,
in a similar way as in the full-dimensional case. O

Lemma 1.2. IfF < Aisa face of A, then
vol(A) > volyangp(F) + n — |F| — codim(F), (1.2)

where |F| is the cardinality of F. In particular, vol(A) > n —d + 1.
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Proof. Since F < Aisaface of A, Ar N A = F. By Lemma 1.1, there is a set o of codim(F) linearly
independent columns of A \ F such that Ay, is full dimensional and Ap , N A = F Uo. The
normalized volume in the lattice Z¢ of F U ¢ is at least volaqr(F). To see this, denote F = 74 n
Ap and note that RF n 7% = ZF and Az = Ag. Thus, using (1.1) we obtain

vol,d(F U a) = vol,a(F U 0) 2 Vol (F U 0) 2 vol,5(F) = vol g (F),

where the first inequality follows from the containment Z(F U o) C 74 and the second inequality
follows from [14, Lemma 3.13].

Again by Lemma 1.1, there isa column a of A \ (F U ) such that no other column of A \ (F U o)
lies in Ap a3, the convex hull of the codim(F) + |F| + 1 points of F U o U {a} and the origin. In
fact, n — (codim(F) + |F| + 1) more columns of A \ (F U o) can be iteratively found in this way.
Note that each time a new point is added to F U ¢ using Lemma 1.1, the normalized volume of the
convex hull of the new set is increased at least by one. This proves the first statement. The second
statement follows from the first one by taking F = @. O

Remark 1.3. Note that for any face F < A, n — |F| — codim(F) > 0. If equality holds, we say that
A is a pyramid over F. By [13, Lemma 3.5], A is a pyramid over F if and only if z¢ = ZF @
(&) igr 20 ;). Further, if A is a pyramid over F, then equality holds in (1.2) because 79N QF = ZF
and vol(A) = vol,;(F); see [13, Lemma 3.5]. The converse is not true; a counterexample is pro-
vided in Remark 3.4.

On the other hand, if equality holds in (1.2), then all the lattice points in A 4 \ Ar are columns
of A. Indeed, if there is a lattice point a € A, \ Ap which is not a column of A, then a matrix
A’ obtained by adding to A the column a would have n + 1 columns and vol(A) = vol(A4’), so
inequality (1.2) applied to A’ shows that the inequality corresponding to A cannot be an equality
in this case.

Denote the toric ring associated to A by S, := C[d]/I, = C[NA].

Proposition 1.4. Ifvol(A) = n—d + 1, then S is normal.

Proof. Let H be an affine hyperplane such that r := H n A satisfies that A_ is full dimensional and
all the columns of A not in 7 belong to the open half space determined by H not containing the
origin; such a hyperplane exists because NA is positive and 0 is not a column of A. Foranyo C
of cardinality d such that A is a full-dimensional simplex and A, N A = 0, vol,4(o) = 1 because
otherwise, by adding a point of A \ o using Lemma 1.1 and taking the convex hull iteratively,
the volume would increase by at least one in each step and the normalized volume of A would
be larger than n —d + 1. Now, since vol,a(c) = 1, o forms a basis in the lattice 7% and No =
7% N Ry0. Since R, (A equals the union of the cones Ro for simplices o C 7 with 7 as above, it
follows that R,gA N Z% = NA, and hence, S, is normal. O

Corollary 1.5. If S, is not Cohen-Macaulay, thend > 2, n > d + 2, and vol(A) > n —d + 2.
Proof. If either d = 1 or n — d = 1, then under our hypotheses on A, S, is Cohen-Macaulay. On

the other hand, if vol(A) < n — d + 2, then S , is normal by Lemma 1.2 and Proposition 1.4, which
implies that S, is Cohen-Macaulay by [8, Theorem 1]. O
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The inequality in Corollary 1.5 is sharp; for any d > 2 and n > d + 2, there is a pointed matrix
A as above with vol(A) = n — d + 2 such that S, is not Cohen-Macaulay. To see this, note first
that ford = 2 and n = d + 2 = 4, the matrix

1 1 0 O
A=
01 2 3
satisfies that vol(A) = 4 and S, is not Cohen-Macaulay. On the other hand, in order to produce
examples with n > 5, it is enough to modify this example by adding the columns (0, k)! for k =
4,...,n — 1, and this operation keeps S 4 invariant up to isomorphism. To construct more examples
with the same value of n — d but larger d, it is enough to consider a pyramid over the previous

example. This alters S, by tensoring over C with a polynomial ring in a number of variables equal
to the increment of d.

2 | RANK VERSUS VOLUME IN THE SIMPLE CASE
2.1 | Combinatorics of the rank

In this subsection, we recall some notations and results from [2] and a formula for the rank of an
A-hypergeometric system in a particular case, see (2.1), proved in [11].
For a face F < A, consider the union of the lattice translates

E) = [Z9nB+CH]\(NA+ZF) = | | (b +zF),
beBﬁ

where Bg C z%isaset of lattice translate representatives. As such, |B§| is the number of translates

of ZF appearing in EP , which is by definition equal to the difference between [Z¢ N QF : ZF]and
the number of translates of ZF along 8 + CF that are contained in NA + ZF.
Given the set J(B8) :={(F,b) |[F <A, b€ Bﬁ}, the ranking lattices of A at § are defined to be

EF = U (b + ZF).
(F.b)ET(B)

Note that the ranking lattices of A at § is precisely the union of those sets (b + ZF) contained in
7%\ NA such that 8 € (b + CF). This is closely related to the set of holes of the affine semigroup
NA, namely the set (24 N R.0A) \ NA.

Definition 2.1. A rank jumping parameter (8 is simple (for a face G < A) if the set of maximal
pairs (F, b) in J () with respect to inclusion on b + ZF all correspond to a unique face G < A.

The main result in [2] states that the rank of M ,(8) can be computed from the combinatorics
of EF and A ,. An explicit formula for the rank is given when the rank jumping parameter 3 is

simple for a face G < A (see also [11] for this particular case); in this case,

rank(M,(8)) = vol(A) + |BY| - (codim(G) — 1) - vol,4(G). 2.1)
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2.2 | Some upper bounds for the rank
In this subsection, we use (2.1) to provide upper bounds for the rank of an A-hypergeometric
system M 4(8) when the parameter § is simple; see Corollaries 2.2 and 2.3. We also prove that
rank(M 4(B)) < 2 - vol(A) if 8 lies outside an affine subspace arrangement of codimension at least
three; see Theorem 2.4.
Corollary 2.2. If 8 € C% is simple for the face F < A, then

rank(M 4(B)) < codim(F) - vol(A).
In particular, ifd > 3 and 8 € E(A) is simple, then

rank(M4(B)) < (d — 1) - vol(A).

Proof. The first statement follows from (2.1) and the definition of normalized volume in (1.1).
Indeed,

BE] - vol,p(F) < [2% N QF : ZF] - vol,p(F) = Volgpnza(F) < Vol(A). (2.2)
We can assume without loss of generality that vol(A) > 2, since otherwise A is a simplex and
EA)=0.
For the second statement, note first that if codim(F) = d, then vol,z(F) =1 = |Bﬁ| and

rank(M 4(B)) =vol(A)+d —-1<(d —1) - vol(A4), (2.3)

since d > 3 and vol(A) > 2. Thus, we can assume that codim(F) < (d — 1) and the second upper
bound follows from the first one. O

We can improve the bound in Corollary 2.2 as follows.
Corollary 2.3. Ifd > 3 and 8 € C4 is simple for the face F < A, then
rank(M ,(B)) < codim(F) - vol(A) — (codim(F) — 1)(n — |F| — codim(F)). (2.4)
In particular, if B € E(A) is simple, then

rank(M 4(8))
vol(A)

<(d-1). (2.5)
Proof. From (2.1) and the first inequality in (2.2),

rank(M 4 (B)) < vol(A) + volgpnza(F)(codim(F) — 1). (2.6)
Now volgpnz¢(F) in (2.6) can be bounded using (1.2) in order to obtain (2.4).

For (2.5), note first that if codim(F) = 1, then rank(M4(8)) = vol(A) by (2.1); otherwise,
(codim(F) — 1) > 1. By [9, Corollary 9.2], £(A) = @ is equivalent to S, being Cohen-Macaulay.
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Thus, for the case when codim(F) = d, it is enough to use that the inequality in (2.3) is in fact
strict, because vol(A) > 4 by Corollary 1.5.
For the remaining cases, the second part in the inequality (2.4) is bounded above by

(d = 1)vol(A) — (n — |F| — codim(F)).

Thus, it is enough to see that n — |F| — codim(F) > 1. By way of contradiction, assume that n —
|F| — codim(F) = 0 (that is, A is a pyramid over F), so that any 8 € C% can be written uniquely
as B = By + Bz with 8 € CF, B € CF for F := A\ F and

rank(M,(8)) = rank(My(8;)); 27)

see [13, Lemma 3.7]. It follows from (2.7) and Remark 1.3 that § € £(A) if and only if 8 € E(F).

Note also that if F < G < A, then [Elé = [Eg, for any 8’ € 8 + CF. If 8 is simple for F, the generic
vectors 3 € B + CF are also simple for F and rank(M ,(8’)) = rank(M 4(f3)). Thus,

rank(MF(ABII?)) = rank(Mp(Bp)) > vol,p(F).

It follows that for generic y € CF, rank(Mp(y)) > vol,r(F), which is a contradiction, as this
should be equality by [1]. O

Note that the difference between (2.5) and the second statement of Corollary 2.2 is that (2.5) is
a strict inequality.

Theorem 2.4. The set
£,(A) :={B € C?| rank(M4(B)) > 2 vol(A)}
is an affine subspace arrangement of codimension at least three in CY.

Proof. The exceptional arrangement £(A) is known to be a finite union of translates of linear
subspaces CG for faces G < A of codimension at least two [9, Corollary 9.4 and Porism 9.5]. More-
over, it is shown in [9, Theorem 2.6] that rank of M 4(8) is upper-semicontinuous as a function of
B with respect to the Zariski topology. Thus, on each irreducible component C of £(A) the rank of
M 4(B) is constant outside a Zariski closed subset of C, of codimension at least one in C (that is, of
codimension at least three in Cd). Moreover, this codimension three set is also an affine subspace
arrangement; see the argument after [2, Definition 4.7]. It is thus enough to find, for any codimen-
sion two component C, a set of parameters § € C such that rank(M 4(f)) < 2 - vol(A) and whose
Zariski closure is C. Indeed, if C has codimension two, we have that C = b + CG for some face
G < F of codimension two and some b € C¢.

Note that for any proper face G’ < A not containing G, the intersection C N (Z% + CG’) is at
most a countably and locally finite union of translates of the linear space CG N CG’ of codimension
at least three. Since there are only finitely many such faces G’, the Zariski closure of the set

c':=c\ |J @ +ca)
G#G'<A
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is C. Moreover, for G as above and 8 € C’, we have that 7% n (8 + CG’) = @, hence [E/é, =@.In
particular, the only possible faces involved in 7 () are G and the two facets containing G. Thus,
[2, Section 5.3 and Example 6.21] yield the inequality

rank(M 4(B)) < vol(A) + |Bg |(codim(G) — 1)vol,;(G),

where equality holds if § is simple for G, as in Definition 2.1. From (2.4) applied to the codimension
two face G, we obtain that

rank(M4(B)) < 2-vol(A) — (n — |G| — 2) < 2 - vol(A), (2.8)
where n — |G| —2 > 1 holds by the same argument as in the proof of Corollary 2.3. Thus,
rank(M 4(B)) < 2 - vol(A) for 8 € C’, where the Zariski closure of C’ is C. O
3 | ASEQUENCE OF EXAMPLES IN THE SIMPLE CASE

In this section, we prove that for any d > 3, the strict inequality (2.5) from Corollary 2.3 is sharp
for simple parameters 3 as in Definition 2.1; see Theorem 3.1.

Theorem 3.1. There is a sequence of full rank (d X (2d — 1)) integer matrices {Ay,};° , for which
there is a simple parameter 8 € C? independent of b for which

 rank(M,,, (B)
lim ——M — =
b—o0 VOl(Ad’b)

In fact, the set of simple parameters 8 € C? that maximize the ratio rank(M Ay b(ﬁ)) /Vol(Ayp)isa
line through the origin.

Consider the following (d X (2d — 1))-matrix with d > 3:

Igy Igq 0g
Agp=(ay ay ~+ayq4) 1= <0r 1t b ) (3.1)
d-1  “td-1

where b > 2is an integer, I;_; denotes the identity matrix of rank d — 1, 1,_, is the column vector
consisting of d — 1 entries of 1, and 0,_; is the zero column vector of length d — 1.

Note that ZA; j, = 7%. We now compute the normalized volume of Ay p in this lattice. To do
this, for j € z, set k) := (0, ..., 0, j)".

Lemma 3.2. The normalized volume of Ay, in (3.1)isb +d — 1.

Proof. The polytope A4 4 CAN0 be decomposed as the union of two polytopes in R¢ that intersect in
a common facet. One of these polytopes is the convex hull of the origin, the first 2(d — 1) columns
of A, and the lattice point h®, This is a prism with height 1 and base equal to a unit (d — 1)-
simplex, so its normalized volume in Z¢ is d. The second polytope is the convex hull of (") and
the last d columns of A; ,, which is a d-simplex. This d-simplex is the lattice translation by h®
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of the d-simplex that is the convex hull of the origin, the first (d — 1)-columns of A; ,, and h(b-D,
therefore, its normalized volume in 79 is b — 1. O

Remark 3.3. The last column of A, is b - e, where e is the dth standard basis vector in C%. The
face F, :={a,4_,} < A has normalized volume 1 in the lattice ZF;, and

b—-1
zinck, = | | (h(k) + ZFb>
k=0

consists of b translated copies of ZF,.

Remark 3.4. The normalized volume of F;, := {a,;_;} in the lattice Z¢ N QF,, is b. In particular,
equality holds in (1.2) for A = A;, and F = F),.

Proposition 3.5. The exceptional arrangement of Ay}, is a finite union of lines parallel to Ce,.

Proof. The first d — 1 columns of A, and its last column are linearly independent, and their
nonnegative hull is precisely the first orthant RZ . Thus, R,0Aq ), = RS  and R,gAg, N 274 = N4
To determine the set of holes of NA , given by N% \ NA,; ,, which can be written as a finite union
of lattice translates of NF;, = Nbe, note first that the affine semigroup S C N¢ generated by the
first 2(d — 1) columns of A, is normal, and their lattice span is Z¢. Note also that, for F, :=

{ayq-1};
NAd,b N CFb = NFb = Nbed.

In order to complete the description of N9 \ NA, ,, denote by A, the simplex given by the convex
hull of the following points in NA; ,:

0, bay; = b(e; +e,), bag,, = bley +ey), ..., bayy_, = bley_; +e,), a, = be,.

Since NA; ;, = S + Nbey, the set of holes of NA; , is the union of the sets ¢ + Nbe;, where ¢ runs
through the lattice points:

d-1
740 A\ <R>o(91 +ey) U Ryo(e; +e4) U U Ryo(eg_q +e4) U <bed + Z R;oek))
k=1
It now follows from [2, 9] that the exceptional arrangement of A ;, is
d-1b-2
EAqp) = | | (mey + CFy).
k=1 m=0 O

By the proof of Proposition 3.5, if b > 3, then all the lattice points in A, ~belong to E(Agp)

Lemma 3.6. IfF, :={a,;_,}, then the function f € C% rank(MAdb(,B)) reaches its maximum
exactly when 8 € CF,, and this maximum value is (d — 1)b + 1.
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Proof. We first show that if 8 € CF}, then the rank of M Adb(ﬁ) is (d — 1)b + 1. In this case, the
ranking lattices at 8 are ’

b-1
EF = (hU) + ZFb>.
j=1

Thus, by (2.1), the rank jump at 3 is equal to

rank(My,, (8)) — vol(Ag ) = |By, | - volyp, (Fp) - (codim(F,) — 1),

p
Fy
where codim(Fy) =d — 1, volyp, (Fp,) =1, and |B§b| = b — 1 by Remark 3.3, since

ZF, € (NAgy + ZF,) n (B + CF)n Z°.

Thus, rank(M A (B)) =volya(Ayp) + (b —1)(d —1), which gives the desired equality by
Lemma 3.2.

In order to prove that this is the maximum value of rank(M Agp (B)), it is enough to observe that
when § lies in a component of the form (mey, + CF,,) C £(A, ) with m # 0, then the computation
of the rank jump is analogous to the previous case, but the number |B§b| will be smaller. This is
the case because

mey, mey + ey, mey + 2ey, ..., me, + mey € NA,,
and hence there are (m + 1) translated copies of ZF), in NA; , N (mey, + CFp). O
Proof of Theorem 3.1. The result now follows immediately from Lemmas 3.6 and 3.2. O

ACKNOWLEDGEMENTS

We are grateful to Laura Felicia Matusevich and Uli Walther for helpful discussions over the years
on bounding the rank of an A-hypergeometric system. C. Berkesch was partially supported by
NSF Grant DMS 1661962 and NSF Grant DMS 2001101. M.-C. Fernadndez-Ferndndez was partially
supported by MTM2016-75024-P and FEDER.

JOURNAL INFORMATION

The Bulletin of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES

1. A. Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J. 73 (1994), 269-290.

2. C. Berkesch, The rank of a hypergeometric system, Compos. Math. 147 (2011), no. 1, 284-318.

3. C.Berkesch, J. Forgard, and L. F. Matusevich, On the parametric behavior of A-hypergeometric functions, Trans.
Amer. Math. Soc. 370 (2018), no. 6, 4089-4109.



192

BERKESCH AND FERNANDEZ-FERNANDEZ

4.

10.

11.

12.

13.

14.

E. Cattani, C. D’Andrea, and A. Dickenstein, The A-hypergeometric system associated with a monomial curve,
Duke Math. J. 99 (1999), no. 2, 179-207.

M. C. Fernadndez Fernandez, Exponential growth of rank jumps for A-hypergeometric systems, Rev. Mat.
Iberoam. 29 (2013), no. 4, 1397-1404.

. L. M. Gel’'fand, M. I. Graev, and A. V. Zelevinskii, Holonomic systems of equations and series of hypergeometric

type, Dokl. Akad. Nauk SSSR 295 (1987), no. 1, 14-19.

. I.M. Gel'fand, A. V. Zelevinskil, and M. M. Kapranov, Hypergeometric functions and toric varieties, Funktsional.

Anal. i Prilozhen. 23 (1989), no. 2, 12-26. Correction in ibid, 27 (1993), no. 4, 91.

. M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann.

of Math. 96 (1972), no. 2, 318-337.

. L. F. Matusevich, E. Miller, and U. Walther, Homological methods for hypergeometric families, J. Amer. Math.

Soc. 18 (2005), no. 4, 919-941.

L. F. Matusevich, U. Walther, Arbitrary rank jumps for A-hypergeometric systems through Laurent polynomials,
J. Lond. Math. Soc. (2) 75 (2007) 213-224.

G. Okuyama, A-hypergeometric ranks for toric threefolds, Int. Math. Res. Not. 38 (2006). https://doi.org/10.1155/
IMRN/2006/70814.

M. Saito, B. Sturmfels, and N. Takayama, Grobner deformations of hypergeometric differential equations,
Springer, Berlin, 2000.

M. Schulze and U. Walther, Resonance equals reducibility for A-hypergeometric systems, Algebra Number The-
ory 6 (2012), no. 3, 527-537.

U. Walther, Duality and monodromy reducibility of A-hypergeometric systems, Math. Ann. 338 (2007), no. 1,
55-74.


https://doi.org/10.1155/IMRN/2006/70814
https://doi.org/10.1155/IMRN/2006/70814

	On the rank of an -hypergeometric -module versus the normalized volume of 
	Abstract
	INTRODUCTION
	1 | LOWER BOUNDS FOR THE NORMALIZED VOLUME
	2 | RANK VERSUS VOLUME IN THE SIMPLE CASE
	2.1 | Combinatorics of the rank
	2.2 | Some upper bounds for the rank

	3 | A SEQUENCE OF EXAMPLES IN THE SIMPLE CASE
	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	REFERENCES


