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Abstract— Depth information is considered valuable as it
describes geometric structures, which benefits various robotic
tasks. However, the depth acquired by RGB-D sensors still
suffers from two deficiencies, i.e., incompletion and noises.
Previous methods complete depth by exploring hand-tuned
models or raising surface assumptions, while nowadays, deep
approaches intend to solve this problem with rendered image
pairs. For depth denoising, as a consequence of different
sensor mechanisms, most methods can only work under specific
devices. With existing methods, three challenges emerge: the
onerous training set collecting process, the mismatch between
existing models and present RGB-D sensors, and the non-real-
time computation. In this paper, we first state depth completion
and denoising are inherently different and without the need
to collect or render complete and noiseless ground truths.
We address all mentioned challenges with two separate un-
supervised learning procedures. The completion network takes
color and incomplete depth as input and predicts values to the
unobserved area, which combines prior knowledge and color-
depth correlations. The denoising step exploits image sequences
to construct noise models in a self-supervised manner with the
ability to cater to different sensors. Experimental comparisons
and ablation studies demonstrate that even without human-
labeled ground truths, the proposed method could produce
better completion results and also reduce noises in real-time.

I. INTRODUCTION

Depth sensing provides an important information dimen-
sion for various visual and robotic tasks. Compared to
RGB cameras providing texture and color knowledge, depth
sensors capture the underlying structure of the environment.
Recent works, including but not limited to semantic seg-
mentation [6], object detection [4], action recognition [33]
and visual localization [28] already achieve improvements
with additional depth information. However, recent leading
commodity-level RGB-D cameras like Intel RealSense and
Microsoft Kinect still have deficiencies like incompletion and
sensor noises. As demonstrated in Fig. 1, these drawbacks
bring ambiguities and impede further depth-related applica-
tions.

The blank and noise in depth are closely related to the
latent operations of sensors. In general, depth sensors can be
categorized into active and passive based on whether they
interact with the real world and can be categorized into
stereo, Time-of-Flight (ToF) and structure light according
to their techniques. Therefore, most depth completion and
denoising methods address these problems under a specific
camera setting [29]. Recently, researches [35], [37] are
focusing on achieving this goal using deep data-driven ap-
proaches. To train their models, intact and less-noise training
image pairs need to be rendered first by reconstructing the
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Fig. 1: Depth completion results on the public ScanNet
dataset [7] and also the self-collected dataset captured with
Microsoft Azure Kinect. We circle two kinds of completion
problems with red and yellow dot lines, respectively.

whole environment. Besides building such a dataset is time-
consuming and expensive work, they can only cover limited
RGB-D sensor types and indoor scene categories.

Recently, Ma et al. utilize the photometric loss to ad-
dresses LiDAR depth completion [25]. Different from the
LiDAR depth completion process, blanks in depth are not
regularly distributed for RGB-D sensors. Nevertheless, a
blessing for RGB-D depth completion is the percentage of
valid depth data, which could provide valuable correlation
information between colors and depths. In this way, we sep-
arate depth absence into two kinds. The first kind that cannot
be inferred from current valid color and depth requires prior
knowledge that should be learned like the monocular depth
prediction. The second kind of missing can be propagated
from existing depth for their color and texture similarities.
These two types of missings are marked with red and yellow
dot circles in Fig. 1, respectively.

In this paper, the contributions go with the following
two observations and insights. (1) The prior knowledge for
depth completion is not influenced by the sensors being
adopted, which enables us to learn such information from
existing RGB-D datasets. (2) For robotic and other practical
applications, the depth noise model could change thoroughly
with different sensor types. Hence, the two problems are
better addressed with separate learnable models. For depth
completion, we first produce further degrade depth images
from already incomplete sensor inputs, which share similar
ideas with the random masking on images. One of the
learning objectives of our designed end-to-end trainable net-
work is to fill these newly generated missing areas. Affinity
matrices are additionally predicted in our decoder for the
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final spatial diffusion process, which especially recovers the
second kind of missings in Fig. 1. Moreover, low-level partial
convolution layers are applied to extract depth features to
prevent the negative effect of invalid depth values. For the
depth denoising step, we treat it as the following stage of
depth completion, which is trained with the photometric loss
under the self-supervision fashion. In reality, we can adapt
the depth denoising models to different sensor types by train
on collected new sequences. In sum, the proposed method
could achieve both depth completion and denoising without
any human-labeling process.

II. RELATED WORK

As a fundamental problem of computer vision and
robotics, there is an abundance of researches focusing on
depth prediction, depth completion and depth denoising.
Here we mainly summarize works closely related to our
method.
Depth prediction from a monocular camera. Estimating
depth from a single color image is an ill-posed problem ac-
cording to its inherent ambiguities [18]. The depth prediction
problem is quite similar to the focus of this paper, i.e., color-
guided depth completion, especially when inferring large
unobserved areas. Compared to classic methods [36], recent
approaches adopt deep networks [3], [18], [20], [38]. Laina
et al. performed residual learning to predict dense depth [18].
Godard et al. proposed a novel training loss for unsupervised
monocular depth estimation, which relies on the left-right
consistency [12]. Fu et al. treated the depth prediction
as an ordinal regression problem that could achieve faster
convergence compared to previous methods [11]. All of
these methods demonstrate their ability to transfer learned
prior knowledge from the training set into depth prediction
of new color images. They are not suitable for the depth
completion task since they could not mine the existing
correlation between valid depth and color values.
Depth completion of RGB-D sensors. Missing values in
the depth image from RGB-D sensors are often irregularly
scattered compared to LiDAR depth images [32]. Various
inpainting methods have been applied to the specific RGB-
D depth completion and can be categorized into color-
guided and depth-only approaches. The color-guided method
includes ones utilizing fast marching [13], anisotropic dif-
fusion [10], [22], low-rank matrix completion [24] and
bilateral filters [1], [26]. The depth-only methods tend to use
the information of the surrounding area of holes in depth
images [2], [34]. These methods are mostly not designed to
handle large loss areas where blur effects could be heavily
introduced. Recently, Zhang et al. first predicted dense nor-
mals and occlusion boundaries from the color image and then
performed the completion as an optimization problem [37].
However, it requires different kinds of ground truth labels,
and the optimization step requires non-real-time computa-
tions. Cheng et al. proposed a more efficient convolutional
spatial propagation network to reconstruct dense depth from
sparse samples [5], [23].

Depth denoising. As depth sensors working on different
principles, the noise model varies. For ToF cameras like
Kinect, Herrera et al. [16] proposed an accurate calibration
technique by modeling noise into a scale and a distortion
portion. Shen et al. utilized a probabilistic model to catch
uncertainties of structured-light cameras [29]. Additionally,
by deriving the method proposed by Shen et al., small incom-
pleted depth regions, especially those caused by occlusions,
could be completed. Jeon et al. rendered raw-clean depth
pairs by reconstructing the ScanNet dataset [8] and then
use these pairs as the supervision to learn the potential
noise model [17]. In [35], Yan et al. proposed a dense
surface reconstruction method to provide pairwise data and
designed a multi-scale network to reduce noises from coarse
inputs. The main drawback of these data-driven denoising ap-
proaches is that generating enough pairs for just one specific
sensor type is time-consuming and expensive. Sterzentsenko
et al. proposed a self-supervised depth denoising method in
a multi-view setting with the photometric loss [31]. With
inputs from four different cameras, corresponding denoised
depth maps are predicted by an autoencoder network. Our
method also utilizes the photometric loss as the supervision
while adapting to the denoising of a single RGB-D camera,
which is more widely used for indoor robots.

III. DEPTH COMPLETION

In this paper, we mainly focus on the depth completion
of the depth channel from RGB-D visual sensors. Depth
denoising is then implemented to our depth completion
results. During the depth completion step, there are mainly
three different kinds of missings in depth caused by the
underlying depth acquiring technique, occlusions and the
range limit. For the first type, considering an active stereo-
based depth sensor working in an indoor environment, the
depth map could be disrupted in the fluorescent area, like a
ceiling light source or reflective wooden floor. ToF sensors
are more likely to fail when dealing with Multiple Path In-
terference (MPI), mirror-like and low-reflection regions. The
second type of noise, i.e., occlusions, arises when aligning
depth with one color image due to the position difference
between sensors. The third type is the most challenging part,
which is large blank areas caused by range limits. Current
commodity RGB-D sensors typically have a most perception
range between 2 to 10 meters, leaving absolutely no reliable
depth data for distant objects. To complete these various
missing depth values, the relation between color and depth
information in one image, and the prior knowledge learned
from training data should be both employed to generate
satisfactory results.

We solve depth completion through an end-to-end train-
able generative deep network. Given the sensor depth d∗,
we first create the degraded depth representation d−. The
degraded depth d− and its corresponding color image I are
fed to the proposed network. The loss function is calculated
between predicted depth d̂ and d∗. The rationality and
benefits are introduced in the following section.
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Fig. 2: The network of proposed depth completion method. With an input RGB image and an incomplete depth image, the
network predicts a blurred depth and affinity matrices by two branches in the decoder. A spatial propagation step is then
adopted, combined with the input depth, to give the final complete result.

A. Depth Completion with Learned Affinities

The local context plays an important role in the depth
completion task, which makes learning affinity matrices with
spatial propagation [5], [23] advantageous. As demonstrated
in Fig. 2, the output contains two branches that separately
produce affinity matrices and the blur depth dblur. The affin-
ity matrix describes the neighboring similarity information
of eight directions in the depth image. First, we combine
affinity matrices into each transformation kernel κi,j ∈ Rk×k

for the pixel p with the coordinate (i, j), and k is the kernel
size. Let dblurt stand for the blurred depth at the tth updating
propagation step. The evolution equation during each spatial
propagation step is then formulated as:

dbluri,j,t+1 =
∑ k−1

2

a,b=
−(k−1)

2

κi,j · dbluri−a,j−b,t. (1)

To preserve the input depth, The binary mask M is
constructed for each pixel p in the input d by letting M(p) =
1 with d(p) > 0 and M(p) = 0 otherwise. Note the input
depth d could be d− or d∗. The updated depth dblurt+1 can be
then written as:

dblurt+1 = (1−M)� dblurt+1 +M � d, (2)

where � is the element-wise product. This final propagation
step of depth completion is implemented parrallel for all
pixels which could produce completed depth efficiently.

B. Network Architecture and Loss Function

We present our generative depth completion network and
then introduce our training data in the next subsection. The
network architecture is illustrated in Fig. 2.

Since the input depth contains invalid values and sparse
depth regions, deriving classic convolution layers could bring
negative effects on learning meaningful depth features. We
implement low-level feature learning to RGB and depth
inputs independently and adopt the recently presented partial
convolutions [21] to the depth channel. The valid depth
location is first calculated from the input depth then updated
after each partial convolution.

Learning to predict depth values is strongly dependent on
the low-level spatial details of the input image. During the
forward propagation with downsampling operations, useful

spatial information is weakened or lost. We adopt similar skip
connections as in the U-net [27] by directly concatenating
features from the encoder to up-projection layers [5], [18].

The proposed network is trained with two terms:

Lcompletion = Ldepth + λ1Lsmoothness, (3)

where λ1 ∈ (0, 1) is one hyperparameter.
Depth Supervision. Instead of training only on missing
areas, we find that training on all valid depth pixels between
the prediction d̂ and the ground truth, i.e., the sensor depth
d∗, yields better performance. The depth loss term is defined
as:

Ldepth = ||1d∗>0.01m · (d̂− d∗)||1, (4)

where ||.||1 indicates the L1 loss function, and the threshold
0.01m for valid depth in the ground truth is chosen for
robustness.
Smoothness Loss. The depth loss measures the sum of
individual errors without constraints on neighboring values.
During the prediction of depth values, minimizing only the
depth loss neglects that local depth areas usually share a com-
mon surface, which follows the piecewise planar assumption.
The smoothness loss is then adopted to encourage this
property, which is penalized on the second-order derivatives
of depth predictions. The smoothness loss is formulated as:

Lsmoothness = ||∇2d̂||1. (5)

In summary, the loss function of the entire model promotes
both feature extraction and two branches in the decoder for
a better depth completion result.

C. Training Data Generating

Previous deep RGB-D depth completion methods require
rendered complete depth, which includes elaborate data
collection, 3D scene reconstruction with camera poses and
complete depth map projection. Despite noises introduced
during reconstruction, the rendered scene still cannot achieve
100% completeness. One of our depth completion insights
is that the unobserved depth contains two types of missings.
Considering these two conditions, we first randomly select
β% of valid depths in the sensor depth d∗ and set them to
0. Image erosion is then adopted with s iterative steps to
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produce the further incomplete depth image d−. By doing
this, the original holes in depth are enlarged, and the depth
d− also contains random novel blank areas (examples are
presented in the left part of Fig. 1). Such training sets enable
the network to learn the correlation between color and depth,
especially around the originally unobserved area, which is
essential to infer initial blanks. More importantly, we can
train our model by using a bunch of existing RGB-D datasets
and just simply self-collected frames.

IV. DEPTH DENOISING

The depth denoising is implemented with another deep
network. As depth sensors working on different approaches,
the systematic noise generated by them is entirely camera-
specific. The depth noise for sensors like stereo cameras lies
in the disparity space, while sensors that can directly measure
depth are different. We regard depth denoising as a further
step of depth completion, which is briefly introduced here.

Three assumptions are made to achieve self-supervised
depth denoising. The first is that the noise from the RGB
camera is much less prominent than noises from the depth
sensor. The second assumption is the scene is mostly com-
posed of Lambertian surfaces. The third is that the scene
is static. The first two assumptions hold in most cases, and
moving objects can be pre-excluded, which enables us to
derive the photometric loss to learn the noise model guided
by the color information. An important truth here is that we
can never achieve completely noise-free depth images since
measuring the absolute depth in the real world is impossible.
In other words, we intend to do depth denoising by shrinking
the gap between depth completion results and the collected
or rendered so-called ground truth.

The denoising network is also based on an encoder-
decoder architecture with residual blocks of ResNet-18 [15]
to extract features. The decoder part is composed of trans-
posed layers to recover the final output. Skip connections are
adopted to pass information from each encoding layer to its
corresponding decoding layers. The output of the proposed
denoising network is added to the original input as the final
depth denoising result. During training, we adopt both the
photometric loss for consistency, which is defined in detail
in [25], [31] and the Huber penalty [19] for regularization.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of the
proposed method quantitatively and qualitatively. We mainly
focus on the proposed depth completion part, whose task is
more challenging and also show the improvement after our
depth denoising part. Despite comparison on public datasets,
we also collect our own data to show that our method does
not rely on the labeling process. Ablation studies on different
input densities and also the improvement of adopting the
affinity matrix branch are explored. In all experiments, the
proposed method is not trained with any manually labeled
or rendered ground truths.

A. Implementation Details

In the experiments, the weights of ResNet in the proposed
network are pre-trained on the ImageNet dataset [9]. The
depth completion model is trained with the SGD optimizer,
while the Adam optimizer is applied for our depth denoising
model. In both training and evaluation stages, the image is
resized to a lower resolution of 320 ∗ 256.

B. Datasets and Metrics

The experiments are evaluated on two public datasets,
including the ScanNet [7] and the Matterport [8], and a self-
collected dataset of real-world indoor scenes.
ScanNet and Matterport3D datasets. The ScanNet v1
dataset [7] contains 1513 indoor scans with 2.5 million
views, captured by a Structure sensor sharing a similar design
with Microsoft Kinect v1. The Matterport3D dataset [8]
adopts the same device to capture RGB-D frames, which con-
tains 90 scenes with 194K frames. Since the training of the
proposed method does not need additional rendered ground
truth, we randomly sample 215K images and 155K images
from the ScanNet and Matterport datasets for training. Two
small parts with each 2K images from these two datasets are
used to evaluate the final depth completion and denoising
performances. The completion network is trained on both
training sets, while the depth denoising network is trained
only on the ScanNet v1 dataset [7], considering two aspects.
(1) The data capturing device is different from dataset to
dataset, which could influence the noise model. (2) The
ScanNet dataset is suitable for our self-supervised approach
based on the photometric loss, which requires consecutive
images sharing dominant scene overlaps. Therefore, we
randomly choose 100 scans with 170K images to train our
depth denoising model.
Self-collected datasets. We collect our small indoor datasets
with Microsoft Azure Kinect, a ToF RGB-D sensor. During
the data collecting process, we set Azure Kinect to the mode
with operating range of 0.25 - 2.88 m.
Metrics. For both depth completion and denoising, we adopt
the same metrics as in [37]. Given ground truth depth D∗ =
{d∗} and results D̂ = {d̂}, the metrics include: (1) RMSE:√

1
|D̂|

∑
d̂∈D̂ ||d̂− d∗||. (2) Abs Rel: 1

|D̂|

∑
d̂∈D̂ |d̂−d

∗|/d∗.

(3) δt: the percentage of d̂ ∈ D̂, s.t. max (d
∗

d̂
, d̂
d∗ ) < t where

t ∈ {1.05, 1.10, 1.25, 1.252, 1.253}.

C. Comparison

Tab. I shows the result of comparing our method with
both classic and deep learning methods. Several well-known
non-data-driven methods are demonstrated, which includes
the interpolation with the average of nearest values in four
directions (Basic Smooth), the guided anisotropic diffu-
sion [22] (Anisotropic Diffusion), the guided edge-aware
energy optimization [10] (TGV) and the smooth with second-
order Markov Random Field [14] (Markovian Smooth). We
also compare our method with the most relevant deep depth
completion method [37] proposed by Zhang et al.. They
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TABLE I: Comparison to both baseline classic and deep depth completion methods.
Method Lower the better Higher the better Time (ms)RMSE (mm) Abs Rel (mm) δ1.02 δ1.05 δ1.10 δ1.25 δ1.252 δ1.253

Classic Depth Completion Methods
Basic Smooth 667.3 160.4 68.46 81.49 88.03 92.24 93.98 95.59 -

Anisotropic Diffusion [22] 659.4 159.9 69.88 82.50 88.58 93.34 95.60 96.33 1075 (CPU)
TGV [10] 796.15 180.15 33.74 43.79 50.82 63.84 79.29 88.41 1560 (CPU)

Markovian Smooth [14] 212.4 44.1 70.70 83.30 89.92 95.41 97.74 98.47 620 (CPU)
Deep Depth Completion Methods

Zhang et al. [37] 219.3 48.1 66.22 79.37 87.34 94.75 97.82 98.65 1056 (GPU&CPU)
Ours 186.7 43.0 60.12 85.34 92.97 97.22 98.23 99.51 19 (GPU)

Deep Denoising on the ScanNet [7] dataset
Ours (ScanNet Only) 143.9 33.1 62.64 88.05 93.55 97.45 99.21 99.73 19 (GPU)

Ours+Denoising (ScanNet Only) 147.8 32.8 63.88 88.90 93.97 98.34 99.50 99.82 19+16 (GPU)
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Fig. 3: Comparison to classic and deep learning depth
completion methods. These images are chosen for containing
small objects and large depth variation. Our method pre-
serves detail structures and predicts accurate depth for large
absence.

trained his method on both the normal and occlusion predic-
tion on the SUNCG dataset [30], the ScanNet dataset [7] and
the Matterport dataset [8] with complete ground truths. The
final output is generated by optimizing a combination of the
sparse input, the normal image and the occlusion boundary
image. Therefore, we directly derive their published trained
model on predicting normals and occlusions and using our
sparse depth for optimization. The result is conducted on the
sampled ScanNet dataset [7] and Matterport dataset [8]. The
input depth is degraded from the sensor depth with β = 2.4%
and s = 10 resulting in a loss of 63% valid depth values.

Our results in Tab. I outperform other methods, including
the data-driven method [37]. The RMSE of the proposed

method on two datasets is 186.7 mm, while other methods
lie in the range of 212.4 - 667.3 mm. Furthermore, our
method is advantageous on most of the metrics measuring
predicted pixels fall in a given range. The accuracy after
depth denoising is presented at the bottom two rows of Tab. I.
During depth denoising, the predicted noise is reducted to the
input completed depth to give the final results. The depth
denoising part is evaluated on the ScanNet dataset [7] with
only predicted depth values. It is shown that the proposed
depth denoising method improves depth results to some
extent. Additionally, we show the average time required for
each method with a resolution of 320 ∗ 256. The running
time and devices are also identified in Tab. I for reference.
Note methods that achieve results with a gradual completion
process might not be suitable for parallel implementations
on the GPU. The proposed method could achieve real-time
performances.

Qualitative comparisons between different methods [10],
[37] are demonstrated in Fig. 3. The sensor depth is regarded
as the ground truth while only input RGB image and input
degraded depth are utilized to generate complete depth.
As shown in the first column of Fig. 3 (a), the depth of
the display is not observed in the original sensor depth
while predicted in our results, which reflect that the prior
knowledge could be learned in a data-driven manner without
providing rendered depth. The variation of scenes from
the Matterport dataset [8] as in Fig. 3 (b) is much larger
than the ScanNet dataset [7], which could make the depth
completion more difficult. The second column of Fig. 3 (b)
contains several relatively small objects whose boundaries
are mostly degraded. The proposed method predicts their
shape precisely with the affinity information of local color
and depth context. A scene of drastic depth changes is
demonstrated in the second column of Fig. 3 (b). Compared
to the other two methods, the proposed method provides
relatively more reasonable outputs.

D. Results on Self-collected Dataset

This part demonstrates the result of the self-collected
dataset. Since the proposed method can be trained without
rendered ground truth depth, we fine-tune our model with
degraded depth images and sensor outputs directly. The
result is demonstrated in Fig. 6. The lost area in the second
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Fig. 4: Effects of depth density on the accuracy of depth
completion, which is measured on the ScanNet dataset [7].
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Fig. 5: The result of the proposed method with different
depth densities. The input depth density gradually drops,
which demonstrates the ability of our method dealing with
dense to sparse depths.

column containing large depth variations can be effectively
completed by our proposed method.

E. Ablation Study

We conduct two sets of experiments to investigate how
different inputs, the affinity branch, influence the results.
Results with different input densities. This part is measured
on generated degraded depths from the ScanNet dataset [7].
We justify the percent of random samples β% and also
erosion steps s to get different inputs. These incomplete
depths images are fed to the same version of our network
for depth completion. The original sensor depth is regarded
as the ground truth for evaluation.

Fig. 4 shows the result with different quality of input
depth, i.e., the density. The horizontal axis denotes the
percentage of discarded pixels. The vertical axis contains
three metrics, including RMSE, Abs Rel and percentages
of pixels. From this quantitative result, we see that the
input density does not affect the proposed depth completion
method obviously. The accuracy does not directly drop with
sparser inputs because of two aspects. The first reason is that
the proposed method only requires a small number of valid

Input R
G

B
 Im

age
S

ensor D
epth

O
urs

Fig. 6: The result of the proposed method on self-collected
with the Azure Kinect.

TABLE II: Comparison results on the ScanNet dataset [7]
between different variants of proposed method.

Method
Lower the better Higher the better
RMSE Abs Rel

δ1.02 δ1.05 δ1.10 δ1.25(mm) (mm)
Ours 167.7 39.8 20.30 84.36 91.90 96.23omit affinity
Ours 143.9 33.1 62.64 88.05 93.55 97.45

pixels to predict their surrounding depth values. The second
is the metric we adopt is related to the number of evaluated
pixels. Further qualitative results are demonstrated in Fig. 5.
As the input depth deteriorated, most object boundaries still
maintain clear, and not many blur effects are introduced.
Results without affinity learning. In this part, we aim to
show the significance of learning the affinity matrix. We
prune the branch of generating affinity matrices and then
train the simplified network with the same objective function
and training settings. The results in Tab. II demonstrate that,
without affinity learning, the percentage dramatically drops,
especially for more delicate metrics. The reason is when
omitting affinity learning, minor depth fluctuations could
happen severely, which are reflected on the δ1.02 metric.

In the experiments, different kinds of missing could be
effectively addressed with the proposed depth completion
network. The prior knowledge of depth could be effectively
learned during the training stage. Another branch of affinity
matrices assists in propagating depth for more precise results.

VI. CONCLUSION

In this paper, we describe a novel depth completion
and denoising method of RGB-D sensors that can be per-
formed in a fully unsupervised manner. The proposed depth
completion method first predicts blurred depth with the
prior knowledge and then propagates iteratively with learned
affinity matrices. Various comparisons are conducted in our
experimental results, both qualitatively and quantitatively.
Further depth denoising is employed with a separate network
under the self-supervision with the self-supervised photomet-
ric loss, which could address different noise models. The
proposed method also achieves real-time performance and is
suitable to be adopted on indoor robotic platforms.
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