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Abstract

Bayesian Optimization is a sample-efficient black-box optimization procedure that
is typically applied to problems with a small number of independent objectives.
However, in practice we often wish to optimize objectives defined over many
correlated outcomes (or “tasks”). For example, network operators may want to
optimize the coverage of a cell tower network across a dense grid of locations.
Similarly, engineers may seek to balance the performance of a robot across dozens
of different environments via constrained or robust optimization. However, the
Gaussian Process (GP) models typically used as probabilistic surrogates for multi-
task Bayesian Optimization scale poorly with the number of outcomes, which
greatly limitis their applicability. We devise an efficient technique for exact multi-
task GP sampling that combines exploiting Kronecker structure in the covariance
matrices with Matheron’s identity, allowing us to perform Bayesian Optimization
using exact multi-task GP models with tens of thousands of correlated outputs.
In doing so, we achieve substantial improvements in sample efficiency compared
to existing approaches that only model aggregate functions of the outcomes. We
demonstrate how this unlocks a new class of applications for Bayesian Optimization
across a range of tasks in science and engineering, including optimizing interference
patterns of an optical interferometer with more than 65,000 outputs.

1 Introduction

Many problems in science and engineering involve reasoning about multiple, correlated outputs. For
example, cell towers broadcast signal across an area, and thus signal strength is spatially correlated.
In randomized experiments, treatment effects on multiple outcomes are naturally correlated due
to shared causal mechanisms. Without further knowledge of the internal mechanisms (i.e., in a
“black-box” setting), Multi-task Gaussian processes (MTGPs) are a natural model for these types
of problems as they model the relationship between each output (or “task’) while maintaining the
gold standard predictive capability and uncertainty quantification of Gaussian processes (GPs). Many
downstream analyses require more of the model than just prediction; they also involve sampling from
the posterior distribution to estimate quantities of interest. For instance, we may be interested in the
performance of a complex stock trading strategy that requires modeling different stock prices jointly,
and want to characterize its conditional value at risk (CVaR) [49], which generally requires Monte
Carlo (MC) estimation strategies [10]. Or, we want to use MTGPs in Bayesian Optimization (BO), a
method for sample-efficient optimization of black-box functions. Many state of the art BO approaches
use MC acquisition functions [60, 3, 4], which require sampling from the posterior distribution over
new candidate data points.

Drawing posterior samples from MTGPs means sampling over all tasks and all new data points,
which typically scales multiplicatively in the number of tasks (¢) and test data points (n), e.g. like
O(n3t3) [52, 6]. For problems with more than a few tasks, posterior sampling thus quickly becomes
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intractable due to the size of the posterior covariance matrix. This is especially problematic in the
case of many real-world problems that can have hundreds or thousands of correlated outputs that
should be modelled jointly in order to achieve the best performance.

For instance, the cell tower signal maps in Fig- Power Interference
ure 1 each contain 2,500 outputs (pixels). In .

this problem, we aim to jointly tune the down- :
tilt angle and transmission power of the anten- . : ™
nas on each cell tower (locations shown in red)
to optimize a global coverage quality metric, .
which is a known function of power and interfer- - w
ence at each location [21]. Since simulating the
power and interference maps given a parameter-
ization is computationally costly, traditionally
one might apply BO to optimize the aggregate
metric. At its core, this problem is a composite
BO problem [3, 4], so we expect an approach
that models the constituent outcomes at each
pixel individually to achieve higher sample ef-
ficiency. However, modelling each pixel using
existing approaches used for BO is completely
intractable in this setting, as we would have to train and sample’ from a MTGP w1th 5 000 tasks

To remedy the poor computational scaling with the number of tasks, we exploit Matheron’s rule for
sampling from GP posterior distributions [13, 59]. We derive an efficient method for MTGP sampling
that exploits Kronecker structure inherent to the posterior covariance matrices, thereby reducing the
complexity of sampling from the posterior to become effectively additive in the combination of tasks
of data points, i.e. O(n? + t3), as compared to O(n3t?). Our implementation of Matheron’s rule
draws from the exact posterior distribution and does not require random features or inducing points,
unlike decoupled sampling [59]. More specifically, our contributions are as follows:

* We propose an exact sampling method for multi-task Gaussian processes that has additive time
costs in the combination of tasks and data points, rather than multiplicative (Section 3).

* We demonstrate empirically how large-scale sampling from MTGPs can aid in challenging
multi-objective, constrained, and contextual Bayesian Optimization problems (Section 4).

* We introduce a method for efficient posterior sampling for the High-Order Gaussian Process
(HOGP) model [64], allowing it to be used for Bayesian Optimization (Section 3.2). This
advance allows us to more efficiently perform BO on high-dimensional outputs such as images —
including optimizing PDEs, optimizing placements of cell towers for cell coverage, and tuning
the mirrors of an optical interferometer which optimizes over 65,000 tasks jointly (Section 4.3).

The rest of the paper is organized as follows: First, in Section 2 we review GPs, MTGPs, and sampling
procedures from the posterior in both GPs and MTGPs. In Section 3, we review Matheron’s rule for
sampling from GP posteriors and explain how to employ it for efficient sampling from MTGP models
including the HOGP model. In Section 4, we illustrate the utility of our method on a wide suite of
problems ranging from constrained BO to the first demonstration of large scale composite BO with
the HOGP. Please see Appendix A for discussion of the limitations and broader impacts of our work.
Our code is fully integrated into BoTorch, see https://botorch.org/tutorials/composite_
bo_with_hogp and https://botorch.org/tutorials/composite_mtbo for tutorials.

2 Background

2.1 Bayesian Optimization

In Bayesian Optimization (BO), the goal is to minimize an expensive-to-evaluate black-box function,
i.e., finding min,cx f(x), by constructing a surrogate model to emulate that function. Gaussian
processes (GPs) are often used as surrogates due to their flexibility and well-calibrated uncertainty
estimates. BO optimizes an acquisition function defined on the predictive distribution of the surrogate
model to select the next point(s) to evaluate on the true function. These acquisition functions are
often written as intractable integrals that are typically evaluated using Monte Carlo (MC) integration
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[60, 3]. MC acquisition functions rely on posterior samples from the surrogate model, which should
support fast sampling capabilities for efficient optimization [4]. BO has been applied throughout
machine learning, engineering, and the sciences, and many extensions to the setting described above
exist. We focus on multi-task BO (MTBO), where f(z) is composed of several correlated tasks
[55, 15].

There are many sub-classes of MTBO problems: constrained BO uses surrogate models to optimize
an objective subject to black-box constraints [29, 25, 30], contextual BO models a single function
that varies across different contexts or environments [38, 11, 26], multi-objective BO aims to explore
a Pareto frontier across several objectives [36, 37, 23, 24, 17], and composite BO considers the
setting of a differentiable objective function defined on the outputs of a vector-valued black-box
function [56, 3, 4]. In all of these problems, the setting is similar: several outputs are modelled by
the surrogate, whether the output is a constraint, another objective, or a separate context. As the
outputs are often correlated, multi-task Gaussian processes, which model the relationships between
the outputs in a data-efficient manner, are a natural and common modeling choice.

2.2 Gaussian Processes

Single Output Gaussian Processes: We briefly review single output GPs, see Rasmussen and
Williams [48] for a more detailed introduction. We assume that y = f(z) +¢, f ~ GP(0, kg(z,2")),
and ¢ ~ N(0,0?%), where f is the noiseless latent function and y are noisy observations of f with
standard deviation o. kg (x,«’) is the kernel with hyperparameters 6 (we will drop the dependence
on 6 for simplicity); we use Kap := ko(A, B) to refer to the evaluated kernel function on data
points A and B, a matrix which has size |A| x | B|. The predictive distributions over new data points,
Zest, 1S given by the conditional distribution of the Gaussian distribution. That is, p( f (zes)| D, 0) =
N'(,u}m, X% p), where D := {X, y} is the training dataset of size n = | X| and

i1 = Kax (Kuain +0°1) 71y, (1)
}|D = Kﬂ:(esﬂ?test - sz‘X(Ktrain + 0-2[)_1KXI(esH (2)
with Kyin := Kxx. For simplicity, we will drop the subscripts f|D in all future statements.

Computing the predictive mean p* and variance X* requires O(n?) time and O(n?) space when
using Cholesky decompositions for the linear solves [48]. Sampling is usually performed by

FEe)|(Y =y) = p* + (3922, 3)

where z ~ N(0, I). Computing s samples at ng test points from the predictive distribution costs
O(n? + sniy + nnes + ny), computed by adding up the cost of all of the matrix vector multipli-
cations (MVMs) and matrix solves. For fixed x5, we can incur the cubic terms only once by re-using
Cholesky factorizations of Ky, + 2] and ¥* for each sample.

To reduce the time complexity, we can replace all matrix solves with » < n steps of conjugate
gradients (CG) and the Cholesky decompositions with rank » < n Lanczos decompositions (an
approach called LOVE [45]). These change the major scaling from n® down to 7n? and the overall
time complexity to O(1n? + srnes + rMnes + 702y ) [45, 28]. In general, » < n is used and is
usually accurate to nearly numerical precision [28]. We provide additional details in Appendix B.

Multi-Output Gaussian Processes: One straightforward way of modelling multiple outputs is
to consider each output as an independent GP, modelled in batch together, either with shared or
independent hyperparameters [48, 28, 25]. However, there are two major drawbacks to this approach:
(i) the model is not able to model correlations between the outputs, and (ii) if there are many outputs
then maintaining a separate model for each can result in high memory usage and slow inference times.
To remedy these issues, Higdon et al. [33] propose the PCA-GP, using principal component analysis
(PCA) to project the outputs to a low-dimensional subspace and then use batch GPs to model the
lower-dimensional outputs.

We consider multi-task Gaussian processes (MTGPs) with the intrinsic co-regionalization model
(ICM), which considers the relationship between responses as the product of the data and task features
[32, 6, 1]. We focus on this model due to its popularity and simplicity, leaving a similar derivation of
the linear model of co-regionalization to Appendix C.1.1. Given inputs z and z’ belonging to tasks 4
and j, respectively, the covariance under the ICM is k([z, ], [2/, j]) = kp(x, 2" )k:(i, 7). Given n
data points X with the n associated task indices Z, the covariance is a Hadamard product of the data



Table 1: Time complexities for posterior sampling in single-output, multi-task, and high-order
Gaussian Process (HOGP) models. Time complexities shown in blue are our contributions that have
not yet been considered by the literature. Standard sampling from MTGPs scales multiplicatively in
the combination of the number of tasks, ¢, and the number of data points, n, while using Matheron’s
rule reduces the combination to effectively become additive in these components.

Model | Distributional (Standard) (Eq. 3) | With Matheron’s rule (Eq. 5)
Single-Output ‘ On® + niy) ‘ On® + niy)
Multi-Task | O((n® + nd)t?) ‘ O((n® +ndy) +1%)
HOGP ‘ O((n® +nio) [1L, ) | O((n® +niy) + 3k, dP)

kernel and the task kernel, Kin = Kxx ® K77, and the response y is still of size n. We term this
implementation of multi-task GPs “Hadamard MTGPs” in our experiments. In general, there is no
easily exploitable structure in this model.

If we observe each task at each data point (the so-called block design case), the covariance matrix
becomes Kronecker structured, e.g. Kiain = Kxx @ K7, where K x x is the data covariance matrix
and K is the ¢ x ¢ task covariance matrix between tasks [6], and we now have nt scalar responses.
To simplify our exposition, we assume that K is full-rank (this is not required as we can use
pseudo-inverses in place of inverses). Thus, the GP prior is vec(y) ~ N (0, Kxx ® Kr), where y is
a matrix of size n X t, and vec(y) is a vector of shape nt. The GP predictive distribution is given by
p(f* |2 D) = N (4", 5) , where

1= (Kapp x @ Kr)(Kxx ® Kp 4 0*Iyp) ' vec(y),
5 = (Kowom ® K1) = (Ko x ® Kr)(Kxx © Kp 4+ 0°Lip) N(K,  x © Kr).  (4)

Ltest
The kernel matrix on the training data, Kxx ® K, is of size nt x nt, which under standard
(Cholesky-based) approaches yields inference cubic and multiplicative in n and t, that is O(n3t3).
However, the Kronecker structure can be exploited to compute the posterior mean and variance in
O(nt(n + t) +n3 + t3), which is dominated by the individual cubic terms [50, 54].

Sampling from the posterior distribution in (4) produces additional computational challenges as we
must compute a root (e.g. Cholesky) decomposition of ¥*, which naively costs O((nest)?) plus
an additional Cholesky decomposition of (K xx ® Kt + 02I)~1, which similarly costs O((nt)?)
time [6]. Thus, the time complexity of drawing s samples is multiplicative in n and t, O((nt)> +
(iestt)® + s((nt)? + (neesit)?)). Using CG and LOVE reduces the complexity; see Appendix B.4.

High-Order Gaussian Processes: Recently, Zhe et al. [64] proposed the high-order Gaussian
process (HOGP) model, a MTGP designed for matrix- and tensor-valued outputs. Given out-
puts y € R4*Xdr (eg  a matrix or tensor), the covariance is the product of the data
dimension and each output index (i; and ] respectively) k([z,d1,--- i), [z, 4], - ,1}]) =
k:(:c,x’)k(vil,v;/l)--k:(vik,v;;c), where iy,--- ,i; are the indices for the output tensor and
v1,- -+ , V) are latent parameters that are optimized along with the kernel hyper-parameters. Thus,
K7 in the MTGP framework is replaced by a chain of Kronecker products, so that the GP prior
is vec(y) ~ N(0, Kxx ® Ko ® --- ® K}). Exploiting the Kronecker structure, computation of

posterior mean, posterior variance and hyper-parameter learning takes O (n? + Zfﬂ d?+n Hle d;)
time as d; = n. Zhe et al. [64] demonstrate that the HOGP outperforms PCA-GPs [33], among other
high-dimensional output GP methods, with respect to prediction accuracy. However, their experi-
ments measure only the error of the predictive mean, rather than quantities that use the predictive
variance (such as the negative log likelihood or calibration), and they do not provide a way to sample
from the posterior distribution.

2.3 Matheron’s Rule for Single-Task Gaussian Processes

Matheron’s rule provides an alternative way of sampling from GP posterior distributions: rather
than decomposing the GP predictive covariance for sampling, one can jointly sample from the prior
distribution over both train and test points and then update the training samples using the observed
data. Matheron’s rule is well known in the geostatistics literature where it is used for “prediction by
conditional simulation" [14, 13]. Wilson et al. [59] revitalized interest in Matheron’s rule within the



machine learning community by developing a decoupled sampling approach that exploits Matheron’s
rule to use both random Fourier features (RFFs) and inducing point approaches in the context of
sampling from the posterior in single task GPs. Wilson et al. [61] extended decoupled sampling to
use combinations of RFFs, inducing points, and iterative methods. They applied these approaches to
approximate Thompson sampling, simulations of dynamical systems, and deep GPs.

Matheron’s rule states that if two random variables, X and Y, are jointly Gaussian, then
X|(Y = y) £ X + Cov(X,Y)Cov(Y,Y) L (y — V),

where Cov(a, b) is the covariance of @ and b and £ denotes equality in distribution [20, 59]. The
identity can easily be shown by computing the mean and variance of both sides. Following Wilson
et al. [59], we can use this identity to draw posterior samples

FAY +e=9) L [+ Koo (Kxx + 02Dy — Y —¢), 5)

where € ~ N(0,0%I), f* is the random variable and f*|(Y + ¢ = y) is the conditional random
variable we are interested in drawing samples from. To implement this procedure, we first draw
samples from the joint prior (of size 1 + Nyeg):

() (o e ). ©

Ltest Lrest

For shorthand, we denote the joint covariance matrix in (6) by Kjoini. We next sample € ~ N(0, 021 )
and compute: f = f + K, x(Kxx +0?I)"}(y — Y — €). The solve is against a matrix of size
n x n so that f is our realization of the random variable f*|(Y 4 ¢ = y). The total time requirements
are then O((n + nges)® + n3), which is slightly slower than O(n2,, + n?®). Thus, sampling from the
single-task GP posterior using (5) is slower than the standard method based on (1) and (2).

3 Matheron’s Rule for Multi-Task Sampling

While the time complexity of Matheron-based posterior sampling is inferior for single-task GPs,
the opposite holds true for multi-task GPs, provided that one exploits the special structure in the
covariance matrices. In the following, we demonstrate the advantages in using Matheron-based MTGP
sampling in Section 3.1, extend it to the HOGP [64] in Section 3.2, and identify further advantages of
it for Bayesian Optimization in Section 3.3. This approach allows for further pre-computations than
distributional sampling and that it maintains the same convergence results.

3.1 Extending Matheron’s Rule for Multi-task GPs

The primary bottleneck that we wish to avoid is the multiplicative scaling in n (or 1) and ¢. Ideally,
we hope to achieve posterior sampling that is additive in n and ¢, similar to how Kronecker matrix
vector multiplication is additive in its components. Unlike in the single task case, Matheron’s rule
can substantially reduce the time and memory complexity sampling for MTGPs. For brevity we
limit our presentation here to the core ideas, please see Appendix C for further discussion of the
implementation, as well as Appendix B.1 for a description of the Kronecker identities we exploit.

The covariance KCjoin; in (6) is structured as the Kronecker product of the joint test-train covariance
matrix and the inter-task covariance; that is, Kjoint = K(X 2., (X,0e) @ K15 Where K(x 2. ), (X, ze)
appends n rows and columns to the joint training data covariance matrix K x x. To sample from
the prior distribution, we need to compute a root decomposition of KCigin.

We assume that we have pre-computed RR" = Kxx with either a Cholesky decompostion
(O(n?) time) or a Lanczos decomposition (O(rn?) time). Then, we update R to compute

RRT ~ K (e, X)), (meq, X )- Chevalier et al. [12] used a similar strategy to update samples in the

context of single task kriging. Following Jiang et al. [34, Prop. 2], computing R from R costs
O(rngesn + rnist) time, dominated by the rnyn terms for small ng. Using a Cholesky decompo-
sition, this is O(ntesan) time following the same procedure. We then have

Kioint = K (2 X) (zeex) @ Kr = (RO LY RS L) T, (7)



where LLT = Kr. To use the root to sample from the joint random variables, (f,Y), we need
to compute only (f,Y) = (RT @ L)z, where z ~ N(0, I,;); this computation is a Kronecker
matrix vector multiplication (MVM), which costs just O(nt(n + t)) time. Thus, the overall cost of
sampling to compute the joint random variables is O(n3 + t3 + nt(n + t) + negn?) time, reduced
to O(rn? + rt? + rnt + 12t + rneqyn) if using Lanczos decompositions throughout. L only needs
to be computed once, so samples at new test points only require re-computing R and further MVMs.

Computing the solve w = (Kxx ® K7 +02L,7) " (y — Y — ¢€) takes O(n3 + 3 + nt(n +t)) time
using eigen-decompositions and Kronecker MVMs. The cost of the eigen-decomposition dominates
the Kronecker MVM cost so the major cost in this is O(n3 +¢3). Finally, there is one more Kronecker
MVM (K, x ® Kr)w which takes O(nt* + niqnt) time. We then only need to reshape f to be
of the correct size.

Therefore, the total time complexity of using Matheron’s rule to sample from the MTGP posterior is
(’)(n3 + t3) for small nq, as the cubic terms dominate due to the Cholesky and eigen-decompositions.
We show the improvements from using Matheron’s rule in Table 1, where the dominating terms are
now additive in the combination of the tasks and the number of data points, rather than multiplicative.
Memory complexities, which are also much reduced, are provided in Table 2 in Appendix C. Finally,
we emphasize that sampling in this manner is exact up to floating point precision as the solves we use
are all exact by virture of being computed with eigen-decompositions.

3.2 Extension to HOGP

The HOGP model can be seen as a special case of the general procedure for sampling MTGPs. We
replace K1 with kernels across each tensor dimension of the response, so that K = ®§:2K¢.

Therefore, the time complexities for sampling go from a cubic dependence, n3 Hf:z d3, o a

(n Hle di) + (n® + Efﬂ d?) dependence. The latter will usually be dominated by the addi-
tive terms for £ < 5, as generally n is much larger than the tensor sizes, hence their product will
generally be less than n2. Prior to this work, sampling from the posterior was infeasible for all but
the smallest HOGP models due to the time complexity. By using Matheron’s rule, we can sample
from HOGP posterior distributions over large tensors, unlocking the model for a much wider range of
applications such as BO with composite objectives computed on high-dimensional simulator outputs.

3.3 Usage in Bayesian Optimization

The primary usage of efficient multi-task posterior sampling that we consider is that of Bayesian
optimization. Here, we want to use and optimize Monte Carlo acquisition functions that require many
samples from the posterior of the surrogate model.

At a high level, Bayesian optimization loops look like the following procedure that we repeat after
initializing several random points. First, we fit MTGPs by maximizing the log marginal likelihood (see
Appendix B.3) Then, we draw many posterior samples from the MTGP in the context of computing
MC acquisition functions, e.g. (A.5). We use gradient-based optimization to find the points  which
optimize the acquisition d (x; y). After choosing these points, Z¢,ng, We then query the function,
returning y.ang and updating our data with these points. Finally, we continue back to the top of the
loop, and re-train the MTGP.

Convergence Results: The convergence guarantees for Sample Average Approximation (SAA)
of MC acquisition functions from Balandat et al. [4] still apply if posterior samples are drawn via
Matheron’s rule. Consider acquisition functions of the form a(z;y) = E[h(f(z)) | Y = y] with

h : R™me*t — R, and their MC approximation ay (z;y) = vazl a(g(fr))), where f; are
ii.d. samples drawn from the model posterior at x € R™ using Matheron’s rule. Then, under
sufficient regularity conditions, the optimizer arg max,, &y (z;y) converges to the true optimizer
arg max,, «(x;y) almost surely as N — oo. For a more formal statement and proof of this result see
Appendix C.3.
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Figure 2: Timings for distributional sampling with Hadamard and Kronecker MTGPs as well as
Matheron’s rule sampling for a MTGPs as the number of test points vary for fixed tasks (a,c) and
as the number of tasks vary for fixed test points (b,d) on a single Tesla V100 GPU (a,b) and on a
single CPU (c,d). The multiplicative scaling of the number of tasks and data points creates significant
timing and memory overhead, causing the Kronecker and Hadamard implementations to run out of
memory very quickly for all but the smallest numbers of tasks and data points, whereas sampling
using Matheron’s rule is efficient even in the many-task large-data regime. The plots show mean and
two standard errors over 10 trials on the GPU, and 6 trials on the CPU.

4 Experiments

We first demonstrate the computational efficiencies gained by posterior sampling using Matheron’s
rule. While this contribution is much more broadly useful, here we focus on the benefits it provides
for BO. Namely, we show that accounting for correlations between outcomes in the model improves
performance in multi-objective and large-scale constrained optimization problems. Finally, we
perform composite BO with tens of thousands of tasks using HOGPs with Matheron-based sampling.
Additional experiments on contextual policy opti 1
lines represent the mean over repeated trials with :
mean across trials.

4.1 Drawing Samples from Multi-Task Model

To demonstrate the performance gains of sam-

pling using Matheron’s rule, we first vary the — __ g.oqom —— GEHVIMTGP  —— qParego-PCA
number of test points and tasks for a fixed num- qParego-MTGP qEHVI-Batch ~ —— qEHVI-PCA
ber of samples and training points. Following  — aParego-Batch

Feng et al. [26], we consider a multi-task ver-
sion of the Hartmann-6 function, generated by
splitting the response surface into tasks using
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pling is faster and more memory efficient than " eoncion Evauaions ° Foncion Evlitions.
distributional sampling with either Kronecker or (a) C2DTLZ2, g = 2 (b) OSY, ¢ = 10

Hadamard MTGPs. In Figures 2b and 2d, we

vary the number of tasks for fixed test points, Figure 3: Constrained multi-objective Bayesian
again finding that distributional sampling is only ~Optimization tasks. MTGPs outperform batch
competitive for 5 tasks on the GPU. See Ap- models in both the (a) small batch (¢ = 2) and
pendix D for sampling with LOVE predictive the (b) large batch (¢ = 10) setting. The latter was
covariances. previously computationally infeasible for MTGPs.

4.2 Multi-Objective Bayesian
Optimization

We next consider constrained multi-objective BO, where the goal is to find the Pareto Frontier, i.e.,
the set of objective values for which no objective can be improved without deteriorating another
while satisfying all constraints. To measure the quality of the Pareto Frontier, we compute the
hypervolume (HV) of the non-dominated objectives [62]. The optimization problem is made more
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Figure 4: Scalable constrained Bayesian Optimization on Lunar Lander m = 50, 100 (a-c) and on
MOPTAOS (d). On all three problems, a multi-task GP provides better solutions with better data
efficiency. The batch GP reaches feasibility on lunar lander with 50 constraints (a) and a competitive
solution (c) but requires more trials, while on 100 constraints, it simply runs out of memory while the
MTGP succeeds. On MOPTAOS, the MTGP reaches a better solution faster (d).

difficult by the presence of black-box constraints (and hence additional outcomes) that must be
modelled. We use MC batch versions of the ParEGO and EHVI acquisition functions (qParEGO and
qEHVI) [17]. To generate new candidate points, qParEGO maximizes expected improvement using a
random Chebysheyv scalarization of the objectives, while gEHVI maximizes expected hypervolume
improvement. As far as we are aware, Shah and Ghahramani [52] are the only authors to investigate
the use of MTGPs in combination with multi-objective optimization, but only consider 2-4 tasks in
the sequential setting (generating one point at a time). Here, we use full rank inter-task covariances
with LKJ priors [40] which we find to work well even in the low data regime. Our Matheron-based
sampling scales to large batches and tasks, and is more sample-efficient on both tasks.

We compare Matheron sampled MTGPs to batch independent MTGPs on the C2DTLZ2 [19] (2
objectives, 1 constraint for a total of 3 modelled tasks) and OSY [43] (2 objectives, 6 constraints for a
total of 8 modelled tasks) test problems. On OSY, we also compare to PCA GPs [33] due to the larger
number of outputs. Following Daulton et al. [17] we use both qParEGO and qEHVI with ¢ = 2, for
C2DTLZ2 and optimize for 200 iterations. In Figure 3a, we see that the MTGPs outperform their
batch counterparts by coming closer to the known optimal HV. On OSY, in Figure 3b, we plot the
maximum HV achieved for each method, using a batch size of ¢ = 10, optimizing for 30 iterations,
where again we see that the MTGPs significantly outperform their batch counterparts as well as the
PCA GPs, which stagnate quickly.

4.3 Scalable Constrained Bayesian Optimization

We next extend scalable constrained Bayesian Optimization [SCBO, 25], a state of the art algorithm
for constrained BO in high-dimensional problems, to use MTGPs instead of independent GPs. In
constrained BO, the goal is to minimize the objective, f, subject to black box constraints, ¢;; e.g.,

argmin f(z) st ¢(z) <0, Vie{l,--- ,m}. (8)

SCBO is a method based on trust regions and uses batched independent GPs to model the outcome
and transformed constraints. We compare to their results on their two largest problems — the 12-
dimensional lunar lander and the 124-dimensional MOPTAOS problem, using the same benchmark
hyper-parameters. To extend their approach, we replace the independent GPs with a single MTGP
model with a full rank ICM kernel over objectives and constraints.

Lunar Lander: We first consider the lunar lander problem with both 50 and 100 constraints from
the OpenAl Gym [8]. Following Eriksson and Poloczek [25], we initialize with 150 data points
and use TuRBO with Thompson sampling with batches of ¢ = 20 for a total of 1000 function
evaluations and repeat over 30 trials. Using a multi-task GP reduces the number of iterations to
achieve at least a 50% chance of feasibility by about 75 steps for the 50 constraint problem (Figure
4a). On the 100 constraint problem, the batch GP runs out of memory after 350 steps on a single
GPU and never achieves feasibility, as indicated in Figure 4b. In Figure 4c, we show the best merit
(f () [T~ 1c,(2)<0) achieved where the MTGPs are able to achieve feasibility in fewer samples,
but do not reach significantly higher reward. Wall clock times for the m = 50 constraint problem, a
table of the steps to achieve feasibility, and a comparison to PCA-GPs [33] are given in Appendix D.
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Figure 5: Performance of BO with and without HOGP-based composite objectives (EI-HOGP-CF) on
four scientific problems. EI-HOGP-CF outperforms a standard BO model directly on the metric itself
(ED) and a random baseline (Random). Composite BO with the HOGP also outperforms composite
BO with independent GPs (EI-CF). Our smooth latents for the HOGP (EI-HOGP + GP) typically
outperform the HOGP itself. EI-CF is only feasible on the smallest problem.

MOPTAO08: We next compare to batch GPs on the MOPTAO08 benchmark problem [35] which has 68
constraints that measure the feasibility of a vehicle’s design, while each dimension involves gauges,
materials, and shapes. We use Thompson sampling to acquire points with a batch size of ¢ = 10,
130 initial points, and optimize for 2000 iterations repeating over 9 trials. The results are shown in
Figure 4d, where we again observe that SCBO with MTGPs significantly improves both the time
to feasibility and the best overall objective found. Using MTGPs would have been computationally
infeasible in this setting without our efficient posterior sampling approach.

4.4 Composite Bayesian Optimization with the HOGP

Finally, we push well beyond current scalability limits by extending BO to deal with many thousands
of tasks, enabling us to perform sample-efficient optimization in the space of images. Composite BO
is a form of BO where the objective is of the form max, g(h(z)), where h is a multi-output black-box
function modelled by a surrogate and g is cheap to evaluate and differentiable. Decomposing a single
objective into constituent objectives in this way can provide substantial improvements in sample
complexity [3]. Balandat et al. [4] gave convergence guarantees for optimizing general sampled
composite acquisition function objectives that extend to MTGP models under the same regularity
conditions. However, both works experimentally evaluate only batch independent multi-output GPs.

We compare to three different baselines: random points (Random), expected improvement on the
metric (EI), and batch GPs optimizing EI in the composite setting (EI-CF). We consider the HOGP
[64] with Matheron’s rule sampling (HOGP-CF) as well as an extension of HOGPs with a prior over
the latent parameters that encourages smoothly varying latent dimensions (HOGP-CF + GP); see
Appendix C.2 for details. More detailed descriptions of the problems are provided in Appendix D.

Chemical Pollutants: Following Astudillo and Frazier [3], we start with a simple spatial problem
in which environmental pollutant concentrations are observed on a 3 x 4 grid originally defined in
Bliznyuk et al. [5]. The goal is to optimize a set of four parameters to achieve the true observed value
by minimizing the mean squared error of the output grid to the output grid of the true parameters.
The results, over 50 trials, are shown in Figure 5a, where we find that the HOGP models with these
few tasks outperform both independent batch GPs (but slightly) and BO on the metric itself.

Optimizing PDEs: As a larger experimental problem, we consider optimizing the two diffusivity and
two rate parameters of a spatial Brusselator PDE (solved in py-pde [65]) to minimize the weighted
variance of the PDE output as an example of control of a dynamical system. Here, we solve the PDE
on 64 x 64 grid, producing output solutions of size 2 x 64 x 64. Results over 20 trials are shown in
Figure 5b, where the HOGP models outperform EI fit on the metric and the random baseline.

Cell-Tower Coverage: Following Dreifuerst et al. [21], we optimize the simulated “coverage map"
resulting from the transmission power and down-tilt settings of 15 cell towers (for a total of 30
parameters) based on a scalarized quality metric combining signal power and inference at each
location so as to maximize total coverage, while minimizing total interference. To reduce model
complexity, we down-sample the simulator output to 50 x 50, initializing the optimization with
20 points. Figure 5c presents the results over 20 trials, where the HOGP models with composite
objective EI outperform EI, indicating that modeling the full high-dimensional output is valuable.



Optical Interferometer: Finally, we consider the tuning of an optical interferometer by the alignment
of two mirrors as in Sorokin et al. [53]. Here, the problem is to optimize the mirror coordinates
to align the interferometer so that it reflects light without interference. There is a sequence of 16
different interference patterns and the simulation outputs are 64 x 64 images (a tensor of shape
16 x 64 x 64). Thus, we jointly model 65,536 output dimensions. Scaling composite BO to a problem
of this size would be impossible without the step change in scalability our method provides. Results
are shown in Figure 5d over 20 trials, where we find that the HOGP-CF + GP models outperform EI,
with the HOGP + GP under-performing (perhaps due to high frequency variation in the images).

Across all of our experiments, we consistently find that composite BO is considerably more sample
efficient than BO on the metric itself, with significant computational improvements gained from
using the HOGP as compared to batch GPs, which are infeasible much beyond batch sizes of 100.
Furthermore, our structured prior approach for the latent parameters of the HOGP tends to outperform
the random initialization strategy in the original work of Zhe et al. [64].

5 Conclusion

We demonstrated the utility of Matheron’s rule for sampling the posterior in multi-task Gaussian
processes. Combining Matheron’s rule with scalable Kronecker algebra enables posterior sampling
in O(n3 + t®) rather than the previous O(n3t?) time. This renders posterior sampling from high-
order Gaussian processes [64] practical, for the first time unlocking Bayesian Optimization with
composite objectives defined on high-dimensional outputs. This increase in computational efficiency
dramatically reduces the time required to do multi-task Bayesian Optimization, and thus enables
practitioners to achieve better automated Bayesian decision making. While we focus on the application
to Bayesian Optimization in this work, our contribution is much broader and provides a step change
in scalability to all methods that in involve sampling from MTGP posteriors. We hope in the future to
explore stronger inter-task covariance priors to make MTGP model fits even more sample efficient.
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Supplementary Materials for Bayesian Optimization

with High-Dimensional Outputs

Organization

The Appendix is organized as follows:

Appendix A describes limitations and negative societal impacts of our work.

Appendix B describes further background and related work on Kronecker matrix vector
products, Matheron’s rule, multi-task Gaussian process models, and sampling multi-task
posteriors using LOVE [45].

Appendix C gives a more detailed description of sampling multi-task Gaussian process
posteriors using Matheron’s rule, our set of priors for the HOGP [64], and a proof of
convergence using Matheron’s rule sampling to optimize MC acquisition functions.

Appendix D describes two more experiments on multi-task BO and contextual BO, before
giving more detail and results on the experiments in the main paper.

A Limitations and Societal Impacts

From a practical perspective, we see several inter-related limitations:

If the underlying multi-output function we are trying to model has very different lengthscales
for each output, then the shared data covariance matrix of the MTGP may not be able to
model each output very well. In practice, this seems to be rather rare, but may prove to be
more problematic for the HOGP model due to the number of outputs that we model.

Numerical instability can be an issue when solving systems of equations using eigen-
decompositions; however, we did not find it to be problematic as our implementation
performs the eigen-decomposition in double precision despite all other computations being
performed in single precision.

As currently described, we can only apply our method to block design, fully observed
settings where all data points and tasks are observed at the same time. In future work, we
hope to extend past this limitation, perhaps using the approaches of [63, 58].

Autokrigeability may play a larger role here than it does in standard MTGP scenarios, espe-
cially when the black box function is observed without observation noise. See Bonilla et al.
[6] for a longer description of this problem. However, we still get substantial computational
enhancements from using the HOGP and Kronecker structure compared to modeling each
output with an independent GP model.

Negative transfer can arise if the relationship between tasks is highly non-linear. Non-linear
MTGP models are needed to remedy this issue, rather than the ICM model we consider [7].

Looking farther out, we do not broadly anticipate direct negative societal impacts as a result of
our work. However, Bayesian Optimization, which we focus on in this paper, is a very generic
methodology for optimizing black box functions. This technology can be used for good reasons
such as public health surveillance and modelling [41, 2] or technological design, such as the radio
frequency tower location and optics problems discussed in this paper. These types of applications
should hopefully increase the likelihood of deployment of new advanced technologies such as 5G
cell coverage globally and thus help to provide more people with stable jobs and employment.
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B Further Background and Related Work

In this Appendix, we note of several more references in the geostatistics community who use
Matheron’s rule in multi-task Gaussian processes (MTGPs), give more background on MTGPs,
before moving into a more detailed description of LOVE predictive variances and fast sampling [45],
including for multi-task GPs.

B.1 An Extended Reference on Kronecker Structure

We may exploit Kronecker structure in matrices in order to perform more efficient matrix vector
multiplies and solves. For a more detailed introduction to Kronecker matrices and their properties,
please see Saatchi [51, Chapter 5] as well as Sections 1.3.7-8 and 12.3 of Golub and Van Loan [31].
Matrix vector multiplies (MVMs) are efficient and can be computed from:

2z = (K, ® Ky)vec(A) = vec(K,AK]);

if K1 € R"*™ and Ko € R"2X"2, As a result, computing z costs O(n? + n2 + nina(ny + no))
time [31, 12.3].

There are several other useful Kronecker product properties (again summarized from Saatchi [51],
Golub and Van Loan [31] amongst other sources): (A ® B)(C ® D) = AC ® BD, if the shapes
match, and (K} ® Ko)~!' = (K{!' @ K5 '), and log |K; ® K»| = nolog | K| + ny log | K2|. Root
(cholesky) decompositions also factorize across the Kronecker productas A ® B = LLT ® RR" =
(Lo R)(LT ®RT).

Using these properties, we then are able to compute matrix inverses of Kronecker plus constant
diagonal matrices as (K1 ® Ko + 021)7! = (Q1 ® Q2)(A1 ® Ay + 021)"H(Q1 ® Q) T, where
K; = Q;\;Q] (the eigen-decomposition of K;). As eigen-decompositions cost cubic time in the
size of the matrix then the total cost for these matrix solves is O(n?® + t3 + nt(n + t)) with the final
term coming from matrix vector products. In general, there is no efficient way to compute matrix
inverses of the form: (K; ® Ko + T;)~* where T} is a diagonal matrix that is non-constant. One can
use conjugate gradients to compute solves in that setting.

However, as Rakitsch et al. [47] demonstrate, if we assume a structured noise term, e.g. a likelihood

thatis Y ~ N (f,Xx ® Xr), then there is an efficient method of computing matrix inverses and
solves:

(Ki@ Ky +Xx @%7p)" ! = (QXA¥2 ® QTAlT/z)(Q1 ® Q2)
(A @Ry + )71 Q1 ® Q)T (QxAY? © QrA®)T,

where Q1A Q] = A)_(l/QQ)T(Kl QXA)_(U2 and Q- is defined in the same manner. This costs two
eigen-decompositions and several matrix vector multiplications for a total of O(n + 3 + nt(n +t))
time.

Rakitsch et al. [47] and Bonilla et al. [6] brush the nt terms in scaling under the rug as they are
dominated by the cubic time complexity of the eigen-decompositions. We follow this notation in our
results.

B.2 Matheron’s Rule

Matheron’s rule is well known in the geostatistics literature where it is called “prediction by con-
ditional simulation" [14, 13]. There, it is also known that it can be applied to multi-task Gaussian
processes, as described in de Fouquet [18] and mentioned in Emery [22]. Larocque et al. [39] use
Matheron’s rule to sample in the multi-task setting (termed co-kriging in that literature) and study
the uncertainty of the ICM kernel on groundwater use cases. However, they focus only on two to
three tasks and do not exploit the Kronecker structure in the multi-task covariances. Doucet [20]
gave a didactic explanation of Matheron’s rule with the goal of introducing it to the broader machine
learning community, explaining its applications in sampling Kalman filters.
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B.3 Multi-task Gaussian Process models

Both computationally efficient, e.g. Bruinsma et al. [9], and variational methods, e.g. Nguyen et al.
[42], Dai et al. [16], can be made more efficient in our Matheron’s rule implementation. Furthermore,
other kernels for MTGPs such as the linear model of coregionalization (LMC) and the semiparametric
latent factor models [48] can also be extended to use Matheron’s rule in the way that we mention here.
See Alvarez et al. [1], Bruinsma et al. [9] for an extended description of the relationships between
various models of multi-task GPs. In most of the paper, we focus solely on the exact setting with
ICM kernels for both didactic and implementation purposes. We detail the extension to the LMC
case in Appendix C.1.1.

Training Multi-task GPs: To train single task GPs, we optimize the marginal log like-
lihood with gradient based optimization; this approach extends to training multi-task GPs
as well. In the single task setting, the marginal log likelihood (MLL) is: logp(y) =
3 (Nlog2m —log |K + 01| — y " (K + 0*I)~'y) (Eq. 5.8 in Rasmussen and Williams [48]). To
extend the MLL into the multi-task setting, we only need to exploit Kronecker identities as described
in Section B.1 and focus solely on the constant diagonal case.! The MLL becomes

1
logp(y) = B (NTlog2m —log |Kx ® Kt + 01| — vec(y)  (Kx @ Kt + o?I)"vec(y))

The log determinant term simplifies to
log|Kx ® K1 4 02| = log |Ax ® Ap + o1
which is just the determinant of a diagonal matrix. The quadratic form similarly simplifies

vec(y) T (Kx @ Kr + %) 'vec(y) = vec(y) " (Qx ® Qr)(Ax @ Ar + 0*1)"H(Qx ® Qr) vec(y) .

We then estimate the kernel hyper-parameters with gradient based optimization of the log marginal
likelihood, following Stegle et al. [54], Rakitsch et al. [47]. The predictive means and variances of
the MTGP are given by Bonilla et al. [6].

B.4 LOVE Variance Estimates and Sampling Multi-Task Posteriors

To compute p* in (1), we need to solve the linear system, (K y x + 02I)~ly; this solution costs
O(n?) when using the Cholesky decomposition [48]. Recently, Gardner et al. [28] have proposed
using preconditioned conjugate gradients (CG) to solve these linear systems in O(rn?) time, where r
is the number of conjugate gradients steps. Similarly, to compute the predictive variance in (2), we
need to solve 1 systems of equations of the form (Kxx + o2] )*IK Xxq» Which would naively
cost O(n®nyey) time, reduced to O(negn + n?nyey) time if we have precomputed the Cholesky
decomposition of (Kxx + o2I).

Pleiss et al. [45] propose to additionally use a cached Lanczos decomposition (called LOVE) such
that RRT ~ (Kxx + 0%I)~! and then simply perform matrix multiplications against K xx,,
to compute the predictive variances. The time complexity of the Lanczos decomposition is also
O(n?r) for computing a rank r decomposition. Sampling proceeds similarly by computing a rank
r decomposition to X in (3). The overall time complexity for computing s samples at from the
predictive distribution in the exact formulation is reduced to O(rn? + srnes + 1Ny + N2 Niest)-
These advances in GP inference have enabled exact single-output GP regression on datasets of up to
one million data points [57]. Furthermore, Gardner et al. [28], Pleiss et al. [45] demonstrate that one
can choose r < n while maintaining accuracy up to numerical precision in floating point.

LOVE for multi-task predictions. It is possible to exploit the Kronecker structure in the posterior
distribution to enable more efficient sampling than the naive O((next)*) approach [28]. (Kxx ®
K1 + o%I,,7) admits an efficient matrix vector multiply (MVM) due to its Kronecker structure —
this MVM takes O(nt(n + t)) time, see Appendix B.1. If we use LOVE to additionally decompose
the matrix such that LLT ~ (Kxx ® K7 + 0%I,,7)", then computing L that has rank r takes
O(r(nt(n + t))) time but has a storage cost of nt x r, which is multiplicative in the combination
of n and t. Then, computing (K, x ® Kr)L takes O((nesnt + nt?)r) time. This represents

'Please see Rakitsch et al. [47] for the structured noise case.
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an improvement over the naive method, but still ends up requiring computing ¥* = AAT =
(K ® K1) — (Kppo.x ® Kr)LLT (K]  ® K7), which is a negt X Nyt matrix, and

Ltest ; Ltest Lest s Ttest

therefore costs at least (ngt)? time to decompose and thus sample. The overall time complexity is
then O (7 (niesit)? + 71 (Nese + t2)). Finally, the matrix A must be re-computed from scratch for each
new test point xy, and only the matrix L can be reused for different test points (as in a Bayesian
Optimization loop).

C Further Methods

In this Appendix, we start by giving a more detailed derivation of our efficient Matheron’s rule
implementation for sampling from multi-task Gaussian processes, then we describe a new set of
priors for the HOGP model, before closing with a convergence proof of using Matheron’s rule in
optimizing Monte Carlo acquisition functions.

C.1 Details of Using Matheron’s Rule
We derive only the zero mean case here for simplicity.
Succinctly, to generate f (s )|Y = y under the ICM, we may draw a joint sample from the prior

(f,Y)~N<o,< pXX )@KT> (A1)

Lest Ltest

and then update the sample via an update from computing (Kin + Tl)*l(y —Y —¢€). Here, T}
represents the noise likelihood used — it could be either constant diagonal: ¢2I, non-constant
diagonal with a variance term for each task: D, or Kronecker structured itself: D,, ® T}, where T} is
a dense matrix. The formula is given as

f=l+Kix(Exx+0°) ' (y—Y —e). (A2)
The joint covariance matrix, Kjoint, in (A.1) is highly structured

Kioint = ( el g ) ®Kr=RR'®LLT =(RoL)Y(R®L)T,

where RR" ~ K(x 1..).(X.me) a0d LLT = K7 and we exploit Kronecker structure. To compute
R, we follow Jiang et al. [34]’s method for fantasization (given in Proposition 2 therein):

KXX leele — R 0 R 0 !
KXIlcsl belcslmlcs( N L12 L22 L12 L22 ’

where RRT = Kxx and L], = R™!Kx,,.. To compute Lo, we have to compute

Loy = (K

Ltest Ltest

— Lo L1,)Y2.

If we assume a rank 7 decomposition of K x x, computed in O(n?r) time (e.g. a LOVE decomposition
Pleiss et al. [45]), then computing L5 costs O(nyrn) if we have stored R~! (or R*). Similarly,
computing Loy costs (’)(n?estr) time if we use a Lanczos decomposition (for large n.y). We could
also use contour integral quadrature [46] to compute Loov at the expense of having to re-compute it
every time we want to draw a new sample. Sampling then proceeds by computing

(1Y) = ( ( F ) ®L> 3 (A3)

where z ~ N(0, T). We can then compute € ~ N (0, T;), where T is the noise distribution. Typically,
T; will be diagonal so this sampling just requires taking the square root of 77; it could alternatively
use a Kronecker structured root decomposition if not diagonal.

We then need to compute

w=(Kxx+T) '(y-Y —e),
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via efficient Kronecker solves as described in Section B.1 — for example, if 7; is a constant diagonal,
use the Kronecker eigen-decomposition and add the constant to the eigenvalues. The diagonal
solves generally cost O(n® + t3 + nt(n + t)) time, while even T} = Y77 ® Sy, full rank task
and data noises, still costs O((n® + t3) + nt(n + t)) as we only need to perform extra matrix
multiplications [47]. Finally, we only need to compute a Kronecker matrix vector multiplication,

computing z = K, xw and f = f + z. This exploits Kronecker identities and costs O(nt(n +t)).

We choose to mention the nt terms for precision, despite it typically being dropped in the literature
due to the solve costs being dominated by the eigen-decompositions of training and task covariance
matrices [47, 33, 6]. In all cases, the nt terms come solely from the Kronecker matrix vector
multiplications. The overall time complexity of the operations is then O(n? + t3 + nt(n + t)) time,
which is O(n? + t3) time.

The non-zero mean case can be implemented by adding in the mean function into the joint sample at
(A.1) and again at the end of (A.2).

The extension to the HOGP model proceeds like the general ICM case if we replace L by the root
decomposition of the kernels across all tensors, L = ®¢%_,L; such that ®¢ ,K; = ®L,L;L;.
Again, we only need to update the root decomposition on the data covariance and can re-use the root
decomposition on the latent covariances.

Overall memory complexities are shown in Table 2; we ignore the fixed constant train decomposition
costs of Kyx and/or Kxx + o2I. For single output GPs, this is a constant O(n?) (O(nr) if
LOVE is used). For multi-task GPs, it becomes O(n? + t* + nt) (or O(ntr)). For the HOGP, it is
(’)(X:f:1 d? + Hle d;) (or O(T(Zle d;)). The multiplicative scaling in memory is the cost of a
single vector (the eigenvalues of K x x) for the HOGP and the MTGPs. Unfortunately, combining
Lanczos partial eigen-decompositions does not help reduce the memory by as much in the MTGP or
HOGP setting due to the necessity of some zero-padding.

Table 2: Memory complexities after pre-computation for posterior sampling in single-output, multi-
task, and high-order (HOGP) Gaussian Process models. Matheron’s rule allows decomposition
across the Kronecker product of the train and task covariances, enabling significant improvements in
memory scaling. We ignore pre-computation costs, while the multiplicative terms are single vectors.

Model | Distributional (Standard) (3) | With Matheron’s rule (5)

Single-Output | niy \ N2y + NMyest
Multi-Task | (Niestt)? \ n2g + 1% +nt
d d d
HOGP ‘ (i) [Tico @ ‘ N + i di +Tip di

Finally, time complexities when using Lanczos decompositions throughout are shown in Table 3,
with the corresponding memory requirements after pre-computation shown in Table 4. These present
further improvements to the Cholesky based approaches described throughout and enable Matheron’s
rule sampling with MTGPs to scale to larger n and larger ¢ than even the exact settings.

Table 3: Time complexities for posterior sampling in single-output, multi-task, and high-order
(HOGP) Gaussian Process models with LOVE fast predictive variances and Lanczos decompositions
of rank r. Time complexities shown in blue are our contributions that have not yet been considered
by the literature. Standard Sampling multi-task Gaussian processes scales multiplicatively in the
combination of the number of tasks, ¢, and the number of data points, n, while using Matheron’s rule
allows for structure exploitation that reduces the combination to become additive in these components.

Model | Distributional (Standard) (3) |  With Matheron’s rule (5)
Single-Output ‘ O(r(n?® +nly)) ‘ O(r(n?® +nly))
Multi-Task | O(rt*(n® +ndy)) O(r((n® +ngy) + t2)

|
HOGP | — | O(r((n* +ni) + 30, d7))
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Table 4: Memory complexities after pre-computation for posterior sampling in single-output, multi-
task, and high-order (HOGP) Gaussian Process models when using LOVE posterior covariances
and Lanczos decompositions of rank . Matheron’s rule allows decomposition across the Kronecker
product of the train and task covariances, enabling significant improvements in memory scaling.

Model | Distributional (Standard) (3) | With Matheron’s rule (5)
Single-Output | NeestT \ NiestT + FNMest
Multi-Task | (Nyestt)T r(Nest + t) + nt

|
HOGP | — | (e + o di) + TTi, di

C.1.1 Extension to Linear Model of Coregionalization

We close this section by noting that the linear model of coregionalization (LMC) as described in
Alvarez et al. [1] can be written as a sum of Kronecker products: K = Z(?:l B, ® K,(X,X").
We do not know of an efficient solve of sums of more than two Kronecker products, and we do not
have a strong implementation of approximation methods or specialized preconditioners for solves of
the form (Kyain + Tl)*lz. However, exploiting Kronecker strucutre, matrix vector products K, v
cost O(Qnt(n+t)) so that we can use conjugate gradients to compute solves and Lanczos to compute
root decompositions in O(r@nt(n + t)) time and O(rnt) memory. We can similarly compute a
dense root decomposition update to form MM " ~ Kiin by following the same strategy as before
(e.g. root updates [34]) but on matrices of size nt and with an update of size ngt. The structured
MVMs make the updates more efficient, as computing Los costs only rQnuegt(niest + t) and Lo
costs rQnt(nes + t) to form the dense r X (n + neq )t updated root decomposition M. Thus, we
can achieve efficient sampling using Matheron’s rule and Lanczos variance estimates in effectively
O(rQt(n? +n2,)) time.

By comparison, sampling using the distributional approach would require dense factorizations of
non-structured matrices, e.g. 3%, that do not have fast MVMs, thereby proving to be more expensive
both computationally and memory wise. Indeed, the advantages will be magnified for large nes
as then forming and decomposition ¥* may quickly become too expensive memory wise. We can
exploit structured MVMs for sampling using Matheron’s rule. Implementation wise, this provides 3z
speedups on a single GPU, while significantly improving the memory overhead; however, we leave
detailed exploration for future work.

C.2 Autokrigeability and the HOGP Model

The High-Order Gaussian Process model has latent parameters, x;, for each latent dimension,
so that K; = k(z;,z;). Zhe et al. [64] initialize z; ~ N(0,I) and optimize them as nuisance
hyper-parameters, possibly regularizing them with weight decay. For completeness, they consider
multi-dimensional latent dimensions, e.g. z; is a matrix, while we consider here z; as only one
dimensional. Our analysis holds for multi-dimensional latents.

In the noiseless limit, the HOGP model falls prey to autokrigeability as described by Bonilla et al.
[6]. If we were predicting a vector, this would not be an issue; however, we are predicting a tensor. In
general, we expect the tensor’s dimensions to be smoothly varying — that is, as we move down a
row, we expect the covariance to be smoothly varying (e.g. it has smooth spatial structure). This prior
assumption can be demonstrated on the variance as shown in Figure A.la for simulated data: as we
move down rows and columns, the sample variance stays at least somewhat consistently high (the
first column) or low (the tenth column).

Considering n = 1 test point, only one latent dimension, and then taking the limit as 2 — 0, the
posterior variance becomes

E = Kmlcalxlcsl & KL - (Kfrlcsll‘ ® KL)(K)}}X ® Kgl)(metcs( ® KL)

— —1
- (lecslwlssl - Ki(es‘XKXX walesl) ® KL
= ClKL,

20



with a = (Ky 00y — Ko x K ;(} Kxs,,) (ascalar). The posterior variances for each output are
given by the diagonals of K, or of the diagonal of ®%_, K; for a d-tensor. The covariances between

outputs are given by K7,.

The trouble arises from the fact that if the latent parameters, v;, are not smoothly varying across [
then K1, will not be smoothly varying either. A priori, we might expect that for a given set of outputs
in the tensor, say indices 0, 1, 2, that their posterior variances would also be smoothly varying (as the
underlying process across the tensor is “smooth" in some sense), shown in Figure A.la. Referring
back to Figure A.8 for intuition, by smooth, we mean that each pixel in the outcome maps is close in
some sense to its nearest eight neighbors. We should then expect the model’s predictive posterior
variances to vary in a similar fashion to the model’s predictive posterior, which is data dependent.

For the HOGP tensor, the predictive posterior variance over an entire tensor (e.g. the coverage maps
with 3 dimensions) is given by the product of the diagonal of each posterior. Thus, the inter-latent
relationships can very quickly produce a “jagged" posterior variance as shown in Figure A.lc, with
the posterior covariance becoming even more highly patterned (Figure A.1b).

For smau o2, we can approximate Y as aKy, with a = (I{g,glcsl%?l — K, x(K ;(ﬁ( + JQ.K ;(i()K Xan.c,l)
and consider the properties of K. For smoothly varying covariances between indices in the posterior
covariance matrix, we want smoothly varying K, and thus smoothly varying z;.

Smoothly Varying Latent Dimensions: the HOGP + GP To produce smoothly varying latent
dimensions, we initialize x; as a random draw from a multivariate normal distribution (or a Gaussian
process) with zero mean and with a Matern 2.5 kernel and lengthscale 1 in all of our experiments. The
kernel is evaluated on (0, 1./d;,2./d;,-- -, (d; — 1)/d;, 1.) for inputs. We then use this distribution
as a prior on the x; latents as well to help produce smoothly varying latents.

Example prior draws are shown in Figure A.1f in orange for two of its latent dimensions. The induced
posterior variances are shown in Figure A.le, which are considerably more smoothly varying than the
random initializations. It is somewhat closer to the true variances of the function (these are un-trained
models). Similarly, the (squeezed) posterior covariance matrix as shown in Figure A.1d shows much
less covariance patterning than the random covariances in Figure A.1b. Importantly, after training
the model, the largest impact is not on the predictive mean, but rather the posterior covariances and
thus the posterior samples. We refer to HOGP models with this type of latent dimension prior and
initialization as the HOGP + GP in the main text. We leave a theoretical analysis of these priors to
future work. In Figure A.1, the true latent function is f(z, y) = sin(2x * 1) * cos(0.4yj) + €, where
1, j are the tensor indices (here (0,31)2) and € ~ N(0,0.012).

C.3 Convergence of Sample Average Approximation of Monte-Carlo Acquisition Functions

Following Balandat et al. [4], we consider the following class of acquisition functions:
a(x; ®,y) = Ela(g(f(x)), @) [V = y], (Ad4)

Here z € R7%% ig a set of q candidate points, g : R"e=tX? — R™e js an objective function, $ € ® are
parameters independent of Z in some set ®, and a : R™ x & — R is a utility function that defines
the acquisition function.

Letting £ () denote a sample from f(x)|(Y = y), we have the following Monte Carlo approximation
of (A.4):

L
an(z; @, y) Za D) (A.5)

Suppose X C R? is a feasible set (the “search space”). Let 2P := arg maxX, cxnes o(x; ®,y) and
denote by X°P' the associated set of maximizers. Similarly, let 53?\‘,’[ = arg max, cxne an(T; ®,9).
Then we have the following:

Proposition 1. Suppose that X is compact, f has a GP prior with continuously differentiable
mean and covariance functions and g( ) and a(- @) are Lipschitz continuous. If the base samples

{ }7L+7Lmr and {6 ' | are Li.d with v* ~ N(O 1) and €' ~ N(O o ) respectively, then

~ opt
1. a?@ — a’’ a.s.
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Figure A.1: (a) Sample variance of true function draws over the indices. (b) Posterior covariance from
a HOGP model initialized with random latent dimensions shown as orange lines in (f). (¢) Posterior
variance, shown on the output dimensions for random latents, the variance varies jaggedly. (d)
Posterior covariance from a HOGP model initialized with latent dimensions drawn from a GP, shown
as blue lines in (f). (e) Posterior variance, shown on the output dimensions for the GP latents; the
variance now varies smoothly. (c,e) Flattened (each output is now a single pixel) posterior covariance
for random and GP-drawn latents. The GP-drawn latent covariance is much more smoothly varying.

2. dist(F, X = 0 a.s.

To prove Proposition 1, we need the following intermediate result:

Lemma 1. Under Matheron sampling, a(g(&(x)), ®) = a(g(h(z,€))) with h : RMver*d x R2n+ e
and € € R?"+"es g random variable. Moreover, there exists an integrable function £ : R?" e — R
such that for almost every € and all x, 7' € X,

|a(g(h(@,€))) — alg(h(z',8)))| < L)z — 2| (A.6)

Proof of Lemma 1. From (5) we have that under Matheron sampling a posterior sample is parameter-
ized as

Ex)=f+K,yx(Kxx +0* ) 'y — (Kxx +0*I) 7Y +¢) (A7)

where (f,Y") are joint samples from the GP prior. We parameterize (f,Y") as (f,Y) = R(x)v where
R(z) is a root? of the covariance from (6), and v ~ N(0, I). We can thus write (A.7) as

I —M(z)| 0 ] {1;(_95);} = M(z)y + A(z)é (A.8)

where M (z) = K,x(Kxx +02I)71,

o= [ ] (R

?For simplicity we assume that R(z) € R™"™= for all z, but the results also apply to lower-rank roots (the
argument follows from simple zero-padding.
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and €; ~ N(0,1) for j = 1,...,2n + nes. Therefore,
[€(x) — £ < |M(z) — M(2")||ly + | A(x) — Az")]| [|€]]-

From the arguments of Balandat et al. [4], the assumption of continuously differentiable mean and
covariance functions and the compactness of X imply that there exist C;, Ca < 00 s.t. ||[M(x) —
M(x")|| < Cyr and ||A(z) — A(2')|| < C4 for all z, 2" € X. Moreover, since both ¢(-) and a(- @)
are Lipschitz, there exists L < oo such that |a(g(h(z,€))) — a(g(h(z’,€)))| < L||&(z) — £(2))]).
Consequently, (A.6) holds with £(¢€) = LCyy + LC 4¢€, which is integrable since (i) y is almost
surely finite and €; ~ N(0, 1). O

Proof of Proposition 1. Lemma 1 mirrors Lemma 1 from the supplementary material of Balandat
et al. [4], and shows the corresponding result for the posterior samples parameterized under sampling
using Matheron’s rule. Proposition 1 then follows from the same arguments as in the proof of
Theorem 1 in Balandat et al. [4]. O]

Similar to Balandat et al. [4], it is also possible to show the following:

Proposition 2. [f, in addition to the assumptions of Proposition 1, (i) for all x € X™' the moment
generating function t — E[et“(g(h(w’g)))] is finite in an open neighborhood of t = 0, and (ii) the
moment generating function t — E[ete(e)] is finite in an open neighborhood of t = 0, then ¥ § > 0,
JK < oo, B> 0s.t. P(dist(2F", X") > §) < Ke PN forall N > 1.

This follows from the proof of Proposition 1; we can use exactly the same argument as in the proof of
Theorem 1 in Balandat et al. [4].

D Further Experiments and Experimental Details

In this Appendix, we give further experimental details as well as some more experiments for the
applications of Matheron’s rule to various Bayesian Optimization tasks. Experimental code is
available at https://github.com/wjmaddox/mtgp_sampler. Unless otherwise specified, all
data is simulated. The code primarily relies on PyTorch [44] (MIT License), BoTorch [4] (MIT
License), GPyTorch [28] (MIT License).

D.1 Drawing Posterior Samples

Observed Data —— True Conf. Region —— Sampled Conf. Region

—— Matheron Distributional

Figure A.2: Top: Posterior mean and confidence regions for a two-task GP. The Matheron’s rule
sampled confidence region is overlaid on top of the true confidence region; these are visually
indistinguishable. Bottom: Relative error of the estimated standard deviation from 1024 samples
drawn from the predictive posterior using either Matheron’s rule or distributional sampling; plotted
as a function of Z. Again, the samples are effectively indistinguishable.

In Figure A.2, we show the accuracy of Matheron’s rule sampling, where it is indistinguishable from
conventional sampling from a MTGP (3) in terms of estimated standard deviations as well as the
confidence regions. Here, we drew 1024 samples from both sampling mechanisms and used the true
mean and variance of the GP predictive posterior to shade the confidence regions. This result is to be
expected as Matheron’s rule draws from exactly the same distribution as the predictive posterior.
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Experimental Details For the plots in Figure 2, we fit a Kronecker multi-task GP with data from
the Hartmann-5D function as in Feng et al. [26] and Appendix D.2 for 25 steps with Adam, before
loading the state dict into the various implementations. We followed the same procedure for the
LOVE experiments in Figure A.3.

The GPU experiments were run sequentially over 10 trials on a single V100 GPU with 16GB of
memory. We show the mean over the ten trails and two standard errors of the mean (on a p3.2xlarge
AWS instance). The CPU experiments were run sequentially over 6 trails on a single CPU and given
128GB of memory. Specificially, this corresponds to a c6d. 18x1arge AWS instance.
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Figure A.3: Timings for distributional sampling using LOVE cached predictive covariances with
Hadamard (LCEM) and Kronecker (LCEM + Kronecker) variants of MTGPs as well as our sampling
based on Matheron’s rule (LCEM + Matheron) as the number of test points vary for fixed tasks (a,c)
and as the number of tasks vary for fixed test points (b,d) on a single Tesla V100 GPU (a,b) and on a
single CPU (c,d). The multiplicative scaling of the number of tasks and data points creates significant
timing and memory overhead, causing the Kronecker and Hadamard implementations to run out of
memory for all but the smallest numbers of tasks and data points.

D.2 Multi-Task BO and Contextual BO with LCE-M Contextual Kernel

‘We now consider contextual BO (CBO), an extension of multi-task BO, following Feng et al. [26]
and using their embedding-based kernels, the LCE-M model. In CBO, the objective is to maximize
some function over all observed contexts; given experimental conditions and a query, we want to
choose the best action across all of the possible settings (the average in our experiments). Feng
et al. [26] considered contextual BO (CBO), and proposed the LCE-M model, an MTGP using an
embedding-based kernel. LCE-M models each context as a task; all contexts are observed for any
given input, and the multi-task kernel is then k,, (z, ')k (i, ) = kn(x, 2" )k (E(c), E(¢")), where E
is a nonlinear embedding and c are the contexts.

We consider both multi-task and contextual versions of this problem. For the multi-task setting, we
do not actually perform contextual optimization (selecting a different candidate for each context),
but find a single action that maximizes the average outcome across all observed contexts. For both
settings, we would intuitively expect that using context-level observations can improve modelling
and thus optimization performance. We use qEI (batch expected improvement with MC acquisition,
q = 2, Balandat et al. [4]) on the objective and compare the (Hadamard) LCE-M model, a Kronecker
variant, and one based on Matheron MTGP sampling.

Multi-task Bayesian Optimization: Figure A.4 shows results on the multi-task version of this
problem for 5, 10, 20, 50, 100 contexts. We can see that, as expected, the optimization performance
is identical for the three sampling methods on five contexts; the 50 and 100 context case shows that
our Matheron-based sampling achieves better performance overall as the other methods run out of
memory. In Figure A.4f, we also show the average and steps achieved (confidence bars are two
standard errors of the mean) as the number of tasks (contexts) increases. This clearly shows the
impact of the increased memory usage for both the LCEM and LCEM + Kronecker implementations,
as they run out of memory after only a few steps, rather than being able to reach all 150 optimization
steps.

Contextual Bayesian Optimization: In Figure A.5, we display the results of setting up the
Hartmann-5D problem as a contextual Bayesian Optimization. Here, we observe each context
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Figure A.4: Multi-task Bayesian Optimization with on Hartmann5D with LCE-M kernel using
distributional sampling with Hadamard (LCEM) and Kronecker (LCEM + Kronecker) models, and
our Matheron-based posterior sampling (LCE-M + Matheron). For five contexts (a), optimization
performance is essentially identical as expected; for 100 contexts (b), only the LCEM + Matheron’s
rule model reaches a maximum as the others run out of memory. Results over 40 trials for 10, 20,
and 50 contexts on Hartmann-6 translated into a contextual problem. We also show the number of
average steps achieved in (d) where only LCEM + Matheron’s rule is able to complete all 150 steps.
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Figure A.5: Results over 8 trials for 10, 20, and 50 contexts on Hartmann-6 translated into a contextual
problem. We also show the number of average steps achieved in (d) where only LCEM + Matheron’s
rule is able to average 150 steps (the maximum that we ran each trial for) of Bayesian Optimization.
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at every iteration, but need to choose a policy to for a randomly chosen context. We then observe all
contexts’ observations for that observed policy, and plot the best average reward achieved across all
contexts. Again, the findings from the MTGP experiment carry over — which is that optimization
performance is nearly identical, but that the Matheron’s rule implementation can achieve many more
steps at a higher number of contexts, as shown in Figure A.5f.

Experimental Details: We fit the MTGPs with a constant diagonal likelihood with a
Gamma(1.1,0.05) prior on the noise, ARD Matern kernels on the data with v = 2.5, lengthscale
priors of Gamma(3.0, 6.0), and a Gamma(2.0, 0.15) prior on the output dimension using Adam for
250 steps. The LCEM kernel uses similar priors and a one dimensional embedding, following Feng
et al. [26]. The LCEM implementation was Hadamard based and exactly from https://github.
com/pytorch/botorch/blob/master/botorch/models/contextual_multioutput.py. For
all, we used 10 initial points, ran 150 steps of BO, normalized the inputs to [0, 1]¢ and standard-
ized the responses. The simulated Hartmann-5D function comes from https://github.com/
facebookresearch/ContextualB0/ (MIT License) [26]. Here, we use a single 16GB V100 GPU
(p3.8xlarge AWS instance) and repeat the experiments 43 times for 5 tasks and 40 times for 100
tasks, showing the mean and two standard errors of the mean. For BO loops, we used 128 MC
samples, ¢ = 2 batch size, 256 initialization samples with a batch limit of 5, 10 restarts for the
optimization loop and 200 iterations of L-BFGS-B. All other options were botorch defaults including
the LKJ prior with 7 = 2.0 over the inter-task covariance matrix [40].

D.3 Constrained Multi-Objective Bayesian Optimization

For C2DTLZ2, we initialized with 25 random points, while with OSY we initialized with 14 random
points, chosen via rejection sampling to find at least 7 feasible points. For both, we then optimized
with 128 MC samples, 10 random restarts, 512 base samples, a batch limit of 5, an initialization batch
limit of 20 and for up to 200 iterations of L-BFGS-B. We used a batch size of ¢ = 2 for C2DTLZ2
optimizing for 200 steps and a batch size of ¢ = 10 for OSY, optimizing for 30 steps. We used 16
random seeds for OSY and 24 for C2DTLZ2 and plot the mean and two standard errors of the mean.
For both, we used the default reference points as (1.1,1.1) and (=75, 75) for the EHVI approaches.

The C2DTLZ2 function comes from BoTorch, while the OSY function is a reimplementation
of https://github.com/msu-coinlab/pymoo/blob/master/pymoo/problems/multi/osy.
py (Apache 2.0 License). For these, we used 24GB Nvidia RTX GPUs on an internal server.

D.4 Scalable Constrained Bayesian Optimization

In Figure A.6, we show the wall clock time for fitting the batched GPs and the MTGPs on the lunar
lander problem with m = 50 constraints. Here, the MTGPs are faster because they are somewhat
more memory efficient; note that several runs for both reached convergence during optimization
very quickly after reaching BoTorch’s default Lanczos threshold (n = 800) thus decaying the model
fitting times. We also show the time required to sample all tasks, again finding that the Thompson
sampling time is much slower for the batched GPs. Shown are means and log normal confidence
intervals around the mean (hence the asymmetry). In Table 5, we show the number of steps and the
proportion of succeeded trials required to reach feasibility, finding that the MTGPs also reduced the
number of steps required to achieve feasibility and thus improved the number of feasible runs. For
steps to feasibility, we again show means and log normal CIs around the mean.

Here, we followed the parameterizations and other implementation details from Eriksson and Poloczek
[25] and used 30 random seeds for the lunar lander problems and 9 on the MOPTAQ8 problem (8 for
batch GPs due to memory issues). Here, we used a single 24GB Titan RTX GPU for all experiments
(part of an internal server), and used KeOPS [27] for the batched GPs. We used a full rank ICM kernel
with a LKJ prior = 2.0 [40] and a smoothed box prior on the standard deviation of (e~%, e!-2%).
for the multi-task GPs and diagonal Gaussian noise with a Horseshoe(0.1) prior, constraining the
diagonal noise to [1076,4.0].

The executable for MOPTAO8 is available at https://www.miguelanjos.com/
jones-benchmark (no license provided). The lunar lander problem uses https:
//github.com/openai/gym/blob/master/gym/envs/box2d/lunar_lander.py [8] (MIT
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Figure A.6: (a) Wall clock time for model fitting with multi-task and batched Gaussian processes
as a function of the number of function queries. (b) Time for Thompson sampling as a function of
the number of function queries. In both cases, the multi-task Gaussian process is faster; training due
to using conjugate gradients and Kronecker MVMs while Thompson sampling is faster due to the
Matheron’s rule approach that we use.

Table 5: Number of function evaluations to achieve feasibility on the lunar lander (LL) and the
MOPTAOS optimization problems, given that feasibility was reached, as well as the proportion of
runs that achieved feasibility. Using a multi-task GP in SCBO achieves feasible outcomes with fewer
function evaluations; on the m = 100 constraint lunar lander, the batch GPs ran out of memory
before reaching feasibility.

Method | Time to Feasibility | Proportion
[ LL,m =50 |
MTGP SCBO | 314,(229,333) | 26/30,(0.73,1.0)
Batch SCBO | 401, (273,432) | 24/30, (0.64,0.96)
PCA GPSCBO | 324,(239,348) | 25/30, (0.68,0.97)
| LLm=100 |
MTGP SCBO | 349, (260,390) | 17/30,(0.33,0.8)
Batch SCBO — 0/30
| MOPTA08 |
MTGP SCBO | 292, (250, 327) 9/9
Batch SCBO | 415, (318, 493) 8/8

License). The SCBO code from Eriksson and Poloczek [25] is currently unreleased; we implemented
our own version.

D.5 Composite Bayesian Optimization Experiments

In all experiments with the HOGP, we used diagonal Gaussian likelihoods with Gamma(1.1, 0.05)
priors on the standard deviation, and Matern 2.5 kernels with a lengthscale prior of Gamma(3., 6.).
For the standard version, we randomly initialized latent parameters to be standard normal, while for
the HOGP + GP models, we randomly sampled the latents from a Matern 2.5 kernel with lengthscale
1 and input values as the indices, using the kernel as the covariance for a zero mean multivariate
normal prior. For all experiments we used qEI with a batch size of 1.

For the environmental problem, we followed the implementations of Balandat et al. [4], Astudillo
and Frazier [3], and used 8 random restarts, 256 MC samples, and 512 base samples, a batch limit of
4, and an initialization batch limit of 8. These experiments were performed 50 times on 16GB V100
GPUs (part of an internal cluster). The bounds are (7,0.02,0.01, 30.01) and (13.0,0.12, 3., 30.295).

For the PDE problem, we followed the example implementation given at https://py-pde.
readthedocs.io/en/latest/examples_gallery/pde_brusselator_expression.html#
sphx-glr-examples-gallery-pde-brusselator-expression-py (MIT License). For the
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Figure A.7: (a) Example solution from the Brusselator problem. (b) PDE solution as found via EI on
the metric itself. (¢) PDE solution as found via composite BO using EI with the HOGP model, which
displays less variance than the EI solution. Running BO to minimize the variance is able to easily
find settings of parameters within the bounds that push the reactivity to zero; the variance is reduced
overall by using the HOGP + GP model. All solutions are de-meaned.

metrics, we computed the weighted variance and minimized that function. Non-finite outputs
were set to 1eb5. We up-weighted the weights on the first two rows and columns for each output to
have weights 10x that of the rest of the inputs. These were run 20 times with 5 initial points, 50
optimization steps, using 64 MC samples and 128 raw samples with 4 optimization restarts. These
were run on CPUs with 64GB of memory (part of an internal cluster). An example output, as well as
solutions found by EI (objective value 0.1088) and composite EI using the HOGP model (objective
value 0.0087) are shown in Figure A.7.

On the radio frequency coverage problem, we initialized with 20 points, downsampled the two
241 x 241 outputs to 50 x 50 for simplicity, ran the experiments over 20 random seeds and for 150
steps. We used 32 MC samples, 64 raw samples with a batch limit of 4 and an initialization batch
limit of 16. These were run on either V'100s with 32GB of memory or RT X 8000s with 48GB of
memory on a shared computing cluster so we cannot tell which one was used. The problem is 30
dimensional and the first 15 dimensions are (0.0, 10)1® with the second 15 coming as (30.0, 50.0)*°.
The first dimensions correspond to the downtilt angles of the transmitters (in 3D coordinates), while
the second set corresponds to the power levels of the transmitters.

For metric specfication, we used the following equations, following Dreifuerst et al. [21], where R is
the first output and 7 is the second output:

50
Covt, sirong = Z sigmoid(—80 — R)
2]
CO’l)g, weak, area — SlngId(R + 80) * Slngld(I +6— R)
50
Covg, weak = Z sigmoid (] * C'ovg, weak, area + 6 — R % COVg, weak, area)
4,J

Obj = 0.25 x Covg, gyrong + (1 — 0.75) * C'ovg, weak

using the final line as the objective to maximize. —80 is the weak coverage threshold, while 6 is
the strong coverage threshold. Representative coverage maps are shown in Figure A.8, along side
the maps of weak coverage and strong coverage, analogous to that of a random set of parameters in
Figure 1.

This code was provided to us on request by the authors of Dreifuerst et al. [21].

On the optics problem, we used the simulator of Sorokin et al. [53], initialized with 20 samples and
ran for 115 steps with 64 MC samples, 64 raw samples for initialization with a batch limit of 1. We
used the same computing infrastructure as on the coverage problem above. to convert the problem
of optimizing visibility into a BO problem rather than a reinforcement learning one, we reset the
simulator to (1e — 4, le — 4, 1e — 4, 1e — 4) each time we queried the problem and optimized the
log visibility.
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Figure A.8: (a) Coverage map obtained by optimizing EI on the aggregate metric, which yields the
weak and strong coverage metrics (shown on log scale) (b). (¢) Coverage map obtained by optimizing
EI using a composite objective with HOGP+GP, which yields the weak and strong coverage metrics
(log scale) (d). Composite BO with the HOGP yields distinctive differences between the best patterns
found on the coverage metrics.

To increase signal, we up-weighted the center of the image as

Intensity, := Y _exp{—(i/64 — 0.5)> — (j /64 — 0.5)*} + I,
,J
Imax = LogSumExp(Intensity,)
I'in = —LogSumExp(—Intensity,)
V= (Imax - Imin)/(-[max + Imin)

and maximized the logarithm of the visibility (V), where I; is the ¢th output of the model (there are
16 outputs, each is of shape 64 x 64).

We show several results from a single run in Figure A.9, where we see that only EI on the HOGP is
able to at least partially align the two sets of mirrors; a random solution and EI on the metric keep the
light coming from the two mirrors apart. The simulator itself comes from https://github. com/
dmitrySorokin/interferobotProject (MIT License).
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(c) Solution found from composite EI with the HOGP (visibility ~ 0.94)

Figure A.9: Example simulator outputs for the optics problem. (a) a random movement produces
very unaligned lights, while (b) EI on the metric itself somewhat aligns the two light sources. (c)
Running composite BO with the HOGP model produces much more aligned light sources that are
presented as much brighter on the scales.
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