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SUMMARY

Motivated by the problem of estimating bacterial growth rates for genome assemblies from
shotgun metagenomic data, we consider the permuted monotone matrix model ¥ = ®OII + Z
where ¥ € R"*? is observed, ® € R"*? is an unknown approximately rank-one signal matrix
with monotone rows, IT € RP*? is an unknown permutation matrix, and Z € R"*? is the noise
matrix. In this article we study estimation of the extreme values associated with the signal matrix
0, including its first and last columns and their difference. Treating these estimation problems
as compound decision problems, minimax rate-optimal estimators are constructed using the
spectral column-sorting method. Numerical experiments on simulated and synthetic microbiome
metagenomic data are conducted, demonstrating the superiority of the proposed methods over
existing alternatives. The methods are illustrated by comparing the growth rates of gut bacteria
in inflammatory bowel disease patients and control subjects.

Some key words: Extreme value; Metagenomics; Minimax lower bound; Permutation; Spectral method.

1. INTRODUCTION

This paper is motivated by the problem of estimating bacterial growth dynamics using shotgun
metagenomics data. Several methods have been developed to quantify bacterial growth dynamics
based on shotgun metagenomics data by extrapolating particular patterns in the sequencing read
coverages that result from bidirectional microbial DNA replications (Abel et al., 2015; Korem
etal.,2015; Myhrvold etal., 2015; Brown etal., 2016). For bacterial species with known complete
genome sequences, Korem et al. (2015) proposed using the peak-to-trough ratio, PTR, of read
coverages to quantify the bacterial growth rates after aligning the sequencing reads to the bacterial
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Fig. 1. Thelog-coverages of ordered contigs of an assembled bacterial species from three individuals with inflammatory

bowel disease, detailed in § 5.3.

—
aQ

genomes. Besides quantifying the growth rates of the bacteria with complete genome sequences,
itis also of great importance to estimate the growth rates of incomplete genome assemblies, where
the coverages of contigs are observed in multiple samples. However, the order of the contigs is
known only up to an unknown permutation.

Recently, Gao & Li (2018) developed a computational algorithm that can accurately estimate
the growth dynamics of a given assembled species by taking advantage of highly fragmented
contigs assembled from multiple samples. The algorithm is based on the following permuted
monotone matrix model:

Y = OIl + Z, (D

where the observed data ¥ € R"*” are represented by the matrix of pre-processed contig cover-
ages for a given bacterial species. Specifically, the entry Yj; contains the log-transformed averaged
read counts of the jth contig of the bacterial species for the ith sample after the pre-processing
steps, including genome assemblies, GC adjustment of read counts and outlier filtering. In prac-
tice, the dataset is usually high-dimensional in the sense that the number of contigs p far exceeds
the sample size n, so throughout we assume p >> n. The signal matrix ® € R"*? is the true log-
transformed coverage matrix of n samples and p contigs, where each row is monotone because of
the bidirectional DNA replication mechanism (Brown et al., 2016; Gao & Li, 2018), Z € R**?
is the noise matrix, and IT € R?*? is a permutation matrix that corresponds to some permutation
7 from the symmetric group S,. Ma et al. (2020) developed methods for optimally recovering
the underlying permutation 7= from Y. In particular, with the loss function taken to be either the
0-1 loss or the normalized Kendall’s t distance, a minimax optimal permutation estimator was
proposed and theoretically analysed under various parameter spaces.

In addition to the monotonicity constraint on the rows of ®, real metagenomic datasets sug-
gest an approximately linear relationship between the contig positions and their log-coverages for
each sample, which indicates an approximately rank-one structure of ®, after a certain normal-
ization. As an example, Fig. 1 plots the normalized log-contig counts of an assembled bacterial
genome from three individuals against the estimated contig orders, revealing the aforementioned
approximately linear or rank-one structure; see § 3.1 for details.

Under the permuted monotone matrix model, one can relate the two extreme columns ®; and
Op, i.e., the first and last columns of ®, to the log-transformed true peak and trough coverages
of a given bacterial species, and define their difference R(®) = ®r — O to be the true log-
PTRs that characterize the bacterial growth rates over n samples. The goal of this paper is to
provide a rigorous statistical framework for optimal estimation of the extreme values in the
approximately rank-one permuted monotone matrix model, including ®x and ®; and the range
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vector R(®). Based on the idea of spectral column sorting and the theory of low-rank matrix
estimation, we develop computationally efficient estimators for the extreme columns and the
range vector. In particular, the minimax optimality of the proposed methods is theoretically
justified and empirically illustrated with numerical experiments, which also demonstrate the
applicability of the proposed methods to real data such as the microbiome metagenomics data.

Throughout the paper, we define the permutation 7 as a bijection from the set {1,2,...,p}
onto itself. For simplicity, we write 7 = {w (1), 7(2),...,7(p)}. The set of all permutations of
{1,2,...,p}, equipped with the function composition operation o, is a symmetric group, denoted
by S,. Forany w € 5, we letm—! S, denote its group inverse, so thatmorr ™! = lomr = id.
In particular, we may use 7 and its corresponding permutation matrix [T € R”*? interchangeably,
depending on the context. For a vector @ = (ay,...,a,)" € R”, the £p-norm is defined by
lall, = Qi af)l/p. For a matrix ® € RP1*P2 we write ®; € RP! for its ith column and
®;. € RP2 forits ith row. We use the notation a Ab = min{a, b} and ab = max{a, b}. Furthermore,
for sequences {a,, } and {b, }, we write a,, = o(by,) iflim, a,/b, = 0 and write a, = O(b,),a, < by,
or b, 2 a, if there exists a constant C such that a, < Cb, for all n. We write a, =< b, if both
an < by and ay, 2 by,

2. EXTREME VALUE ESTIMATION VIA SPECTRAL SORTING
2.1. Spectral sorting and extreme column localization

A crucial step in estimating the extreme columns is to sort the permuted columns in order
to identify the extreme ones. In this section, we introduce a spectral approach to localizing the
permuted columns. To this end, for any ® with monotone rows, we consider the row-centred
matrix

1
@ =0|(1,—-ce') e R, )
o

where e = (1,...,1)" € R, Intuitively, ®’ is invariant with respect to the row averages of ®
and preserves the row-monotonicity structure as well as the distances between the columns of ®.
The singular value decomposition of ®’ can be written as

O =" rauv] 3)
i=1

for some » < min{n, p}, where Ay > A, > --- > A, are the ordered singular values of ®" and u;
and v; are respectively the left and right singular vectors corresponding to A;. To overcome the
identifiability issue, we assume the following condition.

Assumption 1. The leading singular value A has multiplicity one, and the first nonzero
component of v; is negative.

The following proposition provides an important insight, namely that the row-monotonicity of
a matrix actually implies the monotonicity of the components of its leading right singular vector
v1. This property plays a fundamental role in analysing the permuted monotone matrix model.

PROPOSITION 1. Let © be a row-monotone matrix whose row-centred version ®' defined in
(2) satisfies Assumption 1. Then its first right singular vector vi = (vi1, ..., vlp)T is a centred
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monotone vector, i.e., Zf:l vii = 0and vi1 < via < -+ < vip. In addition, the sign vector
sgn(uy) indicates the direction of monotonicity of the rows of ®’, or ©.

From the above proposition, the relative orders of the columns of ® and © are qualitatively
preserved by the leading right singular vector vi, whereas the directions of monotonicity for
different rows are coded by the leading left singular vector u;. As a result, given a column-
permuted and noisy matrix Y in (1), one can localize the extreme columns ®r and ®y, in OII
by considering the row-normalized observation matrix X = Y (I, — p~lee™) and its first right
singular vector, i.e.,

V=1,...,v)" = argmax VX Xv. (4)
VveRP: [[v]y=1

In accordance with Proposition 1, it was shown by Ma et al. (2020) that the order statistics
{1y, ..., V) } can be used to optimally recover the permutation 7, or the original column orders,
by tracing back the permutation map between the elements of ¥ and their order statistics. Clearly,
for extreme column localization, the extreme value statistics V(1) and V(,) are more relevant. In
fact, it is shown in the next subsection that minimax optimal estimators can be constructed using
such spectral extreme value estimates.

2.2. Compound decision problem and the proposed estimators

The problem of estimating ®r, ®; or R consists of # individual subproblems, namely esti-
mating each of the n coordinates. Following the concept proposed by Robbins (1951, 1964) and
further elaborated by Samuel (1967), Copas (1969), Zhang (2003) and Brown & Greenshtein
(2009), among many others, we observe that the problem of finding the minimax optimal estima-
tor for ®p, ® or R is a compound statistical decision problem, as the » individual subproblems
are amalgamated into one larger problem through the combined risk shown in (6). Moreover,
although the observations over n samples are independent, it has been argued that, in general, for
a compound decision problem, the simple estimators where only the ith sample is used to estimate
the ith coordinate are usually suboptimal; in contrast, a minimax optimal estimator should be
compound in the sense that multiple samples are used for the estimation of each coordinate.

In light of our discussion in § 2.1 about the fundamental role of (A1, u1,v), we propose the
following estimators for the extreme columns:

A U | n
®R :V(p)XV+ —YeeR , @L = V(])Xv—i- —Ye € R”. (5)
p p

Our proposed range estimator is
R = 0F — 6F = (b — Y1) XV,

We recall that ¥ is defined in (4) and V) is the ith smallest order statistic among {V1,...,V,}.
By construction, the proposed extreme column estimators in (5) are compound estimators, and
each consists of two parts, with the first part estimating the extreme columns of the row-centred
matrix © and the second part compensating for the row-specific mean effects. In particular, in
accordance with the observations made in § 1, to construct the first parts of (:)}"3 and (:)z, the
approximately rank-one structure @f ¢, ~ Mvieu for € € {1, p} is incorporated with vy, estimated
by V(¢y and Aju; estimated by XV.
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Ma et al. (2020) developed an optimal estimator for the permutation = under the model (1).
Specifically, let v : R” — S, be the ranking operator, which is defined such that for any vector
X € R?, v(X) is the vector of ranks of the components of X in increasing order; whenever there
are ties, increasing orders are assigned from left to right. The best linear projection estimator of
7 was defined as # = {t(¥)}!. This permutation estimator can be used to construct a natural
two-step estimator of the two extreme columns. In the first step, we recover/sort the columns of
Y to obtain the sorted matrix ¥ = [Y sy Yzo ... Y ﬁ(p)]. Intuitively, the column-sorted

matrix Y is expected to be close to ®. In the second step, we fit a simple linear regression
between each row of ¥ and the sorted projection scores (V(1), V(2), - - - , V(p)), Which characterize
the column relative locations. Denote the fitted intercepts by « = (a7, ..., a,)" and the slopes
by B = (Bi1,...,Bn)". We define the two-step regression estimators as

AR A A R A > O D
O, =a+ ), Opf=a+php. RE= By —ia).

It is easy to check, as shown in the Supplementary Material, that under the conditions of
Proposition 1 we have that

AReg _ Ax AReg — Ax DReg __ px
0, "=0;, 0,°=0p R =R".

Intuitively, the extreme columns of the sorted matrix Y could be suboptimal as it does not make
use of the rank-one structure. A better way is to project rows of Y onto the eigenspace spanned by
v, which is equivalent to regressing rows of Y on 9. This interesting observation provides another
way of understanding our proposed estimators.

3. THEORETICAL PROPERTIES

3.1. Risk upper bounds for the extreme column estimators
In this section we study the theoretical properties of the proposed estimator ©%; the results for

®; are parallel. We consider the normalized £, distances || ® R — ©ORrll2/+/n and the corresponding
estimation risk

~ 1 ~
Rr(Or) = %E(”(”DR — Orl2). (6)

We first define the set of monotone matrices
{ © = (0;) € R"? : for each 1 < i < n, either 0;; < 0; 41 for allj}
B or (91‘7]' = 91‘7]'4_1 for allj .

Recall that the row-centred version of ®, namely ®’, has the singular value decomposition (3).
Consequently, throughout this article we consider the following parameter space for (®, 7):

(®,7) € D x S, : Assumption 1 holds, 0 < vy, < B,
1 /2}, (1)

Dr(t,B) =
w6, F) { A€ [1/8,81], Y ip i < o(logp)

with ¢+ > 0 and p‘l/ 2 L B < 1. Here the constraint on 8 is natural since v; is a unit vector
and f is no less than the order of its largest component. Intuitively, the hyperparameters (¢, 8)
characterize the global signal strength as well as the relative position of the extreme column Oz
shared by the signal matrices in Dg(z, 8), while the condition > ;_, A; < o (log p)'/? imposes a
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strong approximately rank-one structure on the row-centred ®. As our proposed estimators are
not intended for estimating the possible additional structures over the leading rank-one structure,
such an approximate rank-one condition is in this sense intrinsic to the problem.

To simplify notation, we define the rate function ¥ = v (n, p) = (logp/n)'/?. The following
theorem provides a uniform risk upper bound for the proposed estimator @)}3 over Dr(¢, B).

THEOREM 1 (Uniform upper bound). Suppose that the pair (t, Br) satisfies

1 1 1/ p \"
pPL< <L, 2200 p/\ W—Fa(nlogp) nlogp
R

and that the noise matrix Z has independent sub-Gaussian entries Z; with parameter o2. Then

sup RR(C:);‘Q)

1/2
<@grﬂﬂ+o%mﬂ
Dr(1.p) ~n

3 A 1] + oy (8)

The risk upper bound (8) consists of two components. In the first component, the factor

[o{(t* + azp)n}l/ 2 /2 A 1] is the error from estimating the leading left singular vector u| by
its sample counterpart, whereas the factor Brt//n reflects the overall magnitude of the extreme
column ®p of the matrices in Dg(¢, Bg). As for the second component o (n, p), it comes from
using the order statistic ¥, to estimate the largest component of v;.

Interestingly, regarding the first component, we observe two phase transitions when #> passes
o2 (np)'/? and o2p. Specifically, in (8), we have

Brt 2 < o2 (np)2
Brt [ o ((2 + o 2p)n) /2 o
- > u AT| = { Bra®yp 20,172 < 2 2
Jn t — o) TS sep,
Bro, 2 a?p.

From the theory of low-rank matrix estimation (Cai & Zhang, 2018), the quantity o (np)'/? is
the critical point below which it is impossible to estimate the singular vector u;. Hereafter, we
refer to the parameter spaces {Dr(z, Br) : 1> < a2(np)'/?}, {Dr(t, Br) : a2(np)'/? < 12 < o2p)
and {Dxr(t, Br) : > > o°p} as the weak-, intermediate- and strong-SNR regimes, respectively,
where sSNR stands for signal-to-noise ratio.

To see the implications of the condition

2> ] Lot \" 1 9
S r-X Wa(nlogp) nlogp ©)

in Theorem 1 for the critical events 2 = az(np)l/ 2and 2 = azp, observe that as long as
Br > (n/p)'/*, upon ignoring the logarithmic factors the right-hand side of (9) is asymptotically
smaller than both of the critical points o%(np)'/? and o-2p, so both phase transitions exist under
the condition of Theorem 1.

3.2. Optimality of the extreme column estimators and minimax rates

Now we establish the minimax rate of convergence and the optimality of the proposed extreme
column estimator ®% over the parameter space Dg (¢, Bg). Specifically, for some given (¢, B), we
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define the minimax risks over Dy (¢, Bg) as inf O SUPDR(1,Bp) RR(C:)R), where the infimum is over
all possible estimators obtained from the data. The following theorem provides the minimax
lower bound for the estimation risk under Gaussian noise.

THEOREM 2 (Minimax lower bound). Suppose that Z in model (1) has independent and
identically distributed entries Z;; ~ N (0, 02). Then, for any Dg(t, B) such that

1 — Bz B _
> co (—2R o*logp + —=& 3 o’p|, cp logp)'? < Br < c2,
Br 1 - B

for sufficiently large (n,p) and some constants co,c1 > 0and 0 < ¢ < 1, we have that

2 2 1/2
- Brt [0{0 +;p)n} A 1] Yoy

inf sup Rg(Op) >
Or Dg(t,Br) \/n

The proof of Theorem 2 is quite involved. The main difficulty lies in the nonlinearity and multi-
dimensionality of the maps from the original parameter ©® to its extreme columns of interest. As
the lower bound contains several components, we essentially derive three distinct minimax lower
bounds corresponding to different worst-case scenarios. In addition to using existing techniques
such as sphere packing of Grassmannian manifolds, we have developed two novel lower-bound
techniques to facilitate the proof of the minimax lower bound. The details can be found in the
Supplementary Material. The different conditions in Theorem 2 are due to the specific con-
structions in the lower-bound argument of the proof. However, from a broader perspective, the
conditions in Theorem 2 agree with those of Theorem 1 in the sense that the first condition, a
lower bound on 72, ensures that the global signal strength is sufficiently large, while the second
condition is a mild restriction, up to a logarithmic factor, on the range of Bp.

By combining the upper and lower bounds, we obtain the exact minimax rate for estimating
®p. Specifically, under the conditions of Theorems 1 and 2, i.e., for independent and identically
distributed Z;; ~ N (0, o2) and for

S B 12 1 - B3 ko’
;2262[_2/\i_2+—< lp ) }]nlogp—l—( zﬂRazlogp—kﬂR l;), (10)
Bg 14 ¥ \nlogp Bg 1 — B

we have

A ; 2 4 o2mm/2
inf  sup RR(@R)xﬂi["{( J”;p)”} A1]+mp,
Or Drt.pr) Vn t

where the optimal rate is attained by our proposed estimator @j}. To make better sense of condition
(10), observe that as long as Bz = (n/p)'/*, upon ignoring the logarithmic factors (10) becomes
equivalent to > > o%(np)!'/?, which means that the minimax rate

A 1422 4 g2p)1/2
inf sup Rp(Op) = TP

I +oy
©r Dr(t,Br) p1/4t

can essentially be achieved over the intermediate- and strong-SNR regimes. As a consequence
of the phase transition phenomena pointed out earlier, some interesting insights into the inter-
play between the global signal strength 2, the dimensionality of the problem, the difficulty of
estimating ®p, and the difficulty of estimating the leading left singular vector #; can be gained.
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Specifically, we observe that in the intermediate-SNR regime, o2 (np)'/? < 2 < o2p, increasing
the signal strength 1> will reduce the difficulty of estimating 1, and therefore the rate for estimat-
ing O, and in the strong-sNR regime, > > o2p, the difficulty of estimating © no longer depends
on 2, as in this case the improved estimation of u; is neutralized by the increased magnitude of
Og. In particular, all of the above rate analysis is subject to a possible lower bound of ¥ (n, p).

Moreover, since the above minimax optimal rates are simultaneously attained by the pro-
posed estimator @)}'} regardless of the specific values of the underlying indices (¢, Br), under
sub-Gaussian noise C:)}k2 is minimax rate-adaptive over the collection of parameter spaces

= {Dr(t, Br) : p~*ci(logp)'/? < Br < ¢ < 1, (10) holds}. In particular, whenever
Br = (n/p)'/*, upon ignoring the logarithmic factors our proposed estimator is rate-optimally
adaptive over the collection of parameter spaces in the intermediate- and strong-sNR regimes,
namely Cadap = {Dr(t, Br) : 1* 2 02 (np)'/?}.

3.3. Optimality of the range estimator and minimax rates

Based on our previous results on extreme column estimation, the theoretical properties of
the range estimator R* can be derived in the same manner. Again, we consider the normal-
ized £, distances ||f3 — R(®)||2/4/n and denote the corresponding estimation risk by RW(ﬁ) =
nl/zE(||IA€ — R(®)||2). Define the parameter space

(®,7) € D x S, : Assumption 1 holds, A; € [7/8, 8¢], }
Br

Dy (t, Br, BL) = {
Yica i <o(logp)!/?, =L <vip <0< vy, <

(11)
with # > 0 and p —1/2 ¢ < Br, Br < 1. Also, define the function

1 1 1/ p \" 1—x y2o2p
=o2nl = 2] .
g = Jnogp[ A[1ﬁ27L¢<nlogp> +< EEd e - y2>

The following theorem establishes the minimax rate of convergence for estimating R(®), and the
minimax optimality and adaptivity of our proposed estimator R*.

THEOREM 3 (Minimax rates). Let By = Br + BL. Suppose that 2> coq' (Br A Br, BRBL, 1, p)
and cllfl/2 (logp)l/2 < A{Br, BL} < co for sufficiently large (n, p) and some constants cy,c; > 0
and 0 < ¢ < 1, and suppose that Z has independent sub-Gaussian entries Z;; with parameter
o2. Then

Bwt[o{(* + o’ p)m)!/?

inf sup RW(f?) = [ 3 A 1] + o
R Dy t.prbL) Vn t

In particular, the minimax rates are simultaneously attained by the estimator k*.

4. A SPECIAL CASE: PERMUTED LINEAR GROWTH MODEL

In the preceding sections, theoretical results were obtained for the general approximately
rank-one matrices characterized by (7) and (11) together with the conditions of Theorems
1-3. One advantage of the parameter spaces we consider is the rich row-monotonicity struc-
tures they contain, which adapt well to real applications such as our motivating example from
microbiome studies, where the noisy datasets are generated from shotgun metagenomic sequenc-
ing; see Boulund et al. (2018), Gao & Li (2018) and Fig. 1. However, in many cases, such as in
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classical theories of bacterial growth dynamics, an important subclass of the general permuted
monotone matrix model has commonly been used because of its heuristic simplicity and explana-
tory power. We refer to this submodel as the permuted linear growth model, where (1) holds over
the restricted set

{(@,7‘[)EDXSP:(91-]-:ainj+biWhereai,bieRforl <i<”’}
o= ; '
nj < i for 1 <j<p—Tland 377 ;=0

In other words, each row of ® has a linear growth pattern, and the different rows have possibly
differing intercepts and slopes. Write a = (a;)1<i<n, 1 = (1j)1<j<p and b = (b;)1<i<n- In this
case, the parameters of interest have the expressions O = anj,, ®, = any; and R = a(n, — n1).

In the context of bacterial growth dynamics, the above model is commonly referred as the
Cooper—Helmstetter model (Cooper & Helmstetter, 1968; Bremer & Churchward, 1977), which
associates the copy numbers of genes with their relative distances from the replication origin.
Specifically, a; is the ratio of the genome replication time to the doubling time for the ith sample,
n; is the distance from the replication origin of the jth contig, and b; is related to the read counts
at the replication origin and the sequencing depth. Consequently, the extreme columns an, and
an; correspond to the true log-transformed peak, and trough coverages that are used to quantify
the bacterial growth dynamics across the samples; see § § 5.2 and 5.3 for more details.

In the following, we discuss the estimation of ® under this special linear growth model; the
results for estimating ® and R follow similarly. By definition, the singular value decomposition
(3) for ® € Dy has a reduced form. Specifically, the row-centred matrix ®' is exactly of rank
one, where the leading right singular vector v; has components

vj=—4 G=1,....p) (12)
lIm1l2

and the largest singular value admits the expression

A1 = llall2lin]l2. (13)

Intuitively, the set {v1;}1<i<j<p characterizes the exact normalized column positions of ®’, and
of ®, while A; summarizes the slope magnitude of the rows and the overall separateness of the
columns. Consequently, the risk upper bound in Theorem 1 has a reduced form, which admits
simpler and more intuitive interpretations. Specifically, for any given ® € Dg(t, Br), we consider
the pointwise risk upper bound

Re©) < VipAr1(®) [o—{(xﬁ@) + o 2p)n}l/?

Vn 21(©)

induced by (8) in Theorem 1. With the reparametrizations (12) and (13), we can rewrite (14) as

npllallz [a{(nan%unn% + o?p)n}l/?
Jn lall3 113

Some observations about this risk upper bound are in order.

A 1} toy (14)

Rr(©%) < A 1} +oy. (15)

(i) In the low-SNR regime, where [lall3][n]3 < o%(np)!/?, (15) becomes

lall2n
L+

Re(©%) <

oy, (16)
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where the first term is proportional to the overall slope magnitude ||a||2, but does not depend on
the locations of the other columns, i.e., n; for 1 < j < p— 1. In this case, since the signal changes
across different columns are so vague, @)}E fails to implement a good estimate for the slopes a,
and the estimation error can only decrease when the extreme column ®r = an, itself, and its
norm ||al|27p, is close to zero.

(ii) In the intermediate-SNR regime, where o2 (np)'/2 < llal3lInl3 < o?p, (15) becomes

) 12
Re(©%) < ﬂ(l + L 2) + oy (17)
72 lall5lnll3

In this case, as the signal differences between consecutive pairs of columns are steep enough that
the slopes a can be well estimated, increasing ||n]|2 or |la||2 would enhance the advantage and
therefore lead to a better estimate.

(ii1) In the strong-sSNR regime, where ||a|| 112 520 2p, the upper bound (15) becomes

Iy
lnll2

In this case, the advantage of large ||a||2 has been exploited to the extreme so that increasing | a||»
will no longer yield further improvements in the performance of (:)j}.

Comparing the rates (16), (17) and (18), an interesting difference in the role played by the
overall slope magnitude ||a|2 can be observed. In general, the theoretical performance of @};
is clearly driven by the global sNR, ||a||% ||17||% /o2, which measures the magnitude of the signal
changes and the degree of monotonicity relative to the noise level.

Following the same argument as that used in the proof of Theorem 2, the minimax opti-
mality of our proposed estimator (:)}‘} can also be established under the permuted linear growth
model. Specifically, if we define the indexed parameter space Do r(t, B) = {(©,7) € Dy : 0 <
np/lInll2 < ,6 ||a||2||77||2 € [t/8, 8t]}, then it can be shown that for any pair (¢, Bg) such that (10)
holds and p~'2(logp)'? < pr < ¢ < 1,

Rr(OF) S oy (18)

inf  sup RR(®R)

Brt [0{(12 + o?p)n}l/?
Or Do,r(t,Br) \/n

7 1] + o,
where the optimal rate is simultaneously attained by the proposed estimator @)}E.

5. NUMERICAL STUDIES
5.1. Simulation with model-generated data

To illustrate our theoretical results and compare the proposed approach with alternative
methods, we generate data from model (1) with various configurations of the signal matrix ©.
Specifically, the signal matrix ® = (6;;)) € R"*? is generated under the following two regimes:
Si1(n,p,a), where forany 1 < i < n, 0 = am; +b; (1 < j < p) with a; ~ Un(0, @),
b; ~ Un(0,6) and (11,...,n,) = (—=1,0,0,...,0,1); and S>(n, p, @), where forany 1 <i < n,
0;; = log(l +aj + Bi) (1 <j < p) with a; ~ Un(0,«) and b; ~ Un(0, 6). By construction,
S1(a, n, p) belongs to the linear growth model whereas S> (o, 1, p) does not. The elements of Z are
drawn from independent and identically distributed standard normal distributions, and without
loss of generality we set IT = 1,.

For the extreme column ®p, we compare the empirical performance of our proposed estimator
®* with that of the direct sorting estimator O = ¥ #(p)» Where 7T is as defined in § 2.2, and the
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order statistic estimator é)R = (Yi,(p))1<i<n- as all the rows of ® are monotone increasing. For
the range vector R(®), we compare our proposed estimator R* with the direct sorting estimator
f?Ds = Yip — Yz and the order statistic estimator kos = (Yip) — Yi1)) 1<i<n- We use
the empirical risk, or the averaged normalized ¢, distance, to compare these methods. For each
setting, we evaluate the empirical performance of each method over a range of #, p and o values.
Each setting is repeated 200 times.

The results are summarized as boxplots in Figs. 2 and 3. The empirical results agree with our
theory in the following ways: (i) our proposed estimators (:)}"e and R* perform the best in all the
settings; (ii) in panels (c) and (d) of Figs. 2 and 3, the risks of the proposed estimators decrease
as n grows, in agreement with our theorems. In addition, in panel (a) of Figs. 2 and 3 we can
see that the risks of the order statistic estimator decrease as « increases. This is because under
S1(a, p, n), the parameter o characterizes the separateness of the two extreme columns from the
other columns. The order statistic estimators apparently favour the cases where the separation is
more significant. Our proposed estimators and the direct sorting estimators outperform the order
statistic estimators, demonstrating the superiority of the compound estimators.

5.2. Simulation with synthetic microbiome metagenomic data

We now evaluate the empirical performance of our proposed method on a synthetic meta-
genomic sequencing dataset (Gao & Li, 2018), by generating sequencing reads based on 45
closely related bacterial genomes in 50 independent samples. In particular, Gao & Li (2018)
presented a synthetic shotgun metagenomic sequencing dataset for a community of 45 phyloge-
netically related species from 15 genera of five different phyla with known RefSeq ID, taxonomy
and replication origin (Gao et al., 2013). To generate the metagenomic reads, reference genome
sequences of three randomly selected species in each genus were downloaded. Read coverages
were generated along the genome based on an exponential distribution with a specified PTR, and
a function for the cumulative distribution of read coverages along the genome was calculated.
Sequencing reads were then generated using these cumulative distribution functions and a random
location for each read on the genome, until the total read number achieved a randomly assigned
average coverage between 0.5 and 10 folds for the species in a sample. Sequencing errors, includ-
ing substitution, insertion and deletion, were simulated in a position- and nucleotide-specific
pattern according to the metagenomic sequencing error profile of Illumina.

For the final dataset, the average nucleotide identities between species within each genus
ranged from 66.6% to 91.2%. The probability of one species existing in each of the 50 simulated
samples was set to 0.6, and a total of 1336 average coverages and the corresponding PTRs were
randomly and independently assigned. After the same processing, filtering and CG-adjustment
steps as in Gao & Li (2018), the final dataset included genome assemblies of 41 species. For each
species, we obtained the permuted matrix of log-contig coverage with the number of samples
ranging from 29 to 46, and the number of contigs ranging from 47 to 482.

We provide estimates of the log-PTRs of the assembled species for all the samples, or the range
vector R, using our previous notation. As a comparison, alongside our proposed method, R*,
we consider the iRep estimator proposed by Brown et al. (2016), where the contigs of a given
species were ordered for each sample separately based on the observed read counts before fitting
a piecewise-linear regression function. We evaluate the methods by considering the ¢, distance
between the vectors of the true log-PTRs and their estimates. To generalize our evaluation to
diverse metagenomic datasets, we also evaluate the effects of the sample size » and the number
of contigs p by randomly selecting subsets of samples or contigs from each dataset. The selection
was made with replacement.
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Fig.2. Boxplots of the empirical risks in estimating ®p, for the proposed estimator @j} (dark grey), the order statistic

estimator O (medium grey) and the direct sorting estimator O (light grey) in the following settings: (a) regime S
withn = 40 and p = 200; (b) regime S, with n = 20 and p = 200; (c) regime S| withp = 200 and ¢ = 0.6; (d) regime
S, with p = 200 and o = 4; (e) regime S; with n = 40 and o = 0.6; (f) regime S| with n = 20 and « = 4.

The results are summarized in Fig. 4. As n or p varies, the proposed estimator consistently
performs better than iRep. Moreover, the performance of the proposed method is not sensitive
to the sample size, the number of contigs from the genome assemblies or the underlying true
PTRs. These results partially explain why the algorithm of Gao & Li (2018) performs better than
existing competitors.

5.3. Analysis of a real microbiome metagenomic dataset

We complete our numerical study by analysing a real metagenomic dataset from the NIH
Integrative Human Microbiome Project, which includes the Inflammatory Bowel Disease
Multi’omics Data project that investigates the differences in gut microbiome communities
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Fig. 3. Boxplots of the empirical risks in estimating R, for the proposed estimator R (dark grey), the order statistic

estimator Rog (medium grey) and the direct sorting estimator Rps (light grey) in the following settings: (a) regime S}

with n = 40 and p = 200; (b) regime S, with n = 20 and p = 200; (c) regime S; withp = 200 and ¢ = 0.6; (d) regime
S, with p = 200 and o = 4; (e) regime S; with n = 40 and o = 0.6; (f) regime S| with n = 20 and o = 4.

between adults and children with inflammatory bowel disease, IBD, and normal non-IBD controls
(Lloyd-Price et al., 2019). Many studies have reported strong associations between gut micro-
biota composition and IBD, including Crohn’s disease, CD, and ulcerative colitis, UC. Here we
instead focus on comparing the bacterial growth rates in UC, CD and non-IBD individuals using
the proposed methods.

The metagenomic datasets, including 300 samples of CD, UC and non-IBD subjects, were
downloaded from https://www.ibdmdb.org. Specifically, we randomly select 100 sam-
ples each of UC, CD and non-IBD subjects. For each sample, the sequencing data were obtained
from a stool sample by Illumina shotgun sequencing. We first use MEGAHIT (Li et al., 2015)
version 1.1.1 to perform metagenomic co-assembly. The co-assembled contigs were then clus-
tered into metagenomic bins or genome assemblies using MaxBin (Wu et al., 2015) version 2.2.4.
Finally, Bowtie 2 (Langmead & Salzberg, 2012) version 2.3.2 was used to align reads back to
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Fig. 4. Boxplots of the £, distances between the estimated and true log-PTRs for the proposed method (dark grey) and
the iRep estimation method (light grey), versus (a) the sample size # and (b) the number of contigs p.

Table 1. Comparison of bacterial growth rates in CD, UC and non-IBD samples: bins

that show significantly different growth rates are reported along with their taxonomic

annotations; ni, ny and n3 refer to the numbers of CD, UC and non-IBD samples
corresponding to each bin

Bin Taxonomic annotation (n1,n2,n3) p-value
bin.054 Roseburia (genus) (54, 32, 54) 0.015
bin.090 Faecalibacterium (genus) (38,41, 52) 0.005
bin.091 Clostridiales (order) (26, 40, 52) 0.016
bin.099 Subdoligranulum (genus) (30, 32, 49) <0.001
bin.465 Dialister (genus) (36,41, 33) 0.043

UC, ulcerative colitis; CD, Crohn’s disease; IBD, inflammatory bowel disease.

the assembled contigs for each of the samples, and the output alignments were then sorted by
SAMotools (Li et al., 2009) version 0.1.19.

After these preparations, the algorithm of Gao & Li (2018), combined with our proposed
methods, was applied to obtain the estimated PTRs, called ePTRs, of a given species, represented
by a contig cluster, bin, for each sample. As a result, ePTRs of 25 bins were obtained for subsets of
the UC, CD and non-IBD samples of sizes n1, ny and n3, respectively, with n; + ny + n3 > 100,
as some contig clusters may not be carried or abundant enough among many samples. For each
bin, we compare the ePTRs of the UC, CD and non-IBD samples using an F'-test. We apply the
CAT/BAT algorithm (von Meijenfeldt et al., 2019), which compares the metagenomic assembled
bins to a taxonomy database to obtain the taxonomic annotations of the 25 bins. We observe that
only a few bins can be annotated at the species level, and many of the bins can be annotated only
to genera or orders, suggesting that many of the assembled contig bins may correspond to new
species. This agrees with the recent work of Almeida et al. (2020), which found that more than
70% of the assembled genomes lack cultured representatives.

Interestingly, based on the F-test, of the 25 contig clusters, five show significant differences
in the epTRs of the UC, CD and non-IBD samples; see Table 1. Because of space limitations,
Table 1 shows only the taxonomic annotations of the bins at the genus level, except for bin.091,
which could be determined only up to the order; see the Supplementary Material for the complete
annotations. We also performed pairwise comparisons using the two-sample #-test for the five
differential bins; see Table 2. We found that the difference in the growth rates of bin.054, Rose-
buria, bin.090, Faecalibacterium, and bin.099, Subdoligranulum, are more significant between
IBD and non-IBD samples. In particular, boxplots in the Supplementary Material indicate higher
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Table 2. The p-values obtained from pairwise t-tests of differential growth rates between
different groups for five genome assembly bins

Bin Taxonomic annotation UCv.CD UC v. non-IBD CD v. non-IBD
bin.054 Roseburia (genus) 0.525 0.004 0.081
bin.090 Faecalibacterium (genus) 0.392 0.016 0.004
bin.091 Clostridiales (order) 0.012 0.054 0.335
bin.099 Subdoligranulum (genus) 0.960 <0.001 <0.001
bin.465 Dialister (genus) 0.042 0.818 0.026

UC, ulcerative colitis, CD, Crohn’s disease; IBD, inflammatory bowel disease.

growth rates of bin.054, Roseburia, and bin.090, Faecalibacterium, and a lower growth rate of
bin.099, Subdoligranulum, in IBD samples than in non-IBD samples. Moreover, the growth rate
of bin.091, Clostridiales, is significantly higher in the UC samples, whereas the growth rate of
bin.465, Dialister, is significantly higher in the CD samples, than in the samples of the other two
categories. These results show that the gut microbiome communities in CD and UC patients or
in IBD and non-IBD patients differ, not only in relative abundance, but also in the growth rates
of certain bacterial species, an important insight gained from our data analysis.

6. DISCUSSION

This paper focuses on the permuted monotone matrix model with homoscedastic noise. If the
noise is heteroscedastic, for example when the columns of the noise matrix are not independent
or when the variances of the noise matrix entries are not identical, we argue that, as long as the
marginal distributions of the noise matrix remain sub-Gaussian, the framework developed in this
paper still applies. Specifically, in light of the recent work of Zhang et al. (2019) on heteroscedas-
tic principal component analysis and singular value decomposition, the key analytical tools that
parallel those used in the present work, such as concentration and perturbation inequalities asso-
ciated with heteroscedastic random matrices, can be obtained by generalizing the results of Zhang
et al. (2019). Such extensions are complicated and are left for future research.

The current theoretical framework was developed based on the approximately rank-one struc-
ture suggested by our specific metagenomic applications. Extensions to other settings are possible
by modifying the proposed methods. In particular, the key observations made in § 2.1 apply to
any monotone matrix satisfying Assumption 1. When the approximate rank-one assumption is
violated, say if the monotone signal matrix is of rank » > 1, one could construct estimators
based on the leading » singular values and singular vectors by following the same idea asin § 2.2,
although the theoretical analysis may be technically challenging.
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