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ABSTRACT

Model misspecification occurs when the assumed model on
which an estimator is derived differs from the true underlying
model for a given set of data. This often occurs when, for rea-
sons of practicality, it is not reasonable to account for all of
the real-world factors affecting a given signal. In the context
of radio direction-of-arrival (DOA) estimation this can occur
due to interference, multipath or other unanticipated phenom-
ena, or due to modelling assumptions that are made in order to
utilize computationally efficient array processing algorithms.
In this contribution we address the problem of model misspec-
ification in the context of multi-antenna stochastic direction-
of-arrival estimation. We present this problem as an applica-
tion for the Misspecified Cramér-Rao lower bound (MCRB)
and derive a set of general models and expressions for com-
puting the MCRB for the misspecified stochastic DOA prob-
lem. These models are compared against the convergent re-
sults of the stochastic maximum-likelihood (ML) estimation
to show that the performance of an asymptotically optimal un-
biased estimator does converge to the value predicted by the
MCRB.

Index Terms— Model misspecification, Cramér-Rao
lower bound, multi sensor array processing, direction-of-
arrival estimation, stochastic maximum-likelihood.

1. MOTIVATION & SIGNAL MODELS

The objective of this paper is in providing a framework for ad-
dressing the impact of model misspecification on the problem
of direction-of-arrival (DOA) estimation using multi-sensor
antenna arrays [1]. Radio direction finding is a classic prob-
lem in multi-sensor array processing with research dating
back nearly a hundred years. Over this time various high-
resolution techniques have been developed based on a number
of different estimation approaches: from various flavors of
maximum likelihood to computationally efficient eigenspace
methods. Among these, maximum likelihood techniques rep-
resent a sort of “gold standard” for unbiased estimators, as
they have been shown to asymptotically attend the theoretical
minimum estimation error provided by the Cramér-Rao lower
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bound [2]. These techniques require a complete characteriza-
tion of the model from which the observed data is generated.
In many practical applications however, this is either infea-
sible due to environmental variability or impractical due to
computational limitations that arise from model complexity.
In both cases it may be possible to circumvent these issues
by applying a simplified model which violates the “complete
characterization” requirement. This will inevitably result
in a loss of estimation precision and accuracy based on the
level of simplification and the degree of mismatch between
the assumed model and the statistical characteristics of the
observed data. It is important then to be able to identify a
lower bound on the performance of an estimator based on
this “mismatched model,” so that practical design consid-
erations can be made in selecting the right estimator for a
given application. With respect to the radio direction-of-
arrival problem, we propose using the “stochastic maximum
likelihood” estimator and associated stochastic model as the
base class of assumed model estimator, and identify a set
of equations based on the Misspecified Cramér-Rao lower
bound (MCRB) [3-7] which can be used to quantify the per-
formance of this misspecified estimator when applied to data
from various DOA applications [8-11].

1.1. Assumed and Generalized DOA models

The stochastic maximum-likelihood (SML) model is pro-
posed as the baseline “assumed model” for multiple reasons.
First, in contrast to the deterministic maximum-likelihood
(DML) model, the explicit structure of the observed signal is
not required, only the statistical characterization of the obser-
vations. In this way, the statistical model can be applied to
adversarial scenarios where the structure of the incoming sig-
nals is variable or can not be known. Second is that estimators
based on the DML model have been shown not to attend the
Cramér-Rao lower bound as the number of observations goes
to infinity. This is because the number of unknowns scales
with the number of observations leading to a situation where
the Cramér-Rao lower bound can no longer be used to predict
estimator performance.

Consider a single stochastic narrowband signal source lo-
cated at angle @ with respect to the reference position of an
array of M sensors. The observation vector for the k™ snap-
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shot is modelled as
Mlzxk:d(O)ak—l—nk,k:1,2,...,K @)

The scalar signal amplitude aj, is assumed to be zero-mean
circularly stationary complex Gaussian random value with co-
variance o2, such that a ~ CN(0,02). The additive noise
random value ny is also assumed to be a zero-mean circu-
larly stationary complex Gaussian random variable with co-
variance given by o2 I. The signal values are modified by the
array steering vector d(@) such that the observation vector
Xy also comes from a circularly symmetric complex normal
distribution x; ~ CN (ptz,, X, ) [12]. The moments of this
distribution are then related to the parameter vector 6 by way
of the steering vector such that

e, =E{xx} =0 2)
3., = E{xpxf’} = 02d(0)d(0) + 021 A3)

This assumed model is an incomplete, or incorrect character-
ization of the true distribution of the observations x. In gen-
eral, it is not possible or necessary to explicitly identify the
entirety of the “true” model, however we will make some as-
sumptions about its structure which are broadly applicable to
the problem of DOA estimation. For the sake of comparison,
we consider a true model of the form

My : xp = D(0)ay, + ny )

This model differs from the assumed model in that, rather than
a single realization of scalar a, the array observes a vector
of dependent realizations a related by the matrix of known
correlations R4 such that a ~ CA(0,02Ry). This results in
observations in the same space as the assumed model M, but
distributed according to a complex normal distribution with
moments

Hzy = E{Xk} =0 (5)
Y., = E{x;xT} = 62d(0)R,d(0) + 02T  (6)

It’s important to note that in the case of this “true” model the
correlations given by R are considered “known,” while in
practical applications these correlations would likely be un-
known and need to be estimated, adding additional complex-
ity to the parameter estimation problem. For the purposes
of analyzing the mismatch between the true data distribution
and the simplified assumed distributions given by M7 how-
ever, we can test the mismatch for multiple different values of
R in order to understand the relationship between estimation
error and correlation. Note that there exists an important limit
case where the two models are statistically identical, which
occurs when R is the all ones matrix. Under this condi-
tion the two models are said to be “matched” and the perfor-
mance of estimators based on the assumed model can be com-
pletely characterized by standard analysis of the properties of
that model alone, for example using the standard Cramér-Rao
lower bound.
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1.2. Use Case: Deterministic Plane-Wave Signal

In order to understand how these models might appear in a
practical scenario, we wish to analyze the case where the ob-
served signal is not random, but instead a continuous plane
wave. In this case, we can compute the correlations R, be-
tween the signals observed at each of the array elements as a
function of the antenna spacing and the frequency of the im-
pinging wave. The ith antenna located at position p; observes
the signal s(t+ 7;(t)), where 7;(¢) is the propagation delay of
the ith sensor with respect to the the reference position of the
antenna, computed as

AT

c c

T =

where p;(t) is the additional propagation path produced by
projecting the antenna position onto the unit vector t, point-
ing towards the signal source. From this, we then compute
the correlation of the signals observed at antennas ¢ and j re-
spectively as

- Apiy(t) £, (pi(t) — p;(t) &

Cc c

For a given signal waveform s(t), the correlation between an-
tenna elements can be computed as

Cols = [ stt=mis(e)s(o) ©
and finally, the covariance for the true model given in (4) can
be computed from these correlations. By way of an example,
we consider an incoming signal of the form

a(t) = Asin(2w f.t) (10)

The correlation of the measurements at each sensor is then
given by

[Cs]i,j = COS(27TfCTZ"j) (11)

and for sufficiently high sample rates fs >> f. and sample
size K, the observations at the array can be accurately mod-
elled using (4) with 02 = A% and R = C,/2. In the follow-
ing sections we will discuss the characteristics of applying an
estimator derived from M as described in (1) instead of the
more descriptive model M.

2. ESTIMATOR PERFORMANCE UNDER THE
PROPOSED DATA MODELS

2.1. Mean Characteristics Stochastic DOA Estimation

We consider estimators for the assumed model which are mis-
specified unbiased (MS-unbiased). As described in the liter-
ature, this property states that the estimator must be unbiased
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with respect to the “pseudotrue parameter” for the assumed
and true models. The pseudotrue parameter is in turn defined
as the unique interior point E~o € E that minimizes the KL
divergence between output distributions for the true and as-
sumed models with respect to the data x and the true parame-

ter 5 0

& = argsmin D(p(x)[|f(x[€)) (12)

In the case of the stochastic models M7 and My, and with
unknowns & = [0, 02|, these distributions are

p(x) = CN(0, 3], (13)
F(x[€) = CN(0, %) (14)

The pseudotrue parameter is not in general consistent with
the true parameter £, however it does represent the optimum
to which we can expect our unbiased estimator to converge.
It holds then that

E,{€(x)} = / E(0p(x)dx = & (15)

which provides us with a means of evaluating the MS-
unbiasedness of a given estimator. That the stochastic max-
imum likelihood estimator described in the DOA literature
adheres to the MS-unbiasedness property described in (15) is
a classical result which follows from a series of assumptions
closely related to the MLE consistency result of LeCam [13].
Computation of the pseudotrue parameter for our models,
then is a matter of numerically solving (17) for its unique
solution. Expanding (17) using the expression for complex
valued zero-mean Gaussian distributions, we find that the
pseudotrue parameter is given by

3 3.
£= arggmin {log ||201|| + Tr {251120}} (16)

= arg min {log|2m| +Tr{E;1120}} a7
3

where Xy = X, [¢—¢, is the true covariance of the observa-
tions, no longer parameterized by £. For the model given in
(1), the canonical SML solution is given by maximization of
the likelihood function [12]

K
£ = argmax { —log |2, | — ZXkHE;le} (18)
13 k=1
= arg min { log |, ] + Tr{E;lls}} (19)
3

where S is the sample covariance given by

T
_ H
S = Ve 321 X, Xk (20)
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Fig. 1. Pseudotrue parameter vs True parameters for various
True elevation values.

Figure 1 shows an example of how the pseudotrue param-
eter changes with respect to the true parameter. Azimuth,
signal variance and signal correlation were held constant
while the true elevation was varied. The correlations were
assigned such that each sensor was strongly correlated or
anti-correlated with each of the seven the other sensors based
on the distance between them. The pseudotrue values for
each of the parameters is clearly not consistent with the true
DOA over much of the region, however the underspecified
model still provides a useful estimate at certain elevations.

2.2. Performance of MS Stochastic DOA Estimation

In order to fully characterize the performance of the DOA
stochastic ML estimator under model misspecification, we
need to be able to evaluate the optimal variance of the com-
puted estimates as well as the mean. This is where estimation
bounds come in, and in particular the Misspecified Cramér-
Rao lower bound (MCRB). The MCRB is a generalization
of the classical Cramér-Rao lower bound, which has become
widespread as a means of evaluating the performance of es-
timators by providing the “best case” estimator variance. In
particular, it can be shown that an optimal unbiased estimator
will asymptotically adhere to the CRB as the number of data
points or signal-to-noise ratio go to infinity. In a similar way,
it can be expected that an optimal MS-unbiased estimator will
be bounded in performance by the MCRB.

The MCRB is computed from a generalization of the
Fisher Information Matrix (FIM) given by matrices [A¢] and
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[Bg¢] constructed from the model derivatives as

[Aglij = [Ep{VeV{ In f(]€)}]: 21
82
=1Ep{5%kagjlnfwaﬂsﬂ€=é} @)

[Belij = [Ep{Veln f([€) - V{ In f(2[€)}];;  (23)

:E{ﬁmﬂﬂﬁ’ _amﬂﬂo‘ }
L% e 06 lee

The required model derivatives are computed from the ex-

panded forms of the Gaussian distributions in (13,14) [14].
The resulting expression for [Ag] is given by

E{%mﬂﬂ@}_
PLoasog
9?3,

-1 -1
ﬁ{_ZM%ﬁ@”_E“%%

ox )y
—|—Tr{ NED D puiuiily) ) et
Yog T 04

0% )
—1 T1 —1 T1 . —1
+Tr{2ml 3E g 5, (I-% 20)}

(24)

(25)

DI I

while the expression for [Bg| is given by

E{amﬂﬂﬁ,amﬂMQ}_
P\ og ¢, -

Tr {2;1 86251 } Tr {Z}

+Tr {2;} 8(,)2;1 } Tr {Qon

)
}
+Tr {2—162“ }Tr {QZEO}
}
|
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1

(26)

—Tr {leo} Tr {ng()

with

190> 19>
—1 x1 —1 —1 x1
Qi =% 3., Q=X

0&; 0g;

Finally, the error bound can be computed as
MSE, (£,6) =E,{(€ - €)(€ - €} (28)

Lo -1 F
> _[A™ AT =
2w [A5 BEA5 ] = MCRB(¢) 29)
Note that in the matched case this simplifies to the canonical
FIM given by Slepian-Bangs formula

) )
S5 Y s zml} (30)
0&; bOg

= @)

[kM:Nﬁ{
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3. RESULTS

In order to validate the pseudotrue parameter and perfor-
mance bound derived in Section 2, performance of the SML
estimator was evaluated using both data generated in simu-
lation according to both the assumed and true models M,
and M as described in (1) and (4) respectively. For the
true model, rather than observing a single realization of the
pseudorandom signal ag, each of the eight antenna elements
in the simulated system observe independent realizations of
the random parameter as a vector a; multiplied by the di-
agonalization of the array steering vector D = diag(d(8)).
Simulation was performed at various signal-to-noise ratios
and different correlation values. In each case where the cor-
relation was varied, the matrix R was specified by a Toeplitz
matrix with one on the diagonal and uniform correlation r at
each of the off-diagonal elements. The pseudotrue parameter
and SML estimate were each computed according to (17) and
(19) respectively using an unconstrained numerical optimiza-
tion routine in MATLAB with a large number of evaluations,
allowing for the highest level of convergence.
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Fig. 2. Mismatched RMSE vs Correlation for (Top) Azimuth,
(Middle) Elevation and (Bottom) signal variance. Also pic-
tured, the “matched” Cramér-Rao lower bound showing the
convergence of the MCRB to the CRB in the matched case
where the observations are all perfectly correlated.

Figure 2 shows the results of varying the off-diagonal
correlations, while Figure 3 shows the results of varying the
signal-to-noise ratio. In each case, the MSE was computed as
an average of NV = 2000 Monte-Carlo iterations with respect
to the computed psuedotrue parameter é to produce the “mis-
matched mean-squared error”. This value was compared to
the MCRB for each of the unknown parameters £ = [0, 02] T
for azimuth, elevation and signal variance. In each case, it
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Fig. 3. Mismatched RMSE vs Signal-to-Noise ratio (dB) for
(Top) Azimuth, (Middle) Elevation and (Bottom) signal vari-
ance. See (28).

was shown that the behavior of the estimator was to attend the
MCRB even for relatively low SNR values, thus validating
the expressions for the MCRB for the models described in
this paper. Another thing to note from these figures is that the
MCRB is not necessarily lower than the matched CRB in all
cases. In Figure 2 the estimation error for the signal variance
with respect to the pseudotrue parameter is lower than for
the matched case. Even though this is the case, because of
the bias introduced by the mismatch resulting in a larger gap
between the pseudotrue and true parameters, the estimation
error with respect to the true parameter would increase as
correlation decreased. Both the estimation error with respect
to the pseudotrue parameter (characterized by the MCRB)
and the offset of the pseudotrue parameter with respect to the
true parameter must be analyzed when determining whether
or not the estimator meets the required performance specifi-
cations in the mismatched case.

4. CONCLUSIONS

In this contribution we’ve shown that the Misspecified Cramér-
Rao Lower Bound can be used to bound the performance of
MS-unbiased estimators where the distribution of the obser-
vations differs from that predicted by the assumed model.
By evaluating the performance of a given estimator against
a variety of such distributions, it is possible to determine
the impact of certain kinds of model errors and evaluate the
feasibility of the underlying assumptions behind them. We
have discussed the application of this MCRB based approach
to the problem of stochastic direction-of-arrival estimation.
In 1.1 we proposed a fundamental “assumed model” based
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on the classical stochastic maximum likelihood (SML) ap-
proach, and a possible “true model” which expands upon
the assumed to include asynchronous observations and other
practical array phenomena. We have described the method
by which the discrepancy between the two models might be
evaluated using the MCRB. Additionally, in 1.2 we discussed
how this methodology might be applied to the case where
the observations are not stochastic, but instead follow a par-
ticular signal model. We described how this deterministic
model can be considered as a limit case of the generalized
stochastic model and subjected to the mismatch evaluation
described in 2.1 and 2.2. Finally, we conclude that since the
expressions in (25) and (26) apply generally to a certain class
of Gaussian distributions, the methodology discussed can be
broadly applied to different stochastic and deterministic data
distributions.
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