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Abstract. Dark matter annihilation in dwarf spheroidal (dSph) galaxies near the Milky Way
has the potential to produce a detectable signature in gamma-rays. The amplitude of this
signal depends on the dark matter density in a dSph, the dark matter particle mass, the
number of photons produced in an annihilation, and the possibly velocity-dependent dark
matter annihilation cross section. We argue that if the amplitude of the annihilation signal
from multiple dSphs can be measured, it is possible to determine the velocity-dependence
of the annihilation cross section. However, we show that doing so will require improved
constraints on the dSph density profiles, including control of possible sources of systematic
uncertainty. Making reasonable assumptions about future improvements, we make forecasts
for the ability of current and future experiments — including Fermi, CTA and AMEGO —
to constrain the dark matter annihilation velocity dependence.
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1 Introduction

A key strategy for studying dark matter is the search for photons arising from dark matter
annihilation in dwarf spheroidal galaxies (dSphs). dSphs are promising search targets because
they are thought to be dark matter-dominated astrophysical objects with relatively small
astrophysical foregrounds. Searches for dark matter annihilation in dSphs have thus far
yielded tight bounds, but no significant evidence of a signal (e.g. [1, 2]). It is hoped that, as
more dSphs are found, and as they are studied with instruments probing new energy ranges
with larger exposures, evidence for dark matter annihilation may yet be forthcoming. In this
paper, we investigate a related question: if future observations with gamma-ray telescopes
find evidence for dark matter annihilation in dSphs, can these observations also be used to
determine the velocity-dependence of the microscopic dark matter annihilation process?

The flux of photons arising from dark matter annihilation in any astrophysical object is
proportional to the object’s J-factor, which encodes all of the dependence of the photon flux
on the astrophysical details of the target. The J-factors are typically determined by analyzing
stellar velocity data, which can be used to infer the dSph mass distribution. Recent work
has demonstrated that these J-factors depend non-trivially on the velocity-dependence of
the dark matter annihilation cross section [3–12].

For unresolved observations of the photon flux from a single dSph, information about
the velocity-dependence encoded in the J-factor will be degenerate with the annihilation
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cross section, particle mass, and the number of photons produced per annihilation, which
also impact the expected photon flux. However, for a set of dSphs with different characteristic
dark matter velocities, changing the velocity-dependence of the annihilation cross section will
impact the J-factor of each dSph differently. Consequently, gamma-ray observations of mul-
tiple dSphs can be used to break degeneracies between the annihilation velocity dependence
and other quantities that impact the amplitude of the annihilation signal.

Such an analysis will also be impacted by a variety of additional sources of uncertainty.
First, for any choice of velocity-dependence, the calculation of the J-factors from stellar
data is plagued by parameter degeneracies, which can significantly degrade constraints [e.g.
13, 14]. Secondly, astrophysical foregrounds can complicate the determination of the photon
flux arising from dark matter annihilation. But as more stars in a dSph are observed, and
with greater precision, the uncertainties in the J-factors are expected to decrease. By the
same token, as more dSphs are found, and as observations are made with larger exposures,
the statistical impact of the foregrounds will decrease. Finally, there are several potential
sources of systematic uncertainty that may impact J-factor constraints, such as differences
between the true dark matter profile and the assumed profile used in the stellar analysis [13].

In this work we forecast the ability of future gamma-ray observations of dSphs to con-
strain the velocity dependence of dark matter annihilation. Our forecasts rely on a set of
Milky Way dSphs with J-factors measured in [12]. We consider both current J-factor uncer-
tainties, as well as prospects for future improvements. We generate mock data sets for the
Cherenkov Telescope Array (CTA), the Fermi Gamma-Ray Space Telescope, and the All Sky
Medium Energy Gamma-Ray Observatory (AMEGO). For each observatory, we consider a
baseline exposure as well as significantly enhanced exposures. The mock data sets include
realistic estimates of backgrounds. Using these mock observations, we estimate the future
improvements that will be needed in order to distinguish between different models of dark
matter microphysics from the data. We discuss possible sources of systematic error, and how
these may impact future attempts to infer the dark matter velocity dependence from future
dSph observations. We note, though, that the main aim of this paper is not to produce the
most accurate forecasts possible. Indeed, making very realistic or precise forecasts for dSph
observations is complicated by the fact that future constraints will depend to some degree
on the intrinsic dSph properties, which are not very well constrained at present. Rather, the
main aim of this analysis is to highlight that information about the dark matter annihilation
velocity-dependence is contained in the relative amplitude of annihilation signals from differ-
ent dSphs, and that in principle, there is sufficient statistical information in future datasets
to constrain this dependence.

The paper is organized as follows. In section 2 we introduce the formalism for modeling
the velocity-dependent J-factors of dSphs; in section 3 we describe the J-factor constraints
for a set of dSphs, and how we generate forecasts for the constraints on the dark matter
annihilation velocity dependence. Our results are presented in section 4, and we conclude
in section 5.

2 General formalism

We assume that dark matter is a real particle with an annihilation cross section given by

σv = (σv)0 × S(v/c), (2.1)

where v is the relative velocity between the dark matter particles, and (σv)0 is a constant
which is independent of v. The velocity dependence of the annihilation process is contained
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in S(v/c), which we will assume takes the form S(v/c) = (v/c)n. We will consider several
theoretically-motivated choices for n.

• n = 0 (s-wave): this is the standard case of velocity-independent annihilation.

• n = 2 (p-wave): this case can arise in any scenario respecting minimal flavor violation
(MFV) in which dark matter is a Majorana fermion which annihilates to a Standard
Model (SM) fermion/anti-fermion pair (see, for example, [15]). In this case, annihilation
from an L = 0 state is chirality-suppressed, and annihilation from the L = 1 state may
thus dominate. This case can also arise if dark matter is a fermion (Majorana or Dirac)
which annihilates through an intermediate scalar in the s-channel.

• n = 4 (d-wave): this case can arise in any scenario respecting MFV in which dark
matter is a real scalar particle, which annihilates to a SM fermion/anti-fermion pair [16,
17]. In this case, annihilation from the L = 0 state is chirality-suppressed, while
annihilation from the L = 1 state is forbidden by symmetry of the wavefunction [15–
17]. Annihilation from the L = 2 state may thus dominate.

• n = −1 (Sommerfeld-enhanement in the Coulomb limit): this case can arise if dark
matter annihilation is Sommerfeld-enhanced, and the particle mediating dark matter
self-interaction is much lighter than the dark matter [18, 19].

The expected number of photons with energies between Emin and Emax arising from
dark matter annihilation in any astrophysical target can be written as [20, 21]

Nexp = ΦP P × J(∆Ω) × (TAeff), (2.2)

where T is the exposure time, Aeff is the effective area,

ΦP P ≡
(σv)0

8πm2
χ

∫ Emax

Emin

dEγ
dNγ

dEγ
, (2.3)

mχ is the dark matter mass, and dNγ/dEγ is the photon spectrum per annihilation. The
integrated J-factor is given by

J(∆Ω) =

∫

∆Ω
dΩ

∫

dℓ

∫

d3v1

∫

d3v2 f(~r,~v1)f(~r,~v2) × S(|~v1 − ~v2|/c), (2.4)

where f(~r,~v) is the dark matter velocity distribution, ∆Ω is the solid angle, and ℓ = |~ℓ| is
the distance along the line of sight. If ~D is a vector from the observatory to the center of the
dSph, then ~r = ~ℓ − ~D.

We thus see that ΦP P depends only on the properties of the dark matter particle,
while all of the dependence of the photon counts on the dark matter distribution in the
target appears in the J-factor. But the J-factor also depends on S(v/c). For the case
of s-wave dark matter annihilation (S = 1), the J-factor reduces to the usual expression
J(∆Ω) =

∫

dΩ dℓ ρ2. But for a more general particle physics model, the J-factor of the
target must be recomputed.

The form of the J-factor simplifies considerably for the case in which the dark matter
velocity distribution depends on only two parameters, a scale density ρs and a scale radius
rs. One then finds that the only quantity one can write with units of velocity which depends
on the relevant parameters is 4πGN ρsr2

s . The form of the J-factor simplifies even more if the
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dSph is reasonably far away (D ≫ rs), and the aperture of the observation covers the region
where most dark matter annihilation occurs. The dependence of the integrated J-factor on
the parameters is then determined by dimensional analysis, yielding [11]

J(∆Ω) ∝
ρ2

sr3
s

D2

(

4πGN ρsr2
s

)n/2
, (2.5)

where the proportionality constant is independent of the halo parameters.

Given any ansatz for the form of the dark matter distribution, stellar data can be used to
estimate the halo parameters, which in turn determine the J-factor for any choice of S(v/c).
However, because the annihilation flux also depends on ΦP P , measurement of the flux from
a single dSph will be insufficient to determine both ΦP P and n. On the other hand, if one
considers the ratio of the fluxes between two dSphs with different velocity distributions, this
ratio will be independent of ΦP P , but will depend on n (and the velocity distributions).
This implies that, if the halo parameters of several dSphs can be determined with sufficient
precision from stellar data, with a sufficient exposure, it should be possible to determine n
from the relative photon counts from different dSphs.

For our analysis, we will consider the J-factors derived in [12] for 25 dSphs, assuming
either n = −1, 0, 2, or 4. Following [14], the analysis of [12] assumed an NFW profile, and
estimated ρs and rs for each dSph from stellar data. The dark matter velocity distribution
was then determined from the density distribution using the Eddington inversion method [22],
following [11]; this determines the proportionality constant in eq. (2.5) for each choice of n.
Note that, although this overall proportionality constant affects the normalization of the
dark matter signal from a dSph, it does not affect one’s ability to determine the velocity-
dependence of a detected signal at fixed signal flux, which depends on the relative flux between
different dSphs. We discuss the estimation of J-factors and forecasts for future J-factor
constraints in more detail in section 3.3. We will also consider J-factors which we derive using
a modified version of the approach used in [12, 14], in which the stellar data is supplemented
with a cosmological prior derived from numerical simulations.

3 Forecasting future constraints on the dark matter annihilation velocity-

dependence

3.1 The likelihood for photon counts from dSphs

We consider here the case of unresolved observations of the annihilation signal in dSphs.
Because the observations are unresolved, we define our observable to be the measured photon
counts in an aperture around each dSph. Since the dark matter annihilation signal is expected
to be localized in a small region centered on each dSph and because the beam size of gamma-
ray telescopes is typically large compared to these regions, assuming that the annihilation
signal is unresolved is reasonable. For high-resolution observations, such as with CTA, it
maybe be possible to improve constraints on the velocity dependence by using the angular
dependence of the signal [11].

For a set of ND dSphs, we define a ND-dimensional data vector, ~d, that represents the
photon counts in the aperture around each dSph. The observed data is the sum of signal
photons and background photons:

~d = ~s +~b, (3.1)
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where the ND-dimensional vectors ~s and ~b represent the photon counts from signal and back-
grounds, respectively. We represent the probability distribution functions (PDF) describing
~s and ~b as PS(~s) and PB(~b), respectively. We will discuss PB(~b) in more detail in section 3.2.

We assume that the dark matter signal, ~s, is Poisson distributed. The expectation value
of the signal for the ith dSph, 〈si〉, is given by 〈si〉 = Nexp (eq. (2.2)). The signal PDF is then

PS(si|Ji, ΦP P ) =
〈si〉

sie−〈si〉

si!
, (3.2)

where 〈si〉 depends on the dSph’s J-factor, Ji, the particle physics factor ΦP P , and the
exposure. We remind the reader that the J-factor in turn depends on the velocity dependence,
n. Since the observed sky signal is the sum of signal and backgrounds, the total data likelihood
is given by a convolution of the signal and background distributions:

PD(di|Ji, ΦP P ) =
di

∑

j=0

PS(j|Ji, ΦP P )PB(di − j). (3.3)

Ultimately, we are interested in constraining the velocity dependence of the dark matter
annihilation (i.e. n), rather than the J-factors themselves. Marginalizing over the J-factor
PDF we have

PD(di|ΦP P , n) =

∫

dJi PD(di|Ji, ΦP P )PJ(Ji|n), (3.4)

where PJ(Ji|n) is the prior on the J-factor of the i-th dSph, which we will discuss in more
detail in section 3.3.

Assuming the dSphs are far enough apart on the sky that they can be treated as sta-
tistically independent, we write the total likelihood for all dSphs as

L ≡ PD(~d|ΦP P , n) =
ND
∏

i

PD(di|ΦP P , n). (3.5)

We adopt flat priors on ΦP P and n so that the posterior on ΦP P and n is simply proportional
to this likelihood. The purpose of our analysis is to determine whether (future) observations
can distinguish between different models for the velocity dependence of the dark matter
annihilation cross section. In section 4.2 we describe how the likelihood introduced above
can be applied to mock data to make such forecasts.

3.2 Background modeling

We will make forecasts for future observations in three energy ranges: (1) 1 − 100 GeV, (2)
1 − 200 TeV, and (3) 1 MeV − 1 GeV. In each case, we will take different approaches to
estimating the PDF describing photon backgrounds, PB(~b).

Our analysis at 1 − 100 GeV is modelled after Fermi observations. In this case, we will
use the Fermi maps themselves to estimate the backgrounds. This can be done by defining
a large number of background sky regions which are of the same size as the signal aperture,
but displaced slightly from the dSph; the histogram of photon counts in these backgrounds
regions forms our estimate of the background PDF for that dSph. This procedure has been
applied in [20, 21, 23], for example, and we will use the background PDFs obtained in
ref. [23]. Note that these PDFs can be highly non-Poissonian, owing largely to the complicated
morphology of the diffuse galactic backgrounds. For our baseline analysis, we adopt an
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exposure corresponding to roughly 10 years of observation time with Fermi, i.e. the data set
used in [23]; the exact exposure values assumed for each dSph are given in the appendix
of [23]. We will also consider a future Fermi-like data set that has a factor of five larger
exposure, which could be obtained by increasing the observation time and/or collecting area
relative to Fermi.

Our analysis at higher photon energies is tailored to CTA-like observations. At energies
E & 100 GeV and for detectors like CTA, the dominant background is cosmic rays that have
been misclassified as gamma-rays (the so-called residual background). Since this background
is close to isotropic, we can ignore the sky positions of the dSphs, and obtain an accurate
estimate of the backgrounds by using the estimated spectrum of these misclassifications. Since
the effective area of CTA is both maximal and approximately constant for photon energies
1 TeV . E . 200 TeV, we assume this energy range in our analysis. We adopt the reported
background flux for CTA south.1 We assume an exposure time (for each dSph) of 20 hours,
an effective area of 4 × 106 m2, and an aperture of radius 0.5◦. This aperture size matches
that used in the analysis of [23]; significantly smaller apertures would remove signal flux,
while much larger apertures would significantly increase the backgrounds. Since the CTA
beam size at these energies is roughly 0.03◦, more information about the velocity dependence
of the dark matter annihilation cross section could be obtained by considering the angular
dependence of the signal rather than the total flux in an aperture. For the present analysis,
though, we ignore the angular dependence, so our constraints can be viewed as conservative.

We also consider the energy range E . 1 GeV, for which future MeV-range gamma-ray
telescopes, such as e-ASTROGAM, AMEGO and APT, can conduct a similar search for
photons from dSphs. For this energy range, one would expect the astrophysical background
to be anisotropic. Unfortunately, however, we do not have a data-driven background estimate
for individual dSphs over this energy range. Instead, as a benchmark, we will use a fit to
the isotropic background seen by COMPTEL (0.8–30 MeV) and EGRET (30 MeV – 10 GeV).
This fit is given by [24]

d2Φ

dEdΩ
= 2.74 × 10−3

(

E

MeV

)−2.0

cm−2s−1MeV−1sr−1. (3.6)

Integrating this fit over the desired energy range provides a rough estimate of the expected
background flux. We tailor our low-energy forecasts to AMEGO-like observations, assuming
an energy range of 1 MeV < E < 1 GeV, a baseline exposure time of one year, an effective
area of 800 cm2, and a beam size of 2.5◦ [25].

3.3 J-factors and their uncertainties

As mentioned previously, [12] constrained PJ(Ji|n) by running fits to stellar velocity data.
The full details are described in [14]. Briefly, the Spherical Jeans equations are solved for the
radial velocity dispersion which is projected into the line-of-sight direction to directly compare
to stellar velocity data [26–28]. The Spherical Jeans equations are solved assuming an NFW
profile for the dark matter distribution, a Plummer profile for the stellar distribution, and a
constant stellar anisotropy.

Several of these model assumptions are known to be broken in reality. For instance,
simulations suggest that the dark matter halos hosting dSphs are likely triaxial [e.g. 29], the
stellar distribution may not be described by a Plummer profile, and the velocity anisotropy

1https://www.cta-observatory.org/science/cta-performance/.
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may vary with radius [13]. As discussed in [13], these incorrect assumptions when modeling
the stellar data can result in biased J-factor constraints, although for current data the biases
appear to be fairly small [14, 30]. In principle, sources of bias can be eliminated by adopting
more flexible forms for the assumed profiles of e.g. the dark matter or the stellar velocity
anisotropy [13]. However, this will come at the cost of increased J-factor uncertainties. We
discuss our approach to dealing with systematic errors below.

For the purposes of this analysis, we will assume that the posteriors on the J-factor for
each dSph is described by a Gaussian:

PJ(Ji|n) ∝ exp

[

−
(Ji − µJ)2

2σ2
J,i

]

, (3.7)

where µJ and σJ are the mean and standard deviations computed from the posterior samples
generated in [12]. Assuming Gaussianity is useful partly because it allows us to trivially
make forecasts for future data by appropriately reducing σJ,i. For current data, the J-factor
posteriors for individual dSphs can be significantly non-Gaussian for reasons that we discuss
in section 4.3. However, we show below that approximating the individual J-factor posteriors
as Gaussians does not lead to significant error in the combined constraints from all dSphs.
Furthermore, the Gaussian approximation is likely to become more accurate for individual
dSphs as stellar velocity constraints improve.

Future stellar observations will improve J-factor constraints by measuring velocities
for fainter stars. To make projections for the estimated J-factor uncertainty with different
stellar magnitude cuts, we first make forecasts for how the number of stars observed in the
dSphs will increase with future observations. We estimated the number of stars at different
magnitudes in each dSph by drawing stars from an initial mass function [31] with a metallicity
of [Fe/H]=-2.2 and an age of 12.5 Gyr [32]. Taking the dSph absolute magnitudes compiled
in [14] and assuming a mass-to-light ratio of 2 we performed 1000 simulations with the Ultra-
faint Galaxy Likelihood (ugali) software toolkit2 [33, 34] to estimate the number of stars
at a given magnitude. At each magnitude limit we assumed that all stars brighter than
this are observed. We assume a limiting magnitude of rDECam < 23.5 which is expected for
future 30m class telescopes with multi-object spectrographs such as GMT/GMACS [35] and
E-ELT/MOSAIC [36]. Finally, we assume that the J-factor uncertainty scales according to
σfuture(J) = σcurrent(J)

√

Ncurrent/Nfuture, where N is the number of stars in a dSph and the
subscripts indicate current or forecast observations.

So far, we have only accounted for the statistical uncertainty on the J-factors, which
can be reduced by observing more stars. As mentioned above, we must also contend with
systematic errors due to, for instance, incorrect modeling assumptions and potential unre-
solved binary stars. Some of these sources of systematic error are likely to be reduced in the
future. For instance, high resolution simulations may be used to provide useful priors on the
degree of dSph triaxiality, and the impact of baryons on the dark matter profile. Similarly,
increasing the sample of line-of-sight velocities or future tangential velocity measurements
with Gaia, or other space based astrometry (e.g., the James Webb Space Telescope ), may
be able to reduce uncertainty on, e.g., the degree of stellar velocity anisotropy. In addition,
multi-epoch velocity data can identify unresolved binary stars [e.g., 37, 38]. However, there
are also systematic errors, such as the dark matter velocity distribution, that may be very
difficult to reduce, even with future data and improved simulations.

2https://github.com/DarkEnergySurvey/ugali.
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We adopt a simple and conservative prescription for including systematic uncertainties
on the J-factors in our analysis. Several authors [13, 30, 39] find that the impact of allowing
triaxial dark matter profiles can change the inferred J-factors by factors of a few. Simi-
larly, [13] find that assuming the incorrect stellar distribution or velocity anisotropy can bias
the J-factors by factors of a few. To roughly account for systematic errors, then, we perform
an analysis where the uncertainties on log10 J for all dSphs are increased by 0.5, correspond-
ing to a factor of roughly three uncertainty. This approach assumes that future analyses
adopt sufficiently flexible profile models so that unbiased constraints on the J-factors can be
obtained, albeit with higher uncertainties.

3.4 Imposing a prior on the rs-ρs relation

The analysis of [12] does not impose any informative prior on the relationship between rs and
ρs when fitting to the stellar velocity data. As we discuss in section 4.3, strong parameter
degeneracies degrade the precision of the resultant J-factor constraints. Numerical simula-
tions predict that rs and ρs are related for cold dark matter halos, and by imposing a prior
on this relationship we can change the inference of the J-factors and potentially improve the
J-factor precision. A similar point has recently been made by [40].

Following [6, 41], we adopt a Gaussian prior with mean

〈log10(rmax/kpc)〉 = 1.35 log10 (Vmax/(km/s)) − 1.75, (3.8)

and standard deviation
σ(log10(rmax/kpc)) = 0.22, (3.9)

where rmax = 2.16rs and Vmax = 0.465
√

4πGρsr2
s . This relation [41] was found from a fit to

subhalos in the Aquarius simulations [42].
We present an alternative derivation of the dSph velocity-dependent J-factors, using the

same posterior samples as in ref. [12], but with an additional weighting by the cosmological
prior given above. The resultant J-factor constraints are presented in appendix A. Below,
we will present results utilizing J-factors derived both with and without this J-factor prior.

4 Results

4.1 Generating and analyzing mock data

We generate mock data as follows. First, we assign a true J-factor to every dSph. The true
J-factors are set to µJ , i.e. the mean J values from the analysis of stellar data described in
section 3.3. We then randomly draw from the Poisson distributions in eq. (3.2) to assign
a mock dark matter annihilation signal to each dSph. We next draw from the background
distributions for each dSph to assign them mock background photon counts. The combined
signal and background counts for each dSph represent a mock data set that we can analyze
using the likelihood defined in eq. (3.5).

In figure 1 we show the posteriors on ΦP P that we obtain from our analyses of mock CTA
data, computed by evaluating eq. (3.5) across a grid of ΦP P values. Each curve represents
the posterior, P (ΦP P |~d), obtained from combining the constraints across all dSphs for a
different realization of mock data. For this figure we assume s-wave annihilation, with ΦP P =
5 × 10−33 cm3 s−1 GeV−2 (shown with the vertical black dashed line).

The red solid curve shows the recovered constraint on ΦP P assuming an exposure of
E0 = 20 hrs (per dSph) and using the true (non-Gaussian) J-factor PDFs from [12]. As
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maximize the likelihood over ΦP P , assuming either the value of n used to generate the mock
data or an alternative choice.

For two models (model 1 and model 2), the difference in the maximum likelihoods,
∆ ln Lmax = Lmax,1 − Lmax,2, is related to our ability to reject model 2 in favor of model 1,
based on the data. For instance, two common criteria for model selection are the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC), both of which are
related to the ∆ ln Lmax between models [e.g., 43]. The BIC, for example, is given by

BIC = k ln ND − 2 ln Lmax, (4.1)

where k is the number of free parameters in the model (i.e. k = 1 when ΦP P is varied, and
k = 0 for the null model that has no dark matter signal), and ND is again the number
of dSphs. Given a set of models, it can be shown that under certain approximations, the
posterior probability of model i is proportional to exp[−BICi/2] [43]. Since here k ln Nd is
small, when comparing two fits to the data with different values of n, if ∆Lmax ≫ 1 the
model with the larger maximum likelihood will be strongly favored over the other model. In
the present circumstances, the difference between e.g. the AIC and BIC will be small, since
we are most interested in cases where ln Lmax is large. Below, we will report the ∆ ln Lmax

between the true model (i.e. the one used to generate the data) and an alternate model.
Figure 2 shows the ability of future observations of dSphs with a CTA-like experiment

to distinguish different alternative velocity-dependent annihilation models, assuming the true
model is s-wave (n = 0). On the x-axis we plot the value of ΦP P used to generate the mock
data set, and on the y-axis we plot ∆ ln Lmax for n = −1 (second column), n = 2 (third
column) and n = 4 (fourth column). The first column of figure 2 represents the ∆ ln Lmax

between the true model and the model with ΦP P = 0 (i.e. no dark matter). For all panels,
solid lines are used for analyses with an exposure E0 = 20 hours, while the dashed lines are
used for an exposure of 5E0. Blue lines are used for analyses in which the velocity-dependent
J-factors and their uncertainties are as found given in [12]. Green lines are used for analyses
in which the J-factor uncertainties are reduced, based on an estimate of what precision
might be possible with a future survey with a magnitude limit of 23.5 (see section 3.3). Red
lines correspond to the most optimistic case, in which the uncertainties in the J-factors are
negligible. Finally, the translucent lines correspond to analyses in which the J-factors and
their uncertainties are derived using the cosmological prior described above. We note that,
since we are analyzing simulated realizations of the data, we expect some scatter in the
various curves with variance of order σ2(∆ ln Lmax) ∼ 1.

Figure 2 also shows the impact of our assumed σ(log10 J) = 0.5 systematic error (dot-
ted curves). It is clear that this level of systematic uncertainty significantly degrades the
constraints. This level of uncertainty corresponds to a (likely conservative) estimate of sys-
tematic uncertainties in current data. Our analysis therefore provides additional motivation
for reducing systematic uncertainties associated with J-factor measurements of dSphs.

Figure 3 and figure 4 are similar to figure 2, except that they use mock data generated
assuming Sommerfeld and p-wave annihilation, respectively. In appendix B we show the
corresponding results for our Fermi and AMEGO forecasts.

We find that for sufficiently high ΦP P , different models of the velocity-dependence can
be distinguished at high significance. In general, the significance with which different velocity-
dependence models can be distinguished is lower than that with which we can rule out the
null model (i.e. no dark matter). This is sensible: we must be able to detect the dark matter
signal before we can determine the velocity dependence of the dark matter annihilation cross
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These two facts together explain why the maximized likelihood tends to favor the model
of Sommerfeld-enhanced annihilation (given current J-factor uncertainties) even if the true
model is s-wave annihilation. Consider two annihilation models, 1 and 2, with velocity-
dependence specified by n1 and n2 such that n1 −n2 = ∆n. The J-factor of a dSph computed
assuming model 2 will differ from that assuming model 1 by a factor of order V ∆n

max. Since
the Vmax values are similar across all dSphs, if ∆n is small, then the J-factors of all dSphs
for these two models will roughly differ by only an overall common factor, which can be
compensated by a rescaling of ΦP P . Moreover, if n1 > n2, then as we argued above, the n1

model will yield larger uncertainties on the J-factors. The large J-factor uncertainties mean
that when varying ΦP P , model 1 (with the larger value of n) will yield a lower maximum
likelihood than model 2, regardless of which was the true model. Therefore, the larger n
model (n1) will be disfavored. For large ∆n, on the other hand, the small differences in Vmax

between the different dSphs will be magnified. If ∆n is sufficiently large, the J-factors of
the different dSphs will become sufficiently different that the true n model will be favored
despite possible differences in the J-factor uncertainties.

This effect explains the strange behavior seen in figure 2 when the data generated
assuming s-wave annihilation are analyzed with the Sommerfeld model. In this case, ∆n = 1
and the model with the lower value of n (Sommerfeld) is preferred slightly over s-wave for
current J-factor uncertainty, even though this is not the true model. This effect persists
even at high ΦP P , since in these cases the J-factor uncertainty dominates the width of
the likelihood. The only remedy to this situation is to obtain tighter constraints on the J-
factors, as seen in the bottom row of figure 2. Note that, as shown in figure 3, the Sommerfeld
model is always preferred when the data are generated assuming Sommerfeld annihilation.
Since the Sommerfeld model has the lowest value of n, other annihilation models will yield
larger J-factor uncertainties; thus, in this case, the true model will also have the smallest
J-factor uncertainties.

Similarly, we see in figure 4 that, if the mock data are generated assuming p-wave
annihilation, then with current J-factor uncertainties, the likelihood would show a preference
for the s-wave model over the true p-wave model. But the true model is preferred over the
Sommerfeld model; although the J-factors for the Sommerfeld model are smaller, for this
case ∆n is large enough that the relative differences in the J-factors can be distinguished.
But in all cases we find that, if the J-factor uncertainties can be sufficiently reduced, then a
reasonable data set can be used to distinguish the true model of dark matter annihilation.

One might expect imposing the prior on the rs-ρs relation to help here, since this prior
will decrease the J-factor uncertainty (as seen for most dSphs in the bottom right panel
of figure 5). However, we find that the Vmax values still remain close together (to within
the uncertainties) upon the application of the rs-ρs prior, as seen in the top right panel
of figure 5. Furthermore, we find that imposing the cosmological prior can shift the mean
J-factors. As seen in appendix A, the imposition of the prior tends to reduce the J-factors
more as n is increased. This explains why when the data are generated assuming s-wave
and p-wave annihilation (figures 2 and 4, respectively), the imposition of the prior typically
leads to slightly reduced ∆ ln Lmax, while for Sommerfeld-enhanced annihilation (figure 3),
the imposition of the prior leads to somewhat enhanced ∆ ln Lmax.

– 14 –



J
C
A
P
0
7
(
2
0
2
1
)
0
3
0

5 Conclusions

We have considered the prospects for gamma-ray searches of dwarf spheroidal galaxies to
determine the power-law velocity-dependence of the dark matter annihilation cross section.
The key principle behind this study is that if the dark matter profile is parameterized only
by a scale radius rs and scale density ρs, then the dark matter velocity distribution in any
subhalo is characterized by a single velocity parameter Vmax ∝ (GN ρsr2

s)1/2. Thus, the
photon flux from any dSph is proportional to powers of (ρsr2

s)1/2, where the proportionality
constant is universal, but ρs and rs are unique to each dSph and can be estimated from stellar
data. Although the photon flux from one dSph cannot distinguish the effect of the velocity-
dependence from that of the overall normalization of the annihilation flux, the relative photon
fluxes from many dSphs should, in principle, be sufficient to distinguish between different
models of dark matter annihilation.

In practice, we have found that this intuition is correct, but with some caveats. We
have considered theoretically-motivated scenarios in which the annihilation cross section has
a velocity-dependence proportional to (v/c)n, with n = −1, 0, 2, 4. In general, more exposure
is required to reject a dark matter annihilation model with the wrong velocity-dependence
than is required to reject the background-only scenario. But the larger the difference in n
between the true model and the alternate hypothesis, the smaller the exposure required to
reject the false hypothesis.

Interestingly, for current J-factor uncertainty levels, we have found that if the true
velocity dependence of the annihilation is ntrue, it can be difficult or impossible to reject
models with n < ntrue, even at large exposure and ΦP P . The basic reason is that uncertainties
in the velocity-dependent J-factor tend to increase with n, given the stellar velocity data.
Because the velocity parameters of the various dSphs which are currently observed are all
roughly O(10 km/ s), up to uncertainties, the Vmax-dependent rescaling of the J-factors which
would be required for a different choice of annihilation model is approximately the same for
all dSphs, when compared to their current uncertainties. This rescaling can be absorbed by
the overall normalization ΦP P . Thus, if the likelihood is dominated by the uncertainties in
the J-factors, the large J-factor uncertainties for the large n models can cause these models
to be disfavored in a likelihood analysis.

But we also see that, if the future surveys can reduce the uncertainty in the J-factor,
then one could realistically distinguish the velocity-dependence of the dark matter annihi-
lation cross section, with an exposure only modestly larger than that needed to reject the
background-only model. We have shown that the necessary reduction in J-factor uncertain-
ties can be achieved with future stellar velocity measurements that probe fainter magnitude
stars. However, we also see that current levels of systematic error in the J-factor determi-
nation will make determining the velocity-dependence of the annihilation significantly more
difficult in several cases. Our analysis motivates additional efforts to reduce these systematic
errors. For example, the systemic error from the unknown stellar anisotropy can be probed
with future tangential velocity measurements [e.g., 44], the triaxiality of DM halos could be
addressed from numerical simulations [29], and the DM velocity anisotropy can potentially
also be addressed from numerical simulations [45].

In summary, upcoming gamma-ray observations of dSphs may not only be able to detect
the presence of dark matter annihilation, but may also be able to determine the velocity-
dependence of the annihilation cross section. But an improvement in the precision of stellar
data and control of systematic errors in the J-factor determination would be required in
order for the latter determination to be robust.
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dSph name Som. no
prior

Som. w/
prior

s no prior s w/ prior p no prior p w/ prior d no prior d w/ prior

aquarius2 22.70+0.44

−0.48
22.73+0.37

−0.45
18.48+0.62

−0.72
18.42+0.56

−0.78
10.51+1.08

−1.27
10.23+0.93

−1.56
2.70+1.56

−1.86
2.22+1.35

−2.35

bootes1 22.68+0.23

−0.24
22.71+0.19

−0.22
18.39+0.38

−0.45
18.22+0.27

−0.61
10.24+0.76

−0.93
9.69+0.43

−1.49
2.29+1.17

−1.42
1.33+0.60

−2.37

canesvenatici1 21.75+0.12

−0.12
21.82+0.11

−0.05
17.49+0.17

−0.24
17.45+0.13

−0.27
9.38+0.34

−0.63
9.16+0.21

−0.85
1.45+0.54

−1.04
1.03+0.28

−1.45

canesvenatici2 22.12+0.33

−0.35
22.17+0.30

−0.30
17.92+0.53

−0.55
17.78+0.44

−0.69
9.95+0.97

−1.03
9.43+0.76

−1.55
2.16+1.46

−1.52
1.27+1.09

−2.42

carina2 23.03+0.39

−0.41
23.10+0.32

−0.33
18.57+0.59

−0.66
18.49+0.46

−0.73
10.06+1.05

−1.29
9.70+0.77

−1.66
1.73+1.51

−1.93
1.08+1.07

−2.57

carina 22.25+0.09

−0.11
22.32+0.10

−0.03
17.88+0.10

−0.11
17.89+0.09

−0.11
9.54+0.16

−0.29
9.45+0.11

−0.38
1.37+0.26

−0.50
1.19+0.15

−0.69

comaberenices 23.46+0.28

−0.29
23.40+0.25

−0.36
19.25+0.50

−0.57
19.01+0.38

−0.81
11.29+1.05

−1.15
10.69+0.70

−1.75
3.50+1.62

−1.75
2.54+1.03

−2.71

crater2 20.34+0.18

−0.20
20.81+0.17

−0.27
15.56+0.23

−0.25
16.03+0.24

−0.23
6.43+0.37

−0.42
6.91+0.35

−0.06
−2.54+0.54

−0.63
−2.05+0.47

−0.14

draco1 23.08+0.12

−0.13
23.09+0.11

−0.12
18.96+0.16

−0.20
18.91+0.13

−0.25
11.13+0.30

−0.47
10.97+0.20

−0.64
3.50+0.46

−0.75
3.20+0.31

−1.05

fornax 22.36+0.10

−0.10
22.39+0.09

−0.07
18.11+0.09

−0.10
18.13+0.09

−0.07
10.05+0.09

−0.09
10.06+0.09

−0.08
2.16+0.10

−0.10
2.17+0.09

−0.10

hercules 21.84+0.39

−0.38
21.98+0.29

−0.23
17.35+0.54

−0.58
17.38+0.41

−0.55
8.78+0.91

−1.10
8.59+0.66

−1.29
0.38+1.31

−1.68
0.01+0.94

−2.05

horologium1 23.42+0.51

−0.59
23.36+0.55

−0.65
19.28+0.80

−0.87
19.25+0.90

−0.89
11.39+1.39

−1.59
11.47+1.59

−1.51
3.67+2.03

−2.39
3.85+2.31

−2.20

hydrus1 23.34+0.25

−0.28
23.27+0.20

−0.35
18.93+0.47

−0.57
18.61+0.29

−0.89
10.58+1.03

−1.21
9.73+0.51

−2.07
2.42+1.61

−1.85
1.01+0.75

−3.25

leo1 21.81+0.09

−0.10
21.86+0.09

−0.05
17.64+0.12

−0.19
17.60+0.09

−0.23
9.72+0.27

−0.53
9.50+0.15

−0.75
2.00+0.47

−0.85
1.57+0.22

−1.28

leo2 22.03+0.15

−0.16
22.02+0.13

−0.17
17.66+0.15

−0.16
17.64+0.14

−0.17
9.33+0.18

−0.20
9.31+0.18

−0.22
1.19+0.23

−0.26
1.16+0.23

−0.29

reticulum2 23.53+0.30

−0.32
23.43+0.25

−0.42
19.16+0.53

−0.64
18.87+0.37

−0.93
10.86+1.08

−1.38
10.19+0.67

−2.05
2.75+1.66

−2.13
1.68+0.99

−3.19

sagittarius2 22.03+0.70

−1.16
22.66+0.34

−0.53
17.48+0.79

−1.23
18.09+0.46

−0.63
8.83+1.07

−1.42
9.37+0.69

−0.88
0.35+1.37

−1.66
0.83+0.93

−1.19

sculptor 22.88+0.05

−0.06
22.89+0.05

−0.04
18.63+0.05

−0.05
18.63+0.05

−0.06
10.55+0.09

−0.15
10.52+0.08

−0.18
2.65+0.16

−0.26
2.59+0.13

−0.32

segue1 23.71+0.53

−0.39
23.60+0.37

−0.49
19.12+0.68

−0.63
18.96+0.58

−0.79
10.32+1.08

−1.40
10.11+0.98

−1.60
1.67+1.50

−2.30
1.44+1.42

−2.53

sextans 22.21+0.09

−0.10
22.32+0.09

−0.00
17.87+0.10

−0.12
17.90+0.09

−0.09
9.56+0.17

−0.33
9.49+0.12

−0.40
1.42+0.26

−0.61
1.26+0.16

−0.77

tucana2 23.30+0.39

−0.44
23.35+0.35

−0.39
19.13+0.56

−0.65
19.09+0.52

−0.70
11.24+0.99

−1.13
11.00+0.87

−1.37
3.53+1.44

−1.66
3.08+1.23

−2.11

ursamajor1 22.68+0.23

−0.22
22.70+0.20

−0.20
18.40+0.32

−0.37
18.33+0.26

−0.44
10.26+0.55

−0.82
10.03+0.40

−1.05
2.27+0.76

−1.36
1.91+0.57

−1.72

ursamajor2 23.85+0.32

−0.33
23.84+0.30

−0.34
19.72+0.49

−0.54
19.62+0.46

−0.65
11.90+0.93

−1.08
11.58+0.80

−1.39
4.25+1.39

−1.64
3.72+1.16

−2.17

ursaminor 23.07+0.12

−0.12
23.09+0.11

−0.10
18.80+0.11

−0.11
18.80+0.10

−0.11
10.68+0.14

−0.18
10.66+0.13

−0.20
2.73+0.19

−0.29
2.69+0.18

−0.33

willman1 23.82+0.39

−0.42
23.74+0.41

−0.49
19.46+0.52

−0.73
19.47+0.62

−0.72
11.14+0.89

−1.60
11.36+1.09

−1.38
3.01+1.32

−2.47
3.42+1.59

−2.06

Table 1. J-factors computed from the analysis of stellar data in [12] with and without imposing a
cosmological prior on the rs-ρs relation (see section 3.4). Numbers represent log

10
(J/GeV2cm−5).

– 17 –









J
C
A
P
0
7
(
2
0
2
1
)
0
3
0

[9] K.K. Boddy, J. Kumar and L.E. Strigari, Effective J-factor of the Galactic Center for

velocity-dependent dark matter annihilation, Phys. Rev. D 98 (2018) 063012
[arXiv:1805.08379] [INSPIRE].

[10] T. Lacroix, M. Stref and J. Lavalle, Anatomy of Eddington-like inversion methods in the

context of dark matter searches, JCAP 09 (2018) 040 [arXiv:1805.02403] [INSPIRE].

[11] K.K. Boddy, J. Kumar, J. Runburg and L.E. Strigari, Angular distribution of gamma-ray

emission from velocity-dependent dark matter annihilation in subhalos, Phys. Rev. D 100

(2019) 063019 [arXiv:1905.03431] [INSPIRE].

[12] K.K. Boddy, J. Kumar, A.B. Pace, J. Runburg and L.E. Strigari, Effective J-factors for Milky

Way dwarf spheroidal galaxies with velocity-dependent annihilation, Phys. Rev. D 102 (2020)
023029 [arXiv:1909.13197] [INSPIRE].

[13] V. Bonnivard, C. Combet, D. Maurin and M.G. Walker, Spherical Jeans analysis for dark

matter indirect detection in dwarf spheroidal galaxies — Impact of physical parameters and

triaxiality, Mon. Not. Roy. Astron. Soc. 446 (2015) 3002 [arXiv:1407.7822] [INSPIRE].

[14] A.B. Pace and L.E. Strigari, Scaling Relations for Dark Matter Annihilation and Decay Profiles

in Dwarf Spheroidal Galaxies, Mon. Not. Roy. Astron. Soc. 482 (2019) 3480
[arXiv:1802.06811] [INSPIRE].

[15] J. Kumar and D. Marfatia, Matrix element analyses of dark matter scattering and annihilation,
Phys. Rev. D 88 (2013) 014035 [arXiv:1305.1611] [INSPIRE].

[16] F. Giacchino, L. Lopez-Honorez and M.H.G. Tytgat, Scalar Dark Matter Models with

Significant Internal Bremsstrahlung, JCAP 10 (2013) 025 [arXiv:1307.6480] [INSPIRE].

[17] T. Toma, Internal Bremsstrahlung Signature of Real Scalar Dark Matter and Consistency with

Thermal Relic Density, Phys. Rev. Lett. 111 (2013) 091301 [arXiv:1307.6181] [INSPIRE].

[18] N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter,
Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].

[19] J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld Enhancements for Thermal Relic Dark

Matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [INSPIRE].

[20] A. Geringer-Sameth and S.M. Koushiappas, Exclusion of canonical WIMPs by the joint

analysis of Milky Way dwarfs with Fermi, Phys. Rev. Lett. 107 (2011) 241303
[arXiv:1108.2914] [INSPIRE].

[21] K. Boddy, J. Kumar, D. Marfatia and P. Sandick, Model-independent constraints on dark

matter annihilation in dwarf spheroidal galaxies, Phys. Rev. D 97 (2018) 095031
[arXiv:1802.03826] [INSPIRE].

[22] L.M. Widrow, Distribution Functions for Cuspy Dark Matter Density Profiles, Astrophys. J.

Suppl. 131 (2000) 39.

[23] K.K. Boddy, S. Hill, J. Kumar, P. Sandick and B. Shams Es Haghi, MADHAT: Model-Agnostic

Dark Halo Analysis Tool, Comput. Phys. Commun. 261 (2021) 107815 [arXiv:1910.02890]
[INSPIRE].

[24] K.K. Boddy and J. Kumar, Indirect Detection of Dark Matter Using MeV-Range Gamma-Ray

Telescopes, Phys. Rev. D 92 (2015) 023533 [arXiv:1504.04024] [INSPIRE].

[25] AMEGO collaboration, All-sky Medium Energy Gamma-ray Observatory: Exploring the

Extreme Multimessenger Universe, Bull. Am. Astron. Soc. 51 (2019) 245 [arXiv:1907.07558]
[INSPIRE].

[26] L.E. Strigari et al., The Most Dark Matter Dominated Galaxies: Predicted Gamma-ray Signals

from the Faintest Milky Way Dwarfs, Astrophys. J. 678 (2008) 614 [arXiv:0709.1510]
[INSPIRE].

– 21 –



J
C
A
P
0
7
(
2
0
2
1
)
0
3
0

[27] V. Bonnivard et al., Dark matter annihilation and decay in dwarf spheroidal galaxies: The

classical and ultrafaint dSphs, Mon. Not. Roy. Astron. Soc. 453 (2015) 849
[arXiv:1504.02048] [INSPIRE].

[28] A. Geringer-Sameth, S.M. Koushiappas and M. Walker, Dwarf galaxy annihilation and decay

emission profiles for dark matter experiments, Astrophys. J. 801 (2015) 74 [arXiv:1408.0002]
[INSPIRE].

[29] J.C. Muñoz-Cuartas, A.V. Maccio, S. Gottlober and A.A. Dutton, The Redshift Evolution of

LCDM Halo Parameters: Concentration, Spin, and Shape, Mon. Not. Roy. Astron. Soc. 411

(2011) 584 [arXiv:1007.0438] [INSPIRE].

[30] J.L. Sanders, N.W. Evans, A. Geringer-Sameth and W. Dehnen, Indirect Dark Matter Detection

for Flattened Dwarf Galaxies, Phys. Rev. D 94 (2016) 063521 [arXiv:1604.05493] [INSPIRE].

[31] G. Chabrier, The galactic disk mass-budget: I. stellar mass-function and density, Astrophys. J.

554 (2001) 1274 [astro-ph/0107018] [INSPIRE].

[32] A. Bressan et al., PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar

Evolution Code, Mon. Not. Roy. Astron. Soc. 427 (2012) 127 [arXiv:1208.4498] [INSPIRE].

[33] DES collaboration, Eight New Milky Way Companions Discovered in First-Year Dark Energy

Survey Data, Astrophys. J. 807 (2015) 50 [arXiv:1503.02584] [INSPIRE].

[34] DES collaboration, Eight Ultra-faint Galaxy Candidates Discovered in Year Two of the Dark

Energy Survey, Astrophys. J. 813 (2015) 109 [arXiv:1508.03622] [INSPIRE].

[35] D.L. DePoy et al., GMACS: a wide-field, moderate-resolution spectrograph for the Giant

Magellan Telescope, Proc. SPIE 10702 (2018) 107021X.

[36] C. Evans et al., The Science Case for Multi-Object Spectroscopy on the European ELT,
arXiv:1501.04726.

[37] G.D. Martinez, Q.E. Minor, J. Bullock, M. Kaplinghat, J.D. Simon and M. Geha, A Complete

Spectroscopic Survey of the Milky Way satellite Segue 1: Dark matter content, stellar

membership and binary properties from a Bayesian analysis, Astrophys. J. 738 (2011) 55
[arXiv:1008.4585] [INSPIRE].

[38] E.N. Kirby, J.G. Cohen, J.D. Simon, P. Guhathakurta, A.O. Thygesen and G.E. Duggan,
Triangulum II. Not Especially Dense After All, Astrophys. J. 838 (2017) 83
[arXiv:1703.02978].

[39] K. Hayashi, K. Ichikawa, S. Matsumoto, M. Ibe, M.N. Ishigaki and H. Sugai, Dark matter

annihilation and decay from non-spherical dark halos in galactic dwarf satellites, Mon. Not.

Roy. Astron. Soc. 461 (2016) 2914 [arXiv:1603.08046] [INSPIRE].

[40] S. Ando and K. Ishiwata, Sommerfeld-enhanced dark matter searches with dwarf spheroidal

galaxies, arXiv:2103.01446 [INSPIRE].

[41] G.D. Martinez, J.S. Bullock, M. Kaplinghat, L.E. Strigari and R. Trotta, Indirect Dark Matter

Detection from Dwarf Satellites: Joint Expectations from Astrophysics and Supersymmetry,
JCAP 06 (2009) 014 [arXiv:0902.4715] [INSPIRE].

[42] V. Springel et al., The Aquarius Project: the subhalos of galactic halos, Mon. Not. Roy. Astron.

Soc. 391 (2008) 1685 [arXiv:0809.0898] [INSPIRE].

[43] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, Springer Series
in Statistics, Springer New York Inc., New York, NY, U.S.A. (2001).

[44] D. Massari, M.A. Breddels, A. Helmi, L. Posti, A.G.A. Brown and E. Tolstoy,
Three-dimensional motions in the Sculptor dwarf galaxy as a glimpse of a new era, Nat.

Astron. 2 (2018) 156 [arXiv:1711.08945].

[45] E. Board et al., Velocity-dependent J-factors for annihilation radiation from cosmological

simulations, JCAP 04 (2021) 070 [arXiv:2101.06284] [INSPIRE].

– 22 –


	Introduction
	General formalism
	Forecasting future constraints on the dark matter annihilation velocity-dependence
	The likelihood for photon counts from dSphs
	Background modeling
	J-factors and their uncertainties
	Imposing a prior on the r(s)-rho(s) relation

	Results
	Generating and analyzing mock data
	Ability of future dSph observations to constrain the dark matter annihilation velocity dependence
	The impact of J-factor uncertainty

	Conclusions
	J-factors with cosmological prior
	Likelihood results for different observational configurations and velocity dependences

