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Abstract
The rank of an 𝐴-hypergeometric 𝐷-module 𝑀𝐴(𝛽),
associated with a full-rank (𝑑 × 𝑛)-matrix 𝐴 and a vec-
tor of parameters 𝛽 ∈ ℂ𝑑, is known to be the normal-
ized volume of 𝐴, denoted vol(𝐴), when 𝛽 lies outside
the exceptional arrangement (𝐴), an affine subspace
arrangement of codimension at least two. If 𝛽 ∈ (𝐴) is
simple, we prove that 𝑑 − 1 is a tight upper bound for the
ratio rank(𝑀𝐴(𝛽))∕vol(𝐴) for any 𝑑 ⩾ 3. We also prove
that the set of parameters 𝛽 such that this ratio is at least
two is an affine subspace arrangement of codimension
at least three.

MSC ( 2020 )
13N10, 32C38, 33C70, 14M25 (primary)

INTRODUCTION

The systematic study of𝐴-hypergeometric𝐷-modules, also known as GKZ-systems, was initiated
by Gelfand, Graev, Kapranov, and Zelevinski [6, 7]. These are systems of linear partial differential
equations in several complex variables that generalize classical hypergeometric equations. They
are determined by a matrix 𝐴 = (𝑎1⋯𝑎𝑛) = (𝑎𝑖,𝑗)with columns 𝑎𝑘 ∈ ℤ𝑑 and a parameter vector
𝛽 ∈ ℂ𝑑. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be coordinates onℂ𝑛, with corresponding partial derivatives 𝜕1, 𝜕2, … , 𝜕𝑛,
so that the Weyl algebra 𝐷 on ℂ𝑛 is generated by 𝑥1, … , 𝑥𝑛, 𝜕1, … , 𝜕𝑛. Let

𝐼𝐴 ∶= ⟨𝜕𝑢 − 𝜕𝑣 ∣ 𝑢, 𝑣 ∈ ℕ𝑛,𝐴𝑢 = 𝐴𝑣⟩ ⊆ ℂ[𝜕1, … , 𝜕𝑛]
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denote the toric ideal of 𝐴. Denote by 𝐸𝑖 ∶=
∑𝑛
𝑗=1 𝑎𝑖,𝑗𝑥𝑗𝜕𝑗 the 𝑖th Euler operator of 𝐴. The 𝐴-

hypergeometric 𝐷-module with parameter 𝛽 ∈ ℂ𝑑 is the left 𝐷-module

𝑀𝐴(𝛽) ∶= 𝐷∕𝐷 ⋅ ⟨𝐼𝐴, 𝐸1 − 𝛽1, … , 𝐸𝑑 − 𝛽𝑑⟩.
For any choice of 𝐴 and 𝛽, the module𝑀𝐴(𝛽) is holonomic [1, 6]. When 𝛽 ∈ ℂ𝑑 is generic, the

dimension of the space of germs of holomorphic solutions of𝑀𝐴(𝛽) at a nonsingular point, also
known as its (holonomic) rank, is equal to the normalized volume vol(𝐴) of the matrix 𝐴; see (1.1)
[1, 7]. In general, this is only a lower bound; see [12] for the case when 𝐼𝐴 is homogeneous and [9]
for the general case. The set

(𝐴) ∶= {𝛽 ∈ ℂ𝑑 ∣ rank(𝑀𝐴(𝛽)) > vol(𝐴)}

is called the exceptional arrangement of 𝐴, which is an affine subspace arrangement of codimen-
sion at least two that is closely related to the local cohomology modules of the toric ring ℂ[𝜕]∕𝐼𝐴
[9]. A parameter 𝛽 ∈ (𝐴) is called a rank jumping parameter.
There is a combinatorial formula to compute the rank of𝑀𝐴(𝛽) in terms of the ranking lattices

𝔼𝛽 of𝐴 at𝛽 [2],with previous results in [4]with𝑑 = 2 and in [11]when𝑑 = 3 or𝛽 is simple (see also
Section 2). Unfortunately, the presence of alternating signs in this formula do not yield a strong
upper bound for the rank of 𝑀𝐴(𝛽); however, if 𝛽 is simple, it quickly follows that the rank of
𝑀𝐴(𝛽) is at most (𝑑 − 1)vol(𝐴), see Corollary 2.2.We show that this bound is tight by constructing
a sequence of examples for which the ratio rank(𝑀𝐴(𝛽))∕vol(𝐴) tends to 𝑑 − 1; see Theorem 3.1.
In addition, we prove that the equality cannot hold for any example with simple parameter 𝛽 and
that our examples are minimal in certain sense; see Remark 3.4. Another interesting feature of
these examples is that (𝐴) contains all the lattice points in the convex hull of the columns of 𝐴
and the origin.
On the other hand, there are other known upper bounds for the holonomic rank of𝑀𝐴(𝛽). In

particular,

rank(𝑀𝐴(𝛽)) ⩽

{
4𝑑 ⋅ vol(𝐴) if 𝐼𝐴 is homogeneous [12],
4𝑑+1 ⋅ vol(𝐴) otherwise [3].

It was shown in [5] that these upper bounds are qualitatively effective, that is, there is some 𝑎 > 1
such that for any 𝑑 ⩾ 3, there is a (𝑑 × 𝑛)-matrix 𝐴𝑑 and a parameter 𝛽𝑑 ∈ ℂ𝑑 such that

rank(𝑀𝐴𝑑
(𝛽𝑑)) ⩾ 𝑎

𝑑vol(𝐴𝑑).

However, themaximumpossible value of 𝑑
√
rank(𝑀𝐴(𝛽))∕vol(𝐴) that has, up until now, appeared

in the literature is 3
√
7∕5 ≈ 1.1187, see [5, Example 2.6], which was first considered in [10]. The

supremum of the value of 𝑑
√
rank(𝑀𝐴(𝛽))∕vol(𝐴) over the examples in the current note is

5
√
4 ≈

1.3195, that is, 𝑑
√
𝑑 − 1 for 𝑑 = 5. It is still an open problem to find the supremum of the set of

values of 𝑑
√
rank(𝑀𝐴(𝛽))∕vol(𝐴) for variation among the set of full-rank (𝑑 × 𝑛)-matrices 𝐴 and

𝛽 ∈ ℂ𝑑, for 𝑑 ⩾ 3 and 𝑛 ⩾ 𝑑 + 2.
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1 LOWER BOUNDS FOR THE NORMALIZED VOLUME

In this section, we recall the definition of normalized volume of an integer full rank matrix, see
(1.1), and provide some lower bounds for it, see Lemma 1.2 and Corollary 1.5. These bounds will
be used in the proof of Corollary 2.3.
Fix a (𝑑 × 𝑛)-integer matrix 𝐴 = (𝑎1⋯𝑎𝑛), where 𝑎𝑖 ∈ ℤ𝑑 denotes the 𝑖th column of 𝐴. With

the convention that 0 ∈ ℕ, assume that ℤ𝐴 ∶=
∑𝑛
𝑗=1 ℤ𝑎𝑗 = ℤ𝑑 and that the affine semigroup

ℕ𝐴 ∶=
∑𝑛
𝑗=1 ℕ𝑎𝑗 is positive, meaning that ℕ𝐴 ∩ (−ℕ𝐴) = {𝟎}. We also assume for simplicity that

all the columns of 𝐴 are distinct from each other and the origin.
Identify 𝐴 with its set of columns, and for any subset 𝐹 of 𝐴, denote by Δ𝐹 the convex hull in

ℝ𝑑 of the origin and 𝐹. We also identity 𝐹 with its index set {𝑗 ∣ 𝑎𝑗 ∈ 𝐹}. Given a lattice Λ such
that 𝐹 ⊆ Λ ⊆ ℚ𝐹 ∩ ℤ𝑑, the normalized volume of 𝐹 in Λ is the integer

volΛ(𝐹) = dim(ℝ𝐹)! ⋅
volℝ𝐹(Δ𝐹)

[ℤ𝑑 ∩ ℚ𝐹 ∶ Λ]
, (1.1)

where volℝ𝐹(⋅) denotes Euclidean volume in ℝ𝐹. We write vol(𝐴) for volℤ𝐴(𝐴) = volℤ𝑑 (𝐴). By
convention, ℤ∅ = {𝟎} and vol{𝟎}(∅) = 1.
A subset 𝐹 of the columns of the matrix 𝐴 is a face of 𝐴, denoted 𝐹 ⪯ 𝐴, if ℝ⩾0𝐹 is a face of

the cone ℝ⩾0𝐴 ∶=
∑𝑛
𝑗=1 ℝ⩾0𝑎𝑗 and 𝐹 = 𝐴 ∩ ℝ𝐹. The codimension of a nonempty face 𝐹 of 𝐴 is

codim(𝐹) ∶= 𝑑 − dim(ℝ𝐹), with the convention that codim(∅) = 𝑑.

Lemma 1.1. If 𝜏 is a proper subset of 𝐴 with Δ𝜏 ∩ 𝐴 = 𝜏, then there exists a column 𝑎 of 𝐴 ⧵ 𝜏
such that Δ𝜏∪{𝑎} ∩ 𝐴 = 𝜏 ∪ {𝑎}. Moreover, if Δ𝜏 is not full dimensional, then 𝑎may be chosen so that
dim(Δ𝜏∪{𝑎}) = dim(Δ𝜏) + 1.

Proof. IfΔ𝜏 ⊆ ℝ𝑑 is full dimensional, then choose any column 𝑎 ∈ 𝐴 ⧵ 𝜏. Since 𝑎 ∉ Δ𝜏, the vector
𝑎 is a vertex of Δ𝜏∪{𝑎}, and the rest of the vertices of Δ𝜏∪{𝑎} are vertices of Δ𝜏. In particular, if there
exists a vector 𝑎′ ∈ (Δ𝜏∪{𝑎} ∩ 𝐴) ⧵ (𝜏 ∪ {𝑎}), then 𝑎′ is not a vertex of Δ𝜏∪{𝑎} and Δ𝜏 ⊊ Δ𝜏∪{𝑎′} ⊊
Δ𝜏∪{𝑎}. Thus, 𝑎 can be replaced by 𝑎′. Also, note that

(Δ𝜏∪{𝑎′} ∩ 𝐴) ⧵ (𝜏 ∪ {𝑎
′}) ⊊ (Δ𝜏∪{𝑎} ∩ 𝐴) ⧵ (𝜏 ∪ {𝑎}).

We can thus repeat this process of replacement of 𝑎 until the equalityΔ𝜏∪{𝑎′′} ∩ 𝐴 = 𝜏 ∪ {𝑎′′} holds
for some 𝑎′′ in 𝐴 ⧵ 𝜏.
On the other hand, if Δ𝜏 ⊆ ℝ𝑑 is not full dimensional, let 𝑎 ∈ 𝐴 ⧵ 𝜏 be such that dim(Δ𝜏∪{𝑎}) =

dim(Δ𝜏) + 1. Such a choice of 𝑎 exists because the rank of 𝐴 is 𝑑. Since Δ𝜏 is a facet of Δ𝜏∪{𝑎} and
Δ𝜏 ∩ 𝐴 = 𝜏, no point in (Δ𝜏∪{𝑎} ∩ 𝐴) ⧵ 𝜏 is in the affine span of 𝜏. Thus, if there exists a vector 𝑎′ ∈
(Δ𝜏∪{𝑎} ∩ 𝐴) ⧵ (𝜏 ∪ {𝑎}), we can replace 𝑎 by 𝑎′ and repeat the process until (Δ𝜏∪{𝑎} ∩ 𝐴) = 𝜏 ∪ {𝑎},
in a similar way as in the full-dimensional case. □

Lemma 1.2. If 𝐹 ⪯ 𝐴 is a face of 𝐴, then

vol(𝐴) ⩾ volℤ𝑑∩ℚ𝐹(𝐹) + 𝑛 − |𝐹| − codim(𝐹), (1.2)

where |𝐹| is the cardinality of 𝐹. In particular, vol(𝐴) ⩾ 𝑛 − 𝑑 + 1.
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Proof. Since 𝐹 ⪯ 𝐴 is a face of 𝐴, Δ𝐹 ∩ 𝐴 = 𝐹. By Lemma 1.1, there is a set 𝜎 of codim(𝐹) linearly
independent columns of 𝐴 ⧵ 𝐹 such that Δ𝐹∪𝜎 is full dimensional and Δ𝐹∪𝜎 ∩ 𝐴 = 𝐹 ∪ 𝜎. The
normalized volume in the lattice ℤ𝑑 of 𝐹 ∪ 𝜎 is at least volℤ𝑑∩ℚ𝐹(𝐹). To see this, denote 𝐹 = ℤ𝑑 ∩

Δ𝐹 and note that ℝ𝐹 ∩ ℤ𝑑 = ℤ𝐹 and Δ𝐹 = Δ𝐹 . Thus, using (1.1) we obtain

volℤ𝑑 (𝐹 ∪ 𝜎) = volℤ𝑑 (𝐹 ∪ 𝜎) ⩾ volℤ(𝐹∪𝜎)(𝐹 ∪ 𝜎) ⩾ volℤ𝐹(𝐹) = volℤ𝑑∩ℝ𝐹(𝐹),

where the first inequality follows from the containmentℤ(𝐹 ∪ 𝜎) ⊆ ℤ𝑑 and the second inequality
follows from [14, Lemma 3.13].
Again by Lemma 1.1, there is a column 𝑎 of𝐴 ⧵ (𝐹 ∪ 𝜎) such that no other columnof𝐴 ⧵ (𝐹 ∪ 𝜎)

lies in Δ𝐹∪𝜎∪{𝑎}, the convex hull of the codim(𝐹) + |𝐹| + 1 points of 𝐹 ∪ 𝜎 ∪ {𝑎} and the origin. In
fact, 𝑛 − (codim(𝐹) + |𝐹| + 1) more columns of 𝐴 ⧵ (𝐹 ∪ 𝜎) can be iteratively found in this way.
Note that each time a new point is added to 𝐹 ∪ 𝜎 using Lemma 1.1, the normalized volume of the
convex hull of the new set is increased at least by one. This proves the first statement. The second
statement follows from the first one by taking 𝐹 = ∅. □

Remark 1.3. Note that for any face 𝐹 ⪯ 𝐴, 𝑛 − |𝐹| − codim(𝐹) ⩾ 0. If equality holds, we say that
𝐴 is a pyramid over 𝐹. By [13, Lemma 3.5], 𝐴 is a pyramid over 𝐹 if and only if ℤ𝑑 = ℤ𝐹 ⊕

(
⨁

𝑗∉𝐹 ℤ𝑎𝑗). Further, if𝐴 is a pyramid over 𝐹, then equality holds in (1.2) becauseℤ𝑑 ∩ ℚ𝐹 = ℤ𝐹

and vol(𝐴) = volℤ𝐹(𝐹); see [13, Lemma 3.5]. The converse is not true; a counterexample is pro-
vided in Remark 3.4.

On the other hand, if equality holds in (1.2), then all the lattice points in Δ𝐴 ⧵ Δ𝐹 are columns
of 𝐴. Indeed, if there is a lattice point 𝑎 ∈ Δ𝐴 ⧵ Δ𝐹 which is not a column of 𝐴, then a matrix
𝐴′ obtained by adding to 𝐴 the column 𝑎 would have 𝑛 + 1 columns and vol(𝐴) = vol(𝐴′), so
inequality (1.2) applied to 𝐴′ shows that the inequality corresponding to 𝐴 cannot be an equality
in this case.
Denote the toric ring associated to 𝐴 by 𝑆𝐴 ∶= ℂ[𝜕]∕𝐼𝐴 ≅ ℂ[ℕ𝐴].

Proposition 1.4. If vol(𝐴) = 𝑛 − 𝑑 + 1, then 𝑆𝐴 is normal.

Proof. Let𝐻 be an affine hyperplane such that 𝜏 ∶= 𝐻 ∩ 𝐴 satisfies thatΔ𝜏 is full dimensional and
all the columns of 𝐴 not in 𝜏 belong to the open half space determined by 𝐻 not containing the
origin; such a hyperplane exists because ℕ𝐴 is positive and 𝟎 is not a column of 𝐴. For any 𝜎 ⊆ 𝜏
of cardinality 𝑑 such that Δ𝜎 is a full-dimensional simplex and Δ𝜎 ∩ 𝐴 = 𝜎, volℤ𝑑 (𝜎) = 1 because
otherwise, by adding a point of 𝐴 ⧵ 𝜎 using Lemma 1.1 and taking the convex hull iteratively,
the volume would increase by at least one in each step and the normalized volume of 𝐴 would
be larger than 𝑛 − 𝑑 + 1. Now, since volℤ𝑑 (𝜎) = 1, 𝜎 forms a basis in the lattice ℤ𝑑 and ℕ𝜎 =
ℤ𝑑 ∩ ℝ⩾0𝜎. Since ℝ⩾0𝐴 equals the union of the cones ℝ⩾0𝜎 for simplices 𝜎 ⊆ 𝜏 with 𝜏 as above, it
follows that ℝ⩾0𝐴 ∩ ℤ𝑑 = ℕ𝐴, and hence, 𝑆𝐴 is normal. □

Corollary 1.5. If 𝑆𝐴 is not Cohen–Macaulay, then 𝑑 ⩾ 2, 𝑛 ⩾ 𝑑 + 2, and vol(𝐴) ⩾ 𝑛 − 𝑑 + 2.

Proof. If either 𝑑 = 1 or 𝑛 − 𝑑 = 1, then under our hypotheses on 𝐴, 𝑆𝐴 is Cohen–Macaulay. On
the other hand, if vol(𝐴) < 𝑛 − 𝑑 + 2, then 𝑆𝐴 is normal by Lemma 1.2 and Proposition 1.4, which
implies that 𝑆𝐴 is Cohen–Macaulay by [8, Theorem 1]. □
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The inequality in Corollary 1.5 is sharp; for any 𝑑 ⩾ 2 and 𝑛 ⩾ 𝑑 + 2, there is a pointed matrix
𝐴 as above with vol(𝐴) = 𝑛 − 𝑑 + 2 such that 𝑆𝐴 is not Cohen–Macaulay. To see this, note first
that for 𝑑 = 2 and 𝑛 = 𝑑 + 2 = 4, the matrix

𝐴 =

(
1 1 0 0

0 1 2 3

)

satisfies that vol(𝐴) = 4 and 𝑆𝐴 is not Cohen–Macaulay. On the other hand, in order to produce
examples with 𝑛 ⩾ 5, it is enough to modify this example by adding the columns (0, 𝑘)𝑡 for 𝑘 =
4,… , 𝑛 − 1, and this operation keeps 𝑆𝐴 invariant up to isomorphism. To constructmore examples
with the same value of 𝑛 − 𝑑 but larger 𝑑, it is enough to consider a pyramid over the previous
example. This alters 𝑆𝐴 by tensoring over ℂwith a polynomial ring in a number of variables equal
to the increment of 𝑑.

2 RANK VERSUS VOLUME IN THE SIMPLE CASE

2.1 Combinatorics of the rank

In this subsection, we recall some notations and results from [2] and a formula for the rank of an
𝐴-hypergeometric system in a particular case, see (2.1), proved in [11].
For a face 𝐹 ⪯ 𝐴, consider the union of the lattice translates

𝔼
𝛽

𝐹
∶=

[
ℤ𝑑 ∩ (𝛽 + ℂ𝐹)

]
⧵ (ℕ𝐴 + ℤ𝐹) =

⨆
𝑏∈𝐵

𝛽
𝐹

(𝑏 + ℤ𝐹),

where𝐵𝛽
𝐹
⊆ ℤ𝑑 is a set of lattice translate representatives. As such, |𝐵𝛽

𝐹
| is the number of translates

ofℤ𝐹 appearing in 𝔼𝛽
𝐹
, which is by definition equal to the difference between [ℤ𝑑 ∩ ℚ𝐹 ∶ ℤ𝐹] and

the number of translates of ℤ𝐹 along 𝛽 + ℂ𝐹 that are contained in ℕ𝐴 + ℤ𝐹.
Given the set  (𝛽) ∶= {(𝐹, 𝑏) ∣ 𝐹 ⪯ 𝐴, 𝑏 ∈ 𝐵𝛽

𝐹
}, the ranking lattices of 𝐴 at 𝛽 are defined to be

𝔼𝛽 ∶=
⋃

(𝐹,𝑏)∈ (𝛽)

(𝑏 + ℤ𝐹).

Note that the ranking lattices of 𝐴 at 𝛽 is precisely the union of those sets (𝑏 + ℤ𝐹) contained in
ℤ𝑑 ⧵ ℕ𝐴 such that 𝛽 ∈ (𝑏 + ℂ𝐹). This is closely related to the set of holes of the affine semigroup
ℕ𝐴, namely the set (ℤ𝑑 ∩ ℝ⩾0𝐴) ⧵ ℕ𝐴.

Definition 2.1. A rank jumping parameter 𝛽 is simple (for a face 𝐺 ⪯ 𝐴) if the set of maximal
pairs (𝐹, 𝑏) in  (𝛽) with respect to inclusion on 𝑏 + ℤ𝐹 all correspond to a unique face 𝐺 ⪯ 𝐴.

The main result in [2] states that the rank of𝑀𝐴(𝛽) can be computed from the combinatorics
of 𝔼𝛽 and Δ𝐴. An explicit formula for the rank is given when the rank jumping parameter 𝛽 is
simple for a face 𝐺 ⪯ 𝐴 (see also [11] for this particular case); in this case,

rank(𝑀𝐴(𝛽)) = vol(𝐴) + |𝐵𝛽
𝐺
| ⋅ (codim(𝐺) − 1) ⋅ volℤ𝐺(𝐺). (2.1)
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2.2 Some upper bounds for the rank

In this subsection, we use (2.1) to provide upper bounds for the rank of an 𝐴-hypergeometric
system 𝑀𝐴(𝛽) when the parameter 𝛽 is simple; see Corollaries 2.2 and 2.3. We also prove that
rank(𝑀𝐴(𝛽)) < 2 ⋅ vol(𝐴) if 𝛽 lies outside an affine subspace arrangement of codimension at least
three; see Theorem 2.4.

Corollary 2.2. If 𝛽 ∈ ℂ𝑑 is simple for the face 𝐹 ⪯ 𝐴, then

rank(𝑀𝐴(𝛽)) ⩽ codim(𝐹) ⋅ vol(𝐴).

In particular, if 𝑑 ⩾ 3 and 𝛽 ∈ (𝐴) is simple, then

rank(𝑀𝐴(𝛽)) ⩽ (𝑑 − 1) ⋅ vol(𝐴).

Proof. The first statement follows from (2.1) and the definition of normalized volume in (1.1).
Indeed,

|𝐵𝛽
𝐹
| ⋅ volℤ𝐹(𝐹) ⩽ [ℤ𝑑 ∩ ℚ𝐹 ∶ ℤ𝐹] ⋅ volℤ𝐹(𝐹) = volℚ𝐹∩ℤ𝑑(𝐹) ⩽ vol(𝐴). (2.2)

We can assume without loss of generality that vol(𝐴) ⩾ 2, since otherwise 𝐴 is a simplex and
(𝐴) = ∅.
For the second statement, note first that if codim(𝐹) = 𝑑, then volℤ𝐹(𝐹) = 1 = |𝐵𝛽

𝐹
| and

rank(𝑀𝐴(𝛽)) = vol(𝐴) + 𝑑 − 1 ⩽ (𝑑 − 1) ⋅ vol(𝐴), (2.3)

since 𝑑 ⩾ 3 and vol(𝐴) ⩾ 2. Thus, we can assume that codim(𝐹) ⩽ (𝑑 − 1) and the second upper
bound follows from the first one. □

We can improve the bound in Corollary 2.2 as follows.

Corollary 2.3. If 𝑑 ⩾ 3 and 𝛽 ∈ ℂ𝑑 is simple for the face 𝐹 ⪯ 𝐴, then

rank(𝑀𝐴(𝛽)) ⩽ codim(𝐹) ⋅ vol(𝐴) − (codim(𝐹) − 1)(𝑛 − |𝐹| − codim(𝐹)). (2.4)

In particular, if 𝛽 ∈ (𝐴) is simple, then

rank(𝑀𝐴(𝛽))

vol(𝐴)
< (𝑑 − 1). (2.5)

Proof. From (2.1) and the first inequality in (2.2),

rank(𝑀𝐴(𝛽)) ⩽ vol(𝐴) + volℚ𝐹∩ℤ𝑑(𝐹)(codim(𝐹) − 1). (2.6)

Now volℚ𝐹∩ℤ𝑑 (𝐹) in (2.6) can be bounded using (1.2) in order to obtain (2.4).
For (2.5), note first that if codim(𝐹) = 1, then rank(𝑀𝐴(𝛽)) = vol(𝐴) by (2.1); otherwise,

(codim(𝐹) − 1) ⩾ 1. By [9, Corollary 9.2], (𝐴) = ∅ is equivalent to 𝑆𝐴 being Cohen–Macaulay.
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Thus, for the case when codim(𝐹) = 𝑑, it is enough to use that the inequality in (2.3) is in fact
strict, because vol(𝐴) ⩾ 4 by Corollary 1.5.
For the remaining cases, the second part in the inequality (2.4) is bounded above by

(𝑑 − 1)vol(𝐴) − (𝑛 − |𝐹| − codim(𝐹)).
Thus, it is enough to see that 𝑛 − |𝐹| − codim(𝐹) ⩾ 1. By way of contradiction, assume that 𝑛 −|𝐹| − codim(𝐹) = 0 (that is, 𝐴 is a pyramid over 𝐹), so that any 𝛽 ∈ ℂ𝑑 can be written uniquely
as 𝛽 = 𝛽𝐹 + 𝛽𝐹 with 𝛽𝐹 ∈ ℂ𝐹, 𝛽𝐹 ∈ ℂ𝐹 for 𝐹 ∶= 𝐴 ⧵ 𝐹 and

rank(𝑀𝐴(𝛽)) = rank(𝑀𝐹(𝛽𝐹)); (2.7)

see [13, Lemma 3.7]. It follows from (2.7) and Remark 1.3 that 𝛽 ∈ (𝐴) if and only if 𝛽𝐹 ∈ (𝐹).
Note also that if 𝐹 ⪯ 𝐺 ⪯ 𝐴, then 𝔼𝛽

𝐺
= 𝔼

𝛽′

𝐺
for any 𝛽′ ∈ 𝛽 + ℂ𝐹. If 𝛽 is simple for 𝐹, the generic

vectors 𝛽′ ∈ 𝛽 + ℂ𝐹 are also simple for 𝐹 and rank(𝑀𝐴(𝛽
′)) = rank(𝑀𝐴(𝛽)). Thus,

rank(𝑀𝐹(𝛽
′
𝐹)) = rank(𝑀𝐹(𝛽𝐹)) > volℤ𝐹(𝐹).

It follows that for generic 𝛾 ∈ ℂ𝐹, rank(𝑀𝐹(𝛾)) > volℤ𝐹(𝐹), which is a contradiction, as this
should be equality by [1]. □

Note that the difference between (2.5) and the second statement of Corollary 2.2 is that (2.5) is
a strict inequality.

Theorem 2.4. The set

2(𝐴) ∶= {𝛽 ∈ ℂ
𝑑 ∣ rank(𝑀𝐴(𝛽)) ⩾ 2 ⋅ vol(𝐴)}

is an affine subspace arrangement of codimension at least three in ℂ𝑑 .

Proof. The exceptional arrangement (𝐴) is known to be a finite union of translates of linear
subspacesℂ𝐺 for faces𝐺 ⪯ 𝐴 of codimension at least two [9, Corollary 9.4 and Porism 9.5]. More-
over, it is shown in [9, Theorem 2.6] that rank of𝑀𝐴(𝛽) is upper-semicontinuous as a function of
𝛽 with respect to the Zariski topology. Thus, on each irreducible component 𝐶 of (𝐴) the rank of
𝑀𝐴(𝛽) is constant outside a Zariski closed subset of 𝐶, of codimension at least one in 𝐶 (that is, of
codimension at least three in ℂ𝑑). Moreover, this codimension three set is also an affine subspace
arrangement; see the argument after [2, Definition 4.7]. It is thus enough to find, for any codimen-
sion two component 𝐶, a set of parameters 𝛽 ∈ 𝐶 such that rank(𝑀𝐴(𝛽)) < 2 ⋅ vol(𝐴) and whose
Zariski closure is 𝐶. Indeed, if 𝐶 has codimension two, we have that 𝐶 = 𝑏 + ℂ𝐺 for some face
𝐺 ⪯ 𝐹 of codimension two and some 𝑏 ∈ ℂ𝑑.
Note that for any proper face 𝐺′ ⪯ 𝐴 not containing 𝐺, the intersection 𝐶 ∩ (ℤ𝑑 + ℂ𝐺′) is at

most a countably and locally finite union of translates of the linear spaceℂ𝐺 ∩ ℂ𝐺′ of codimension
at least three. Since there are only finitely many such faces 𝐺′, the Zariski closure of the set

𝐶′ ∶= 𝐶 ⧵
⋃

𝐺≠𝐺′⪯𝐴

(ℤ𝑑 + ℂ𝐺′)
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is 𝐶. Moreover, for 𝐺′ as above and 𝛽 ∈ 𝐶′, we have that ℤ𝑑 ∩ (𝛽 + ℂ𝐺′) = ∅, hence 𝔼𝛽
𝐺′
= ∅. In

particular, the only possible faces involved in  (𝛽) are 𝐺 and the two facets containing 𝐺. Thus,
[2, Section 5.3 and Example 6.21] yield the inequality

rank(𝑀𝐴(𝛽)) ⩽ vol(𝐴) + |𝐵𝛽
𝐺
|(codim(𝐺) − 1)volℤ𝐺(𝐺),

where equality holds if𝛽 is simple for𝐺, as inDefinition 2.1. From (2.4) applied to the codimension
two face 𝐺, we obtain that

rank(𝑀𝐴(𝛽)) ⩽ 2 ⋅ vol(𝐴) − (𝑛 − |𝐺| − 2) < 2 ⋅ vol(𝐴), (2.8)

where 𝑛 − |𝐺| − 2 ⩾ 1 holds by the same argument as in the proof of Corollary 2.3. Thus,
rank(𝑀𝐴(𝛽)) < 2 ⋅ vol(𝐴) for 𝛽 ∈ 𝐶′, where the Zariski closure of 𝐶′ is 𝐶. □

3 A SEQUENCE OF EXAMPLES IN THE SIMPLE CASE

In this section, we prove that for any 𝑑 ⩾ 3, the strict inequality (2.5) from Corollary 2.3 is sharp
for simple parameters 𝛽 as in Definition 2.1; see Theorem 3.1.

Theorem 3.1. There is a sequence of full rank (𝑑 × (2𝑑 − 1)) integer matrices {𝐴𝑑,𝑏}∞𝑏=2 for which
there is a simple parameter 𝛽 ∈ ℂ𝑑 independent of 𝑏 for which

lim
𝑏→∞

rank(𝑀𝐴𝑑,𝑏
(𝛽))

vol(𝐴𝑑,𝑏)
= 𝑑 − 1.

In fact, the set of simple parameters 𝛽 ∈ ℂ𝑑 that maximize the ratio rank(𝑀𝐴𝑑,𝑏
(𝛽))∕vol(𝐴𝑑,𝑏) is a

line through the origin.

Consider the following (𝑑 × (2𝑑 − 1))-matrix with 𝑑 ⩾ 3:

𝐴𝑑,𝑏 = (𝑎1 𝑎2 ⋯𝑎2𝑑−1) ∶=

(
𝐼𝑑−1 𝐼𝑑−1 𝟎𝑑−1

𝟎𝑡
𝑑−1

𝟏𝑡
𝑑−1

𝑏

)
, (3.1)

where 𝑏 ⩾ 2 is an integer, 𝐼𝑑−1 denotes the identity matrix of rank 𝑑 − 1, 𝟏𝑑−1 is the column vector
consisting of 𝑑 − 1 entries of 1, and 𝟎𝑑−1 is the zero column vector of length 𝑑 − 1.
Note that ℤ𝐴𝑑,𝑏 = ℤ𝑑. We now compute the normalized volume of 𝐴𝑑,𝑏 in this lattice. To do

this, for 𝑗 ∈ ℤ, set ℎ(𝑗) ∶= (0, … , 0, 𝑗)𝑡 .

Lemma 3.2. The normalized volume of 𝐴𝑑,𝑏 in (3.1) is 𝑏 + 𝑑 − 1.

Proof. The polytopeΔ𝐴𝑑,𝑏 can be decomposed as the union of two polytopes inℝ
𝑑 that intersect in

a common facet. One of these polytopes is the convex hull of the origin, the first 2(𝑑 − 1) columns
of 𝐴𝑑,𝑏, and the lattice point ℎ(1). This is a prism with height 1 and base equal to a unit (𝑑 − 1)-
simplex, so its normalized volume in ℤ𝑑 is 𝑑. The second polytope is the convex hull of ℎ(1) and
the last 𝑑 columns of 𝐴𝑑,𝑏, which is a 𝑑-simplex. This 𝑑-simplex is the lattice translation by ℎ(1)
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of the 𝑑-simplex that is the convex hull of the origin, the first (𝑑 − 1)-columns of𝐴𝑑,𝑏, and ℎ(𝑏−1);
therefore, its normalized volume in ℤ𝑑 is 𝑏 − 1. □

Remark 3.3. The last column of 𝐴𝑑,𝑏 is 𝑏 ⋅ 𝑒𝑑, where 𝑒𝑑 is the 𝑑th standard basis vector in ℂ𝑑. The
face 𝐹𝑏 ∶= {𝑎2𝑑−1} ⪯ 𝐴𝑑,𝑏 has normalized volume 1 in the lattice ℤ𝐹𝑏 and

ℤ𝑑 ∩ ℂ𝐹𝑏 =

𝑏−1⨆
𝑘=0

(
ℎ(𝑘) + ℤ𝐹𝑏

)
consists of 𝑏 translated copies of ℤ𝐹𝑏.

Remark 3.4. The normalized volume of 𝐹𝑏 ∶= {𝑎2𝑑−1} in the lattice ℤ𝑑 ∩ ℚ𝐹𝑏 is 𝑏. In particular,
equality holds in (1.2) for 𝐴 = 𝐴𝑑,𝑏 and 𝐹 = 𝐹𝑏.

Proposition 3.5. The exceptional arrangement of 𝐴𝑑,𝑏 is a finite union of lines parallel to ℂ𝑒𝑑 .

Proof. The first 𝑑 − 1 columns of 𝐴𝑑,𝑏 and its last column are linearly independent, and their
nonnegative hull is precisely the first orthant ℝ𝑑

⩾0
. Thus, ℝ⩾0𝐴𝑑,𝑏 = ℝ𝑑

⩾0
and ℝ⩾0𝐴𝑑,𝑏 ∩ ℤ𝑑 = ℕ𝑑.

To determine the set of holes of ℕ𝐴𝑑,𝑏, given by ℕ𝑑 ⧵ ℕ𝐴𝑑,𝑏, which can be written as a finite union
of lattice translates of ℕ𝐹𝑏 = ℕ𝑏𝑒𝑑, note first that the affine semigroup 𝑆 ⊆ ℕ𝑑 generated by the
first 2(𝑑 − 1) columns of 𝐴𝑑,𝑏 is normal, and their lattice span is ℤ𝑑. Note also that, for 𝐹𝑏 ∶=
{𝑎2𝑑−1},

ℕ𝐴𝑑,𝑏 ∩ ℂ𝐹𝑏 = ℕ𝐹𝑏 = ℕ𝑏𝑒𝑑.

In order to complete the description of ℕ𝑑 ⧵ ℕ𝐴𝑑,𝑏, denote by Δ𝑏 the simplex given by the convex
hull of the following points in ℕ𝐴𝑑,𝑏:

𝟎, 𝑏𝑎𝑑 = 𝑏(𝑒1 + 𝑒𝑑), 𝑏𝑎𝑑+1 = 𝑏(𝑒2 + 𝑒𝑑), … , 𝑏𝑎2𝑑−2 = 𝑏(𝑒𝑑−1 + 𝑒𝑑), 𝑎𝑛 = 𝑏𝑒𝑑.

Since ℕ𝐴𝑑,𝑏 = 𝑆 + ℕ𝑏𝑒𝑑, the set of holes of ℕ𝐴𝑑,𝑏 is the union of the sets 𝑐 + ℕ𝑏𝑒𝑑, where 𝑐 runs
through the lattice points:

ℤ𝑑 ∩ Δ𝑏 ⧵

(
ℝ⩾0(𝑒1 + 𝑒𝑑) ∪ ℝ⩾0(𝑒2 + 𝑒𝑑) ∪⋯ ∪ ℝ⩾0(𝑒𝑑−1 + 𝑒𝑑) ∪

(
𝑏𝑒𝑑 +

𝑑−1∑
𝑘=1

ℝ⩾0𝑒𝑘

))
.

It now follows from [2, 9] that the exceptional arrangement of 𝐴𝑑,𝑏 is

(𝐴𝑑,𝑏) =

𝑑−1⋃
𝑘=1

𝑏−2⋃
𝑚=0

(𝑚𝑒𝑘 + ℂ𝐹𝑏).
□

By the proof of Proposition 3.5, if 𝑏 ⩾ 3, then all the lattice points in Δ𝐴𝑑,𝑏 belong to (𝐴𝑑,𝑏).

Lemma 3.6. If 𝐹𝑏 ∶= {𝑎2𝑑−1}, then the function 𝛽 ∈ ℂ𝑑 ↦ rank(𝑀𝐴𝑑,𝑏
(𝛽)) reaches its maximum

exactly when 𝛽 ∈ ℂ𝐹𝑏, and this maximum value is (𝑑 − 1)𝑏 + 1.
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Proof. We first show that if 𝛽 ∈ ℂ𝐹𝑏, then the rank of 𝑀𝐴𝑑,𝑏
(𝛽) is (𝑑 − 1)𝑏 + 1. In this case, the

ranking lattices at 𝛽 are

𝔼𝛽 =

𝑏−1⋃
𝑗=1

(
ℎ(𝑗) + ℤ𝐹𝑏

)
.

Thus, by (2.1), the rank jump at 𝛽 is equal to

rank(𝑀𝐴𝑑,𝑏
(𝛽)) − vol(𝐴𝑑,𝑏) = |𝐵𝛽

𝐹𝑏
| ⋅ volℤ𝐹𝑏 (𝐹𝑏) ⋅ (codim(𝐹𝑏) − 1),

where codim(𝐹𝑏) = 𝑑 − 1, volℤ𝐹𝑏 (𝐹𝑏) = 1, and |𝐵𝛽𝐹𝑏 | = 𝑏 − 1 by Remark 3.3, since
ℤ𝐹𝑏 ⊆ (ℕ𝐴𝑑,𝑏 + ℤ𝐹𝑏) ∩ (𝛽 + ℂ𝐹) ∩ ℤ

𝑑.

Thus, rank(𝑀𝐴𝑑,𝑏
(𝛽)) = volℤ𝑑 (𝐴𝑑,𝑏) + (𝑏 − 1)(𝑑 − 1), which gives the desired equality by

Lemma 3.2.
In order to prove that this is the maximum value of rank(𝑀𝐴𝑑,𝑏

(𝛽)), it is enough to observe that
when 𝛽 lies in a component of the form (𝑚𝑒𝑘 + ℂ𝐹𝑏) ⊆ (𝐴𝑑,𝑏)with𝑚 ≠ 0, then the computation
of the rank jump is analogous to the previous case, but the number |𝐵𝛽

𝐹𝑏
| will be smaller. This is

the case because

𝑚𝑒𝑘, 𝑚𝑒𝑘 + 𝑒𝑑, 𝑚𝑒𝑘 + 2𝑒𝑑, … , 𝑚𝑒𝑘 + 𝑚𝑒𝑑 ∈ ℕ𝐴𝑑,𝑏,

and hence there are (𝑚 + 1) translated copies of ℤ𝐹𝑏 in ℕ𝐴𝑑,𝑏 ∩ (𝑚𝑒𝑘 + ℂ𝐹𝑏). □

Proof of Theorem 3.1. The result now follows immediately from Lemmas 3.6 and 3.2. □
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