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INFERRING SOCIAL INFLUENCE
IN DYNAMIC NETWORKS

Xiang Cui and Yuguo Chen

University of 1llinois at Urbana-Champaign

Abstract: An interesting problem in social network analysis is whether individuals’
behaviors or opinions spread from one to another, which is known as social influence.
The degrees of influence describes how far the influence passes through individuals.
Here, we explore the degrees of influence in dynamic networks. We build a longi-
tudinal influence model to specify how people’s behaviors are influenced by others
in a dynamic network. In order to determine the degrees of influence, we propose
a sequential hypothesis testing procedure and use generalized estimating equations
to account for multiple observations of the same individual across different time
points. In addition, we show that the power of our proposed test goes to one as the
network size goes to infinity. We illustrate the performance of our proposed method
using simulation studies and real-data analyses.
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1. Introduction

Social network analysis has become popular in many fields, including soci-
ology, psychology, computer science, and statistics. A social network consists of
individuals and the relationships between them, represented by nodes and edges,
respectively, in a graph. Social networks can be static or dynamic. A static net-
work is a snapshot of a network at a certain time point, and a dynamic network
is a sequence of observations of networks at different time points.

An interesting problem in social network analysis is whether the behaviors
or opinions of an individual can be influenced by others in the network, which is
known as social influence or social contagion. Several methods have been dev-
eloped to study the spread of individuals’ behavior within a social network (Va-
lente (1995); Centola (2010)).In addition, researchers have examined the spread
of various individual health outcomes, including obesity (Christakis and Fowler
(2007)), smoking (Christakis and Fowler (2008)), sleep loss and drug use (Med-
nick, Christakis and Fowler (2010)), alcohol consumption (Rosenquist et al.
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(2010)), and sexual orientation (Brakefield et al. (2014)). See Sun and Tang
(2011) for a summary of the models and algorithms developed for social influence
analysis. Kempe, Kleinberg and Tardos (2003) proposed methods for selecting
the most influential nodes in a network to maximize the spread of the influence
(i.e., social influence maximization). O’Malley (2013) used instrumental variables
to account for the confounding effect when analyzing peer effects, and proposed
a network influence model with multiple types of relationships.

The degrees of influence (DOI) describes how far an influence passes through
individuals in a network. For static networks, Christakis and Fowler (2013) pro-
posed a permutation test to identify the behavior association between individuals
across a social network, using the Framingham Heart Study data. They claimed
that the spread of influence in social networks obeys the three degrees of influ-
ence rule. VanderWeele (2013) discussed three distinct interpretations of this
rule. However, O’Malley (2013) pointed out an issue with the choice of the null
hypothesis in Christakis and Fowler (2013). Later, Su (2019) proposed a new
sequential test procedure with more appropriate null hypotheses for determining
the degrees of influence.

Existing works can only detect the degrees of influence for static networks
(Christakis and Fowler (2013); Su (2019)), and it is not clear how to extend
their methods to dynamic networks. Here, we introduce a longitudinal influence
model and a sequential hypothesis testing procedure for determining the degrees
of influence in dynamic networks. We also provide theoretical properties of the
level and power of the proposed test. In particular, we show that the power of
the proposed test goes to one as the network size goes to infinity.

The remainder of the paper is organized as follows. Section 2 provides the
basic notation. Section 3 introduces the longitudinal influence model. Section 4
gives the proposed sequential hypothesis testing procedure. Section 5 provides
the theoretical properties of the proposed method. Section 6 describes the sim-
ulation studies. Section 7 reports the results for the Higgs Twitter data set (De
Domenico et al. (2013)) and the Digg data set (Hogg and Lerman (2012)). Section
8 concludes the paper.

2. Notation

Consider a dynamic social network consisting of n individuals (nodes) and a
set of dyadic relationships (edges) between them at time ¢t = 1,2,...,7. We are
mainly concerned with directed networks with no loops (both ends of an edge
connect to a single node) or multiple edges between a pair of nodes. Such a
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Figure 1. A toy example of a dynamic social network, with gray nodes denoting smokers
(i, = 1) and white nodes denoting nonsmokers (y; ; = 0).

dynamic network can be represented by its adjacency matrix A; = (asjt)nxn, for
t=1,2,...,T, where each A; is an n x n binary square matrix, with a;;; = 1 if
there is a directed edge from node i to j at time ¢ (i.e., individual ¢ is following
individual j at time t), and a;;; = 0 otherwise. For a directed network, A; does
not need to be symmetric.

In addition, we observe whether each individual in the network possesses
a specific trait, such as obesity, smoking, or happiness, at each time point t.
This can be modeled by a binary random vector Y; = (vi1,¥i2,...,¥i), With
¥i+ = 1 indicating the trait is present in individual ¢ at time ¢, and zero indicating
otherwise. A toy example of such a dynamic network is given in Figure 1.

In social networks, the individual we are focusing on is called the ego. If there
is a directed path from the ego to an individual at time ¢, then that individual is
called an alter. If the shortest directed path from the ego to an alter is d at time
t, then this alter is referred to as a dth-degree alter, denoted by altery;. Here is

a simple illustration:
ego — altery; — alterg; — - --

Obviously the first-degree alters (alter;;) are directly connected to the ego.
The second-degree alters (alterp;) have a length-two path from the ego, but
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they are not directly connected to the ego. In other words, dego, ater, ,t = 1,
Qalter, ;, alters .t = 1, and dego, alter, ,,+ = 0. For example, at time ¢ = 2 in Figure 1,
individuals 6 and 8 are first-degree alters of ego 3, individual 2 is a second-degree
alter of ego 3, and individual 4 is a third-degree alter of ego 3, and so on.

Let d;;; be the length of the shortest directed path from i to j at time ¢.
Then, dego, alter, .t = 1, dego, alter, ,t = 2, and so on. We define the dth-degree
alter set for each ego i at time ¢ as

St={j: dijz =d}.

For an individual ¢ at time ¢, we define the dth-degree influence factor JY;{t as the
average status of individual ¢’s dth-degree alters at time ¢, that is,

d |s}{t| D jest, Yits S| >0,

x5, = (2.1)
0, 1S¢,| = 0.

2,

3. Longitudinal Influence Model

Social influence describes the process by which an individual’s behavior or
opinion is affected by others in the network. The influence may go beyond the
people a person is directly linked to. We are interested in studying the degrees
of influence, which describes how far an influence can pass through links between
individuals. In this section, we specify a longitudinal influence model for different
degrees of influence in dynamic networks.

We assume that

yit ~ Bernoulli(p;¢), ¢ =1,2,...,nand t=1,2,...,T. (3.1)

If the degrees of influence is zero, then the behavior of each individual is not
affected by others in the network. Therefore y; ;11 depends only on individual i’s
status at time t. We propose the following longitudinal influence model:

Yit+1 ~ Bernoulli(p; ¢41),

3.2
logit(pit+1) =7 + Bovie, t=1,2,....,n and t=1,2,...,T —1, (3.2

where v is the intercept and Sy is the coefficient for the time-lagged status y; ;.
If the true degrees of influence is D* > 0, then each individual may be
influenced by anyone to whom the individual is connected by a path with length
no more than D*. Thus each ego ¢’s binary status at time ¢ + 1 depends on ego
1’s status at time t and the status of ego ¢’s alters with degrees one to D* at time
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t. We propose the following longitudinal influence model:

Yi,t+1 ~ Bernoulli(p; t41),
D*
logit(pis+1) =7+ Botie + Y Baxdy, i=1,2,...,nandt=12... T-1,
d=1
(3.3)

where 7 is the intercept, [y is the coefficient for the time-lagged status y; ¢, :cgt
is the dth-degree influence factor defined in (2.1), and f; is its coefficient. In the
above model with true degrees of influence D* > 0, because we assume that each
individual 7 can be influenced by individual i’s alters with degrees one to D*, we
are essentially assuming Bq # 0, for d =1,2,..., D*.

4. Hypothesis Testing

In order to determine the degrees of influence in a dynamic network, we
propose a sequential hypothesis testing procedure. This procedure is similar to
forward variable selection in linear regression models, where we add one new
predictor variable to the model at a time, and perform a goodness of fit test to
compare it with the model without the new predictor variable (Hocking (1976);
Everitt and Dunn (2001)). We propose sequentially testing the following hypoth-
esis:

Hy: DOI=D—1 vs. Hy: DOI > D. (4.1)

We start with D = 1, and if the null hypothesis is rejected, then we test (4.1)
again with D increased by 1 to D = 2. The procedure continues until the null
hypothesis cannot be rejected for a certain value of D, and we then report D — 1
as the degrees of influence.

For the test in (4.1), the null model My under Hy is

Yit+1 ~ Bernoulli(p; 141),
D-1
logit(pis+1) = v+ Bovie + D Barly, i=1,2,...,n and t=12,...,T—1.
d=1
(4.2)

If the alternative hypothesis is true, based on the discussion after (3.3), the
coefficient for the Dth-degree influence factor is nonzero. Hence, hypothesis (4.1)
is testing

Hy: Bp=0 vs. Hy: Bp #0. (4.3)
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Under Hi, the model closest to the null hypothesis is the following alternative
candidate model My, with DOI = D:

Yit+1 ~ Bernoulli(p; 111),
D

logit(pit+1) = v + Boyi,e + Zﬁdazzt, 1=1,2,...,n and t=1,2,...,T — 1.
d=1
(4.4)

The null model (Sp = 0) is nested within the alternative candidate model. In
order to implement the test to compare the two models, we need to estimate
the parameter Sp and the variance of the estimator in the alternative candidate
model M.

To account for multiple observations of the same individual across differ-
ent time periods, we use generalized estimating equations (GEEs) (Liang and
Zeger (1986)) to estimate Sp and the variance of the estimator. We first estab-
lish the notation for the parameter estimation. For the ith individual, let y; =
(Yi2, Yi3s - - - ,yLT)T be a vector of the outcome values and X; = (z;1,. .. ,{L‘i’T_l)T
be a matrix of the covariate values, where z;; = (1,yi,t,x}7t, ... ,a:i[),t)T, for t =
1,...,T — 1. In the alternative candidate model M;, we have E(y;+1) = pi,1+1
and logit(pi+1) = :cg:tﬂ, where 8 = (v, Bo, 1, ---,8p)". When using GEEs for
parameter estimation, we assume an independence working correlation structure.
Under certain conditions, this can yield a consistent estimator B p for Bp, and the
variance of the estimator B p can be consistently estimated by a sandwich estima-
tor $(3p) (Liang and Zeger (1986)). We used the R package geepack (Halekoh,
Hgjsgaard and Yan (2006)) to solve the GEEs by providing the outcome values
y; and the matrix of the covariate values X;. More details on the use of GEEs
can be found in Liang and Zeger (1986) and Halekoh, Hgjsgaard and Yan (2006).

We use the Wald test with test statistic

0
S(Bp)

Under the null hypothesis and certain conditions, the test statistic W approxi-

(4.5)

mately follows a x?(1) distribution. For a given significance level «, the critical
value for the test is ¢* = x3__ (1), and we reject Hy if W > c*. In the remainder
of the paper, we choose a = 0.05 for all simulation and real-data analyses.
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4.1. Toy example

We use the toy example in Figure 1 to illustrate the sequential testing pro-
cedure. The dynamic network in Figure 1 was generated in the following way.
At time t = 1, we generated a network from the Erdés—Rényi model ER(n, p.)
(Erdos and Rényi (1960)), where n is the number of nodes and p. is the edge
probability. We set n = 10 and p. = 0.2. At the following time step t, for
2 <t <5, the network structure is allowed to change. In particular, we assume
that for every pair of (i, ), ai;; is equal to a;j;—1 with probability 0.95, and is
equal to 1 — a;;;—1 with probability 0.05. We assigned the smoking status for
each node at time ¢ = 1 based on Bernoulli(p,,) with p,, = 0.2. At time ¢, for
2 <t < 5, each node’s status was generated according to the longitudinal in-
fluence model in (3.3), where we set the degrees of influence D* = 1, and the
parameters v = —3, g = 4, and 51 = 4. In Figure 1, gray nodes denote smokers
and white nodes denote nonsmokers.

To explore the degrees of influence in the toy example, we set the significance
level a = 0.05 and started by testing: Hp : DOl = 0 vs. H; : DOI > 1. The
dth-degree influence factor mgt for each individual can be calculated based on
Equation (2.1). To obtain the estimates of the parameters in Equation (3.3) and
the corresponding estimated variance, we solved the GEEs under an independence
working correlation structure using the R package geepack (Halekoh, Hgjsgaard
and Yan (2006)). Given y;; and xil’t, fori=1,2,...,10 and t = 1,2,...,5, we
obtained the estimate 3; = 6.191 and the estimated variance 3(f1) = 2.401. The
test statistic is o

= ABE = 15.961,
(B1)

which is larger than the critical value X3 45(1) = 3.841. The null hypothesis
Hy : DOI = 0 is rejected.

Then, we tested Hy : DOl = 1 vs. H; : DOI > 2. Given y; and xﬁt, for
d=1,2,i=1,2,...,10, and t =1,2,...,5, we obtained the estimate 32 = 1.147
and the estimated variance $(f2) = 1.659. The test statistic is

52
= AB 2 —0.792,
X(B2)
which is smaller than the critical value 3.841. The null hypothesis Hy : DOI = 1
cannot be rejected, and the degrees of influence in the toy example is reported

to be one based on the sequential test.
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5. Theoretical Properties

In this section, we provide some theoretical properties of the proposed se-
quential testing procedure. The following theorem shows how the level and power

of the test change as the network size increases.

Theorem 1. Suppose we observe a dynamic network with n nodes at time 1,...,T
and binary vectors Y1, ..., Y, indicating the presence or absence of a trait for each
individual in the network. Let D* be the true degrees of influence in the network.
Let W in (4.5) be the proposed test statistic for testing Hy : DOI = D — 1 wvs.
Hy: DOI > D, with W estimated from observations that are independent across
indiwviduals. Let o be the significance level and ¢* be the critical value of the test.
We have the following results:

(a) The level of the test P(W > ¢* | DOl = D — 1) — « as n — oo, for
D —-1=D*"

(b) The power of the test P(W > ¢* | DOl > D) — 1 as n — oo, for all
1< D < D*.

The proof of Theorem 1 is provided in Appendix A. The above theorem
indicates that the level of the test goes to the significance level a and the power
of the test goes to one as the network size n — co. This shows that the test can
always tell the difference between the null and the alternative hypotheses when
the network size is large. Furthermore, for large networks, the true degrees of
influence can be detected by our method with high probability.

The theorem requires that the test statistic W = ,6% /3(Bp) be estimated
based on observations that are independent across individuals. This ensures
that the theoretical properties of the estimates using GEEs are applicable here.
To obtain independent data across individuals, a convenient assumption is that
Yit,---,Ynt are independent, conditional on all the observations at time ¢ — 1.
Under this assumption, there are different ways of obtaining independent data.
For example, the observations y; ; at ¢ = 2 are conditionally independent given y; ;
at t = 1. Furthermore, y;; at t = 2k (k =1,2,...) are conditionally independent
given y;; at t = 2k — 1. Because these independent data do not make full use of
the information in the observed data, in practice, using all observations y; ¢, as
discussed in Section 4, tends to perform better. Therefore, we use the full data
in our simulation studies and real-data analyses.

In the proof for the power of the test (part (b) of the theorem), the test
statistic W is estimated based on the true model in the alternative hypothesis.
In practice, the true model is not known in the middle of the sequential test,
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Table 1. Results for detecting the degrees of influence for different parameter settings.

(n,pe,B1,B2) <D* =D >D~
(300, 0.02, 3,3) 0 7 3
(500, 0.02, 3 3) 0 49 1
(1000, 0.01, 2,2) 4 44 2
(3000, 0.005, 2 2) 1 A7 2
(5000, 0.003,2,2) 0 47 3

so we estimate TV based on the alternative candidate model M; in (4.4). This
approach works well in the simulation studies and real-data analyses. This type
of approach has also been suggested in sequential testing for forward variable
selection in linear regression models (Hocking (1976); Everitt and Dunn (2001)).
In fact, our simulation shows that the test based on M; is even more powerful
than that based on the true model for testing (4.1) with D < D*. An intuitive
explanation might be that the estimates based on the alternative candidate model
M need to reflect the additional influence from distances larger than D, which
makes it easier to reject the null hypothesis of DOl = D — 1.

6. Simulation Results
6.1. Detecting the degrees of influence

In this section, we show the performance of our proposed test procedure in
detecting the degrees of influence in dynamic networks. We generated a network
at time ¢ = 1 from the Erdés-Rényi model ER(n, p.), where n is the number of
nodes and p, is the edge probability. At the following time step ¢, for 2 <t <5,
the network structure changes in the following way. For each pair of {i,j}, if
aijt—1 = 1, then a;;; = 1 with probability 0.95, and a;;; = 0 with probability
0.05. If a;j4—1 = 0, then a;;; = 1 with probability pchange = 0.05pe/(1 — pe), and
a;j¢ = 0 with probability 1 — pchange- At time ¢t = 1, we assigned the status y; 1
for each individual from Bernoulli(p,,) with p,, = 0.2. For time ¢t = 2,3, 4,5, each
individual’s status was generated according to the longitudinal influence model
n (3.3), where we set the true degrees of influence D* = 2, and the parameters
v = —3 and By = 4. The values of 8 and 32, together with n and p,, are presented
in Table 1. For each set of parameter values, we generated data and applied our
proposed method to detect the DOI. We ran 50 trials for each simulation; the
results are presented in Table 1.

In Table 1, the first column gives the parameter settings for the network size
n, the edge probability pe, and the coefficients 31, So in the model in Equation
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(3.3). The columns “< D*)” “= D*” and “> D* ” indicate that the number
of trials the DOI detected using our proposed method is smaller than, equal to,
and larger than, respectively, the true DOI. From Table 1, we can see that our
proposed test procedure detects the true DOI in most cases.

We also considered detecting the DOI when the network structure is fixed
for the whole time period 1 <t < 5. Using the same parameter settings as in the
above simulation, we obtained similar results to those shown in Table 1. This
shows that our proposed test procedure works well for both fixed and varying

network structures.

6.2. Level and power of the tests

In this section, we show the level and power of our proposed test for differ-
ent parameter settings and different true degrees of influence. We generated a
network at time ¢ = 1 from the Erdés—Rényi model ER(n, pe). At the following
time step t, for 2 < ¢t < 5, the network structure changes in the following way.
For each pair of {7,j}, if a;j1—1 = 1, then a;;; = 1 with probability 0.95, and
a;j; = 0 with probability 0.05. If a;;;—1 = 0, then a;;; = 1 with probability
Pchange = 0.05pc/(1 — pe), and a;;; = 0 with probability 1 — pchange- At time
t = 1, we assigned the status y;; for each individual from Bernoulli(p,,) with
Pm = 0.2. For time t = 2, 3,4, 5, each individual’s status was generated according
to the longitudinal influence model in (3.3). For a given DOI D*, we generated
data with true DOI = D* and f1,...,8p~ set to prespecified values. We then
estimated the power of the test Hy : DOl = D —1vs. H; : DOl > D for 1 <
D < D* and the level of the test Hy : DOI = D —1 vs. Hy : DOI > D for
D —1 = D*. In practice, when the size of the network n increases, it may become
sparse and the edge probability may decrease. Therefore, we assigned smaller
values to p. for larger networks. For the rest of this section, we set v = —3 and
Bo = 4 in model (3.3). We ran 100 trials for each simulation setting to obtain the
level and power.

6.2.1. Testing when the true DOI is zero

In this section, we assume the true DOI D* = 0, and the data are generated
from model (3.2). We test Hy : DOI = 0vs. H; : DOI > 1. Because Hj represents
the true DOI, we only examine the level of the test. The first column of Table
2 gives the parameter values for the network size n and the edge probability pe
at time ¢t = 1. We ran 100 trials for each simulation to estimate the level. The
results in Table 2 show that our test procedure achieves the level around the
prespecified a = 0.05.
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Table 2. Levels for testing Hy : DOI = 0 vs. Hy : DOI > 1 when the true DOI D* = 0.

(n, pe) Level
(500, 0.02) 0.06
(1000, 0.01) 0.04
(3000, 0.005)  0.06
(5000, 0.003)  0.07

Table 3. Power for testing: Hy: DOI = 0 vs. Hy : DOI > 1 and levels for testing: Hy :
DOI =1 vs. H; : DOI > 2 when the true DOI D* = 1.

(n, pe, 1) Power Level
(500, 0.02, 3) 1 0.06
(1000, 0.01, 3) 1 0.05
(3000, 0.005, 3) 1 0.03

)

)
(5000, 0.003, 3) 1 0.05
(500, 0.02, 2) 096  0.03
(1000, 0.01, 2) 1 0.06
(3000, 0.005, 2) 1 0.04
(5000, 0.003, 2) 1 0.03

6.2.2. Testing when the true DOI is one

In this section, we assume the true DOI D* = 1. The first column of Table 3
gives the parameter values for the network size n, the edge probability p. at time
t = 1, and the coefficient 31 in model (3.3). The nonzero (31 is used to generate
data with true DOI D* = 1. We first test Hy : DOl = 0 vs. H; : DOI > 1,
and report the power of the test in the second column of Table 3. Then, we test
Hy : DOI = 1 vs. Hy : DOI > 2, and report the level of the test in the third
column of Table 3. We ran 100 trials for each simulation to estimate the level
and power.

The results in Table 3 show that our test procedure achieves the level around
the prespecified o = 0.05. The power of our test is close to or equal to one in all
settings. Thus, our test is powerful in all of the above parameter settings when
the true DOI is one.

6.2.3. Testing when the true DOI is two

In this section, we assume the true DOI D* = 2. The first column of Table 4
gives the parameter values for the network size n, the edge probability p. at time
t = 1, and the coefficients 8; and (33 in model (3.3). We first test Hy : DOl = 0
vs. Hy : DOI > 1, and report the power of the test in the second column of Table
4 (denoted by Power-1). Then, we test Hy : DOI = 1 vs. H; : DOI > 2, and
report the power of the test in the third column of Table 4 (denoted by Power-2).
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Table 4. Power for testing: Hy: DOl =0 vs. H; : DOI > 1 and Hy : DOI =1 vs. H; :
DOI > 2, and levels for testing: Hy : DOI = 2 vs. H; : DOI > 3 when the true DOI
D* =2 and 52 :/81.

(n, pe, B1, F2) Power-1 Power-2 Level
(500, 0.02, 3 3) 1 0.94 0.03
(1000, 0.01, 3, 3) 1 1 0.06
(3000, 0.005, 3 3) 1 1 0.02
(5000, 0.003, 3, 3) 1 1 0.07
(500, 0.02, 2 2) 1 0.55 0.05
(1000, 0.01, 2,2) 1 0.91 0.03
(3000, 0.005, 2 2) 1 1 0.04
(5000, 0.003, 2, 2) 1 1 0.06

Table 5. Power for testing: Hy: DOl =0 vs. H; : DOI > 1 and Hy: DOl =1 vs. Hy :
DOI > 2, and levels for testing: Hy : DOI = 2 vs. Hy : DOI > 3 when the true DOI
D* =2 and (3 < f1.

(n, pe, B1, P2) Power-1 Power-2 Level
(500, 0.02, 3, 2.25) 1 0.93 0.04
(1000, 0.01, 3, 2.25) 1 1 0.06
(3000, 0.005, 3, 2.25) 1 1 0.04
(5000, 0.003, 3, 2.25) 1 1 0.07
(500, 0.02, 2, 1.5) 1 0.30 0.05
(1000, 0.01, 2, 1.5) 1 0.49 0.04
(3000, 0.005, 2, 1.5) 1 0.84 0.03
(5000, 0.003, 2, 1.5) 1 0.93 0.05

Finally, we test Hy : DOI = 2 vs. H; : DOI > 3, and report the level of the
test in the fourth column of Table 4. We ran 100 trials for each simulation to
estimate the level and power.

In Table 4, the coefficients 81 and B2 were chosen to be the same. In some
situations, the influence from the second-degree alters may be weaker than the
influence from the first-degree alters, so we set 83 < 1 in Table 5 and re-ran the
same tests. The results are presented in Table 5.

From Tables 4 and 5, we can see that our proposed method preserves the
level of the test with a type I error close to the prespecified level a = 0.05. The
power of the test Hy : DOl = 0 vs. Hy : DOI > 1 is always one. The power of
the test Hy : DOI = 1 vs. H; : DOI > 2 increases to about one as the network
size increases. For fixed network size n and edge probability p., the test Hy :
DOI = 1 vs. Hy : DOI > 2 is more powerful for larger values of 82. This is not
surprising, because larger values of 32 indicate a stronger influence from second-
degree alters, which makes it easier to detect the misspecified null hypothesis of
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Table 6. Power for testing: Hy : DOl = D —1vs. H; : DOl > D for D =1, 2, 3,
and levels for testing: Hy : DOI = 3 vs. H; : DOI > 4 when the true DOI D* = 3 and

B3 = B2 = 1.

(ny De, B1, B2, B3) Power-1 Power-2 Power-3 Level

(500, 0.02, 3 3 3) 1 1 0.47 0.05
(1000, 0.01, 3,3) 1 1 0.69 0.03
(3000, 0.005, 3 3,3) 1 1 0.82 0.07
(5000, 0.003, 3, 3, 3) 1 1 0.95 0.06

(500, 0.02, 2,2,2) 1 1 0.35 0.04
(1000, 0.01, 2 2, 2) 1 1 0.68 0.03
(3000, 0.005, 2, 2, 2) 1 1 0.78 0.06
(5000, 0.003, 2 2,2) 1 1 0.90 0.05

Table 7. Power for testing: Hy : DOl = D —1vs. H; : DOI > D for D =1, 2, 3,

and levels for testing: Hy : DOI = 3 vs. H1 : DOI > 4 when the true DOI D* = 3 and
B3 < B2 < Pi-

(n, pe, B1, P2, B3) Power-1 Power-2 Power-3 Level
(3000, 0.005, 3, 2.25, 1.5) 1 1 0.44 0.06
(5000, 0.003, 3, 2.25, 1.5) 1 1 0.61 0.05

(10000, 0.002, 3, 2.25, 1.5) 1 1 070 0.05
(3000, 0.005, 2, 1.5, 1) 1 0.99 024  0.03
(5000, 0.003, 2, 1.5, 1) 1 1 035 0.7

(10000, 0.002, 2, 1.5, 1) 1 1 0.47 0.03

no influence from second-degree alters. For fixed values of 81 and B2, the power
of the test increases as the network size increases.

6.2.4. Testing when the true DOI is three

In this section, we assume the true DOI D* = 3. The first column of Table 6
gives the parameter values for the network size n, the edge probability p. at time
t = 1, and the coefficients 31, 82, and 3 in model (3.3). We test Hy : DOl = D—1
vs. H; : DOI > D for D = 1,2, 3, and report the power of the test in the second,
third, and fourth columns of Table 6 (denoted by Power-1, Power-2, Power-3,
respectively). Then, we test Hp : DOl = 3 vs. Hj : DOI > 4, and report the level
of the test in the fifth column of Table 6. We ran 100 trials for each simulation
to estimate the level and power.

In Table 6, the coefficients 51 = 5 = 3 were chosen to be the same. In
some situations, the influence from the Dth-degree alters may be weaker than
the influence from the (D — 1)th-degree alters, so we set 83 < 2 < (1 in Table
7 and re-ran the same tests. The results are presented in Table 7.

From Tables 6 and 7, we can see that the correct level is achieved in different



512 CUI AND CHEN

settings. The power of the tests Hy : DOl = 0vs. H; : DOI > 1 and Hy : DOI =
1 vs. Hi: DOI > 2 is always around one. With the same parameter settings for
Bi (i =1,2,3), the power of the test Hy : DOI = 2 vs. Hj : DOI > 3 increases
as the network size increases. For a fixed network size n and edge probability pe,
the test Hy : DOI = 2 vs. H; : DOI > 3 is more powerful for larger values of (s,
which is consistent with our intuition.

We also re-ran all simulations related to the levels and power in Section 6.2
with a fixed network structure for the whole time period 1 < ¢ < 5. Using the
same parameter settings as in the above simulations, we obtained similar results
to those shown in Tables 2 to 7. Thus, our proposed test procedure also works
well for dynamic networks with a fixed network structure.

7. Real-Data Analyses
7.1. Higgs Twitter data

Twitter is a popular American social networking site, with a microblogging
system that allows users to post and interact with posts, called “tweets.” In
this section, we analyze the Higgs Twitter data set collected by De Domenico et
al. (2013) and available at https://snap.stanford.edu/data/higgs-twitter.
html. These data were built by keeping track of the spreading process on Twitter
before, during, and after the announcement on July 4, 2012, of the discovery of
a new particle with the elusive Higgs boson features.

The data set contains a network of Twitter users who posted messages about
this discovery between July 1, 2012, and July 7, 2012. Nodes in the network
correspond to users, and an edge from node i to node j means node i follows
node j. The data set also contains interactions (including retweets, mentions,
and replies) between users with a time stamp. Here, we focus on the mention
behavior as a feature of interest, which indicates a user mentioned other users
when he/she posted on Twitter about the Higgs boson discovery. This feature is
represented by a binary random variable y; ;, where y; ; = 1 indicates that user :
mentioned other users in tweets about the discovery before a certain time ¢, and
¥i+ = 0 otherwise.

Because the network in the original data set has a large number of nodes,
we consider a subset of the network by choosing the node that first showed the
feature of interest, and then selecting those nodes that have a path with a length
of no more than two to this node. This subnetwork has 1,757 nodes and is shown
in Figure 2. The network structure does not change in this data.

Because the announcement of the discovery was on July 4, 2012, the spread
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Figure 2. Higgs Twitter network.

of the feature of interest after the announcement might not come from social
influence in the network. Therefore, the time interval of interest is from July 1,
2012, to July 3, 2012. We divided this interval into six time steps, with ¢; 12
p.m. of 7/1/2012 and tg 12 a.m. of 7/4/2012; the gap between two neighboring
time steps is 12 hours.

We applied our sequential hypothesis test to determine the degrees of in-
fluence for the mention behavior. We started by testing Hy : DOl = 0 vs.
H; : DOI > 1. The test statistic W in (4.5) is 9.43, which is larger than the
critical value xZo5(1) = 3.841. Thus, we rejected the null hypothesis and con-
tinued to test Hy : DOI = 1 vs. Hy : DOI > 2. This time W = 57.76, which is
still larger than the critical value, so the null hypothesis is again rejected. Then,
we tested: Hy : DOI = 2 vs. Hy : DOI > 3, and the test statistic W = 0.0019
is smaller than the critical value. Therefore, the null hypothesis Hy cannot be
rejected, and we report the degrees of influence as two. This means that the men-
tion behavior in Twitter can be influenced by an individual’s followees, as well as
by his/her followees’ followees. Note that there are many length-three paths in
the subnetwork, and every node in the subnetwork has some third-degree alters.
Thus, accepting Hp : DOI = 2 is not because there are not enough length-three
paths.

7.2. Digg data

Digg is a social news website with a curated front page that selects interesting

stories related to viral Internet issues, science, and political news for an Internet
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audience. Users can read and share the most popular and interesting stories
on the Internet. The Digg2009 data set, collected by Hogg and Lerman (2012),
contains data on the stories promoted to Digg’s front page based on users’ votes in
one month in 2009. The data are available at https://www.isi.edu/~lerman/
downloads/digg2009.html. This data set is anonymized and has the voting
records for 3,553 different stories during that month. The voting record for each
story contains the ID of the voter and the time stamp of the vote. In addition,
the data set contains links of the voters and the time stamp of the formation of
the link. Here, a link from node i to node j means user i is a fan/follower of user
j.

We consider users’ votes for the most voted story (which is story 714) as
the feature of interest. This feature is represented by a binary random variable
Yit, where y; ; = 1 means user ¢ voted for story 714 before time ¢, and y;; = 0
otherwise. Because the original network has a large number of nodes, we consider
a subset of the network by choosing the node that made the first vote for story
714, and then selecting the nodes directly following this node at the time when
the first vote for story 714 was made. This subnetwork has 1,408 nodes.

For the selected subnetwork, a total of 304 votes were made for story 714.
After the first vote at 17:42:46 on June 25, 2009, there were 169 votes before
21:00:00 of the same day. This fast increase of votes was probably not due to
social influence. Furthermore, there were only 12 votes after June 26, 2009, and
we believe social influence was very weak by that time. Therefore, the time
interval of interest is from 21:00:00 of June 25, 2009 (¢1), to 00:00:00 of June
27, 2009 (t10), during which the number of votes increased from 169 to 292. We
divided this interval into 10 time steps, and the gap between two neighboring
time steps is three hours. The network structure also changed slightly during the
selected time interval. The subnetwork at time ¢; is shown in Figure 3.

We applied our sequential hypothesis test to determine the degrees of in-
fluence for the voting behavior for story 714. We tested Hy : DOl = D — 1
vs. Hy : DOl > D for D = 1, 2, and 3, yielding the test statistics W equal to
4.02, 28.80, and 56.40, respectively, which are all larger than the critical value
X%‘%(l) = 3.841. Thus, the null hypothesis Hy for all three tests is rejected.
Then, we continued to test: Hy: DOI = 3 vs. H; : DOI > 4, and the test statis-
tic W = 0.87 is smaller than the critical value. Thus, the null hypothesis Hy
cannot be rejected, and we report the degrees of influence as three. This shows
that users’ voting behavior in Digg network can be influenced by their directly
connected neighbors, their neighbors’ neighbors, and their third-degree alters.
Note that there are many length-four paths in the subnetwork. On average, each
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Figure 3. Digg network at time ¢;.

individual has more than 50 fourth-degree alters that can potentially influence
this individual. Thus, the fact that we cannot reject Hy : DOI = 3 is not because
there are not enough length-four paths.

8. Conclusion

We have presented a longitudinal influence model for dynamic networks with
various degrees of influence. We have proposed a sequential testing procedure
for determining the degrees of influence in dynamic networks. We also provide a
theoretical justification for our proposed test, and show that the power of the test
goes to one as the network size goes to infinity. Our proposed test performs well
in simulation studies and real-data analyses. The sequential testing procedure
may involve multiple tests, but because the degrees of influence is usually small
(often no more than three), we need only perform the test a few times in most
cases. Therefore, we do not consider the issue with multiple tests in this study.

The proposed longitudinal model and sequential test for dynamic networks
are quite different to the testing procedure for static networks (Christakis and
Fowler (2013); Su (2019)). It would be of interest to consider extensions of the
method proposed by Su (2019) to dynamic networks, and to compare the per-
formance with the approach presented here. A related topic is predicting how
a certain opinion/behavior spreads in a network, and how individuals’ behavior
changes in the future based on social influence. Missing values in individuals’
status or missing edges between individuals is quite common in real data. Devel-
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oping methods to deal with missing data is also very useful in practice. Another
interesting problem is to test whether social influence decreases as social distance
increases. This is beyond the scope of this study and is left to future work.
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Appendix
A. Proof of Thereom 1

Part (a):

For testing: Hy : DOl = D — 1 v.s. Hy : DOI > D, the test statistic is
32/%(Bp) in (4.5), where Bp is the estimate based on the generalized estimating
equations and i)(BD) is the sandwich estimator for the variance of BD- Under
Hy, the longitudinal influence model is:

Yit+1 ~ Bernoulli(p; ¢41),
D

logit(pit+1) = v + Boyit + Z ﬁdfﬁgw
d=1

where Sp = 0.
By the property of generalized estimating equations (Liang and Zeger (1986)),
BD is a consistent estimator for Sp and

ViBp -5 N(O, V(8)D+2,0+2);

where V(B)p12,pv2 = limy00n Vi (8) D y2,p 42 and Vi, (8) = Hi(8) " Ha(B)H1(8) ™!
(Liang and Zeger (1986)). Thus,

B/% _ nﬁ% i
V(B)p+2,p42/n N V(B)p+2.0+2 — x~(1).

Given n3(fBp) is a consistent estimator for V() p1o.p1o (Liang and Zeger (1986))
and by Slutsky’s theorem, we have

W 83 _ ns% _ nf% V(B)p+2,0+2 i”(z(l).

S(Bp) n¥(Bp) V(Bpt2,p+2  nX(fp)
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Since ¢* = x3_, (1), we have:

PW>c¢ |DOI=D—-1) — a.

Part (b):
Under Hj, the longitudinal influence model is:

Yit+1 ~ Bernoulli(p; ¢41),
D
logit(pii11) = + Boyie + Y _ Baxy,
d=1
where Bp # 0 for 1 < D < D*.
By the property of generalized estimating equations (Liang and Zeger (1986)),

Bp is a consistent estimator for Sp and
A d
Vn(Bp — Bp) — N(0,V(B)p+2,0+2),

where V(B)pi2pi2 = limpseonVn(B)pi2.p+2 and Vo (8) = Hi(8) 1Ha(B)
Hi(B)~! (Liang and Zeger (1986)). Also n3(fp) is a consistent estimator for
V(B)p+2,p+2 (Liang and Zeger (1986)).

Since BD is a consistent estimator for 8p, we have BD LN Bp. So B% SN
% > 0. Note that V() is a covariance matrix, so V(8) p+2,p+2 is a finite positive
number. Since ni](BD) is a consistent estimator of V() p42 py2, we have

n3(Bp) - V(B)py2,p+2,

so 3(Bp) 2+ 0. Since f3 2+ 5% > 0, we have W = (%,/%(8p) 2+ co. This
shows P(W > ¢* | DOI > D) 5 1, where ¢* = x3__(1).
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