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Abstract

Intelligent agents with visual sensors are allowed to ac-
tively explore their observations for better recognition per-
formance. This task is referred to as Active Recognition
(AR). Currently, most methods toward AR are implemented
under a fixed-category setting, which constrains their ap-
plicability in realistic scenarios that need to incrementally
learn new classes without retraining from scratch. Further,
collecting massive data for novel categories is expensive.
To address this demand, in this paper, we propose a unified
framework towards Few-sample Lifelong Active Recogni-
tion (FLAR), which aims at performing active recognition
on progressively arising novel categories that only have few
training samples. Three difficulties emerge with FLAR: the
lifelong recognition policy learning, the knowledge preser-
vation of old categories, and the lack of training samples.
To this end, our approach integrates prototypes, a robust
representation for limited training samples, into a reinforce-
ment learning solution, which motivates the agent to move
towards views resulting in more discriminative features.
Catastrophic forgetting during lifelong learning is then al-
leviated with knowledge distillation. Extensive experiments
across two datasets, respectively for object and scene recog-
nition, demonstrate that even without large training sam-
ples, the proposed approach could learn to actively recog-
nize novel categories in a class-incremental behavior.

1. Introduction
Visual recognition has been widely studied and achieved

remarkable success in recent decades. In contrast to pas-
sive recognition from a still image, in robot learning sce-
narios, an intelligent agent is allowed to explore different
viewpoints and is equipped with the capability to make de-
cisions about what to observe. This problem is referred to as
Active Recognition (AR), with two specific tasks illustrated
in Figure 1(a).

A number of AR methods [4, 18, 12, 6, 23, 13, 7] have
been proposed over the years with learning-based models.
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“What is it?” - Banana
Rotate

“Where am I?” - Beach

(a) The schematic illustrations of two AR tasks: active 3D object recogni-
tion and panoramic scene recognition. The system could intelligently select
actions to acquire better views.
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Time (Robot Exploration)

...

(b) A demonstration of lifelong learning during robot exploration. The sys-
tem needs to expand its knowledge to novel categories that are discovered
continuously.
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(c) A diagram depicting the relation with other tasks. The terms LAR and
FLAR are abbreviations for Lifelong Active Recognition and Few-sample
Lifelong Active Recognition.

Figure 1. FLAR is one challenging task that requires expanding dy-
namically to novel classes with few training samples. Meanwhile,
the task setting fits the practical needs of robotic applications that
need exploring previously unseen environments.

Despite achieving promising results, these methods are con-
fined to a classical learning setting, i.e., the recognition de-
cision can only be made for the samples from the trained
categories, and massive training data are usually required
to facilitate the learning process. When it comes to more
practical settings where novel categories are continuously
emerging, and more notoriously, only a few samples are
available for the emerging category, it is not clear whether
these models still remain effectual.
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This problem is surprisingly under-explored in the litera-
ture but is imperative in realistic autonomous agent applica-
tions. In many scenarios, the agent trained in the backend to
actively recognize fixed categories will be required to incre-
mentally expand its AR ability for novel classes on the fly.
We call this problem Lifelong Active Recognition (LAR), il-
lustrated in Figure 1(b). Further, it is often costly to collect
many training samples for novel categories, let alone the
possibility that the samples of the novel category are scarce
per se. This motivates us to study a new problem, Few-shot
Lifelong Active Recognition (FLAR), that is both necessary
and challenging. In Figure 1(c), the relationship of FLAR
with closed problems is depicted.

Formally, FLAR raises three requirements to the agent.
(1) The agent should be capable of making decisions to ex-
plore the most informative viewpoints based on the current
stage so as to direct senses for a better understanding of sur-
roundings. This fits into the realm of AR [32, 6, 4, 20, 41].
(2) The agent should adapt the power of exploration and
recognition learned from old classes to new concepts while
avoiding training from scratch. It is related to incremen-
tal learning [31, 30, 36]. (3) The agent should learn new
concepts from limited training samples. It is connected
with few-shot learning [37, 33, 15]. These requirements
compose our FLAR problem, which delivers an intelligent
agent that could incrementally learn to explore and recog-
nize novel categories with only a few training samples.

Corresponding to these demands, three major challenges
are posed by FLAR. (1) The previous AR methods typi-
cally learn a recognition policy from categories with mas-
sive training data. The constraint of few training samples
for incremental categories will certainly impede the suc-
cess of the policy training. (2) In the incremental learn-
ing setting, the agent is evaluated by the recognition per-
formance of not only the categories on the fly but also old
categories. Thus the catastrophic forgetting issue [30] needs
to be tackled when new categories continuously emerge. (3)
The risk of overfitting always exists for few-sample learn-
ing. Generalization from few samples needs to be fulfilled
in our setting. In summary, FLAR is highly unconstrained
with complex viewing conditions, growing recognition cat-
egories, and limited training samples.

In this paper, we propose a novel approach towards
FLAR, a challenging but practical task that is under-
explored. Although the challenges of FLAR scatter into dif-
ferent research fields, we address them in a unified frame-
work. The main idea is that we hypothesize there exists
a prototype in the embedding space to represent each cat-
egory by averaging the aggregations of the budgeted ex-
ploratory observations for each sample. This facilitates
flexible policy learning while simplifies knowledge preser-
vation during class-incremental learning. Then for novel
emerging categories, the agent is only required to take

movements for the purpose of distinguishing the newly ob-
tained features with prototypes of the trained categories.
Note that the exemplars that best estimate prototypes are
delicately selected and stored in the agent memory, which
would be instilled during novel category learning.

Specifically, the insights of the proposed method aim-
ing at the challenges of FLAR are three-fold: (1) The agent
learns the active recognition policy based on a newly de-
signed reward that favors a closer distance between aggre-
gated features and the correct class prototype in the embed-
ding space. (2) To handle the forgetting issue, only limited
exemplars are stored in the agent memory in prioritized or-
der. By reproducing consistent outputs for the exemplars
utilizing the knowledge distillation mechanism, we incorpo-
rate the distribution of the old classes during learning novel
concepts. (3) The prototype of each category, which serves
as robust representations, potentially makes our approach
adaptive to the few-training-sample challenge.

2. Related work
Active vision. Active vision has a long history in litera-
ture, which is pioneered by [2, 1, 8]. The common mo-
tivation behind these works is to bring intelligent control
strategies to different visual tasks, i.e., the agent should ac-
tively obtain observations with its own purpose. Follow-
ing this idea, active vision has been exploited in several
lines, covering tasks like recognition [34, 4, 18, 26, 24, 38],
navigation [39, 11, 5], localization [3] and scene comple-
tion [19, 29].

As a notable branch of active vision, prior AR approaches
can be mainly identified into two groups based on whether
explicitly measuring information gains between different
views. For the method describing gains explicitly, [32] pro-
poses a 3D saliency model to guide action selections. Oth-
ers [6, 4] perform information gain maximization by repre-
senting the problem as a partially observable Markov de-
cision process (POMDP). These methods tend to disam-
biguate among candidate labels with view-specific profits.
On the other hand, there are approaches that undertake AR
with deep reinforcement learning methods, in which poli-
cies are learned by gathering interaction experiences with
the environment. For example, in [18], three modules, in-
cluding control, single view recognition and evidence fu-
sion, are composed in an end-to-end trainable system. The
auxiliary task of predicting future observations helps to
build correlations between views and movements. [12] con-
siders establishing a consistent 3D latent model for each
category by estimating depth and ego-motions from images.
The policy aggregates the latent map recurrently to predict
actions. In stark contrast to the FLAR task, most existing
AR methods are performed with predetermined categories
and do not support expanding to new classes. However, the
agent exploration is inherently incremental: novel classes
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that could not be known in advance are demanded to be in-
corporated by the agent continuously.
Lifelong learning. Lifelong learning [27, 9, 30, 31, 36,
17, 35, 16, 21], also named continual learning, remains
a long-standing challenge for machine learning since the
catastrophic forgetting always occurs in non-stationary data
distributions. Class-incremental learning requires progres-
sively adding novel classes without restarting training from
scratch. A training strategy towards class-incremental
learning criteria is firstly proposed in [30], where the knowl-
edge distillation is utilized to maintain information from
previous time points. [31] pays attention to incremental
learning on the few-shot image classification by introduc-
ing meta-learning on an attention module. Other current
works [36, 16] also intend to implement continual learn-
ing under various difficult conditions. Our approach, on
the other hand, focuses on FLAR which comprises lifelong
learning on the sequence-based decision and recognition
process.

Recent adaptive agents methods [39, 25, 28, 14] adopt
continual learning techniques for dynamic environments.
The robot movement policy proposed in [28] could evolve
with kinematic changes, e.g., to lose a wheel during explo-
ration. These prospective works [39, 25] share similar mo-
tivation with our work, which is to address difficulties in-
troduced by non-stationary environments. However, their
method is unsuitable for FLAR since the knowledge preser-
vation is not a precedent concern in these works.
Few-shot learning. There are plenty of works showing in-
terest in few-shot image classification [33, 15, 37, 22, 42].
Their few-training-sample setting is closely related to the
FLAR task. Various approaches have been delivered and
could be roughly categorized into model-based, metric-
based and optimization-based methods. In [33], they ad-
dress few-shot image classification in the sense of metric
learning by building a deep network as a function that could
map the same-class inputs to the neighboring area in the em-
bedding space. MAML [15] instead intends to learn a good
parameter initialization of the base learner through gradi-
ents back-propagation. Our work shares a similar assump-
tion with [33], i.e., the classifier should have a simple induc-
tive bias to prevent overfitting with few samples. Following
this assumption, our work towards FLAR introduces proto-
type representation during policy learning, which prompts
an effective policy to obtain more informative views.

3. Method

For ease of presentation, we first define the setup and no-
tations for FLAR. Then we describe three significant com-
ponents of the proposed method and explain how their com-
bination allows performing FLAR. An overview of our ap-
proach is demonstrated in Figure 2.

Agent

Environment

Class iClass i-1

Class i-2

Class i-3

Class i+2
Class i+1

Aggregator (LSTM)

Visual Encoder

Action Policy C
lassifier

time t

action

observation

Exemplar
Memory

...
Class i-3

Class i-1
Class i-2

Figure 2. An overview of the proposed approach towards FLAR.
Each task is denoted with a colored dot. The agent could inter-
act with the environment by obtaining observations and making
movements, which benefits recognition. As the agent exploring
in the environment, the proposed method expands its recognition
ability to new classes.

3.1. Problem setup and notation

We describe our setting by applying it to an active object
recognition scenario.

The active object recognition Agent is given an object
instance x with an unknown label y. A total of T timesteps
is allowed for the Agent to predict the category of the ob-
ject. At timestep t = 1, 2, . . . , T − 1, the Agent could
additionally select an action a ∈ A, e.g., to rotate up the
object 30 degrees, where A denotes the action space. As
a result of taking movement, the visual sensor mounted on
the Agent could get new observations of target instance x.
We assume the visual sensor remains at the same position
while only rotating the object. To be more specific, the vi-
sual observation at time t is a 2D view as vt = P(x, pt),
where P(·, ·) is a projection function and pt is the corre-
sponding viewpoint. We evenly discretize the space of all
viewpoints into a view-grid with the size of M azimuths ×
N elevations. Then, each viewpoint can be designated to
pt = (m,n) with m ∈ M,n ∈ N . The objective of Agent
during a recognition episode is, therefore, three-fold, in-
cluding making efficient exploration, aggregating observa-
tions among timesteps, and classification based on the fused
information.

After introducing the recognition setting, we then char-
acterize the detailed setup of incremental learning. As the
Agent exploring in the environment, novel classes could
occur at any time. A recognition task X indicates learning
active recognition on specified categories. The Agent ex-
ploration can then be described as a class-incremental task
stream Xbase, X1, X2, . . . , Xy, . . . . The Xbase is the ini-
tial training set before the Agent exploration, which is from
Cbase categories. Each following task, as training samples
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of novel categories Cnovel, is Xy = {xy
1, . . . , x

y
k}, y ∈

Cnovel. Since the high expense of collecting training sam-
ples for newly discovered categories y ∈ Cnovel, we limit
the samples in Xy by letting |Xy| = k, where k is lim-
ited to 3, 5, 10 in our setting. For evaluation, the system is
tested on the accuracy of its category prediction ŷ, and ŷ
belongs to seen candidate categories, i.e., ŷ ∈ Cseen with
Cseen = Cbase ∪ Cnovel.

3.2. Prototype-guided active recognition

We comprehend AR as a procedure of achieving more
discriminative features by reaching different views. Let
us recall the basic motivation of AR, which is based on
an observation that a single static image might not include
enough information for classification, especially in an un-
constrained environment. In other words, a static image
might not be discriminative enough. The action selection of
the agent can then be seen as a policy on the feature space,
which should be rewarded if its representation becomes eas-
ier to differentiate from candidate categories.

In this part, we introduce our AR system in four steps.
Firstly, we describe the representations that we want to
learn during policy training. Then we introduce our recog-
nition system architecture to achieve objective representa-
tions. The novel reward designed on our representation,
as motivating attaining better views, is described. Finally,
other losses for training our AR system are provided.
Prototype representation learning With a 3D object in-
stance x, our recognition system could obtain a 2D view
projection at time t, which is denoted as vt = P(x, pt).
The current view vt together with other proprioceptions, in-
cluding both the relative position pt−1,t and the timestep t
itself, are regarded as the observations which is denoted as
Xt = h(vt, pt−1,t, t), where h(·) is a fuse operation.

We present our representation module as f → Rd, a net-
work to aggregate observations among timesteps. After ac-
tively taking T−1 movements, the representation for object
x is qx = f(X1,X2, . . . ,XT ). Since training samples are
limited, we hypothesize a prototype representation around
which are aggregated features for the same class. Since
the feature qx is extracted from multi-views and their rel-
ative poses, the correlation between views and viewpoints
could be obtained during training, which, in other words,
describes the object shape. Compared to the few-shot image
classification method [33], the restrictive description ability
of only one prototype could be alleviated to some extent by
absorbing shape information.

For each category y, the prototype comes from a col-
lected set Qy = {qy1 , q

y
2 , . . . } as µy = 1

|Qy|
∑

q∈Qy q.
Then, for an object instance x with the representation qx,
its label is assigned as:

ŷ = argminy||qx − µy||. (1)

The label assignment is equal to ŷ = argmaxyµ
yqx after

we normalize representations. Therefore, we could consider
the prototype of each category as a weight vector from our
final linear layer, which is multiplied with qx for category
probabilities. During training our AR system, we form the
prototype representation learning with a loss term defined
as:

Lcategory = −
∑
i

Fsoftmax(ŷ
i, yi), (2)

where Fsoftmax is the softmax function, and the superscript
i denotes the corresponding training sample.
Active recognition system Our AR system is modeled on
the architecture proposed in [18], which is mainly com-
posed of three modules. The first module performs as a
non-linear mapping function, which is previously defined
as f(·). In our approach, we utilize a combination of a vi-
sual encoder and an LSTM network to recurrently fuse ob-
servations. The second module, i.e., the policy, could be
treated as a Partially Observable Markov Decision Process
(POMDP), whose pdf is defined as π(at|Xt−1, θ). θ is the
parameter we want to obtain with policy gradients. This
module is represented as a combination of linear layers in
our approach, which predicts action distributions with the
aggregated features. The third module is the classifier, i.e.,
a linear layer with the weight of prototypes for each cate-
gory. At each timestep t, the proposed AR system selects
an action with the highest probabilities. The classification
is then applied to obtained temporally aggregated features.
Rewards for discrimination We design a novel reward
to motivate the agent to choose views that result in more
discriminative features. According to our classification in
Equation 1, the discrimination ability between a feature and
prototypes could be defined on their Euclidean distances.
Intuitively, an increase of probabilities on the correct cate-
gory represents the new feature becomes closer to the cor-
rect prototype among all candidates. We then define the re-
ward R(ŷt, ŷt+1) = 1 as the growth of predicted probability
of correct category, which promotes policy learning. Com-
pared to a simple reward as R(ŷ)t = 1 when the category
prediction is correct, our proposed reward always focuses
on achieving better views progressively.

The reward is used to train the policy via the reinforce-
ment learning technique, i.e., REINFORCE, which could be
back propagated to non-stochastic units. We define the loss
for our policy learning as:

Lpolicy =
∑
i

T−1∑
t=1

log π(ait|Xt−1, θ)R(ŷt, ŷt+1)
i. (3)

Other Losses Two other terms, i.e., Lentropy and Lforecast

are included during training our AR system. To promote
more exploratory behavior of our agent and prevent policy
collapse, the entropy loss Lentropy is calculated on the ac-
tion distribution, which prefers selecting diversified actions.
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Another term Lforecast shares the same idea with [18] by
introducing an auxiliary task of forecasting observations.
Formally, we define this term as the following:

Lforecast =
∑
i

T∑
t=2

D(X̂ i
t ,X i

t |X i
t−1, at−1), (4)

where D is a similarity measure as the cosine distance.

3.3. Lifelong learning on novel classes

The proposed approach to this point could only perform
AR on fixed categories. Its classifier could not accommo-
date new classes coming during exploration. In this part,
we present further details of our approach in handling life-
long learning.
Agent memory Catastrophic forgetting happens in our set-
ting. One way to handle this challenge is to entangle weight
in the classifier with the representation learning process. If
not, the final output would change out of management [30].
The weight in our classifier is set to prototypes that change
along with our representations learning. Therefore, the data
distribution of previous classes should be introduced to the
current training process to track prototype changes. We
build a memory to store exemplars, i.e., object instances,
that best describe the current category.

Only limited m exemplars would be stored for each cat-
egory to save memory space. The exemplar selection is
conducted in a prioritized fashion [30]. An exemplar is se-
lected if, by adding it to the memory, the average feature
vector would best approximate the prototype overall train-
ing data. Such selection processes can be done one time
for each category. The saved exemplar set for category y
is My = {x1, x2, . . . , xm}. In specific, the exemplars are
saved in the form of view-grids for our approach since they
are the direct visual inputs.
Distillation loss The knowledge of previous classes is
maintained by encouraging reproducing the same output of
saved exemplars. We implement recognition episodes on
exemplars to achieve their classifier outputs z before train-
ing on new classes. The knowledge distillation mechanism
is adopted as a loss term Ldistillation:

Ldistillation = −
∑
i

∑
y∈Cknown

FBCE(z
y
i , f(x

y
i )), (5)

where Cknown is the category with exemplars at current,
and FBCE denotes the Binary Cross Entropy function.

To sum up, our approach to FLAR could be trained in an
end-to-end trend with the following loss:

L = Lcategory + Lpolicy + Lentropy

+ Lforecast + Ldistillation.
(6)

Each term is balanced with a constant that is ignored here.
Note that the gradients of Lpolicy work only on the policy
module, while other loss terms are effective on all modules

Algorithm 1: Training on task Xi

Input: Xi: current task from the stream
Require: f : recurrent embedding module
Require: Agent: AR system with policy π
Require: M i−1 = {My, y ∈ Cknown}: memory
D = Xi ∪M i−1: training set
// store network updates for the distillation loss
for y ∈ Cknown do

Perform AR for all xi ∈ D to get zyi
end
// network training
while epoch reaches maximum do

Perform AR for all xi ∈ D
Back propagate L defined in Equation 6

end
Update Cknown ← Cknown ∪ yi

Update agent memory to M i

except the policy module. We show the training procedure
of the proposed approach in Algorithm 1 with one task from
the task stream. After training finished, the class of our
recognition system could be successfully extended.

4. Experiments
To validate our approach to FLAR, we examine the per-

formance on two challenging datasets. We first introduce
the utilized datasets and our experimental setups. Then,
we evaluate our approach in the class-incremental setting
in Section 4.3. The comparison of our approach with other
baselines is demonstrated in Section 4.4, which shows the
effectiveness of our policy in AR. In Section 4.5, we conduct
ablation studies on the training sample size and the saved
exemplar size.

4.1. Datasets and experimental setups

We evaluate our approach on two widely used datasets
for scene and object recognition, respectively.
SUN360 dataset The SUN360 scene dataset [40] contains
spherical panoramas for 26 diverse scene categories. The
dataset is split into 6174 training, 1013 validation, and 1805
testing examples. We test our agent on this dataset for active
scene recognition. The field-of-view of our agent is limited
to 60 degrees. The agent could rotate to move to novel ob-
servations (shown in Figure 3). The agent needs an efficient
policy to obtain good scene recognition accuracy in limit
steps which is set to T = 5. We discretize the panorama
into a grid with 32 views, i.e., elevations M = 4 and az-
imuths N = 8, which is the same setting in [29]. Each view
is a 32 pixels×32 pixels 2D image. We set the action space
of our agent as a 3× 5 view-grid centered at the current po-
sition. In other words, the agent movement is restricted to a
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t = 1
Top guesses: moutain, coast, ruin  (wrong)

t = 3
Top guesses: coast, ruin, forest  (wrong)

t = 5
Top guesses: forest, ruin, park  (correct) Ground truth: forest

t = 1
Top guesses: coast, shop, subway station  (wrong)

t = 3
Top guesses: wharf, coast, street  (correct)

t = 5
Top guesses: wharf, street, coast  (correct) Ground truth: wharf

t = 1
Top guesses: hotel room, living room, 

museum  (wrong)

t = 3
Top guesses: hotel room, living room, 

museum  (wrong)

t = 5
Top guesses: living room, hotel room, 

church (correct) Ground truth: living room

Figure 3. The active scene recognition process of the proposed approach. Each row contains 3 steps, i.e., t = 1, 3, 5, from a recognition
episode. The starting position is set to the same to show different trajectories on three samples. We mark the current view (green box) and
the next movement grid (light yellow area). As shown in the first row, the proposed approach corrects its reasonable but wrong guesses
within 5 steps. More visualizations of results from the ShapeNet dataset are included in the supplementary material.

3× 5 grid at each timestep.

We arrange the SUN360 dataset into a task stream to suit
FLAR. We randomly select 16 categories as the initial task
with all training samples, which forms the base category
Cbase. After the initial task, the agent is trained in a class-
incremental way on the following 10 categories with limited
samples. Each category represents a novel task. The perfor-
mance is evaluated on test samples of the dataset, consider-
ing all classes that have already been trained. The amount
k of new-category training samples is limited, which is set
to 5 if not specified. Moreover, only m = 3 exemplars are
saved to memory without designation.

ShapeNet datasets Our experiment conducted on the
ShapeNet dataset [10] considers the scenario that the agent
could manipulate an object instance for recognition. The
agent needs to predict its next best motion based on pre-
vious observations. Each training sample is a Computer-
Aided Design (CAD) model. The view with the resolution
of 32 × 32 is sampled from M = 6 camera elevations and
N = 12 azimuths. For each step, the agent is able to move
within 5 elevations-by-7 azimuths neighborhood of the cur-
rent position. A total of 5 views could be achieved before
giving final category predictions.

We randomly select 20 object categories from the
ShapeNet dataset to conduct our experiments. Each cate-
gory contains 35 samples for training, 10 samples for val-
idation, and 10 samples for evaluation. Among 20 cate-
gories, we select 10 categories as the base category and
form the other 10 categories into sequential tasks. The

ShapeNet dataset is more challenging than the SUN360
scene dataset for two reasons. Firstly, it contains more view
grids than in our SUN360 dataset setting, which, in other
words, brings larger searching space for policy learning.
Secondly, the synthetic 3D model might contain less tex-
ture information than a real object. And we also evaluate
the performance of our approach with all seen categories.

4.2. Implementations

Our approach is implemented with PyTorch. The visual
encoder of our approach is a simple 3-layer network with
the ReLU activation. We utilize the recurrent neural net-
work (LSTM) to aggregate temporal knowledge from ob-
servations. During trajectory gathering in reinforcement
learning, we randomly provide the starting viewpoints. The
exemplars are saved to the memory during training. Cur-
rently, we have not considered the limit of total memory
size, which would be considered in our future work. We
attach a classifier, i.e., a linear layer without bias, to the
LSTM output at each step. The final classification result
is reported as the average of class likelihoods of reached
steps. We use current to denote the result based only on
the current estimates and average as the final result.

4.3. Lifelong learning results

In this part of the experiment, we study the performance
of the proposed approach under the full FLAR condition.
Continual learning In this part, we intend to demonstrate
the effectiveness of our approach in dealing with learning
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(a) The result of the proposed approach on the SUN360 dataset [40].

(b) The result of the proposed approach on the ShapeNet dataset [10].

Figure 4. Recognition accuracy for both datasets. The method TFS is short for Training From Scratch, which could access sufficient data
of all categories. The method Random Guess defines the lower bound of our performance.

novel categories. Since the proposed approach, to the best
of our knowledge, is the first to address FLAR, we attempt
to define the range of our performance by dramatically ease
the task. We introduce the training setting that we name
it Train From Scratch (TFS). The TFS could access
all training data at the same time, which, in other words,
is not constrained by both the forgetting or the few-sample
challenges. Therefore, the closer of our performance with
the result of TFS denotes the higher effectiveness of the
proposed method, as we could achieve similar results by
progressively learning novel classes with few samples.

Figure 4 shows the results on two datasets. The metric
been utilized is classification accuracy. Note the TFS is re-
trained with all data on each category setting while the pro-
posed approach incrementally learns on novel classes with-
out access to previous data. For each dataset, we display
the result with timestep t = 1, 2, . . . , 5. The performance
of the proposed approach is the same as the TFS on the base
category since no class-incremental learning is performed.
One can see the effectiveness of our method in learning
novel classes, especially for the ShapeNet dataset [10]. The
advantage comes from two parts. Firstly, the reward dur-
ing our policy learning motivates the agent to take actions
towards differentiating with other known categories. Sec-
ondly, the concept of previous classes could be maintained
by the knowledge distillation on the agent exemplar mem-
ory.

As expected, the overall performance of the pro-
posed approach is better on the SUN360 dataset than on
the ShapeNet dataset since the searching space for the
ShapeNet dataset is obviously larger. Another finding re-
vealed in Figure 4 is the performance arises with taking
more steps. We will show the evaluation of our policy in
Section 4.4 to explain the improvement is not only brought
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Figure 5. Evolution of accuracy v.s. the number of classes for
different learning strategies. Our results show improvements over
the result from Imbalance setting that is confronted with the
data-imbalance problem.

by obtaining more observations but also the policy.
An interesting observation from Figure 4 is the proposed

approach occasionally exceeds the performance of the TFS
on the ShapeNet dataset [10]. It first positively suggests the
prototype representation is effective in handling few-sample
challenges. It also indicates large samples of a category
might not bring direct benefits to the prototype representa-
tion since the prototype, i.e., the mean of features, would be
distracted by several ”hard” training samples.
Imbalance of training data We show the advantage of
class-incremental learning from the aspect of data balance.
We combine both samples from base categories and novel
categories. Compared to TFS that can have sufficient train-
ing samples for novel categories, only limited k samples
are provided in the Imbalance setting. Direct training
under the Imbalance setting could be regarded as a long-
tail/data-imbalance problem. In Figure 5, we demonstrate
the Imbalance result with ours with incremental learning
strategy. Our results at t = 5 steadily outperform the results
from the Imbalance setting, which shows the effective-
ness of our incremental learning strategy.
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Method t = 2 acc. t = 3 acc. t = 5 acc.
curr. avg. curr. avg. curr. avg.

Single view 51.6 51.6 51.6 51.6 51.6 51.6
Random views 55.6 56.5 57.7 59.1 59.8 62.3

Largest step 54.7 55.7 53.6 56.6 52.4 55.8
Look-Ahead [18] 59.8 60.2 67.8 66.3 69.4 70.6

Ours 61.5 61.0 68.4 67.0 69.9 71.1
Table 1. Recognition accuracy on the SUN360 dataset [40]. The
curr. denotes results with current estimates while avg. is the aver-
age of class likelihoods up to the current step.

4.4. Comparison on AR

In this part, we would like to show the effectiveness of
our policy on AR solely. We block our mechanism on class-
incremental learning leaving only an AR agent for fixed cat-
egories. We first introduce the baselines.
Single view: The input is only a random starting view
to our approach. No policy is needed in this method. We
include this method in our comparison to show the perfor-
mance of single view recognition.
Random views: This method shares a similar architec-
ture with the proposed method, which replaces our policy
module with a random action selection. The number of
movements remains the same as ours.
Largest step: The policy is to take the movement that
is the most distant to the current viewpoint. The assumption
here is neighbor views usually share similar information.
Look-Ahead: This method [18] is also based on a recur-
rent network architecture. The reward is defined as the cur-
rent movement getting the correct prediction, which is dif-
ferent from our approach. It runs to the fixed steps as ours.

The comparisons on the SUN360 dataset [40] with all
26 categories are displayed in Table 1. The proposed ap-
proach could already outperform other methods on the ba-
sic AR task. The large improvements between our results
with other passive baselines, including Single view,
Random views and Largest step, denote the advan-
tages of including effective policies during recognition. Our
method is also better than [18] which is the result of two at-
tributes. The first is our prototype representation learning
which promotes obtaining structure consistencies between
different object instances. The second reason is our novel
reward that always motivates the agent to achieve more in-
formative views. Note that the agent could intelligently stop
taking further movements by redefining the action space.

4.5. Ablation studies

To provide further details of our approach, in this part,
we perform our methods on the SUN360 dataset [40], in
which we isolate its individual aspects.
Sample size First, we analyze the influence of the sample
size on our method. We set the sample size k = 3, 5, 10
while keeping the other parameters the same. The number
of exemplars saved to memory is m = 3. Our method is
then trained in these three different settings. Figure 6(a)
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Figure 6. Ablation studies on the SUN360 dataset [40].

summarizes the results as the accuracy over all steps of the
class-incremental learning. The results show that the num-
ber of samples actually contributes to the performance. In
particular, by comparing the results of k = 5 and k = 10,
one can see that the performance growth is not significant.
We think it suggests that the proposed approach could ob-
tain adequate prototype representations with 5 training sam-
ples. Another observation is the performance goes up after
learning on class 26. The reason could be that our network
achieves better prototypes of previous categories with saved
exemplars during training on class 26, or class 26 introduces
beneficial transferable knowledge.
Exemplar size We study how the number of exemplars in-
fluences our performances. The exemplar is chosen in a pri-
oritized order after training on the current category. The re-
sult in Figure 6(b) are trained with m = 1, 3, 5 with k = 5.
Note m = 1 means only one exemplar that most approxi-
mate to the prototype is stored in the agent memory. The
result demonstrates the effectiveness of the proposed ap-
proach when the memory size is extremely limited, which,
in other words, validates our exemplar selection process.

5. Conclusions
In this paper, we propose a novel approach towards

FLAR which incrementally learns active recognition on
novel categories. Challenges, including few training sam-
ples and forgetting, are addressed with three major com-
ponents. We derive the prototype as the representation for
each category, which is robust in handling limited training
samples. The novel designed reward motivates the agent
to achieve more discriminative features by measuring dis-
tances in the embedding space. To alleviate catastrophic
forgetting, the knowledge distillation with exemplars stored
in the agent memory is applied during the policy training.
The experimental results, along with ablation studies, show
the effectiveness of proposed approach for the FLAR task.
However, despite the promising result, FLAR is still a chal-
lenging task only at the beginning stage. We plan to study
the influence of category relations to AR in our future work.
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