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Abstract—Distance between sequences is structural by nature because it needs to establish the temporal alignments among the

temporally correlated vectors in sequences with varying lengths. Generally, distances for sequences heavily depend on the ground

metric between the vectors in sequences to infer the alignments and hence can be viewed asmeta-distances upon the groundmetric.

Learning suchmeta-distance frommulti-dimensional sequences is appealing but challenging.We propose to learn themeta-distance

through learning a groundmetric for the vectors in sequences. The learning samples are sequences of vectors for which how the ground

metric between vectors induces themeta-distance is given. The objective is that themeta-distance induced by the learned groundmetric

produces large values for sequences from different classes and small values for those from the same class.We formulate the ground

metric as a parameter of themeta-distance and regress each sequence to an associated pre-generated virtual sequence w.r.t. the

meta-distance, where the virtual sequences for sequences of different classes are well-separated.We develop general iterative solutions

to learn both theMahalanobismetric and the deepmetric induced by a neural network for any ground-metric-based sequence distance.

Experiments on several sequence datasets demonstrate the effectiveness and efficiency of the proposedmethods.

Index Terms—Metric learning, temporal alignment, virtual sequence regression, optimal transport

Ç

1 INTRODUCTION

IN many domains, the data are naturally in the form of
multi-dimensional sequences. Pairwise distance measures

between sequences serve as a proxy to manipulate the struc-
tured sequences so that any metric-based machine learning
methods can be directly applied. The performances of met-
ric-based algorithms such as the k-nearest neighbor classi-
fier (k-NN) heavily depend on the quality of the distance
measures. Therefore, learning distances for sequences from
data is especially appealing.

Although metric learning has achieved a considerable
maturity level both in practice and in theory [1], propagating
these advances to sequence data is not trivial. This is because
most existing metric learning methods are developed for
static data which are in the form of “flat” feature vectors. An
acquiescent assumption is that these vector data are indepen-
dent and identically distributed, but the elements in sequen-
ces exhibit temporal relationships. Much less work has been
devoted to metric learning for sequence data, and most of
them actually encode each sequence into a vector and simply
build the metric upon the vectors, which cannot capture the

alignments or relationships among the vectors in sequences
explicitly and may lose significant temporal information.
Learning distances that operate directly on sequences is chal-
lenging, because such distances are naturally structural and
combinatorial. Specifically, the major difficulties lie in two
aspects.

First, different sequences vary in length, evolution speed,
and local temporal duration. Different distance measures for
sequences such as [2], [3] perform temporal alignments to
eliminate the local temporal discrepancies. An illustrative
alignment is shown in Fig. 1. Inferring the alignment
depends on the metric between elements in sequences. For a
specific sequence pair, their alignment cannot be inferred
before the underlying metric is learned. Therefore, the objec-
tive of learning distances for sequences generally involves
latent alignment structures when formulating the distances
as a function of the unknownmetric, and hence is difficult to
manipulate and optimize.

Second, most metric learning methods employ the
must-link/cannot-link constraints over positive/negative
pairs [4], [5] or the relative constraints over triplets [6], [7].
The number of constraints is quadratic or cubic in the
number of training samples, which easily becomes intrac-
table when more training samples are available. One heu-
ristic is to mine only a subset of the most informative
constraints, but such mining is not trivial. Because of the
complexity of measuring distances for sequences, the cost
of constructing these constraints is larger and it can be
computationally prohibitive to update the subset of con-
straints with the update of the metric during the optimiza-
tion. Reducing the number of constraints is more crucial
for sequence data.
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In this paper, we propose a metric learning framework
for sequence data to tackle these issues. We unify a wide
range of distance measures for sequences into a formulation
as a function of the ground metric for elements in sequences.
As shown in Fig. 1, the final distances are meta-distances
built upon the ground metric by inferring the temporal
alignments among the element pairs. Thanks to such
parameterization, we show that various meta-distances for
sequences are amenable to learn via learning a Mahalanobis
distance [8] or a deep embedding function implemented by
a neural network as the ground metric. More specifically,
we treat the alignments as latent variables of the meta-
distance function that takes the ground metric as an argu-
ment, since inferring them also depends on the ground met-
ric. The formulation of the objective for learning the ground
metric incorporates latent variables. We develop iterative
alternating descent algorithms that achieve joint optimiza-
tion of the Mahalanobis or deep metric and the latent align-
ments, which can be instantiated with any meta-distances
using various alignment inference methods.

Another contribution of our work is the extension of the
regressive virtual metric learning (RVML) [9] method for
reducing the number of constraints. RVML requires a linear
number of constraints by moving each sample to its corre-
sponding pre-defined virtual point. Our method extends
RVML in four ways: (1) RVML learns a metric for indepen-
dent vector data. Our method learns meta-distances for
sequence data by learning a ground metric for non-indepen-
dent vectors in sequences. (2) RVML associates each sample
with a virtual vector. Our method associates each sequence
sample with a virtual sequence and provides three solutions
to generate virtual sequences. (3) RVML is not combined
with deep learning. Our method is extended to learn a non-
linear deep metric as the ground metric. (4) RVML does not
involve latent variables. Our method learns the ground met-
ric and the latent alignments simultaneously.

This paper is an extension of the conference paper [10].
The major extensions include (1) the proposed method is
extended to learn deep ground metrics by employing neural
networks and experimentally compared with seven deep

metric learning methods; (2) more virtual sequence genera-
tion methods are presented and evaluated; (3) the proposed
method is extended to tackle zero-shot sequence classifica-
tion; (4) More detailed discussions, illustrations, and analy-
sis are presented.

2 RELATED WORK

Differences With Conventional Metric Learning. Most classical
metric learning methods for vector data employ either the
pair-based or the triplet-based constraints. The pair-based
must-link/cannot-link side information was introduced in
the seminal work of [4], and then widely used in a lot
of methods such as information-theoretic metric learning
(ITML) [5], regularized distance metric learning [11], and
sparse distance metric learning [12]. Generally, the nearest
neighbors based methods, such as neighbourhood compo-
nent analysis [13], maximally collapsingmetric learning [14],
large margin nearest neighbors (LMNN) [7], [15], and sparse
compositional metric learning (SCML) [16], used the triple-
based constraints to force the distances of each instance to its
target neighbors relatively smaller than those to impostors.
RVML [9] introduced the virtual point based constraints.
Propagating these advances for vector representations to
sequence data is not trivial.

Differences With Edit Distance Learning and Kernel Learning
for Sequences. In [17], [18], [19], the string edit distance was
learned by learning the cost matrix for edit operations. The
elements in sequences were symbols from a fixed finite
alphabet and the edit operations for each sequence pair
were fixed. In [20], weighted finite-state transducers based
rational kernels [21] were learned to measure the similari-
ties between sequences, where the elements were also
restricted to a finite alphabet. It is difficult to apply these
methods to unconstrained sequences, where the elements
are continuous real vectors rather than discrete symbols
and the number of all possible elements is infinite. In con-
trast, our method learns the Mahalanobis distance for real
vectors and the latent alignments jointly.

Differences With Existing Metric Learning Methods for Opti-
mal Transport (OT). In [22], the OT distance for histograms
was learned by learning the ground metric based on side
supervision on specific similarity coefficients of all histo-
gram pairs, where the supporting points for all histograms
were fixed. This method cannot be applied to unconstrained
sequences because it directly learns a ground matrix con-
taining all pairwise distances for the supporting points.
In [23], the supervised word mover’s distance (SWMD)
learned OT distances for documents each consists of a set of
unordered words by learning the ground metric, where the
words are in a fixed finite dictionary and the weights for
these fixed words were learned together. It minimized the
leave-one-out kNN error by a gradient-based solution. In
contrast, our method minimizes the regression-based loss
by non-gradient descent optimization, and is applicable to
unconstrained multidimensional sequences where the ele-
ments lie in a continuous space.

Differences With Existing Metric Learning Methods for
Sequences. Canonical Time Warping (CTW) [24], General-
ized CTW [25], [26], and Deep CTW [27], [28] are unsuper-
vised distances that map two sequences with two different

Fig. 1. For a sequence of 11 red points and a sequence of 9 blue points,
given a ground metric d between the points, a ground metric matrix DD
stores all the pairwise distances between points with d, e.g., DD5;3 ¼
dðxx5; yy3Þ is the distance between the fifth red point and the third blue
point with the ground metric. The optimal alignment matrix TT � can be
inferred based on DD according to some temporal constraints which differ
in different distance measures. Each element of TT � indicates whether or
the probability of aligning the corresponding two points. e.g., TT �

5;3 ¼ 0
means that the fifth red point and the third blue point are not aligned.
The distance between the two sequences equals TT ;DDh i and hence
depends on the ground metric. It can be viewed as a meta-distance
upon the ground metric.
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transformations, respectively. The transformations are dif-
ferent for different sequence pairs. In contrast, our method
is supervised and learns a common ground metric for all
sequences. Temporal Transformer Network (TTN) [29]
takes a sequence with a pre-defined length as input and pre-
dicts its warping function which is fixed when comparing
with different sequences. In contrast, our method can han-
dle sequences of different lengths. For different sequence
pairs, the warping functions or alignments inferred by the
meta-distance are different.

In [30], the ground-truth alignments were used for learn-
ing the metric. In contrast, ground-truth alignments are not
available and our method learns the ground metric and the
alignments jointly. In [31] and [32], Mahalanobis distances
were learned as ground metrics to enhance the dynamic time
warping (DTW) distance, where the DTW alignments for all
sequence pairs were fixed by using the euclidean metric.
The solutions were sub-optimal since the alignments may
change with the learned matrices. In contrast, our method
achieves joint optimization for the metric and the latent
alignments. In [33], LDMLT iteratively updated the ground
Mahalanobis metric with the triplets constraints and
updated the alignments by DTW to build dynamic triplets.
However, the iterative solution is not guaranteed to con-
verge because updating the alignments by DTW does not
guarantee to decrease the objective of the logDet divergence
based metric learning. In contrast, our method is guaran-
teed to converge, trains much faster, and is applicable to dif-
ferent sequence distances.

Differences With Deep Metric Learning. Deep metric learn-
ing methods [34], [35], [36] are typically deep extensions of
classical metric learning methods. Most of them also employ
the pair-based or the triplet-based constraints and formulate
the loss functions in terms of pairwise distances between
embedding representations. Such loss functions include
neighbourhood component analysis (NCA) loss [37], con-
trastive loss [38], triplet loss [39], hierarchical triplet loss [40],
binomial deviance loss [34], etc. All possible pairs or triplets
grow polynomially with the number of training samples.
Random sampling is often less informative since the training
may be dominated by redundant pairs or triplets. A lot of
recent works focus on sampling, constructing, or weighting
more informative pairs or triplets, such as lifted structured
loss [35], N-pairs loss [41], semi-hard mining [42], and gen-
eral pair weighting (GPW) [43]. These methods also assume
that the training samples are independent and applying
them to features in sequences can lose significant temporal
information. In contrast, our method utilizes the temporal
structures of sequences and the number of constraints grows
only linearly with the number of training sequences.

Differences With Recurrent Neural Network (RNN) Based
Metric Learning. Some works [44], [45] actually encoded the
sequences into fixed-length vectors and build metrics upon
vectors. In contrary, our method is applied to elements in
sequences and the alignments can be explicitly inferred,
which are crucial in some applications. Through the align-
ments, our method enables a fine and intuitive interpreta-
tion of the meta-distance. Moreover, our method can be
applied before sequences are fed into those RNN-based
methods to enhance the temporal relationships and the dis-
criminative information.

3 A UNIFIED PERSPECTIVE ON DISTANCE

MEASURES FOR SEQUENCES

In this section, we present a unified formulation of the dis-
tance measures for sequences and establish the connections
between the formulation and several distance measures.

Let V be a space and dðMMÞ : V�V ! R be the metric on
this space, which is parameterized byMM. Given two sequen-
ces XX ¼ ½xx1; . . . ; xxLX

� 2 VLX and YY ¼ ½yy1; . . . ; yyLY
� 2 VLY

with lengthsLX and LY , respectively, whose elements xxi; i ¼
1; . . . ; LX and yyj; j ¼ 1; . . . ; LY are sampled inV, the distance
between them can be formulated as

gMMðXX;YY Þ ¼ TT �; DDðMMÞh i; (1)

where TT;DDh i ¼ trðTTTDDÞ is the Frobenius dot product. An
illustrative example is shown in Fig. 1, where LX ¼ 11, LY ¼
9, and all the red and blue points lie in V

DDðMMÞ :¼ ½dðMM;xxi; yyjÞ�ij 2 RLX�LY ; (2)

is the cost matrix of all pairwise vector-wise distances
between elements in XX and YY , whose element DDðMMÞij ¼
dðMM;xxi; yyjÞ is the distance between xxi and yyj w.r.t. the metric
dðMMÞ. TT � is a matrix indicating the correspondence relation-
ship, where t�i;j ¼ TT �ði; jÞ actually measures whether or how
the pair xxi and yyj corresponds to the same temporal position
or structure. Ideally, only the differences between those ele-
ments within the same temporal positions reflect the differ-
ences between the entire sequences. However, due to the
different sampling rates, the non-uniform evolution speeds
of elements, local temporal distortions, etc, different sequen-
ces have different lengths and exhibit local temporal differ-
ences, so the ith element in XX and the jth element in YY may
not correspond to the same relative position. TT � is used to
align the elements corresponding to the same temporal struc-
ture or position. Generally, the determination of TT � can be
formulated as

TT � ¼ argmin
TT2FF

TT;DDðMMÞh i þ R ðTT Þ; (3)

where FF is the feasible set of TT , which is a subset of RLX�LY

with some constraints, and R ðTT Þ is a regularization term on
TT . The distance is symmetric if 8TT 2 FF; TTT 2 FF and R ðTT Þ ¼
R ðTTT Þ. Different distance measures for sequences differ in
the constraints imposed to the feasible set, the regulariza-
tion term, and the optimization or inference method.

DTW [2]. DTW calculates an optimal alignment between
two sequences with three constraints: boundary, continuity,
and monotonicity. In the unified formulation, DTW restricts
TT to be a binary matrix, in which ti;j ¼ 1 if xxi and yyj are
aligned and tij ¼ 0 otherwise. DTW instantiates the formu-
lation (3) by setting

R ðTT Þ ¼ 0;

FF ¼ fTT 2 0; 1f gLX�LY jTT 1;1 ¼ 1; TTLX;LY
¼ 1;

TT11LY
> 00LX

; TTT11LX
> 00LY

;

if ti;j ¼ 1; then ti�1;jþ1 ¼ 0; tiþ1;j�1 ¼ 0;

81 < i < LX; 1 < j < LY g;

(4)
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where 11b and 00b are the b-dimensional vectors with all one
and zero elements, respectively, and “> ” should be under-
stood as element-wise. DTW solves Eq. (3) with constraints
(4) via dynamic programming.

Variants of DTW. Most variants of DTW impose additional
or relaxed constraints on the feasible set and therefore fit into
our formulation. For example, in [46], additional locality con-
straints TT11LY

� a11LX
; TTT11LX

� a11LY
are imposed to restrict

the amount of alignment; in [47], the continuity constraint is
stricter by setting TT11LY

¼ 11LX
or TTT11LX

¼ 11LY
.

Optimal Transport (OT) [48]. Originally, OT measures the
distance between distributions. A sequence can be viewed
as an empirical probability by taking its elements as inde-
pendent supporting points. In this way, although the tem-
poral information is lost, OT can be applied to sequences.
OT naturally has the form of Eq. (3), where

R ðTT Þ ¼ 0;

FF ¼
(
TT 2 R

LX�LYþ jTT11LY
¼ 1

LX
11LX

; TTT11LX
¼ 1

LY
11LY

)
:

(5)

Solving the original OT is expensive. The Sinkhorn dis-
tance [49] smooths the OT problem by adding an entropy
regularization term to TT , and the resulting optimum can be
efficiently determined by Sinkhorn’s fixed point iterations.
It instantiates the formulation Eq. (3) by setting

R ðTT Þ ¼ �

 XN
i¼1

XM
j¼1

tijlog tij

!
;

FF ¼
(
TT 2 R

LX�LYþ jTT11LY
¼ 1

LX
11LX

; TTT11LX
¼ 1

LY
11LY

)
;

(6)

where � is a preset balancing coefficient.
Order-Preserving Wasserstein Distance (OPW) [3], [50]. OPW

casts sequence alignment as the OT problem. It imposes two
regularization terms to the original OT problem to preserve
the global temporal information. The first regularization
favors TT with large inverse difference moment which is calcu-
lated as

IðTT Þ ¼
XLX

i¼1

XLY

j¼1

tij

ð i
LX

� j
LY
Þ2 þ 1

: (7)

The second regularization encourages the distribution of TT
to be similar to a prior distribution PP

pij :¼ PP ði; jÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p e
�‘2ði;jÞ

2s2 ; (8)

where ‘ði; jÞ ¼ i=LX�j=LYj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=LX

2þ1=LY
2

p . Both regularization terms

encourage alignments between elements with similar relative
temporal positions and restrict the matching between ele-

ments that are far away temporally. OPW instantiates the for-

mulation (3) by setting

R ðTT Þ ¼ �1IðTT Þ þ �2KLðTT jjPP Þ;

FF ¼
(
TT 2 R

LX�LYþ jTT11LY
¼ 1

LX
11LX

; TTT11LX
¼ 1

LY
11LY

)
;

(9)

where �1 and �2 are preset balancing coefficients, and

KLðTT jjPP Þ is the Kullback-Leibler divergence. OPW solves
Eq. (3) with constraints (9) by the Sinkhorn’s matrix scaling

algorithm. Each element t�ij in the learned TT � can be viewed

as the probability of aligning xxi to yyj.
We observe that these distances actually share the com-

mon formulation and can be considered as meta-distances
built on dðMMÞ, although they have different motivations.
For these distances, the determination of TT � depends on the
metric dðMMÞ. In the literature [22], [51], the metric is called
the ground metric. We follow this name to distinguish it with
the meta-distance for sequences.

4 REGRESSIVE VIRTUAL SEQUENCE METRIC

LEARNING

4.1 Problem

With the unified formulation (1) and (3), we view the meta-
distance as a function of the ground metric parameterized
byMM. The goal of our method is to learn a ground metricMM
resulting in a meta-distance gMMðXX;YY Þ (1), such that the
meta-distances between sequences from different classes
are large, and those between sequences from the same class
are small. We learn a squared Mahalanobis-like distance [8]
as the ground metric, i.e.,

dðMM;xxi; yyjÞ ¼ ðxxi � yyjÞTMMðxxi � yyjÞ; (10)

where MM is a positive semi-definite matrix and can be
decomposed asMM ¼ WWWWT ,WW 2 Rb�b0 and b0 is greater than
or equal to the rank of MM. This is equivalent to transform all
elements xxi and yyj with a projectionWW .

Specially, let XXn; znf gNn¼1 be a set ofN training sequences,
where XXn ¼ ½xx1; . . . ; xxLn � 2 Rb�Ln

is the nth sequence with
length Ln. Different sequences may have different lengths.
xxi; i ¼ 1; . . . ; Ln are sampled in Rb, and zn is the class label
of XXn. We are interested in learning a meta-distance
gMMðXXn;XXn0 Þwith the form of Eq. (1) by learningWW from the
training set, such that the resulting gMMðXXn;XXn0 Þ ¼
gIIðWWTXXn;WWTXXn0 Þ captures the idiosyncrasy of sequence
data and better separates sequences from different classes,
where gII means that MM ¼ II when constructing Eq. (2):
DDIIðWW Þ ¼ ½dðII;WWTxxi;WW

TyyjÞ�ij.
The difficulty largely lies in the fact that in Eq. (1), TT � is

not fixed, but needs to be inferred by optimizing Eq. (3) for
each sequence pair. The inference of TT � also heavily
depends on WW . Once WW changes, TT � for each sequence pair
changes accordingly. Also, for any sequence pair, the corre-
sponding optimal alignment TT � needs to be inferred indi-
vidually. The cost of constructing a single must-link/cannot-
link or relative constraint for sequence distance is much
larger than for vector distance. Therefore, it can be computa-
tionally prohibitive to learn WW with such constraints whose
number is quadratic or cubic with the number of training
sequences.
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4.2 Objective and Optimization

RVML [9] introduces a new kind of constraints that moving
each sample to its corresponding pre-defined virtual point.
Compared with must-link/cannot-link and relative con-
straints, the number of such virtual point-based constraints
is greatly reduced since it is linear with the number of sam-
ples. We extend RVML to sequence data by associating a vir-
tual sequence instead of a virtual point for each sequence
sample. Let VV n ¼ ½vv1; . . . ; vvln � 2 Rb0�ln be the virtual sequence
related to XXn. b0 and ln are the dimensionality and the num-
ber of elements in VV n, respectively, which may not equal to
those in XXn. VV n is a function of XXn and zn: VV n ¼ fðXXn; znÞ.
The setting of VV n can be very flexible, e.g., each XXn can be
associated with a different VV n, while all or a part of sequen-
ces from the same class can be associated with the same vir-
tual sequence as shown in Fig. 2; a virtual sequence can be
different from any training sequence as shown in Fig. 2a,
while for some XXn, the associated VV n can be set to the train-
ing sequence itself or another training sequence as shown in
Fig. 2b. Generally, the virtual sequences for training sequen-
ces from different classes are set far away from each other.

We first assume that the virtual sequences for all training
sequences have been obtained. The goal is to learn a transfor-
mation WW by minimizing the meta-distances between the
training sequences and their associated virtual sequences, i.e.,

min
WW

1

N

XN
n¼1

gIIðWWTXXn; VV nÞ þ bkWWk2F

¼ 1

N

XN
n¼1

TTn�; DDn
II ðWWÞ� �þ bkWWk2F

s:t: TTn� ¼ argmin
TT2FF

TTn;DDn
II ðWWÞ� �þ R ðTTnÞ;

(11)

where k � kF is the Frobenius norm and b is a hyper-parame-
ter that balances the two items.

The underlying TTn�; n ¼ 1;. . .;N for all training-virtual
sequence pairs depend on the variable WW . We treat them as
latent structures. In Eq. (11), if R ðTT Þ does not depend on WW ,
the inferences over TTn�; n ¼ 1;. . .;N in the constraints are
actually minimizing the same objective as the optimization
over WW . This allows us to jointly learn WW and TTn�; n ¼
1;. . .;N by optimizing the following objective:

min
WW;TTn

1

N

XN
n¼1

TTn;DDn
II ðWWÞ� �þ bkWWk2F þ R ðTTnÞ: (12)

The objective function Eq. (12) is not jointly convex on WW
and TTn; n ¼ 1; . . . ; N . We minimize it by alternatively
updating the metric and the latent alignments. We first fix
TTn; n ¼ 1; . . . ; N and update WW . In this case, the regulariza-
tion term R ðTT Þ can be discarded and the objective can be
reformulated as

1

N

XN
n¼1

TTn;DDn
II ðWWÞ� �þ bkWWk2F

¼ 1

N

XN
n¼1

XLn

i¼1

Xln
j¼1

tnijkWWTxxni � vvnj k22 þ bkWWk2F :
(13)

Minimizing Eq. (13) is a weighted regression problem,
which admits a closed form solution

WW � ¼ AA�1

 XN
n¼1

XLn

i¼1

Xln
j¼1

tnijxx
n
i vv

n
j
T

!
; (14)

where

AA ¼
XN
n¼1

XLn

i¼1

Xln
j¼1

tnijxx
n
i xx

n
i
T þ bNII: (15)

This solution can be simply derived by setting the deriva-
tive of Eq. (13) to 0.

We then update TTn; n ¼ 1; . . . ; N by fixing WW . In this
case, the matrix DDn

II ðWWÞ consisting of all pairwise squared
euclidean distances between WWxxn

i and vvnj is also fixed, and
the irrelevant regularization term kWWk2F can be discarded.
We further observe that the optimizations of TTn for n ¼
1; . . . ; N are independent. Therefore, we can solve them sep-
arately by applying the inference Eq. (3) to each training-vir-
tual sequence pair

TTn� ¼ arg min
TTn2FF

TTn;DDn
II ðWWÞ� �þ R ðTTnÞ: (16)

The two updating procedures are repeated until conver-
gence or reaching a maximum number of iterations. We call
this framework Regressive Virtual Sequence Metric Learning
(RVSML) and summarize it in Algorithm 1.

Algorithm 1. RVSML

1: Input: A set of training sequences XXnf gNn¼1 and the associated
virtual sequences VV nf gNn¼1

2: Output: the transformationW
3: Initialize the alignment matrices TTn; n ¼ 1; . . . ; N for all

training-virtual sequence pairs.
4: whileW has not converged do
5: UpdateW by Eq. (13)
6: for n ¼ 1; . . . ; N do
7: Update TTn by optimizing Eq. (16)
8: end for
9: end while

Convergence. Both updating procedures of Algorithm 1
decrease the value of the objective (12). 0 is a trivial lower
bound of the objective (12). Therefore, Algorithm 1 ensures
the convergence to a local solution.

Fig. 2. (a) Temporal structure (TS) based virtual sequences. All training
sequences from the same class (with the same color) are associated
with the same virtual sequence, all components in all virtual sequences
are orthogonal to each other so that the virtual sequences for different
classes are well separated; (b) Large margin (LM) based virtual sequen-
ces. Training sequences that have large margins from other classes are
selected as virtual sequences (bounded by dotted frames). The virtual
sequence of a training sequence is set as the nearest selected training
sequence from the same class.
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Instantiation and Complexity.Algorithm 1 can be applied to
learn any meta-distance with the form Eq. (1) as discussed in
Section 3. A specificmeta-distance instantiates step.7 in Algo-
rithm 1, i.e., the inference of TTn. For instance, for DTW, step.7
is performed by dynamic programming; for OPW, step.7 is
performed by Sinkhorn’s matrix scaling. As long as sufficient
inference or optimization method for an instantiation of
Eq. (16) is available, Algorithm 1 can be efficiently performed.
When instantiated by DTW and OPW, the complexity per
iteration is Oðb2b0 þNmTb2 þNmTbb0Þ, where m and T are
the average lengths of virtual sequences and training sequen-
ces, respectively.

4.3 Links With Other Methods

Connection With RVML [9]. RVML can be viewed as a special
case of the proposed RVSML. By regarding vector data as
sequences with only one element and setting the length of
all virtual sequences to 1, the alignment between any train-
ing-virtual sequence pair by any meta-distance is unique.
Therefore, RVSML degenerates into RVML.

Connection to Must-Link/Cannot-Link Constraints. Most
classical metric learning methods employ pair-based or trip-
let-based constraints to achieve a largemargin between simi-
lar and dissimilar sample pairs, i.e., the distance between the
samples from the same class is below a threshold h1, and the
distance between those from different classes is above
another threshold h�1

gMMðXXn;XXn0 Þ � h1; for zn ¼ zn
0

gMMðXXn;XXn0 Þ 	 h�1; for zn 6¼ zn
0
:

(17)

When the meta-distance gWW is a real metric, in the trans-
formed space induced by RVSML, the distances between sim-
ilar and dissimilar sequence pairs gain the followingmargins:

h1 ¼ 2 max
ðXXn;VV nÞ

gIIðWWTXXn; VV nÞ

h�1 ¼ min
VV n;VV n0 ;VV n 6¼VV n0

gIIðVV n; VV n0 Þ � h1:
(18)

Although some well-known meta-distances such as DTW
do not satisfy the triangle inequality, intuitively, dissimilar
sequences are still pushed relatively far away because they
are moved to different distant virtual sequences.

4.4 Virtual Sequences Generation

The virtual sequences can be generated using various
approaches according to the desired properties of the metric,
the prior knowledge on the data, etc. In this section, we
develop three approaches.

Temporal-Structure (TS) Based Virtual Sequences. Intui-
tively, the evolution of a sequence pattern can be segmented
into several ordered stages and each stage corresponds to a
temporal structure, e.g., an action can be identified by a
series of ordered key poses. If W is able to project the ele-
ments corresponding to different temporal structures to dif-
ferent clusters which are far away from each other, different
sequence classes would become easier to distinguish.

Following this intuition, as shown in Fig. 2a, we con-
struct a virtual sequence for each class, which consists of

vectors w.r.t. the ordered basic temporal structures shared
by this class. Let m be the number of temporal structures
per class. There are Cm temporal structures for all C classes.
We define the vector for the uth temporal structure as a unit
vector eeu 2 RCm, in which only the uth attribute is 1 and all
other attributes are 0. Therefore, the virtual sequence for the
cth class is VV T

c ¼ ½00m�m; . . . ; 00m�m; IIm�m; 00m�m; . . . ; 00m�m� 2
RCm�m, where only the cth block square matrix is the iden-
tity matrix and all other C � 1 blocks are the null matrices,
i.e., fðXXn; znÞ ¼ VV zn ¼ ½eeðzn�1Þmþ1; . . . ; eeðzn�1Þmþm�. In this
way, we generateC virtual sequences each consists ofm unit
vectors. All unit vectors in all virtual sequences are orthogo-
nal and the active attribute for each vector is attempted to be
discriminative for one temporal structure. Each component
of a virtual sequence aims at representing a temporal struc-
ture of the related class. By making all components orthogo-
nal to each other, all temporal structures and all virtual
sequences are well separated. The dimensionality Cm of the
unit vector may be different from the dimensionality b of the
elements in the original training sequences. When Cm < b,
the learned W also achieves dimensionality reduction for
sequence data.

This generation approach has low complexity and is
independent of the training sequences. The virtual sequen-
ces are directly generated without extra computation.
Therefore, in our experiments, we use this approach to gen-
erate virtual sequences unless otherwise specified.

Large-Margin-Based Virtual Sequences. In this approach,
we construct a virtual sequence for a training sequence
based on the relative location of the training sequence w.r.t.
other sequences. Special attention should be pay to those
sequences distributed near the boundaries among different
classes. As shown in Fig. 2b, if we push any sequence near
the boundaries to another sequence far away from the
boundaries, the margins among different sequence classes
would become larger.

Specifically, given a meta-distance measure with the
squared euclidean ground metric, for each training sequence
XXn, we define its smallest margin as Ms

n ¼ gsbn � gswn , where
gswn and gsbn are themeta-distances fromXXn to the nearest train-
ing sequence from the same class and the nearest sequence
from other classes, respectively. We also calculate the average
pair-wise meta-distance gawn betweenXXn and other sequences
from the same class, and the average meta-distance gabn
between XXn and sequences from other classes. We define the
average margin of XXn as Ma

n ¼ gabn � gawn . For each class, we
select the training sequences whoseMa

n andMa
n are both posi-

tive as candidates. We sort the candidates according to their
average margins in descending order. The top candidate is
first selected into the target set of this class. For each ordered
candidate, we calculate its meta-distances to all sequences in
the current target set. If the smallest meta-distance is larger
than a threshold, this candidate is also added to the target set.
The threshold is set to half the mean of all pairwise meta-dis-
tances between sequences from all classes to increase the
diversity among the selected target sequences. After all candi-
dates are processed in order, the sequences in the final target
set are considered to have large margins with other classes
and hence serve as the target sequences of this class. The vir-
tual sequence for a training sequence is selected as the nearest
target sequence of the same class.
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Barycenter-Based Virtual Sequences. In this approach, the
virtual sequence of all training sequences of a class is con-
structed as the barycenter of this class. The barycenter is
also a sequence with pre-set length and its calculation
depends on the meta-distance. For Nc training sequences
XXk; k ¼ 1; . . . ; Nc of the cth class, given a meta-distance
gIIð�; �Þwith the squared euclidean ground metric, their bary-
center UUc is defined as

UUc ¼ arg min
UUc

XNc

k¼1

1

Nc
gIIðUUc;XXkÞ: (19)

UUc can be viewed as lying near the center of the distribution
of sequences of this class. If sequences from different classes
are pushed towards their centers respectively, the margins
among different classes are enlarged. We employ the modi-
fied DTW barycenter algorithm in [52], [53] and the OPW
barycenter algorithm in [54] to calculate the barycenter
when the meta-distance is instantiated by DTW and OPW,
respectively. When the distribution of each class is multi-
modal and the variations of sequence samples are large, we
can group the training sequences of each class into several
clusters and construct the barycenter-based virtual sequen-
ces by viewing clusters as subclasses.

Semantic-Based Virtual Sequences. The proposed RVSML
can be extended to tackle the zero-shot sequence classifica-
tion problem. We are given a set of training sequences
XXn; znf gNn¼1 from seen classes and a sentence or phrase

describing each seen class, respectively. For each class, we
represent its language description by a semantic sequence
of vectors, where each vector is the 300-dimensional pre-
trained Word2Vec [55] embedding for a word in the
description. We use this semantic sequence as the virtual
sequence for all training sequences of this class. Let VV z

denote the semantic sequence for the zth class, the virtual
sequence for XXn is VV zn . We employ the proposed RVSML
instantiated by a meta-distance to learn a transformation
from the virtual space to the semantic space.

At test time, the goal is to classify test sequences from
unseen classes, given only the sentence or phrase descrip-
tions of these new unseen classes. We represent these
descriptions by semantic sequences. For a test sequence, we
use the transformation learned by RVSML to map it into the
semantic space. We calculate the meta-distances from the
transformed test sequence to semantic sequences of all
unseen classes. The test sequence is classified into the class
with the smallest meta-distance.

By default, RVSML employs TS-based virtual sequences.
For ease of distinction, we denote RVSML with LM-based
virtual sequences, barycenter-based virtual sequences, and
semantic-based virtual sequences for zero-shot learning by
RVSML-LM, RVSML-BC, and RVSML-ZS respectively.

5 DEEP REGRESSIVE VIRTUAL SEQUENCE

METRIC LEARNING

A linear transformation of the ground metric may not be
able to properly regress the training sequences to the speci-
fied virtual sequences, because such latent-structure-
involved regression may be complex and highly non-linear.
With the success of deep learning, the proposed RVSML

can also take the advantage of deep neural networks to
learn a nonlinear mapping from the original space to an
embedding space, where the transformed sequences are bet-
ter pushed to the corresponding virtual sequences by using
the squared euclidean distance as the ground metric. We
denote the deep extension of RVSML by Deep-RVSML.

The model architecture of Deep-RVSML is shown in
Fig. 3. For a given sequence XXn ¼ ½xxn

1 ; . . . ; xx
n
Ln �, all its ele-

ments xxi 2 Rb; i ¼ 1; . . . ; Ln are input to a deep encoder net-
work, respectively. In this paper, the encoder network is
composed of three fully connected layers and a linear out-
put layer. Each hidden layer contains 1,024 neurons fol-
lowed by rectified linear unit (ReLu) activation. The
number of nodes in the output layer equals the dimension b0

of elements in the virtual sequences. The output of the
encoder network for embedding xxi is denoted by hðxxi; uÞ,
where h represents the function implemented by the net-
work and u represents the set of parameters of the network.
As a result, the input sequence is transformed into an
encoded sequence hðXXn; uÞ ¼ ½hðxx1; uÞ; . . . ; hðxxLn; uÞ�. Each
training sequence XXn is associated with a virtual sequence
VV n ¼ ½vv1; . . . ; vvln � 2 Rb0�ln . The objective is to minimize the
meta-distance between the encoded training sequences and
the corresponding virtual sequences

min
u

1

N

XN
n¼1

gIIðhðXXn; uÞ; VV nÞ ¼ 1

N

XN
n¼1

TTn�; DDn
II ðh; uÞ

� �
s:t: TTn� ¼ arg min

TT2FF
TTn;DDn

II ðh; uÞ
� �þ R ðTTnÞ;

(20)

whereDDn
II ðh; uÞ denotes the matrix of all the pairwise euclid-

ean distances between the embedding representations in
hðXXn; uÞ and the elements in VV n. The optimization of Eq. (20)
follows the similar alternating procedures with the linear
RVSML. When the parameters of the deep encoder network
are fixed, the procedure for updating the alignments remain
the same. Specifically, after the embedding representations
are obtained by the network, DDn

II ðh; uÞ can be calculated
straightforwardly. The alignments between any encoded
sequence and its corresponding virtual sequence can be
inferred as follows:

TTn� ¼ arg min
TT2FF

TTn;DDn
II ðh; uÞ

� �þ R ðTTnÞ; (21)

Fig. 3. The model architecture of Deep-RVSML.
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which is solved by the specified meta-distance instance such
as DTW and OPW as in Eq. (3).

When the alignments are fixed, the objective (20) can be
formulated as follows:

min
u

1

N

XN
n¼1

TTn�; DDn
II ðh; uÞ

� � ¼ 1

N

X
n;i;j

tn�i;j hðxxn
i ; uÞ � vvnj

��� ���2
2
:

(22)

The alignments decouple the temporal relations of elements
in sequences by assigningweights on different element pairs.
In this way, each training-virtual sequence pair is decom-
posed into Lnln independent vector pairs with different
weights. Therefore, Eq. (22) is a standard weighted regres-
sion problem and can be optimized in a standard manner.
Specifically, to update the parameters of the network, we cal-
culate the gradient of Eq. (22) w.r.t. u and employ the back
propagation algorithm. In this paper, we employ the Adam
optimizer to train the network.

The two procedures are alternated until convergence. In
this way, the alignments and the network are jointly learned.
For a test sequence, we only need to input all its elements
into the trained network to obtain the encoded sequence.

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup

Datasets. MSR Action3D dataset [56] contains 567 depth video
sequences from 20 action classes. We follow the splits in [57],
[58] to divide the dataset into training and testing sets. MSR
Daily Activity3D dataset [57] consists of 320 Kinect daily activ-
ity sequences from 16 activity classes. We follow the splits
in [57], [58] to divide the dataset into training and test sets.
ChaLearn Gesture dataset [59] consists of Kinect video sequen-
ces from 20 gesture types. The dataset is partitioned into
training, validation and test sets. “Spoken Arabic Digits
(SAD)” dataset from the UCI Machine Learning Reposi-
tory [60] contains 8,800 vector sequences from ten digit clas-
ses with 880 sequences per class. The dataset is partitioned
into training and test sets. “High-quality recordings of Austra-
lian Sign Language signs (HAS)” dataset [60], [61] consists of
2; 565 sequences from 95 classes with 27 sequences per class.
Following [62], we split the sequences into five subsets and
conduct experiments by five-fold cross-validation. Each time
four subsets are used for training and the remaining subset is
used for testing. “NTURGB+D” dataset [63] consists of 56,880
Kinect video samples from 60 action classes. In the Cross-
Subject (CS) evaluation, the dataset is split into a training set
of 40,320 sequences and a test set of 16,560 sequences. In the
Cross-View (CV) evaluation, the dataset is split into a train-
ing set of 37,920 sequences and a test set of 18,960 sequences.
Sequences have different lengths in all datasets, e.g., the
length varies from 6 to 100 on the ChaLearn dataset and from
4 to 93 on the SAD dataset.

Sequence Representations. For video sequences, we extract
a feature vector from each frame, so as to represent each
video as a sequence of frame-wide vectors. For the MSR
Action3D dataset, we adopt the 192-dimensional relative 3D
joint angles based frame-wide vectors as in [58]. For the
MSR Activity3D dataset, we employ the 390-dimensional
relative 3D joint positions based frame-wide features as

in [57]. For the ChaLearn dataset, we adopt the 100-dimen-
sional joint-based frame-wide vectors as in [64]. For the
SAD dataset, the sequences have already been represented
as a series of 13-dimensional mel-frequency cepstrum coeffi-
cients features. For the HAS dataset, the sequences have
already been represented as a series of 22-dimensional fea-
ture vectors. For the NTU dataset, we concatenate all joint
locations of the two subjects to form the 150-dimensional
raw skeleton-based frame-wide features.

Classification and Evaluation Measures. We evaluate the
proposed RVSML instantiated by DTW and OPW, respec-
tively. The codes are publicly available.1 After learning the
ground metric, we employ the 1-nearest neighbor (NN)
classifier with the DTW distance and the OPW distance to
perform sequence classification, respectively. The parame-
ters �1, �2, and s of OPW are fixed to 10, 0:1, and 12,
respectively, on the Activity3D dataset, 50, 0:1, 12, respec-
tively, on the HAS dataset, and 50, 0:1, and 1, respectively,
on other datasets, as suggested in [50]. We report accuracy
as the performance measure. Following [3], [50], we also
regard each test sequence as a query to retrieval all train-
ing sequences and report the mean average precision
(MAP).

6.2 Influence of Hyper-Parameters

The RVSML framework has one hyper-parameter: b. The
generation of the TS-based virtual sequences has one hyper-
parameter: m, the number of elements in each virtual
sequence. We evaluate their influence on RVSML instanti-
ated by OPW on the MSR Action3D dataset. We first evalu-
ate the influence of m by fixing b to 0:01. The performances
as functions of m are shown in Fig. 4a. We observe that a
small m within the range of 4 to 8 works well. When m ¼ 1,
RVSML is equivalent to treating elements in sequences as
independent samples and degenerates into RVML. As
shown in Table 1, RVSML with m > 1 outperforms RVML,
this indicates that introducing more temporal structures
helps to better explore the temporal information. However,
since the dimensionality of elements in virtual sequences
depends on m, the size of WW increases with m. Therefore,
the parameters in WW may be too many to be adequately
trained for largem. We then evaluate b by fixingm to 4. The
performances as functions of logðbÞ are illustrated in Fig. 4b.
Generally, as b is a regularization coefficient, it seems that
very small b leads to satisfactory results.

Fig. 4. Performances of RVSML as functions of (a) m and (b) logðbÞ on
the MSR Action3D dataset.

1. https://github.com/BingSu12/RVSML
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6.3 Comparison With Metric Learning Methods

We compare the proposed RVSML with the baseline NN
classifier without metric learning (Ori) and several state-of-
the-art conventional metric learning methods: ITML [5],
LMNN [7], SCML [16], and RVML [9]. These methods are
originally developed for vector representations. We apply
them to sequences by viewing all elements in the sequence
from a class as independent samples of this class. On the
ChaLearn dataset, SCML learned 0 LDA base and hence we
remove it for comparison. For RVML, we employ the class-
based virtual points. On the HAS dataset, the training of
LMNN is much slower than other methods, so we fix the
metric learned in one validation. In addition to the average
performance measures, the standard deviations over differ-
ent folds are shown in parentheses on this dataset.

We also compare with two metric learning methods for
sequence data, including LDMLT [33] and SWMD [23].
SWMD can not be directly applied to unconstrained sequen-
ces because it requires that the elements in sequences are
from a finite set and learns the weights for all possible ele-
ments in this set. The weights determine the marginal con-
straints for the transport matrix. We modify SWMD by
removing the weight learning procedures and setting the

marginal constraints uniformly so that SWMD can be
applied to unconstrained sequences. For different metric
learning methods, the NN classifiers with DTW and OPW
distances are used for classification by taking the learned
metrics as ground metrics, respectively. Although conven-
tional metric learning methods produce the same projected
sequences, they perform differently by the NN classifier
with different distances.

RVSML, RVSML-LM, and RVSML-BC use the TS-based,
LM-based, and BC-based virtual sequences, respectively.
Each of them is instantiated by the meta-distances used by
the corresponding NN classifiers, respectively. For RVSML,
we set the hyper-parameters m and b via cross-validation
by randomly selecting 30 percent of the training sequences
to form a held-out validation set. We retrain RVSML with
the selected hyper-parameters using all training sequences.
For RVSML-LM, we fix the only hyper-parameter b to 1e�
5 on all datasets. For RVSML-BC, we fix the length per bary-
center and b to 20 and 1e-5 on all datasets, respectively.

The comparisons on five datasets are presented in
Tables 1, 2, 3, 4, and 5, respectively. For all the methods, the
MAPs are much lower than accuracies on the SAD dataset
and the ChaLearn dataset. The MAP is computed by using
each test sequence as a query to rank all training sequences
and then taking mean of the average precisions of all test
sequences. Some outlier test sequences with very low APs

TABLE 1
Comparison of the Proposed RVSML Variants Instantiated by

(Left) DTW and (Right) OPWWith Other Metric Learning
Methods Using the NN Classifier With the (Left) DTW and
(Right) OPW Distance on the MSR Action3D Dataset

Method DTW OPW

MAP Accuracy MAP Accuracy

Ori [50] 58.95 81.32 58.70 84.25
ITML [5] 59.19 80.95 59.48 83.52
LMNN [7] 54.14 80.95 32.73 82.42
SCML [16] 42.79 63.00 39.63 64.10
RVML [9] 57.41 80.95 44.58 73.63
LDMLT [33] 64.29 84.98 53.61 80.59
SWMD [23] 59.65 80.95 43.23 66.67
RVSML 59.30 82.78 47.54 76.56
RVSML-LM 63.10 83.15 60.77 84.25
RVSML-BC 65.31 85.35 59.21 78.75

TABLE 2
Comparison of the Proposed RVSML Variants Instantiated by

(Left) DTW and (Right) OPWWith Other Metric Learning
Methods Using the NN Classifier With the (Left) DTW and
(Right) OPW Distance on the MSR Activity3D Dataset

Method DTW OPW

MAP Accuracy MAP Accuracy

Ori [50] 33.79 58.75 34.62 58.13
ITML [5] 33.80 58.75 33.69 58.13
LMNN [7] 32.24 55.63 32.06 58.13
SCML [16] 29.42 45.62 28.50 45.00
RVML [9] 41.55 60.62 38.73 56.87
LDMLT [33] 36.56 55.00 34.84 54.37
SWMD [23] 37.81 61.25 35.62 55.00
RVSML 42.18 62.50 36.64 57.50
RVSML-LM 38.98 59.38 36.88 50.62
RVSML-BC 38.25 59.38 41.43 54.37

TABLE 3
Comparison of RVSML Instantiated by (Left) DTW and (Right)
OPWWith Other Methods Using the NN Classifier With the

(Left) DTW and (Right) OPW Distance on the ChaLearn Dataset

Method DTW OPW

MAP Accuracy MAP Accuracy

Ori [50] 11.75 61.12 12.21 59.38
ITML [5] 13.46 52.17 13.92 64.71
LMNN [7] 11.67 63.78 12.07 62.83
RVML [9] 31.21 83.79 30.19 80.66
LDMLT [33] 21.30 84.37 21.56 82.74
SWMD [23] 14.39 64.45 15.36 60.31
RVSML 33.83 87.38 33.07 83.82
RVSML-LM 19.47 71.16 18.34 57.21
RVSML-BC 23.20 64.65 24.91 65.34

TABLE 4
Comparison of RVSML Instantiated by (Left) DTW and (Right)

OPWWith Other Metric Learning Methods Using the NN
Classifier With the (Left) DTW and (Right)

OPW Distance on the SAD Dataset

Method DTW OPW

MAP Accuracy MAP Accuracy

Ori [50] 56.58 96.36 59.77 96.36
ITML [5] 51.13 95.55 54.51 96.36
LMNN [7] 56.25 96.00 59.33 96.27
SCML [16] 47.98 93.27 50.08 94.50
RVML [9] 57.94 96.59 60.71 95.77
LDMLT [33] 59.54 96.50 61.07 96.73
SWMD [23] 52.44 93.95 58.00 95.41
RVSML 60.24 96.23 65.63 97.09
RVSML-LM 56.06 95.95 58.43 94.95
RVSML-BC 57.78 95.41 55.22 92.86
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may affect the final MAP. As can be observed from the
results, MAP and accuracy are largely synchronized. When
RVSML has higher accuracy than other methods, in most
cases, it also has a higher MAP. Therefore, this does not
mean overfitting.

On the ChaLearn and SAD datasets, RVSMLs instanti-
ated by both distances generally outperform the corre-
sponding baseline classifiers and other metric learning
methods, respectively. RVSML is able to learn a discrimi-
native ground metric that incorporates the holistic tempo-
ral dependencies of sequences and enhances different
meta-distances consistently. In some cases, several con-
ventional metric learning methods obtain worse results
than the baseline classifiers. This may indicate that tempo-
ral information is inherent for sequence data and cannot
be discarded.

On the Action3D dataset with the DTW distance and the
HAS dataset, RVSML performs inferior to LDMLT, but gen-
erally outperforms other metric learning methods. LDMLT
is based on the dynamic triplet constraints, cannot ensure
the convergence, and requires much more time for training.
The training times of different metric learning methods for
sequences on four datasets are shown in Table 6. We can
observe that RVSML trains much faster compared with
these methods. Specifically, the training time of LDMLT is
more than ten times the training time of RVSML instanti-
ated by DTW on most datasets, the training of SWMD is
also at least 5 times slower than RVSML.

RVSML-LM and RVSML-BC outperform RVSML on the
small-scale Action3D dataset. LM-based and BC-based vir-
tual sequences lie in the same space with the original
sequences. On this dataset, applying the NN classifiers to
the original sequences obtain relatively high MAPs. This

indicates that the within-class distributions of original
sequences are relatively concentrated and hence the LM-
based and BC-based virtual sequences from different clas-
ses are well separated. Pushing sequences towards their
associated virtual sequences tunes the distributions of dif-
ferent classes and increases their margins. TS-based virtual
sequences locate in a different space whose dimension
depends on m. The desired class distributions differ
greatly from those in the original space. Consequently, a
few training sequences may not be sufficient to learn a reli-
able mapping to bridge the space gap.

On other datasets, the TS-based approach generally out-
performs the other two approaches. Among them, on the
SAD dataset, original sequences obtain relatively high
MAPs and the performances of RVSML-LM and RVSML-
BC are comparable with those of RVSML. On the ChaLearn
dataset, MAPs of original sequences are very low, thus the
LM-based and BC-based virtual sequences for different clas-
ses may be close and unevenly distributed in the original
space, resulting in poor performances of RVSML-LM and
RVSML-BC. In contrast, with sufficient training sequences,
RVSML can map sequences into a different space in which
well separated virtual sequences induce good separability
among different classes.

RVSML-BC generally achieves higher MAP than RVSML-
LM, while RVSML-LM often obtains higher top-1 accuracy.
For the LM-based approach, each class may have multiple
virtual sequences. Sequences from the same classes are
drawn towards their nearest virtual sequences, respectively.
For the BC-based approach, all sequences of the same class
are pushed towards the barycenter. Therefore, the within-
class variances are reduced, which is conducive to improv-
ingMAP.

TABLE 5
Comparison of the Proposed RVSML Instantiated by (Left) DTW and (Right) OPWWith Other Metric Learning

Methods Using the NN Classifier With the (Left) DTW and (Right) OPW Distance on the HAS Dataset

Method DTW OPW

MAP Accuracy MAP Accuracy

Orib [50] 48.87 (1.09) 86.95 (2.89) 49.59 (1.10) 86.65 (3.20)
ITML [5] 14.50 (1.58) 48.90 (3.69) 62.01 (1.05) 92.20 (2.02)
LMNN [7] 60.94 (1.08) 92.34 (1.88) 17.72 (2.72) 48.40 (6.46)
SCML [16] 45.85 (10.62) 80.82 (10.93) 48.34 (2.27) 82.31 (3.54)
RVML [9] 74.21 (1.45) 94.82 (2.07) 70.24 (1.39) 93.77 (3.21)
LDMLT [33] 82.80 (1.28) 96.60 (0.82) 79.92 (0.99) 95.73 (1.11)
SWMD [23] 47.16 (3.74) 85.05 (4.68) 41.99 (2.38) 79.22 (2.81)
RVSML 74.64 (1.47) 95.65 (2.01) 71.95 (1.17) 94.11 (2.46)
RVSML-LM 60.96 (1.41) 89.66 (2.14) 61.74 (1.37) 88.78 (2.90)
RVSML-BC 62.59 (1.30) 90.55 (1.01) 65.18 (0.82) 90.27 (1.97)

bIn the supplementary file of [10], which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2020.3010568, s is set to 1. In this paper, we set s to 12 following [50], this leads to improved performances.

TABLE 6
Comparison of the Training Times

Dataset Action3D SAD ChaLearn HAS

LDMLT 1905.24 67329.29 213921.7 10863.32 (247.0112)
SWMD 970.70 7756.72 11489.10 1497.786 (65.3938)
RVSML(DTW) 115.72 662.41 2477.76 212.3670 (32.0198)
RVSML(OPW) 124.48 208.67 836.67 150.2897 (8.7143)
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6.4 ComparisonWith DeepMetric LearningMethods

We compare the proposed Deep-RVSML with seven deep
metric learning methods using different losses, including
NCA loss (NCA) [37], contrastive loss (Contrastive) [38],
binomial deviance loss (Binomial) [34], lifted structured loss
(Lifted) [35], triplet losswith hard-mining (HardMining) [65],
triplet loss with semi-hard mining (SemiHard) [42], multi-
similarity loss(MS) [43]. These methods are developed for
independent static data. To apply thesemethods to sequence
samples, we take all vectors in sequences from a class as
independent vector samples of this class and employ these
losses with a deep encoder network which shares the same
architecture with the encoder of Deep-RVSML. Batch nor-
malization is performed before each layer and L2 normaliza-
tion is applied to the output embedding. The number of
neurons in all the three hidden layers is set to 1,024 and the
embedding dimension is set to be the same as the original
dimension of vectors in sequences. We adapt the code in [43]
to implement these deep metric learning methods by replac-
ing the convolutional neural networkwith the encoder.

For Deep-RVSML, we set the length m of TS-based vir-
tual sequences to 4 on all datasets. On the MSR Action3D,
MSR Activity3D, and SAD datasets, since the frame-wide

features are non-normalized, we also apply batch normali-
zation and L2 normalization as done in competitive deep
metric learning models. Deep-RVSML-LM does not intro-
duce hyper-parameters. For Deep-RVSML-BC, we set the
length per barycenter to 20 on all datasets. For all the meth-
ods, the NN classifiers with DTW and OPW distances are
used to classify the encoded sequences, respectively. Other
experimental settings remain the same as in Section 6.3.

The comparisons on five datasets are presented in
Tables 7, 8, 9, 10, and 11, respectively. On the MSR Activi-
ty3D dataset, Deep-RVSML performs inferior to other deep
metric learning methods. This dataset has fewer training
sequences, which may not be sufficient for Deep-RVSML to
capture the temporal structures since Deep-RVSML views
each sequence as a single sample. The within-class varian-
ces can not be fully reflected so that most classes may be dis-
tinguished only by the differences between their frames. In
contrary, other methods have relatively more training data
because all vectors of each sequence are used as indepen-
dent training samples.

On all other datasets, the proposed Deep-RVSML outper-
forms all these deep metric learning methods significantly
by using both DTW and OPW as the meta-distance mea-
sure. In many cases, some deep metric learning methods

TABLE 7
Comparison of the ProposedDeep-RVSMLVariants Instantiated
by (Left) DTWand (Right) OPWWith Other DeepMetric Learning
Methods Using the NNClassifierWith the (Left) DTWand (Right)

OPWDistance on theMSRAction3DDataset

Method DTW OPW

MAP Accuracy MAP Accuracy

NCA [37] 37.84 67.03 38.53 65.20
Contrastive [38] 45.91 60.44 47.46 62.64
Binomial [34] 48.12 60.81 49.99 62.64
Lifted [35] 43.96 67.40 50.42 65.20
HardMining [65] 43.19 57.51 43.82 55.31
SemiHard [42] 46.64 64.47 47.98 62.64
MS [43] 34.40 45.42 34.19 40.66
Deep-RVSML 61.73 79.49 69.14 74.36
Deep-RVSML-LM 65.76 85.35 62.16 84.25
Deep-RVSML-BC 78.99 85.35 72.90 86.08

TABLE 8
Comparison of the ProposedDeep-RVSMLVariants Instantiated
by (Left) DTWand (Right) OPWWith Other DeepMetric Learning
Methods Using the NNClassifierWith the (Left) DTWand (Right)

OPWDistance on theMSRActivity3D Dataset

Method DTW OPW

MAP Accuracy MAP Accuracy

NCA [37] 34.24 64.38 37.72 66.87
Contrastive [38] 59.19 65.00 62.73 66.25
Binomial [34] 56.76 62.50 61.56 60.62
Lifted [35] 48.39 62.50 59.57 65.62
HardMining [65] 58.85 65.62 61.33 63.12
SemiHard [42] 58.14 65.62 61.84 63.12
MS [43] 47.91 51.25 47.97 50.00
Deep-RVSML 53.07 61.88 68.86 65.62
Deep-RVSML-LM 46.95 64.38 48.85 60.00
Deep-RVSML-BC 53.85 64.38 59.16 52.50

TABLE 9
Comparison of the Proposed Deep-RVSMLVariants Instantiated
by (Left) DTWand (Right) OPWWithOther DeepMetric Learning
Methods Using the NNClassifierWith the (Left) DTW and (Right)

OPWDistance on the ChaLearn Dataset

Method DTW OPW

MAP Accuracy MAP Accuracy

NCA [37] 9.07 62.77 9.25 63.38
Contrastive [38] 17.01 68.18 18.85 68.24
Binomial [34] 18.19 69.72 19.92 69.17
Lifted [35] 12.98 66.85 14.56 67.66
HardMining [65] 23.72 67.28 25.59 68.41
SemiHard [42] 15.81 67.37 17.45 66.62
MS [43] 18.14 65.95 19.67 63.67
Deep-RVSML 43.96 81.15 46.28 79.91
Deep-RVSML-LM 18.31 58.86 20.49 56.37
Deep-RVSML-BC 25.13 54.14 28.75 57.96

TABLE 10
Comparison of the Proposed Deep-RVSMLVariants Instantiated
by (Left) DTWand (Right) OPWWithOther DeepMetric Learning
Methods Using the NNClassifierWith the (Left) DTW and (Right)

OPWDistance on the SADDataset

Method DTW OPW

MAP Accuracy MAP Accuracy

NCA [37] 14.47 46.73 15.46 50.27
Contrastive [38] 59.69 92.09 67.40 95.45
Binomial [34] 48.20 91.73 60.22 95.77
Lifted [35] 46.41 89.64 54.80 94.86
HardMining [65] 65.56 92.68 73.80 95.95
SemiHard [42] 40.66 84.82 49.08 93.73
MS [43] 58.00 85.64 63.11 92.27
Deep-RVSML 78.24 97.32 83.08 98.91
Deep-RVSML-LM 59.49 97.73 68.36 98.09
Deep-RVSML-BC 77.04 98.09 80.80 98.05
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perform even worse than conventional metric learning
methods evaluated in Section 6.3. Since elements in sequen-
ces violate the i.i.d. assumption, the stronger the fitting
ability of the model, the more the loss of temporal informa-
tion, the more serious the overfitting, and the worse the
performance.

In comparison with the results of RVSML in Section 6.3,
we observe that Deep-RVSML achieves much better MAPs
and comparable accuracies. Since the objective is tominimize
the average meta-distance among all training-virtual
sequence pairs, this only requires that sequences from the
same class are more gathered around their virtual sequence.
For any particular sequence, sequences from the same class
are closer on thewhole, but the nearest sequence is not neces-
sarily in the same class. Due to the better fitting capacity,
compared with RVSML, the meta-distance learned by Deep-
RVSML better optimizes the objective. Therefore, by using a
test sequence as a probe to retrieval all the gallery sequences
with the learned meta-distance, as a whole, sequences from
the same class as the probe get better rankings, resulting in
higherMAP, but the top-1 accuracymay not be improved.

For different virtual sequence generation approaches,
similar observations can be concluded as in the linear case
in Section 6.3. By improving the structure of the encoder
and employing other nonlinear activations, the performan-
ces of Deep-RVSML may be further improved.

6.5 Combination With State-of-the-Art Methods

The proposed RVSML learns a transformation that projects
the sequences into another space. In the resulting space, we
can use other advanced classification methods instead of
the NN classifier. That is, we first apply the proposed
RVSML to the original sequences and then employ state-of-
the-art classification methods by taking the transformed
sequences as input. In this way, the proposed RVSML can
be combined with these methods.

We combine RVSML with kernelized-COV [66], which
extracts the kernelized covariance representation from each
sequence and applies SVM for classification. We instantiate
RVSML with OPW, because OPW generates soft alignment,
which preserves more local variances between element pairs
so that covariance-based representation can capturemore dis-
criminative information. In [66], the 120-dimensional velocity
and acceleration of the raw joint positions based frame-wide
features [67] were employed. On theMSRActivity3D dataset,

the pre-computed features are provided and hence we
directly apply RVSML to them. On the MSR Action3D data-
set, we compute the features following [67], where the veloc-
ity and acceleration features are augmented by the raw joint
positions. We perform Kernelized-COV to the transformed
sequences. Tables 12 and 13 show the results in comparison
with the state-of-the-art methods on the two datasets, respec-
tively. The combinations of RVSML with different virtual
sequences and Kernelized-COV achieve comparable results
with other competitors.

On theMSRActivity3Ddataset, we also applyDeepRVSML
to the same features used by Kernelized-COV [66]. As shown
in Table 12, a simple NN classifier in the non-linear metric
spaces learned by DeepRVSML achieves better results than
Kernelized-COV.

On the MSR Action3D dataset, we combine RVSML with
the generalized temporal sliding LSTM (TS-LSTM) Network
with the geometric mean [73] denoted by TS-LSTM-GM. We
apply RVSML to the 60-dimensional motion features used
in [73], perform L2 normalization to the transformed fea-
tures, and input the resulting sequences to TS-LSTM-GM.
The results are shown in Table 13. The proposed RVSML
instantiated by DTW improves the accuracy of TS-LSTM-
GM by 1.8 percent. RVSML instantiated by different meta-
distances fits for different classification methods.

TABLE 11
Comparison of the Proposed Deep-RVSML Instantiated by (Left) DTW and (Right) OPWWith Other Deep Metric Learning

Methods Using the NN Classifier With the (Left) DTW and (Right) OPW Distance on the HAS Dataset

Method DTW OPW

MAP Accuracy MAP Accuracy

NCA [37] 19.04 (5.39) 60.50 (8.15) 16.41 (4.72) 55.10 (8.76)
Contrastive [38] 24.77 (2.57) 59.64 (5.65) 24.40 (2.62) 59.28 (7.28)
Binomial [34] 22.02 (1.34) 57.52 (5.84) 21.57 (1.44) 57.11 (5.51)
Lifted [35] 32.38 (2.10) 80.10 (4.18) 29.22 (1.57) 75.31 (3.35)
HardMining [65] 15.73 (2.13) 37.92 (4.78) 15.89 (2.33) 39.36 (4.99)
SemiHard [42] 32.77 (2.34) 71.36 (3.41) 31.73 (2.26) 69.56 (4.03)
MS [43] 29.76 (4.16) 74.46 (10.53) 26.29 (3.50) 67.75 (10.15)
Deep-RVSML 96.15 (0.73) 98.81 (0.69) 91.78 (1.52) 98.22 (0.93)
Deep-RVSML-LM 75.06 (2.49) 94.48 (1.05) 56.84 (1.81) 83.70 (3.56)
Deep-RVSML-BC 83.54 (0.78) 95.93 (1.01) 69.44 (0.69) 91.61 (2.38)

TABLE 12
Comparison With State-of-the-Art Methods

on the MSR Activity3D Dataset

Method Accuracy

Actionlet Ensemble [57] 85.8%
Moving Pose [67] 73.8%
COV-JH-SVM [68] 75.5%
Ker-RP-POL [69] 96.9%
Ker-RP-RBF [69] 96.3%
Kernelized-COV [66] 96.3%
Luo et al. [70] 86.9%
Ji et al. [71] 81.3%
DSSCA SSLM [72] 97.5%
RVSML-DTW+Kernelized-COV 96.9%
RVSML-OPW+Kernelized-COV 97.5%
RVSML-OPW-Mar+Kernelized-COV 97.5%
RVSML-OPW-Bar+Kernelized-COV 97.5%
DeepRVSML-DTW+NN 98.1%
DeepRVSML-OPW+NN 97.5%
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On the NTU dataset, due to the large number of training
sequences, linear RVSML and the NN classifier are too com-
putationally intensive because they need to calculate the
meta-distances of all training sequences to the corresponding
virtual sequences or the test sequence. We use the batch-
based DeepRVSML to learn the ground metric space and
employ deep Independent Recurrent Neural Network
(IndRNN) [76], [77] for classification. The hyper-parameters
and settings of IndRNN remain the same as in [77]. The
results in comparison with IndRNN and other RNN-based
methods without data augmentation for both CS and CV set-
tings are shown in Table 14. In [77], the results of IndRNNare
obtained by preprocessing the skeleton data, but neither the
preprocessing algorithm nor the preprocessed data are pro-
vided. “IndRNN�” indicates our reproduced results using
the raw skeleton features. We observe that DeepRVSML
improves the performances of IndRNN. Moreover, as shown
in Fig. 5, IndRNN converges much faster in the non-linear
groundmetric space learned byDeepRVSML.

6.6 Evaluation on Zero-Shot Classification

WeevaluateDeepRVSML-ZS in the zero-shot sequence classifi-
cation task on theNTUdataset.We follow the nearest split (NS)

and furthest split (FS) settings in [85], where the top 5 classes
with least and highest distances fromother classes based on the
normalized language embeddings are selected as unseen clas-
ses for testing, respectively, and the remaining 55 classes are
used for training, respectively. For DeepRVSML-ZS, we per-
form the same preprocessing as in [85], [86] to the skeleton
data. We concatenate all preprocessed joint locations of two
subjects per frame to form 150-dimensional frame-wide fea-
tures. Because it is difficult to establish a single frame with the
semantic of the action class, we use a sliding window of 8
frames with a moving step of 4 frames to convert each action
sequence into a sequence of 150� 8 segments. For each seg-
ment, we apply a 1-D convolution layer with three 1� 8
kernels and flatten their ReLu activations into a 150� 3-dimen-
sional vector. Finally, we use the encoder network with the
same architecture as in DeepRVSML to transform the resulting
vectors into the semantic space and perform L2 normalization
to the output embeddings. Since semantic words and visual
frames may do not correspond in order, we use the Sinkhorn
distance to instantiate DeepRVSML-ZS.

We also employ the 700-dimensional sentence embed-
ding vectors of class descriptions used in [85] as virtual
sequences. In this case, the length per virtual sequence is
one and all encoded elements of a sequence are aligned to
the corresponding embedding. This is equivalent to viewing
these elements as independent vector samples of the same
class. We denote this method by DeepRVSML-Vec. Table 15
shows the results. DeepRVSML-ZS-Sinkhorn outperforms
DeepRVSML-Vec because it distinguishes different locali-
ties and establishes the correspondences among local visual
segments and semantic compositions. In [85], spatio-tempo-
ral graph convolutional network is used to extract visual
features from skeleton sequences, DeViSE [87] and Relation-
Net [88] are used to learn a projection or metric, and
description embeddings of both seen and unseen classes are
utilized for training. DeepRVSML-ZS only applies simple
1-D convolution and fully connected layers to the skeleton

TABLE 13
Comparison With State-of-the-Art Methods

on the MSR Action3D Dataset

Method Accuracy

Actionlet Ensemble [57] 88.2%
Moving Pose [67] 91.7%
COV-JH-SVM [68] 80.4%
Ker-RP-POL [69] 96.2%
Ker-RP-RBF [69] 96.9%
Kernelized-COV [66] 96.2%
SCK+DCK [74] 91.45%
TS-LSTM-GM [73] 91.21%
FTP-SVM [75] 90.01%
Bi-LSTM [75] 86.18%
RVSML-OPW+Kernelized-COV 96.34%
RVSML-OPW-Mar+Kernelized-COV 93.40%
RVSML-OPW-Bar+Kernelized-COV 88.64%
RVSML-DTW+TS-LSTM-GM 93.04%
RVSML-OPW+TS-LSTM-GM 90.48%

TABLE 14
Comparison With State-of-the-Art Methods

on the NTU RGB+D Dataset

Method CS CV

PLSTM [63] 62.93% 70.27%
Clips+CNN+MTLN [78] 79.57% 84.83%
STA-LSTM [79] 73.40% 81.20%
ST-LSTM [80] 69.2% 77.7%
HCN [81] 86.5% 91.1%
TCN+TTN [29] 77.55% 84.25%
EleAtt-GRU [82] 79.8% 87.1%
TS-SAN [83] 87.2% 92.7%
ARRN-LSTM [84] 80.7% 88.8%
IndRNN [77] 84.88% 90.43%

IndRNN� 80.79% 87.14%
DeepRVSML-DTW + IndRNN 79.72% 86.68%
DeepRVSML-OPW + IndRNN 83.20% 87.51%

Fig. 5. The frame-level validation accuracy of IndRNN as a function of
the number of training iterations using the original frame-wide features
and the transformed features by DeepRVSML-DTW and DeepRVSML-
OPW on the NTU dataset for the (a) CS and (b) CV setting.

TABLE 15
Evaluation of DeepRVSML-ZS for Zero-Shot Sequence

Classification on the NTU RGB+D Dataset

Method NS FS

DeViSE [85] 75.16% 42.06%
RelationNet [85] 74.50% 50.06%
DeepRVSML-Vec 51.78% 40.33%
DeepRVSML-ZS-Sinkhorn 67.33% 42.62%
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sequences. It does not require any information about unseen
classes during training, while obtains comparable results
with DeViSE in the FS setting.

7 CONCLUSION

We present a metric learning framework for sequence data,
which learns the meta-distance for sequences via learning the
ground metric. The objective is to minimize the meta-distan-
ces between training sequences and their associated a prior
defined virtual sequences. Constructing the meta-distance
needs to infer the temporal alignments, but the inference also
depends on the ground metric. We propose an efficient itera-
tive solution to learn the ground metric and the latent align-
ments jointly. We unify a family of meta-distance measures
for sequences into a common formulation and show that any
meta-distance with such form can be employed to instantiate
our framework. Additionally, we propose several approaches
to generate virtual sequences. We empirically show that our
method is able to enhance different types of meta-distances
and state-of-the-art sequence classificationmethods.
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