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ABSTRACT
Motivated by recent research on quantifying bacterial growth dynamics based on genome assemblies, we
consider a permuted monotone matrix model Y = !" + Z, where the rows represent di!erent samples,
the columns represent contigs in genome assemblies and the elements represent log-read counts after
preprocessing steps and Guanine-Cytosine (GC) adjustment. In this model, ! is an unknown mean matrix
with monotone entries for each row, " is a permutation matrix that permutes the columns of !, and Z is a
noise matrix. This article studies the problem of estimation/recovery of " given the observed noisy matrix
Y . We propose an estimator based on the best linear projection, which is shown to be minimax rate-optimal
for both exact recovery, as measured by the 0-1 loss, and partial recovery, as quanti"ed by the normalized
Kendall’s tau distance. Simulation studies demonstrate the superior empirical performance of the proposed
estimator over alternative methods. We demonstrate the methods using a synthetic metagenomics dataset
of 45 closely related bacterial species and a real metagenomic dataset to compare the bacterial growth
dynamics between the responders and the nonresponders of the IBD patients after 8 weeks of treatment.
Supplementary materials for this article are available online.
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1. Introduction

1.1. A Motivating Example From Microbiome Studies

The statistical problem considered in this article is motivated by
the problem of estimating the bacterial growth dynamics based
on shotgun metagenomics data (Abel et al. 2015; Korem et al.
2015; Myhrvold et al. 2015; Brown et al. 2016). The growth
dynamics of microbial populations re!ects their physiological
states and drives variation of microbial compositions, which
provide important feature summary of the microbes in a given
community. One way of studying such communities is through
shotgun metagenomic sequencing, which involve direct DNA
sequencing of all the microbiome genomes in a given microbial
community. Korem et al. (2015) presented the "rst article on
quantifying the bacterial growth dynamics based on shotgun
metagenomics data, where the uneven sequencing read cover-
age resulting from the bidirectional DNA replications provides
information on the rates of microbial DNA replications. For bac-
terial species with known complete genome sequences, Korem
et al. (2015) proposed to use the peak-to-trough ratio (PTR)
of read coverages to quantify the bacterial growth dynamics
a#er aligning the sequencing reads to the complete genome
sequences.

However, in many applications, it is of importance to quantify
the bacterial growth dynamics based on genome assemblies for
the bacterial species with unknown genomes. These genome
assemblies may represent new bacterial species that we have
seen or sequenced before. The genome assembly of a bacterium
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species consists of a collection of contigs (called bin) con-
structed based on the overlapping of the sequencing reads (Wu
et al. 2014; Li et al. 2015). Compared to the complete genome,
the genome assembled bins are more fragmented and o#en
contained errors or contaminations. The noisy read coverage
data due to intraspeci"c variations, interspeci"c/intraspeci"c
repeated sequences, limited sequencing depths and the inability
of binning algorithms to correctly cluster all the contigs further
complicate the estimation of growth dynamics based on read
coverages of the contigs. Besides these noisy count data, one
key di$culty in estimating the growth dynamic based on contig
counts is that the accurate locations of the contigs on the original
genome are unknown. It is therefore not feasible to measure the
microbial growth rate directly using peak-to-trough coverage
ratio for the assembled genomes (Brown et al. 2016; Gao and
Li 2018).

Brown et al. (2016) presented the "rst method (called iRep)
of estimating the bacterial growth dynamics based on genome
assemblies, where the contigs are ordered based on the GC-
adjusted counts for each sample separately. However, due to
noise in the count data, such an ordering method o#en leads
to wrong ordering of the contigs and therefore inaccurate
estimates of the growth dynamics. Gao and Li (2018) devel-
oped a computational algorithm, DEMIC, to accurately com-
pare growth dynamics of a given assembled species existing
in multiple samples by taking advantage of highly fragmented
contigs assembled in typical metagenomics studies. One key
step of DEMIC is to apply a principal components analysis
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(PCA)-based method to recover the true ordering of the contigs
along the underlying unknown bacterial complete genomes.
Gao and Li (2018) reported excellent empirical performance
of DEMIC over existing methods. The goal of this article is to
provide a rigorous statistical framework to study the problem of
optimal permutation recovery in a permuted monotone matrix
model.

1.2. A Permuted Monotone Matrix Model

For a given genome assembly with p contigs, DEMIC "rst
obtains the read coverage for each of the sliding window of size
5000 bps, denoted by Xijl for the ith sample, jth contig, and kth
window. To account for the GC-content of the kth window, Gao
and Li (2018) considered the following mixed-e%ects model,

log2 Xijk = α + GCjkβ + Wij + eijk,

where GCjk is the centered GC count of the kth window of
the jth contig, Wij is the sample- and contig- speci"c random
intercept, α is the intercept, β is the regression coe$cient, and
eijk is the random error. This model is "tted for each contig to
obtain the best linear unbiased predictor of Wij, which is used
as the GC-adjusted log-read count Yij for the ith sample and
jth contig. Here Yij can be regarded as average read coverage
over nonoverlapping windows of a contig and is approximately
normally distributed.

Let Y be the GC-adjusted log-contig count matrix of n
samples and p contigs of a genome assembly with Yij as its
entries. Given this, we consider the following permuted mono-
tone matrix model:

Y = !" + Z, (1)

where ! ∈ Rn×p is an unknown nonnegative signal matrix
with nondecreasing rows, Z ∈ Rn×p is a zero-mean noise
matrix, and " ∈ Rp×p is a permutation matrix corresponding
to some permutation π from the symmetric group Sp. That is,
a#er a suitable permutation of the columns of Y , all the rows of
the mean matrix are nondecreasing sequences. In microbiome
applications, ! is the matrix of true log-coverage of n samples
over p contigs along the circular genome of the bacterium,
which is generally hypothesized to have nondecreasing rows.
" represents a permutation due to unknown locations of the
contigs relative to the replication origin. Throughout this article,
we denote the parameter space

(!, π) ∈ D =
{
! = (θij) ∈ Rn×p, π ∈ Sp : 0 ≤ θi,j−1 ≤ θi,j

< ∞ for all 1 ≤ i ≤ n, 2 ≤ j ≤ p
}

.

The focus of this article is to optimally estimate the permutation
π from the noisy observation Y .

1.3. Related Problems and Other Applications

The permutation recovery problem under permuted monotone
matrix model bears some similarity to other problems studied
in machine learning literature, including the feature matching

between two sets of observations (Collier and Dalalyan 2016)
and linear regression model with permuted data, where the
correspondences between the response and the predictors are
unknown (Pananjady, Wainwright, and Courtade 2016, 2017;
Slawski and Ben-David 2017). More recently, Flammarion, Mao,
and Rigollet (2019) considered the problem of statistical seri-
ation, which has a close a$nity to our model (1). However,
the focus of Flammarion, Mao, and Rigollet (2019) is to opti-
mally estimate the signal matrix ! rather than the underlying
permutation.

Model (1) can be thought as a natural extension of the shape
constrained matrix denoising model studied in the isotonic
regression literature. Speci"cally, under Model (1) with known
" = Ip, risk bounds and the minimax rate-optimal estimator
for ! under the Frobenius norm was obtained in Chatterjee,
Guntuboyina, and Sen (2015) for n = 1 and later in Chatter-
jee, Guntuboyina, and Sen (2018) for general n > 1. Using
the idea of optimal transport, a minimax optimal estimator
of the underlying signals was obtained by Rigollet and Weed
(2018). However, their goal is not to recover the underlying
permutation.

Besides the microbiome applications, the permuted mono-
tone matrix model is generic and has other applications. For
instance, the problem of permutation recovery is usually equiv-
alent to statistical ranking/sorting from noisy observations,
which arises commonly in "nance (Currie and Pandher 2011),
sport analytics (Deshpande and Jensen 2016), and recommen-
dation systems (Rendle et al. 2009). Speci"cally, in the latter
case, the task of tag recommendation is to provide a user with
a personalized ranked list of tags for a speci"c item. Under the
permuted monotone matrix model, we can treat the entries of Y ,
say Yij, as an indicator of the jth tag being related to the ith item
by a given customer, and ! as a probability matrix character-
izing the customer’s tagging preferences across multiple items.
As a result, recovering the underlying permutation provides a
solution of a tag recommender.

1.4. Main Contributions and Organization

In this article, we investigate the problem of permutation recov-
ery in the permuted monotone matrix model (1), which relies
on certain invariance property of the singular subspace of the
monotone matrices. The properties of the proposed method in
terms of both the exact and partial recovery are studied in detail.
In particular, we obtained regions of the signal-to-noise ratio
(de"ned later as '/σ ) that are subject to exact/partial recovery
(Figure 1). For both exact and partial permutation recovery, we
obtained the matching minimax lower bounds and established
the minimax rate-optimality of the proposed method over a
wide range of parameter space (Figure 1). For partial recovery,
the proof of the lower bound relies on a version of Fano’s lemma
and the sphere packing of the symmetric group equipped with
the Kendall’s tau metric.

The rest of this article is organized as follows. A#er a brief
introduction of notation and de"nitions, we present in Section 2
the proposed permutation estimator. The theoretical proper-
ties of the proposed method are studied, "rst under a more
illustrative linear growth model in Section 3 and then under a
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Figure 1. A graphical illustration of the main result obtained in this article about the regions of the signal-to-noise ratio '/σ that correspond to exact/partial recovery,
and the region with proved minimax optimality.

general growth model in Section 4. Section 5 provides results
on minimax lower bounds and the optimality of the proposed
estimator. We evaluate the methods using both simulated data,
synthetic and real microbiome datasets and compare with other
methods in Section 6. In Section 7, we discuss some implications
and extensions of the methods. Finally, the proofs of our main
results are given in Section 8.

1.5. Notation and De!nitions

Throughout, we de"ne the permutation π as a bijection from
the set {1, 2, . . . , p} onto itself. For simplicity, we denote π =
(π(1), π(2), . . . , π(p)). All permutations of the set {1, 2, . . . , p}
form a symmetric group, equipped with the function compo-
sition operation ◦, denoted as Sp. For any π ∈ Sp, we denote
π−1 ∈ Sp as its group inverse, so that π ◦π−1 = π−1 ◦π = id,
and denote rev(π) = (π(p), π(p − 1), . . . π(1)). In particular,
we may use π and its corresponding permutation matrix " ∈
Rp×p interchangeably, depending on the context. For a vector
a = (a1, . . . , an)' ∈ Rn, we de"ne the )p norm ‖a‖p =
(∑n

i=1 ap
i
)1/p, and the )∞ norm ‖a‖∞ = max1≤j≤n |ai|. For

a matrix ! ∈ Rp1×p2 , we denote !.i ∈ Rp1 as its ith column,
!i. ∈ Rp2 as its ith row, and denote its (ordered) singular values
as λ1(!) ≥ λ2(!) ≥ · · · ≥ λmin{p1,p2}(!). Furthermore, for
sequences {an} and {bn}, we write an = o(bn) if limn an/bn = 0,
and write an = O(bn), an ! bn or bn " an if there exists a
constant C such that an ≤ Cbn for all n. We write an * bn if
an ! bn and an " bn. For a "nite set A, we denote |A| as its
cardinality. We use the logical symbols ∧ and ∨ to represent
“and” and “or,” respectively. Lastly, C, C0, C1, . . . are constants
that may vary from place to place.

2. Permutation Recovery via Best Linear Projection

In the following, we "rst make some key observations about
the connection between the underlying permutation π and the
column linear projections of the observed matrix Y , which
motivate our construction of the proposed estimator.

2.1. Linear Projection

Given the observed noisy matrix Y , we consider the class of
the linear projection statistics of the form w'Y ∈ Rp where
w ∈ Rn and ‖w‖2 = 1. Intuitively, by projecting each column of
Y onto the subspace generated by w, the components of w'Y
(herea#er referred as “projection scores”) would quantify the
relative position of the columns of Y , so that their order statistics

can be used to recover the original orders of the columns of !.
To "x ideas, we de"ne the following ranking operator.

De!nition 1 (Ranking operator). The ranking operator r : Rp →
Sp is de"ned such that for any vector x ∈ Rp, r(x) is the vector of
ranks for components of x in increasing order. Whenever there
are ties, increasing orders are assigned from le# to right.

For example, given a vector x = (2, 5, 1, 6, 2)', we have
r(x) = (2, 4, 1, 5, 3). The following proposition concerning the
invariance property of the column spacing of ! is the key to our
construction of the minimax optimal estimator.

Proposition 1. Suppose (!, π) ∈ D. For any nonnegative unit
vector w ∈ Rn, we have

r(w'!") = π−1. (2)

Apparently, under the noiseless setting, any nonnegative unit
vector would lead to the exact recovery of the underlying per-
mutation as in this case the relative orders of the columns are
exactly coded by the relative magnitudes of the projection scores
w'Y = w'!". However, with the noisy observations, w'Y =
w'!" + w'Z so that the relative orders of the columns are
only partially preserved by the noisy projection scores w'Y , up
to some random perturbations.

Consequently, the best linear projection vector w0 would
correspond to the case where w'

0 !" has the most separated
components such that their relative orders are most immune
to the random noises. Speci"cally, since for any given w ∈ Rn,
the ith component of w'!" has the expression w'!"ei where
{ei}p

i=1 is the canonical basis of the Euclidean space Rp, we de"ne

w0 = arg max
w∈Rn

‖w‖2=1

∑

1≤i,j≤p
i .=j

(w'!"ei − w'!"ej)
2

= arg max
w∈Rn

‖w‖2=1

p∑

i=1

(
w'!"ei − 1

p

p∑

j=1
w'!"ej

)2
,

which maximizes the pairwise distances of the components
under the squared distance. Now since w0 relies on the unknown
!" and is not computable from the data, we substitute !" by
its sample/noisy counterpart Y and de"ne our data-driven best
linear projection vector as

ŵ = arg max
w∈Rn

‖w‖2=1

p∑

i=1

(
w'Yei − 1

p

p∑

i=1
w'Yei

)2
, (3)
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which is actually the "rst eigenvector of the symmetric matrix

A = Y
p∑

i=1

(
ei − 1

p

p∑

i=1
ei

)(
ei − 1

p

p∑

i=1
ei

)'
Y', (4)

and can be immediately solved by performing an eigen-
decomposition on A. Once ŵ is obtained, we de"ne our pro-
posed permutation estimator as

π̂ = (r(ŵ'Y))−1. (5)

Intuitively, the projection vector ŵ assigns di%erent weights to
the rows of Y so that more weight is given to the rows whose
elements are better separated and therefore more informative in
distinguishing the columns of Y or !.

2.2. Evaluation Criteria

The main focus of this article is to investigate the theoretical
properties of our proposed estimator (5) under various loss
measures and parameter spaces. For any given estimator π̌ , we
"rst consider the 0-1 loss

)(π̌ , π) = 1{π̌ .= π},

with the corresponding risk E)(π̌ , π) = P(π̌ .= π). The 0-
1 loss is used to evaluate the exact recovery, which can be a
strong requirement for practical applications. As an alternative,
we also consider the more !exible partial recovery, where the
loss function is given by the normalized Kendall’s tau distance
(Kendall 1938) de"ned as

τK(π1, π2) = {# of discordant pairs between π1 and π2}(n
2
) . (6)

Technically, for two permutations π1 and π2, the set of discor-
dant pairs is de"ned as

G(π1, π2) = {(i, j) : i < j, [π1(i) < π1(j) ∧ π2(i) > π2(j)]
∨ [π1(i) > π1(j) ∧ π2(i) < π2(j)]}

so that the numerator in (6) is equal to the cardinality
|G(π1, π2)|, which, in fact, is also the minimum number of pair-
wise adjacent transpositions converting π−1

1 into π−1
2 (Diaconis

1988). The denominator
(n

2
)

ensures that τK(π1, π2) ∈ [0, 1]
where τK(π1, π2) = 0 corresponds to π1 = π2.

3. A Linear Growth Model

We start with a simpler case where the pair (!, π) is from the
subspace

DL =
{
(!, π) ∈ D :

θij = aiηj + bi, where ai, bi ≥ 0 for 1 ≤ i ≤ n,
0 ≤ ηj ≤ ηj+1 for 1 ≤ j ≤ p − 1

}
.

(7)

In other words, each row of ! has a linear growth pattern
with possibly di%erent intercepts and di%erent slopes. In the
context of bacterial growth dynamics, this model is sometimes
referred as the Cooper–Helmstetter model (Cooper and Helm-
stetter 1968; Bremer and Churchward 1977) that associates the

copy number of genes with their relative distances to the replica-
tion origin. Speci"cally, ai is the ratio of genome replication time
and doubling time, which can be used to quantify the bacterial
growth dynamics for the ith sample, ηj is related to distance from
the replication origin for the jth contig, and bi is related to the
read counts at the replication origin and the sequencing depth.
If the bacterium is nondividing in sample i, ai is zero.

For the linear growth model (7), there are two key quantities
that are relevant to permutation recovery.

De!nition 2. For any ! ∈ DL, we de"ne

' =
( n∑

i=1
a2

i

)1/2
· min

1≤i<j≤p
|ηi − ηj| (8)

as the local minimal signal gap of !, and de"ne

- =
( n∑

i=1
a2

i

)
· 1

p
∑

1≤i<j≤p
(ηi −ηj)

2 =
( n∑

i=1
a2

i

)
·

p∑

j=1
(ηj − η̄)2

(9)
as the global signal strength of !, where η̄ = ∑p

j=1 ηj/p.

Intuitively, both quantities involve the set {|ηj − ηi|}1≤i<j≤p
and the )2 norm of the vector a = (a1, . . . , an)', which
characterize the column spacings and the growth rates (slopes)
of !, respectively. Throughout this article, we assume

(A1) the additive noise matrix Z ∈ Rn×p has iid entries
zij ∼ N(0, σ 2).
The Gaussian assumption simpli"es our theoretical analysis. But
this is not essential because all the theoretical results remain
true if Z has independent sub-Gaussian entries with parameters
bounded by σ 2. The following theorem provides conditions on
' and - such that exact recovery of π can be obtained by π̂

in (5).

Theorem 1 (Exact recovery, linear). Suppose (A1) hold, (!, π) ∈
DL and ! satis"es

' > C0σ
√

log p, (10)

- > C1σ
2(n max{σ 2n/'2, 1} +

√
np max{σ 2n/'2, 1})

for some C0, C1 > 0. Then with probability at least 1 − O(p−c)
for some constant c > 0, up to a permutation reversion, we have
π̂ = π .

Remark 1. Due to nonidenti"ability between ŵ and −ŵ de"ned
in (3), in Theorem 1, as well as all the other theoretical results
concerning π̂ , the statement is up to a possible reversion of π̂ .
For example, for permutation π = (2, 4, 1, 5, 3), its reversion
would be rev(π) = (4, 2, 5, 1, 3). In fact, such indeterminacy
can be avoided by noting that ai ≥ 0 for all i’s, but we will not
pursue such a direction in this study as the practical interest only
concerns relative orders of the permuted elements.

Since ' depends on a only through its )2 norm ‖a‖2, the local
minimal signal gap (MSG) condition ' ≥ Cσ

√
log p allows for

the presence of noninformative signals in the sense that some
components of a can be 0. In contrast, the condition on - (GSS)
depends on a trade-o% between ' and σ

√
n. One the one hand,
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when ' > σ
√

n, the condition on - becomes - ≥ σ 2(C0n +
C1

√np), which is independent of ', and is minimax optimal
for le# singular subspace estimation (Cai and Zhang 2018). On
the other hand, when ' < σ

√
n, a stronger condition on - is

posed, as a compensation for small '.
In some cases, the GSS condition in (10) can be implied by

the MSG condition. We summarize our results in the following
proposition.

Proposition 2. Suppose '/σ > 1/p and the MSG condition
hold. Then the GSS condition can be implied by either one of
the following conditions

(i) ' " σ
√

n;
(ii) ' ! σ

√
n, and either (σ 4n2/'4)1/3 ! p ! σ 2n2/'2 or

p " σ 2n2/'2 + (σ 3n/'3)2/5.

We next turn to the partial recovery and study the rate
of convergence of π̂ measured by the normalized Kendall’s
tau distance under the linear growth model. In particular, we
will assume an approximate uniform assignment of {ηj}p

j=1
over some subinterval of [0, ∞). In other words, the mini-
mal element and maximal element of the set {|ηj − ηj+1|}p−1

j=1
should have roughly the same magnitude, so that ' = ‖a‖2 ·
min1≤j≤p−1 |ηj − ηj+1| * ‖a‖2 · max1≤j≤p−1 |ηj − ηj+1|. This
is equivalent to assuming that the contigs in genome assemblies
are approximately uniformly spaced along the circular genome.

Theorem 2 (Partial recovery, linear). Suppose (A1) hold,
(!, π) ∈ DL, and ! satis"es

(i) there exist some C0 > 0 such that max1≤j≤p−1 |ηj −ηj+1| <

C0 min1≤j≤p−1 |ηj − ηj+1| for all p > 0, and
(ii) - > C1σ 2( max

{σ 2(n+log p)2

'2 , n} + √p max
{σ(n+log p)

' ,√
n
})

for some C1 > 0.

Then, up to a permutation reversion,

E[τK(π̂ , π)] ≤ 1∧
( c0σ

p'
min

{
1, e−'2/2σ 2 log

(
1 + 2σ 2

'2

)}

+ c1e−'2/2σ 2

p('/σ + √
8/π)

+ c2
pc+2

)

for some c, c0, c1, c2 > 0.

Remark 2. The risk upper bound derived in the above theorem
can be simpli"ed as

E[τK(π̂ , π)] !
{

σ
p' ∧ 1 if '/σ → 0
σ

p' e−'2/2σ 2 + 1/pc+2 otherwise

for some c > 0. In the case of '/σ → ∞, simple calculation
yields e−'2/2σ 2

σ/(p') + 1/pc+2 * e−'2/2σ 2
σ/' when ' <

σ
√

2(c + 1) log p, whereas e−'2/2σ 2
σ/(p') + 1/pc+2 * 1/pc+2

when ' ≥ σ
√

2(c + 1) log p. As a result, we also have

E[τK(π̂ , π)] !






1/pc+2 if '/σ ≥
√

2(c + 1) log p
σ

p' e−'2/2σ 2 if 1 ! '/σ <
√

2(c + 1) log p
σ

p' ∧ 1 if '/σ ! 1.
(11)

Figure 2. A graphical illustration of the risk upper bound for E[τK (π̂ , π)], as a
function of signal-to-noise ratio '/σ .

See Figure 2 for an illustration.

In general, Theorem 2 shows that, even with a weaker condi-
tion on ' that is below the requirement for the exact recovery,
our proposed estimator π̂ is still able to obtain a partial recovery
of π with an exponential rate of convergence if '/σ " 1 and
a polynomial rate of convergence if 1/p < '/σ ! 1. As for
-, the requirement is essentially the same as the exact recovery,
except for an additional log p term, which is negligible in the
exact recovery scenario.

Some implications about the practically preferable settings of
n and p should be clari"ed. Firstly, although Theorem 1 implies
that the di$culty for exact recovery increases as p grows (see
also Table 1 from our simulations), our theory suggests a wide
range of feasible choices for p. For example, if the underlying
signals θij and the noise level σ 2 are of constant order, then
we have ' * √

n and - * np3, so the conditions of
Theorem 1 imply that the exact recovery can be guaranteed
as long as log p ! n. In other words, p is allowed to grow
exponentially with n, which is in line with the modern high-
dimensional setting. Secondly, our Theorem 2 implies that, even
if some conditions (such as MSG) for the exact recovery are not
satis"ed, one can still hope to partially recover the underlying
permutation. In accordance to our theoretical result (11), our
numerical results (Figure 4) show that, for the partial recovery,
increasing p indeed reduces the overall risk of the proposed
estimator. Finally, as to the sample size n, we argue that, with-
out assuming additional structural assumptions such as row-
sparsity, it is very unlikely that including more samples will
result in a worse estimate (see Table 1 and Figure 4 for numerical
evidences).

4. A General Growth Model

In this section, we study the permutation recovery over the
general parameter space D where the growth pattern is not
necessarily linear and therefore is more realistic inasmuch as
the noisy nature of the shotgun metagenomic datasets (Boulund
et al. 2018; Gao and Li 2018). The analysis relies on a deeper
understanding of the relationship between the row-monotonic
matrices and its leading singular vectors.
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Table 1. The empirical risks of the estimators under the 0-1 loss based on 200 simulations for various combinations of the parameters (p, n, α).

p = 75
n = 40

S1(σ 2 = 0.025) S2(σ 2 = 0.1) S3(σ 2 = 0.0075) S4(σ 2 = 0.025)

α = 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2

π̂ 0.775 0.575 0.415 0.000 0.025 0.020 0.025 0.000
πmean 0.925 0.815 0.955 0.015 0.155 0.135 0.880 0.005
πmax 1.000 1.000 1.000 0.995 0.995 0.970 0.840 0.430

n = 40
α = 0.1

S1(σ 2 = 0.025) S2(σ 2 = 0.1) S3(σ 2 = 0.0075) S4(σ 2 = 0.025)

p = 60 90 60 90 60 90 60 90

π̂ 0.410 0.930 0.340 0.470 0.010 0.115 0.000 0.010
πmean 0.720 0.985 0.910 0.980 0.070 0.245 0.775 0.900
πmax 1.000 1.000 1.000 1.000 0.975 1.000 0.815 0.875

p = 75
α = 0.1

S1(σ 2 = 0.025) S2(σ 2 = 0.1) S3(σ 2 = 0.0075) S4(σ 2 = 0.025)

n = 40 60 40 60 40 60 40 60

π̂ 0.765 0.440 0.475 0.095 0.050 0.020 0.010 0.005
πmean 0.920 0.645 0.940 0.700 0.175 0.045 0.900 0.905
πmax 1.000 1.000 1.000 1.000 0.995 0.995 0.855 0.820

NOTE: π̂ : proposed method; πmean: mean-based method; πmax: max-based method.

Speci"cally, for any ! ∈ D, we de"ne the row-centered
matrix

!′ = !(I − p−1ee') ∈ Rn×p (12)

whose singular value decomposition (SVD) is given by !′ =∑r
i=1 λi(!′)u′

iv′'
i , with r ≤ min{n, p}. The following proposi-

tion is essential to our analysis of the general growth model.

Proposition 3. Let !′ be de"ned as above, then its "rst right
singular vector v′

1 is a monotone vector, that is, either v′
11 ≤

v′
12 ≤ · · · ≤ v′

1p or v′
11 ≥ v′

12 ≥ · · · ≥ v′
1p.

Together with Proposition 1, the above proposition justi"es
our construction of the permutation estimator π̂ using a PCA
based approach. To overcome the identi"ability issue, we fur-
ther assume λ1(!′) has multiplicity one. We "rst introduce the
several quantities that play the key roles in permutation recovery
over D.

De!nition 3. For any ! ∈ D and the corresponding !′ de"ned
as above, we de"ne

' = min
1≤i<j≤p

|u′'
1 (!′

.i − !′
.j)| = λ1(!

′) min
1≤i<j≤p

|v′
1i − v′

1j|,

as the local minimal signal gap, de"ne

. = max
1≤i≤p−1

‖!′
.i − !′

.i+1‖2

= max
1≤i≤p−1

( r∑

j=1
λ2

j (!
′)|v′

ji − v′
j,i+1|2

)1/2
,

as the local maximal signal gap, and de"ne

- = λ2
1(!

′) − λ2
2(!

′)

as the global signal strength of !.

In particular, the above de"nitions of ' and - generalize the
ones given earlier in the linear growth model as these quantities
coincide for ! ∈ DL. The following theorem concerns the exact
permutation recovery with π̂ over D.

Theorem 3 (Exact recovery, general). Suppose (A1) hold, n ! p,
(!, π) ∈ D, and ! satis"es ' > C0σ

√
log p and

- > C1σ
2
[(

n + .2

σ 2

)
max

{
(n + log p)σ 2

'2 , 1
}

+ √p
(√

n + .

σ

)
max

{
σ
√

n + log p
'

, 1
}]

for some C0, C1 > 0. Then with probability at least 1 − O(p−c)
for some constant c > 0, up to a permutation reversion, we have
π̂ = π .

As in the case of linear growth model (Theorem 1), in
Theorem 3, to guarantee exact recovery, we need the MSG
condition ' > C0σ

√
log p. Unlike the linear growth model,

here ' only implicitly depends on the elements of ! through
its spectral quantities, which makes its interpretation less clear.
To address this issue, we make the following observation that
links the minimal singular vector gap min1≤i<j≤p |v′

1i − v′
1j| in

the de"nition of ' to the elements of !.

Proposition 4. Let !′ in (12) be such that there exists a δ > 0
being the lower bound of the normalized minimum gap between
any two entries in the same row, that is,

min
1≤k≤n

|θ ′
k,i − θ ′

k,j|
‖!′

k.‖2
≥ δ for some i .= j.

Then the "rst singular vector v′
1 ∈ Rp of !′ satis"es |v′

1,i − v′
1,j|

≥ δ.

Consequently, the implicit requirement that
min1≤i<j≤p |v′

1i − v′
1j| is large can be guaran-

teed when the normalized minimum distance
min1≤i<j≤p min1≤k≤n |θ ′

k,i − θ ′
k,j|/‖!′

k.‖2 is large. Our next
theorem concerns the partial recovery over the general
parameter space D.

Theorem 4 (Partial recovery, general). Suppose (A1) hold, n ! p,
(!, π) ∈ D, and ! satis"es
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(i) there exits some C0 > 0 such that max1≤j≤p−1 |v′
1j −

v′
1,j+1| < C0 min1≤j≤p−1 |v′

1j − v′
1,j+1| for all p > 0, and

(ii) - > C1σ 2[ max
{ (n+log p)2σ 2

'2 , n + .2

σ 2
}

+
√p max

{σ(n+log p)
' ,

√
n + .

σ

}]
for some C1 > 0.

Then, up to a permutation reversion,

E[τK(π̂ , π)] ≤ 1 ∧
( c0σ

p'
min

{
1, e−'2/2σ 2 log

(
1 + 2σ 2

'2

)}

+ c1e−'2/2σ 2

p('/σ + √
8/π)

+ c2
pc+2

)

for some c, c0, c1, c2 > 0.

Condition (i) of Theorem 4 parallels the one given in Theo-
rem 2. It essentially requires an even distancing of the elements
(the projected columns of !) whose ordering is to be tracked
by π̂ . In contrast, in both Theorems 3 and 4, the conditions on
- are slightly more complicated than those in Theorems 1 and
2, as it further depends on the relative magnitude between ./σ

and
√

n. In particular, if ./σ ! √
n, the conditions reduce to

the ones required in the linear growth models. Interestingly, the
risk upper bound obtained in Theorem 4 remains the same as
in the linear growth model, which only depends on p and the
signal-to-noise ratio '/σ .

5. Minimax Lower Bounds and Optimality

In this section, we establish the minimax lower bounds for both
exact and partial recovery considered in previous sections, in
relation to di%erent levels of the signal-to-noise ratio '/σ . In
the following theorem, we show the MSG condition for exact
recovery is asymptotically sharp.

Theorem 5. Suppose (A1) hold. Let D1 = DL ∩ {(!, π) : ' ≤
σ
4
√

log p} and D′
1 = D ∩{(!, π) : ' ≤ σ

4
√

log p}. Then for any
p ≥ 10, we have

inf
π̂

sup
(!,π)∈D′

1

P(π̂ .= π) ≥ inf
π̂

sup
(!,π)∈D1

P(π̂ .= π) ≥ 0.3,

where the in"mum is over all the permutation estimators π̂ .

This theorem along with Theorems 1 and 3 indicates that
our proposed estimator is minimax rate-optimal over DL and
D in terms of the MSG condition on '. In light of Propo-
sition 2, in some situations the MSG condition can be both
necessary and su$cient for the exact recovery, which includes
practically important cases such as n * p, n < log p, etc.
Using the information-theoretical language, we have therefore
obtained both the achievability result, that is, the existence of
an algorithm or estimator that exactly recovers signal with high

probability, and the converse result, namely, an upper bound on
the probability of exact recovery that applies to any estimators
(Cullina and Kiyavash 2016). See Figure 3 for an illustration.

Our next theorem establishes a minimax lower bound for the
expected rate of convergence for the partial recovery.

Theorem 6. Suppose (A1) hold, D2(t) = DL ∩ {(!, π) : ct ≤
' ≤ Ct}, D′

2(t) = D ∩ {(!, π) : ct ≤ ' ≤ Ct} for some
C, c > 0, and t/σ ≥ 2. Then there exist constants C1, C2 > 0
such that

inf
π̂

sup
(!,π)∈D′

2(t)
E[τK(π̂ , π)] ≥ inf

π̂
sup

(!,π)∈D2(t)
E[τK(π̂ , π)]

≥ C1σ

pt e−t2/2σ 2 + C2
p2 .

Comparing the above minimax lower bound to the risk
upper bounds obtained in Theorems 2 and 4, we conclude that
our proposed estimator π̂ is minimax rate-optimal in terms
of the partial recovery for both the linear growth model and
the general growth model over the range whenever '/σ does
not diminish (Figure 1). In particular, in Theorems 5 and 6,
since the minimax lower bounds only concern the worst-case
scenarios, the same lower bounds should hold for any parameter
spaces whenever the same worst cases are included. Similarly,
the assumption (A1) does not pose a restriction to the general
applicability of such results.

6. Numerical Studies

6.1. Simulation With Model-Generated Data

To demonstrate our theoretical results and compare with alter-
native methods, we generate data from model (1) with various
con"gurations of the signal matrix !. We compare the empirical
performance of our proposed estimator π̂ with the following
alternatives:

• πmean: Order the columns of Y by the magnitude of its
column means;

• πmax: Order the columns of Y by the magnitude of its column
maximums.

We use both the 0-1 loss and the normalized Kendall’s tau
distance in comparing these methods. Due to the identi"ability
issue, the performance of each estimator is evaluated up to a
complete reversion of the permutation. For example, we use
min{τK(π̂ , π), τK(π̂ , rev(π))} as the empirical Kendall’s tau dis-
tance. By symmetry, we set the underlying permutation π = id.
The signal matrix ! = (θij) ∈ Rn×p is generated under the
following four regimes:

Figure 3. A graphical illustration of the achievability/converse result for exact recovery.
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Figure 4. Boxplots of the empirical normalized Kendall’s distance between the estimated and true permutations under di!erent models. π̂ : proposed estimator; πmean:
mean-based estimator; πmax: max-based estimator.

(i) S1(α, n, p): For any 1 ≤ j ≤ p, θij = log(1+ jαi +βi) where
αi ∼ Unif(α/2, α) for 1 ≤ i ≤ n/2, αi ∼ Unif(0, 0.01) for
n/2 < i ≤ n, and βi ∼ Unif(1, 3) for all 1 ≤ i ≤ n;

(ii) S2(α, n, p): For any 1 ≤ j ≤ p, θij = jαi + βi where
αi ∼ Unif(α/2, α) for 1 ≤ i ≤ n/2, αi ∼ Unif(0, α/10)

for n/2 < i ≤ n, and βi ∼ Unif(1, 3) for all 1 ≤ i ≤ n;
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(iii) S3(α, n, p): For any 1 ≤ j ≤ p, θij = log(1+ jαi +βi) where
αi ∼ Unif(α/2, α) for 1 ≤ i ≤ 3, αi ∼ Unif(0, 0.01) for
4 < i ≤ n, and βi ∼ Unif(1, 3) for all 1 ≤ i ≤ n;

(iv) S4(α, n, p): For any 1 ≤ j ≤ p, θij = jαi + βi where αi ∼
Unif(α/2, α) for 1 ≤ i ≤ 3, αi ∼ Unif(0, α/10) for 4 < i ≤
n, and βi ∼ Unif(1, 3) for all 1 ≤ i ≤ n.

Speci"cally, under each regime, the sample-speci"c “growth
rate” parameter αi is randomly and uniformly generated either
from the interval [α/2, α] or an interval with much smaller
values, namely, [0, α/10] in S2 and S4 and [0, 0.01] in S1 and
S3. By construction, the four regimes consist of the nonlinear
growth model where the signals spread out over many samples
(S1) or concentrate at a few rows (S3) and the linear growth
model where the signals spread out over many samples (S2) or
concentrate at a few rows (S4). In particular, in accordance to
our theory, for the supposedly “noninformative” samples, we
allow the corresponding growth rates to be small but nonzero,
which shows the !exibility of our proposed method. The entries
of Z are drawn from iid centered normal distributions whose
variance σ 2 will be given explicitly. In each setting, we evaluate
the empirical performance of each method over a range of n, p,
or α. Each setting is repeated for 200 times.

For the exact recovery, in Table 1, we reported the empirical
risks of the estimators under the 0-1 loss for various regimes and
parameter combinations. The noise level σ 2 is chosen for each
regime to better illustrate the di%erences in the empirical risks
among the estimators. From our simulation results, in consistent
to our theory, our proposed estimator has the smallest empirical
risk over all the settings, and the estimation risk decreases as we
increase α, n or decrease p.

For partial recovery, in Figure 4, we show boxplots of the
empirical normalized Kendall’s tau between each estimator and
the true permutation π . Again, our proposed method outper-
forms the alternatives in all the cases. As expected from our
theory, under all the four regimes, increasing p while keeping
other parameters "xed results to smaller estimation risk. As for
the dependence on n, under S1 and S2, increasing n leads to
smaller risk as it is equivalent to increasing ', whereas under
S3 and S4, the risk roughly remains the same across di%erent n’s
as in these case ' does not change much.

To o%er more intuitive interpretation of why π̂ performs
better than the alternative methods, we assessed the weight
vectors ŵ of our proposed estimator π̂ under each regime
a#er 200 rounds of simulations (Figure 3 in the supplementary
materials). In comparison, the weight vector for πmean is simply
(1/

√
n, . . . , 1/

√
n), which assigns equal weight to all the sam-

ples. On the other hand, since πmax cannot be written in the
form of (r(w'Y))−1 for some weight vector w and therefore
does not belong to the class of linear projection estimators, we
reported instead the pseudo-weight vector w̃ ∈ Rn where the ith
component is the proportion that the ith sample is used among
the p coordinates. In general, we found that w̃ ∈ Rn assigns
larger weights to only a few samples among those with higher
signal strength, and the weight vector for πmean fails to distin-
guish the informative samples from the noninformative ones.
In contrast, the weight vectors ŵ for our proposed estimator π̂

would automatically adapt to the varying signal strengths across
the samples and assign larger weights to the samples with more

signi"cant signal changes. This also explains the interesting
phenomenon in Figure 4 that, under the regime S1 and S2, π̂

and πmean perform better than πmax, whereas under S3 and S4, π̂
and πmax perform better. In summary, methods that are able to
detect and assign larger weight to the more informative samples
would perform better than methods that are not. Observably, π̂
combines the advantages of πmean and πmax in that it "nds the
best weights (projection scores) in a data-driven manner.

6.2. Evaluation Using Synthetic Metagenomic Data

We evaluate the empirical performance of our proposed method
using a synthetic metagenomic sequencing dataset used in Gao
and Li (2018) by generating sequencing reads based on 45
bacterial genomes. Instead of estimating the PTRs, which was
the focus of Gao and Li (2018), our goal is to recover the
unknown relative orders of the contigs assembled in typical
metagenomics studies. In addition to assisting the estimation
of PTRs, such ordering of the contigs could be of independent
interest for other applications, including genome assemblies
based on shotgun metagenomics data.

Gao and Li (2018) presented a synthetic shotgun metage-
nomic sequencing dataset of a community of 45 phylogenet-
ically related species from 15 genera of "ve di%erent phyla
with known RefSeq ID, taxonomy and replication origin (Gao,
Luo, and Zhang 2013) (see Figure 2 in the supplementary
materials). To generate metagenomics reads, reference genome
sequences of randomly selected three species in each genus
were downloaded from NCBI. Read coverages were generated
along the genome based on an exponential distribution with a
speci"ed peak-to-trough ratio and a function of accumulative
distribution of read coverages along the genome was calculated.
Sequencing reads were next generated using the above accu-
mulative distribution function and a random location of each
read on the genome, until the total read number achieved a
randomly assigned average coverage between 0.5 and 10 folds
for the species in a sample. Sequencing errors including sub-
stitution, insertion and deletion were simulated in a position-
and nucleotide-speci"c pattern according to a recent study on
metagenomic sequencing error pro"les of Illumina.

For the "nal dataset, the average nucleotide identities (ANI)
between species within each genus ranged from 66.6% to 91.2%
The probability of one species existing in each of the 50 simu-
lated samples was set as 0.6, and a total of 1336 average coverages
and the corresponding PTRs were randomly and independently
assigned. A#er the same processing and "ltering steps and
CG-adjustment step as in Gao and Li (2018), the "nal dataset
included genome assemblies of 41 species. For each species, we
obtained the permuted matrix of log-contig counts, with the
number of samples ranging from 29 to 46, and the number of
contigs ranging from 47 to 482.

Our proposed method (π̂) was used to estimate the unknown
orders of the contigs for each species and each sample. As a
comparison, we also considered the iRep estimator proposed
in Brown et al. (2016), where the contigs of a given species
were ordered for each sample separately based on the read
counts observed. We evaluate these methods by comparing the
estimated contig orders to their true orders as measured by the
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Figure 5. Boxplots of the normalized Kendall’s distance between the estimated contig orders and the true orders for di!erent sample sizes n and di!erent numbers of
contigs p. The lighter ones correspond to our proposed method and the darker ones correspond to the iRep estimation method.

normalized Kendall’s tau distance. To generalize our evaluation
to diverse metagenomic datasets, we also evaluate the e%ect of
sample size as well as contig numbers by randomly selecting
subsets of samples or contigs from each dataset. The selection
was made with replacement.

The results are summarized in Figure 5 by comparing the
normalized Kendall’s tau distances. As n or p varies, our pro-
posed estimator performs consistently better than iRep in recov-
ering the true contig orders, which explains partially why the
DEMIC algorithm worked better in estimating the bacterial
growth dynamics. The results of our methods are not sensitive
to the sample size and the number of contigs from the genome
assemblies. Our estimator also shows smaller variability.

6.3. Analysis of a Real Microbiome Metagenomic Dataset

Finally, we complete our numerical studies by analyzing a real
metagenomic dataset from the Pediatric Longitudinal Study of
Elemental Diet and Stool Microbiome Composition (PLEASE)
study, a prospective cohort study to investigate the treatment
e%ects on the gut microbiome and reduction of in!ammation
in pediatric Crohn’s disease patients (Lewis et al. 2015). In
particular, sequencing data from the fecal samples of 86 Crohn’s
disease children were obtained at baseline, 1 week and 8 weeks
a#er antiTNF or enteral diet treatment. In our analysis, the
sequencing data at the 8th week a#er treatment was used to
compare the bacterial growth dynamics for nonresponders (n =
34) and responders (n = 47). The reads were downloaded
from NCBI short read archive (SRP057027) with the corre-
sponding metadata. A#er the same coassembly, alignment and
binning steps as in Gao and Li (2018), the DEMIC algorithm
was applied to estimate the bacterial growth rate of a given
species represented by a contig cluster (bin) for each sample.
In particular, DEMIC applied our proposed method to the
GC-adjusted contig coverage data to recover the original order
of the contigs. A#er obtaining the ordered contigs, a simple
linear regression was "tted to obtain estimates of the PTRs
(ePTRs).

To compare the bacterial growth rates between responders
and nonresponders, our analysis focused on ePTRs of 8 contig

clusters over subsets of the nonresponders (n1) and the respon-
ders (n2) a#er 8 weeks of treatment with min{n1, n2} > 5. Other
contig clusters were rare and only appeared in a few samples. For
each contig cluster, we compare the ePTRs of the responders
and nonresponders Wilcoxon rank sum test (Table S.1 in the
supplementary materials). The taxonomic annotations of these
eight contig clusters were obtain by applying the BAT algorithm
(von Meijenfeldt et al. 2019) that compares the metagenomic
assembled bins to a taxonomy database. In Table S.1, we show
the "nal taxonomic annotations for each bin to the "nest possi-
ble resolution, with the lineage scores indicating the quality of
each taxonomic classi"cation.

Among the 8 contig clusters, bin.026 showed a signi"cant
di%erence in ePTRs between responders and nonresponders
a#er either antiTNF or enteral diet treatment for 8 weeks (p =
0.0418), where the growth rate was higher in Crohn’s disease
patients who did not respond to the treatment. The taxonomic
classi"cation (Table S.1) shows that this contig cluster belongs
to the phylum Firmicutes and the order Clostridiales. Since
BAT algorithm was not able to classify the order Clostridiales
to "ner taxonomic level of known species, this contig cluster
may represent a new species that is important to the treatment
outcome of Crohn’s disease patients.

7. Discussion

In this article, partial recovery was studied under the normalized
Kendall’s tau distance. Another commonly used metric is the
normalized Spearman’s footrule distance de"ned by

ρ(π1, π2) = 2
p(p − 1)

p∑

i=1
|π1(i) − π2(i)|, π1, π2 ∈ Sp.

A celebrated result by Diaconis and Graham (1977) shows that
τK(π1, π2) ≤ ρ(π1, π2) ≤ 2τK(π1, π2), which means the two
distances are equivalent. As a consequence, all the theoretical
results presented in this article concerning the Kendall’s tau
distance also hold for the Spearman’s footrule distance without
any change.

The minimax optimality of the proposed estimator π̂ was
investigated in Section 5 by examining the asymptotic sharpness
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of the MSG condition for exact recovery, and by obtaining
the matching minimax risk lower bound for partial recovery.
There are a few issues that deserve further investigation. For
both exact and partial recovery, it is unclear to what extent
the GSS condition is necessary. In our risk analysis, the per-
turbation bound for the le# singular subspace (Cai and Zhang
2018) was used. In fact, similar results can be obtained using
the concentration bound for the linear functionals of singular
vectors (Koltchinskii and Xia 2016). Nevertheless, it remains to
show whether the GSS condition is also asymptotically sharp.
In addition, in Theorem 6, the matching minimax lower bound
was obtained only for nonvanishing '/σ . It remains to show
whether the rate σ/(p') is minimax optimal when '/σ → 0.
The di$culty lies in "nding a p1+δ-sphere packing of the group
Sp equipped with the Kendall’s tau distance for any 0 < δ <

1, while the pairwise )2 distances of the packing elements are
also well controlled. Some initial steps have been made in the
so-called rank modulation theory (Barg and Mazumdar 2010;
Mazumdar, Barg, and Zemor 2013).

There are several related problems that are also of signi"cant
theoretical and practical interest. Firstly, although we used the
Kendall’s tau distance or the equivalent Spearman’s footrule
distance as the metric for partial recovery, other distances such
the Hamming distance, Spearman’s rank correlation distance,
and Ulam’s distance have also been used as the performance
metrics for partial recovery in other permutation estimation
problems (Göloğlu et al. 2015; Mukherjee 2016). It is therefore of
interest to see how π̂ performs under these losses. Secondly, our
proposed estimator π̂ implicitly performs a (linear) dimension
reduction technique and only uses the information contained
in the "rst eigenvector of A in (4). A natural extension is to
consider the eigen-subspace spanned by the "rst k eigenvectors
and to estimate the permutation in a sequential manner.

The present article focuses on the estimation of the permu-
tation matrix ". It is also of interest to estimate the under-
lying signal matrix ! or some functionals of it. For example,
in microbiome growth dynamics studies, it is of signi"cant
interest to estimate the peak-to-trough ratio exp(θkp − θk1)
for k = 1, . . . , n, which measures the microbial growth rate
for the kth sample, and to identify the samples with peak-to-
trough ratio of 1. It is also interesting to identify the bacteria
that show di%erential growth dynamics between disease and
normal individuals. Finally, robust permutation recovery meth-
ods that can relax the Gaussian or sub-Gaussian assumption of
the noise in the permuted monotone matrix model are needed.
For example, in some applications, the columns of the noise
matrix are not independent, or the variance levels across the
noise matrix are not identical. In these cases, we argue that, as
long as the marginal distributions of the noise matrix entries
remain sub-Gaussian, the analytical framework of the current
article can still be applied, but with more e%orts to control
the underlying heteroscedasticity. Toward this end, results from
the recent work of Zhang, Cai, and Wu (2018) can be very
useful, in terms of the new technical tools that parallel the ones
used in the current article to analyze the homoscedastic PCA
(see Lemmas 2 and 3). Finally, to account for noninformative
samples, sparse PCA (Cai, Ma, and Wu 2013; Yuan and Zhang
2013) can be considered. These are interesting problems le# for
future research.

8. Proofs of the Main Theorems

In this section, we prove Theorems 1 and 2 in detail and brie!y
sketch the proofs of Theorems 3 and 4. We also prove the
minimax lower bounds in Theorems 5 and 6. Proofs of other
results including the technical lemmas can be found in the
online supplementary materials.

Proof of Theorem 1. Let X = ! + Z. It follows that Y = X".
By right invariance of the 0-1 loss with respect to permutation
composition, we have

)((r(ŵ'Y))−1, π) = )((r(ŵ'X"))−1, π)

= )((r(ŵ'X))−1 ◦ π , π)

= )((r(ŵ'X))−1, id).

Thus, it su$ces to study the risk E)((r(ŵ'X))−1, id) =
P((r(ŵ'X))−1 .= id). In fact,

P((r(ŵ'X))−1 .= id)

≤ P
( p−1⋃

i=1

{ n∑

k=1
ŵkXki ≥

n∑

k=1
ŵkXk,i+1

})

≤
p−1∑

i=1
P
( n∑

k=1
ŵkXki ≥

n∑

k=1
ŵkXk,i+1

)

=
p−1∑

i=1
P
( n∑

k=1
ŵk(Xki − Xk,i+1) ≥ 0

)
, (13)

which further reduces to obtaining an upper bound for Pi =
P
( ∑n

k=1 ŵk(Xki − Xk,i+1) ≥ 0
)
. By de"nition, ŵ is the "rst

eigenvector of A = Y
(
I − 1

p ee')(
I − 1

p ee')
Y'. Simple calcula-

tion yields "
(
I − 1

p ee')(
I − 1

p ee')
"' =

(
I − 1

p ee')(
I − 1

p ee')

for any " ∈ Sp. So ŵ is also the "rst eigenvector of A =
X

(
I − 1

p ee')(
I − 1

p ee')
X' ≡ TT', where T ∈ Rn×p. Note

that T admits the decomposition T = !′ + E ∈ Rn×p where
Eij ∼ N(0, (p−1)σ 2/p) and !′ = aη′',η′

j = ηj − 1
p
∑p

i=1 ηi. In
particular, T.i = X.i − X̄row where X̄row = p−1 ∑p

i=1 X.i ∈ Rn

is the vector of row means of X. We denote φij = T.i − T.j =
X.i − X.j and denote w = a/‖a‖2 ∈ Rn as the "rst eigenvector
of the rank-one matrix !′!′'. Now following (13), we have

Pi = P
( n∑

k=1
ŵk(Xki − Xk,i+1) ≥ 0

)

= P
(

w'φij + (ŵ − w)'φij ≥ 0
)

= P
(

w'φi,i+1 + (ŵ − w)'φij ≥ 0, |1 − (ŵ'w)2| ≤ δ

)

+ P
(

w'φi,i+1 + (ŵ − w)'φij ≥ 0, |1 − (ŵ'w)2| > δ

)

for some δ > 0. By de"nition, up to a change of sign for ŵ,
we have 0 ≤ ŵ'w ≤ 1. Then |1 − (ŵ'w)2| ≤ δ implies
|(ŵ − w)'φi,i+1| ≤ ‖ŵ − w‖2‖φi,i+1‖2 ≤

√
2δ‖φi,i+1‖2,

where the "rst inequality follows from Cauchy–Schwartz and
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the second inequality used ‖ŵ − w‖2 =
√

2(1 − ŵ'w) ≤√
2(1 − (ŵ'w)2). Thus,

Pi ≤ P
(

w'φi,i+1 ≥ −
√

2δ‖φi,i+1‖2

)
+ P

(
|1 − (ŵ'w)2| > δ

)
. (14)

The following lemmas provide upper bounds for the two
probability events in the last expression.

Lemma 1. Under the conditions of Theorem 1, denote 'i =
‖a‖2(ηi − ηi+1), then for any δ > 0, we have

P
(

w'φi,i+1 ≥ −
√

2δ‖φi,i+1‖
)

≤ 2

(
C1

√
δ3

1/2
i + 'i

σ

)
+ C2

pc

(15)

for 3i = (
√

n+
√

log p)2 + '2
i

σ 2 + |'i|
σ

√
log p and some constants

C1, C2, c > 0.

Lemma 2. Suppose λ2
1(!

′) ≥ Cσ 2(n + √np) for some C > 0,
it follows that

P
(

|1−(ŵ'w)2| ≤ C1
σ 2(λ2

1(!
′) + σ 2p)(n + log p)

λ4
1(!

′)

)
≥ 1−C2

pc

for some C1, C2, c > 0.

Now since 1
p
∑

1≤i<j≤p(ηi − ηj)2 = ∑p
j=1

(
ηj −

1
p
∑p

i=1 ηi
)2 = ∑p

j=1 η′
j
2, we have λ2

1(!
′) = - > C0σ 2(n +

√np) for some C0 > 0. Set δ = C0σ 2 (λ2
1(!

′)+σ 2p)(n+log p)

λ4
1(!

′) . It
follows that δ = o(1). Combining Lemma 1 and Lemma 2, we
have

Pi ≤ 2

(
C
√

δ

[
(
√

n +
√

log p)2 + '2
i

σ 2 + |'i|
σ

√
log p

]1/2
+ 'i

σ

)
+ C

pc

(16)

for some C, c > 0. The rest of the analysis is divided into
several cases.

Case 1. log p ! n. In this case, we have Pi ≤ 2
(
C
√

δ
[
n+ '2

i
σ 2 +

|'i|
σ

√
log p

]1/2 + 'i
σ

)
+ C

pc . In addition, if |'i|/σ ! √
n, we have

Pi ≤ 2
(
C
√

δn+ 'i
σ

)
+ C

pc ≤ C′
pc , where the last inequality follows

from
√

log p ! '/σ ≤ |'i|/σ ! √
n and - " σ 2n

(
σ 2n
'2 +

σ
√p
'

)
. If instead |'i|/σ " √

n, we have Pi ≤ 2
(
C
√

δ |'i|
σ + 'i

σ

)
+

C
pc ≤ C′

pc , where the last inequality follows from |'i|/σ " √
n "

√
log p and δ = o(1). Hence, in Case 1, (16) can be bounded by

O(p−c).

Case 2. log p " n. In this case, we have Pi ≤ 2
(
C
√

δ
[

log p +
'2

i
σ 2 + |'i|

σ

√
log p

]1/2 + 'i
σ

)
+ C

pc . In addition, since |'i| ≥ ' "
σ
√

log p and δ = o(1), we have P
( ∑n

k=1 ûk(Xki − Xk,i+1) ≥
0
)

≤ 2
(C

√
δ

σ |'i| + 'i
σ

)
+ C

pc ≤ C′
pc . This shows that, in Case 2,

(16) can also be bounded by O(p−c).
As a result, it follows that, up to a change of sign for ŵ,

P((r(ŵ'X))−1 .= id) = O(p−c) for some constant c > 0.

Proof of Theorem 2. Firstly, by invariance property of Kendall’s
tau distance, E[τK(π̂ , π)] = E[τK((r(ŵ'X))−1, id)] =
E[τK((r(ŵ'X)), id)]. It then follows

E[τK(π̂ , π)] = 2
p(p − 1)

∑

i<j
P([r(ŵ'X)]i ≥ [r(ŵ'X)]j)

= 2
p(p − 1)

∑

i<j
P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)
.

The summation in the last expression can be divided into two
parts, namely, the consecutive di%erences and nonconsecutive
di%erences, that is,

∑

i<j
P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)

=
∑

(i,j):j=i+1
P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)

+
∑

(i,j):j>i+1
P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)
.

In the following, we "rst show

Pi = P
( n∑

k=1
ŵk(Xki − Xk,i+1) ≥ 0

)
(17)

≤ ce−'2/2σ 2

'/σ +
√

'2/σ 2 + 8/π
+ C

pc

so that

∑

(i,j):j=i+1
P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)
(18)

≤ cpe−'2/2σ 2

'/σ +
√

'2/σ 2 + 8/π
+ C

pc

for some C, c > 0. Then we show that

∑

(i,j):j>i+1
P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)
(19)

≤ C pσ

'
min

{
1, e−'2/2σ 2 log

(
1 + 2σ 2

'2

)}
+ C

pc .

Combining (18) and (19), we conclude that

E[τK(ŵ'Y , π)] ≤ Cσ

p'
min

{
1, e−'2/2σ 2 log

(
1 + 2σ 2

'2

)}

+ Ce−'2/2σ 2

p('/σ + √
8/π)

+ C
pc+2 ,

which completes the proof, as the bound E[τK(ŵ'Y , π)] ≤ 1 is
trivial.
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Proof of (17). Following the same argument as the proof of The-
orem 1, we have for 1 ≤ i ≤ p − 1 and δ = σ 2(n+log p)(λ2

1+σ 2p)

λ4
1

,
Pi ≤ P

(
w'φij ≥ −

√
2δ‖φi,i+1‖2

)
+P

(
|1−(ŵ'w)2| > δ

)
, where

the second term can be bounded using Lemma 2. For the "rst
term, by Lemma 1, for λ4

1(!
′) ≥ σ 2(p + σ 2λ2

1(!
′))(log p + n),

we have

Pi ≤ 2

(
C
√

δ

[
(
√

n +
√

log p)2 + '2
i

σ 2 + |'i|
σ

√
log p

]1/2
+ 'i

σ

)
+ C

pc .

Using same argument as the proof of Theorem 1, it holds
that Pi ≤ 2

(
'i
σ

)
+ C

pc . Equation (17) then follows by using
formula 7.1.13 of Abramowitz and Stegun (1965) that 2(−t) <

2
t+

√
t2+8/π

φ(t) for t ≥ 0.

Proof of (19). For the set of indices S = {(i, j) : 1 ≤ i < j ≤
p, j > i + 1}, we further divide it into two subsets S1 = {(i, j) :
1 ≤ i < j ≤ p, j > i + 4σ

√
C log p/'5} and S2 = {(i, j) : 1 ≤

i < j ≤ p, i + 1 < j ≤ i + 4σ
√

C log p/'5} for some constant
C > 0. Apparently we have the decomposition

∑

(i,j):j>i+1
P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)
(20)

=
∑

(i,j)∈S1

P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)

+
∑

(i,j)∈S2

P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)
.

For the "rst term, by construction, it can be shown using the
same argument (see the supplementary materials) in Theorem 1
that

∑

(i,j)∈S1

P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)
≤ C|S1|

pc ≤ C
pc0

. (21)

Now for the second term in (20), similar argument yields, for
(i, j) ∈ S2,

P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)

≤ c exp(−|i − j|2'2/(2σ 2))

|i − j|'/σ +
√

|i − j|2'2/σ 2 + 8/π
+ C

pc .

Note that, on the one hand,

e−|i−j|2'2/(2σ 2)

|i − j|'/σ +
√

|i − j|2'2/σ 2 + 8/π
≤ σ e−|i−j|2'2/2σ 2

|i − j|' .

We have

∑

(i,j)∈S2

σ e−|i−j|2'2/2σ 2

|i − j|'

= σ

'

p∧4
√

log p/'5∑

k=2

( e−k2'2/2σ 2 p
k − e−k2'2/2σ 2

)
= T1 − T2.

For the rest of the proof, we assume ' ≤ σ
√

log p/2, otherwise
the set S2 will vanish. Then

T1 = σp
'

p∧4σ
√

log p/'5∑

k=2

e−k2'2/2σ 2

k

≤ σp
'

∫ p∧σ
√

log p/'

1

e−x2'2/2σ 2

x dx,

where the last inequality used monotonicity of the integrand.
The integral in the last inequality, a#er change of variable, can
be bounded by an exponential integral Ei('2/2σ 2), which has
an upper bound
∫ p∧σ

√
log p/'

1

e−x2'2/2σ 2

x dx = 1
2

∫ (p2'2/2σ 2)∧(log p/2)

'2/2σ 2

e−t

t dt

≤ 1
2

∫ ∞

'2/2σ 2

e−t

t dx

≤ e−'2/2σ 2 log
(

1 + 2σ 2

'2

)

so that T1 ≤ σp
' e−'2/2σ 2 log

(
1 + 2σ 2

'2
)
. For T2, we have T2 =

σ
'

∑p∧4σ
√

log p/'5
k=2 e−k2'2/2σ 2 ≥ σ

' e−2'2/σ 2 . Therefore,

∑

(i,j)∈S2

P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)
(22)

≤ Cσp
'

e−'2/2σ 2 log
(

1 + 2σ 2

'2

)
+ C

pc .

On the other hand, note that

e−|i−j|2'2/(2σ 2)

|i − j|'/σ +
√

|i − j|2'2/σ 2 + 8/π
≤ ce−|i−j|2'2/(2σ 2).

We have

∑

(i,j)∈S2

e−|i−j|2'2/(2σ 2) =
p∧4σ

√
log p/'5∑

k=2
pe−k2'2/(2σ 2)

−
p∧4σ

√
log p/'5∑

k=2
ke−k2'2/(2σ 2)

≤ p
∫ ∞

1
e−k2'2/2σ 2 dk − 2e−2'2/σ 2 ≤ Cpσ/'.

Thus,
∑

(i,j)∈S2

P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)
≤ Cpσ/' + C′

pc . (23)

Combining (22) and (23), we have

∑

(i,j)∈S2

P
( n∑

k=1
ŵk(Xki − Xkj) ≥ 0

)
(24)

≤ C pσ

'
min

{
1, e−'2/2σ 2 log

(
1 + 2σ 2

'2

)}
+ C

pc

Combining (21) and (24), we have (19).



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1371

Proof of Theorems 3 and 4. Here we only provide a sketch of the
proofs. We refer the readers to our supplementary materials
for detailed proofs. The proofs follow essentially from the same
argument as the proofs of Theorems 1 and 2, respectively. How-
ever, in place of Lemma 2 used therein, we need the follow-
ing lemma that provides a perturbation bound for the leading
eigenvector of approximate rank-one matrices, which could be
of independent interest.

Lemma 3. Suppose p " n and λ2
1(!

′) ≥ λ2
2(!

′)+Cσ 2(n+√np)

for some C > 0. Let w = u′1 be the "rst le# singular vector of
!′, it follows that,

P
(

|1−(ŵ'w)2| ≤ Cσ 2(λ2
1(!

′) + σ 2p)(n + log p)

(λ2
1(!

′) − λ2
2(!

′))2

)
≥ 1− C

pc .

The proof of Lemma 3 is nontrivial, which depends on a
combination of the generic perturbation bound obtained by Cai
and Zhang (2018) and new concentration inequalities of approx-
imate rank-one matrices (see the supplementary materials).

Proof of Theorem 5. The proof relies on the following lemma
adapted from (Tsybakov 2009).

Lemma 4. Assume that for some integer M ≥ 2 there
exist distinct parameters θ0, . . . , θM from the parameter space
! and mutually absolutely continuous probability measures
P0, . . . , PM with Pj = Pθj for j = 0, 1, . . . , M, de"ned on a
common probability space (4, F) such that the averaged K-
L divergence 1

M
∑M

j=1 D(Pj, P0) ≤ 1
8 log M. Then, for every

measurable mapping θ̂ : 4 → !,

max
j=0,...,M

Pj(θ̂ .= θj) ≥
√

M√
M + 1

(3
4

− 1
2
√

log M

)
.

We construct the (M + 1) = p points parameter space as
follows. We de"ne p permutations from Sp as an identity plus
(p − 1) consecutive swaps, that is, π0 = id, πk = (k, k + 1)

for k = 1, . . . , p − 1. The signal matrix !0 = aη' where
a = (1, . . . , 1)' ∈ Rn and η = (0, δ, . . . , (p − 1)δ)' ∈ Rp, δ =
σ
4
√

log p/n. In this way, we have ' = ‖a‖2 · min1≤i≤p−1 |ηj −
ηj+1| = σ

4
√

log p. Let Pk corresponds to the joint probability
measure of Y under (!0, πk) for k = 0, 1, . . . , p − 1, and
let pk be the pdf of Pk, we have p0(x) = ∏n

i=1
∏p

j=1 φηj(xij),
pk(x) = ∏n

i=1
∏p

j=1 φηπk(j) (xij) for k = 1, . . . , p − 1, where φµ

is the pdf of Gaussian distribution N(µ, σ 2). Now we calculate
the KL-divergence

D(Pk, P0) =
∫

log
(pk(x)

p0(x)

)
p0(x)dx

=
∫ n

2σ 2

p∑

i=1
[(x1j − ηπk(j))

2 − (x1j − ηj)
2]p0(x)dx

= nδ2

σ 2 = log p
16

.

Then, we have for p ≥ 10, 1
p−1

∑p−1
k=1 D(Pk, P0) =

log p
16 ≤ 1

8 log(p − 1). It follows from Lemma 4 that,
inf π̂ sup(π ,!)∈D1 P(π̂ .= π) ≥ inf π̂ maxj=0,...,p−1 Pj(π̂ .=

πj) ≥ 0.3 as long as p ≥ 10. In addition,
inf π̂ sup(π ,!)∈D′

1
P(π̂ .= π) ≥ inf π̂ sup(π ,!)∈D1 P(π̂ .= π) as

D1 ⊂ D′
1.

Proof of Theorem 6. The proof relies on the following lemma
from Tsybakov (2009).

Lemma 5. Assume that M ≥ 2 and suppose that ! contains
elements θ0, θ1, . . . , θM such that: (i) d(θj, θk) ≥ 2s > 0 for any
0 ≤ j < k ≤ M; (ii) for any j = 1, . . . , M, 1

M
∑M

j=1 D(Pj, P0) ≤
α log M with 0 < α < 1/8 and Pj = Pθj for j = 0, 1, . . . , M.
Then

inf
θ̂

sup
θ∈!

Pθ (d(θ̂ , θ) ≥ s) ≥
√

M
1 +

√
M

(
1 − 2α −

√
2α

log M

)
> 0.

We also need the following sphere packing lemma proved by
Mao, Weed, and Rigollet (2017), which is a direct consequence
of the well-celebrated Varshamov–Gilbert bound.

Lemma 6. For any r < p/2, there exists a subset Qr of Sp such
that (i) log |Qr| ≥ r

5 log(p/r), (ii) for any elements π1, π2 ∈ Qr ,
we have

(p
2
)
· τK(π1, π2) ≥ r, and (iii) for any π ∈ Qr , we have

‖π − id‖2
2 ≤ 2r.

For t/σ ≥ 2, we set r = pσ
t e−t2/2σ 2

< p/2. Let π0 = id and
π1, . . . , π|Qr | be the elements of Qr . The signal matrix !0 =
aη' where a = (1/

√
320n, . . . , 1/

√
320n)' ∈ Rn and η =

(t, . . . , pt)' ∈ Rp. Let Pk be the joint probability measure of Y
under (!0, πk) for k = 0, 1, . . . , |Qr|, and let pk be the pdf of Pk.
By Lemma 6, the KL-divergence

D(Pk, P0) =
∫

log
(pk(x)

p0(x)

)
p0(x)dx

= t2

320σ 2 ‖πk − id‖2
2 ≤ pt

160σ
e−t2/2σ 2

and therefore

1
p − 1

p−1∑

k=1
D(Pk, P0) ≤ pt

160σ
e−t2/2σ 2

≤ pσ

80t e−t2/2σ 2 log
( t

σ
et2/2σ 2

)

≤ 1
16

log |Qr|.

Without loss of generality, we assume |Qr| ≥ 2. By Lemma 5, it
then follows that,

inf
π̂

sup
(!,π)∈D2(t)

P
(

τK(π̂ , π) ≥ σ

2pt e−t2/2σ 2
)

≥ C1,

for some absolute constant C1 > 0. By Markov’s inequality, we
have

inf
π̂

sup
(!,π)∈D2(t)

E[τK(π̂ , π)]

≥ σ

2pt e−t2/2σ 2 inf
π̂

sup
(!,π)∈D2(t)

P
(

τK(π̂ , π) ≥ σ

2pt e−t2/2σ 2
)

≥ C1σ

pt e−t2/2σ 2 .
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The relationship inf π̂ sup(!,π)∈D′
2(t) E[τK(π̂ , π)] ≥

inf π̂ sup(!,π)∈D2(t) E[τK(π̂ , π)] follows from DL ⊂ D. The rate
1/p2 follows by setting t = C2σ

√
log p for some C2 > 0.
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In our online supplementary materials, we prove Theorems 3 and 4,
Propositions 1–4, as well as the technical lemmas. Some supplementary
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