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ABSTRACT
The weighted UniFrac distance, a plug-in estimator of the Wasserstein distance of read counts on a
tree, has been widely used to measure the microbial community di!erence in microbiome studies. Our
investigation however shows that such a plug-in estimator, although intuitive and commonly used in
practice, su!ers from potential bias. Motivated by this "nding, we study the problem of optimal estimation
of the Wasserstein distance between two distributions on a tree from the sampled data in the high-
dimensional setting. The minimax rate of convergence is established. To overcome the bias problem, we
introduce a new estimator, referred to as the moment-screening estimator on a tree (MET), by using implicit
best polynomial approximation that incorporates the tree structure. The new estimator is computationally
e#cient and is shown to be minimax rate-optimal. Numerical studies using both simulated and real
biological datasets demonstrate the practical merits of MET, including reduced biases and statistically more
signi"cant di!erences in microbiome between the inactive Crohn’s disease patients and the normal controls.
Supplementary materials for this article are available online.
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1. Introduction

High-throughput sequencing technologies allow a high-
resolution characterization of the collection of all microbes
in a sample, leading to a comprehensive understanding of
microbial communities. The composition of microbes in a
given microbial community can be represented by discrete
distributions P = {pv}v∈V , where V is a !nite set of microbe taxa
(or operational taxonomic units (OTUs) in some applications),
and pv is the relative abundance of the vth bacterial taxon.
Phylogenetic tree provides an e"ective way of summarizing
how bacterial species or OTUs are related through evolution
based on the sequences of certain marker genes such as 16s
rRNA gene. As an example, Figure 1 shows the phylogenetic
tree of the 3991 bacterial OTUs identi!ed in a Crohn’s disease
study detailed in Section 7, where the leaf notes represent the
OTUs, branch lengths re#ect the evolutionary distances and
the internal notes represent the common ancestry of the nodes
below.

Measuring the distance between two communities is the !rst
step toward understanding the microbial similarity and di"er-
ences across samples. Various symmetrical distances between
two distributions are used to quantify di"erence between
the two communities, including the total variation distance,
Kullback–Leibler divergence and Hellinger distance. Here, a
symmetrical distance means that it is invariant with respect to
the permutation of the microbe species. However, such symmet-
rical distances ignore the similarity among di"erent microbe
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species as given by their phylogenetic relationships. In order
to account for such a similarity between the microbe species,
phylogenetic distances based on the empirical distributions
of the read counts and the underlying phylogentic tree have
been proposed as a more powerful and precise way to quantify
di"erence between two microbial communities. In particular, as
one of the most popular phylogenetic distances, the unweighted
and weighted UniFrac distances were introduced by Lozupone
and Knight (2005) and Lozupone et al. (2007) and have been
used in a wide range of microbiome studies (see, e.g., Lozupone
et al. 2007; Fierer et al. 2008; Charlson et al. 2010; Chang, Luan,
and Sun 2011; Wong, Wu, and Gloor 2016). As shown in Evans
and Matsen (2012), the weighted UniFrac distance can also be
viewed as the plug-in estimator of the Wasserstein distance, also
known as Kantorovich–Rubinstein distance or earth mover’s
distance (see, e.g., Monge 1781; Kantorovitch 1958; Villani
2008), on a phylogenetic tree. Such a distance can be generalized
to the Lα Zolotarev-type distance.

To be more speci!c, we consider two microbiome communi-
ties represented by discrete distributions P = {pv}v∈V and Q =
{qv}v∈V , where V is a !nite microbe species (or OTUs in some
applications) set. Let D(P, Q) denote the Wasserstein distance
between P and Q. In practice, P and Q are unknown and one
only has access to the empirical sequencing read distributions
P̂ = {p̂v}v∈V and Q̂ = {q̂v}v∈V . In the present paper, we
consider optimal estimation of the distance between distribu-
tions D(P, Q) when only the empirical distributions P̂ and Q̂
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Figure 1. Phylogenetic tree used in the 16S rRNA sequecning data of the Crohn’s
disease study. There are a total 3991 leaves (tips) and 3990 internal nodes.

are available. Since the introduction of the UniFrac distance, the
plug-in estimator D(P̂, Q̂) has been virtually the only estimator
for D(P, Q) because of its simplicity and ease of computation
(see, e.g., Lozupone and Knight 2005; Evans and Matsen 2012).
Despite the popularity of this classical plug-in estimator in
various microbiome studies, it is still largely unknown if there
are more e$cient estimators and to what extent such a distance
D(P, Q) can be estimated consistently. The main goal of this
article is to address these issues by answering the following
two questions: (1) what sample size of the data can guarantee
reliable estimation of D(P, Q)? (2) what is an optimal estimator
for D(P, Q)?

To answer these questions, we !rst investigate the classical
plug-in estimator. As the maximum likelihood estimator (MLE),
the empirical distribution P̂ has been shown to achieve the min-
imax optimality for estimating the distribution P itself under
various loss functions (see, e.g., Trybula 1958; Olkin and Sobel
1979; Daskalakis, Diakonikolas, and Servedio 2012; Kamath
et al. 2015). Moreover, when the sample size goes to in!nity and
the number of microbiome species is !xed, the asymptotic the-
ory for the MLE guarantees that the classical plug-in estimator
performs optimally for estimating smooth functionals (see, e.g.,
Le Cam 1986). However, our investigation shows that for esti-
mating the Wasserstein distance the plug-in estimator D(P̂, Q̂) is
sub-optimal due to its large bias resulting from the non-smooth
nature of the functional D(P, Q) and the high dimensionality of
the parameter space. Similar phenomena have been observed in
recent papers (see, e.g., Lepski, Nemirovski, and Spokoiny 1999;
Cai and Low 2011; Valiant and Valiant 2011, 2013; Jiao et al.
2015; Wu and Yang 2016; Jiao, Han, and Weissman 2018, among
many others) in other settings.

Cai and Low (2011) introduced the best polynomial approx-
imation approach to estimation of non-smooth functionals to
reduce the bias. This approach proceeds by !rst constructing the
best polynomial approximation to the target functional and the

unbiased estimator for the best polynomial is then constructed
as the !nal estimator of the original functional. This idea has
since been widely used to estimate symmetrical non-smooth
functionals of distributions, such as the Shannon entropy, Rényi
entropy, support size, L1 distance, χ2 divergence, Kullback–
Leibler divergence, and Hellinger divergence (see Acharya et al.
2014; Jiao et al. 2015; Wu and Yang 2016; Han, Jiao, and Weiss-
man 2016; Jiao, Han, and Weissman 2018; Bu et al. 2018 and
references therein). One main di$culty of the approximation
method is that it requires the construction of approximation
speci!cally for each individual functional. To address this issue,
two adaptive approaches have been proposed: local moment
matching (see, e.g., Han, Jiao, and Weissman 2018) and pro!le
maximum likelihood (see, e.g., Acharya et al. 2017; Pavlichin,
Jiao, and Weissman 2017; Acharya 2018). Both methods are
designed to !rst estimate the sorted version of the distribution
and then plugin the sorted distribution into arbitrary symmet-
rical functionals. Unfortunately, these methods and analyses are
not directly applicable to estimating the Wasserstein distance
due to the fact that D(P, Q) is an asymmetrical distance.

Motivated by the best polynomial approximation method
and moment matching method, we introduce a new Moment-
screening Estimator on a Tree, called MET herea%er, to estimate
the Wasserstein distance D(P, Q). MET !rst conducts moment
matching by taking advantage of the unique structure of the
phylogenetic tree and then estimates the Wasserstein distance by
an implicit approximation method. In doing so, MET requires
no speci!c construction for the best polynomial approximation,
but achieves the same bias reduction e"ect as the approximation
method. We establish the minimax rate of convergence for
estimating D(P, Q) under the mean squared error as

s log(2d+2/s)
n log n , (1)

where n is the sample size, s is the number of nodes of the phy-
logenetic tree and d is the height of the phylogenetic tree. In this
minimax rate (1), the term log(2d+2/s) is mainly determined
by the shape of underlying phylogenetic tree. When the tree is
short enough (2d " s), the di$culty of estimating Wasserstein
distance does not rely on the height of phylogenetic tree d any
more. The minimax rate (1) increases along with d linearly if
the tree is tall (2d # s). If we compare (1) with results in Jiao,
Han, and Weissman (2018), s log(2d+2/s) can be seen as e"ective
alphabet size a%er incorporating the phylogenetic tree structure.
Moreover, D(P, Q) can be estimated consistently if and only if

n ! s log(2d+2/s)
log s .

We also show that MET is rate optimal, while the classical plug-
in estimator such as the UniFrac distance is sub-optimal.

Furthermore, we consider estimation of the Lα Zolotarev-
type generalization of the Wasserstein distance, denoted by
Dα(P, Q). The Wasserstein distance is a special case with α = 1.
Our analysis shows that MET is still minimax optimal estimator
for Dα(P, Q) when 0 < α < 2, while the simple plug-in
estimator can achieve the minimax optimal rate when α ≥ 2. We
also show that estimation of Dα(P, Q) becomes more di$cult as
α gets smaller.
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The rest of the article is organized as follows. We !rst intro-
duce the setting and the Wasserstein distance as well as its plug-
in UniFrac distance estimator in Section 2. Section 3 presents
MET for estimating the Wasserstein distance D(P, Q). In Sec-
tion 4, we investigate the theoretical properties of MET and
compare it with the classical plug-in estimator theoretically.
Section 5 studies estimation of the Lα Zolotarev-type generaliza-
tion of the Wasserstein distance and provides the corresponding
theoretical analysis. Section 6 discusses the algorithmic details
of implementing MET. We analyze both the simulated and real
data sets in Section 7 to demonstrate the numerical performance
of MET. Proofs and auxiliary results are relegated to the supple-
mental materials.

2. Wasserstein Distance and the Plug-in UniFrac
Distance

2.1. Wasserstein Distance and Poisson-Multinomial Model

Let T = (V , E) be the phylogenetic tree of microbe species,
where V is the collection of microbe species and their ancestors
and E is the collection of edges/branches of the tree T. In
particular, we always assume that the tree T is rooted at ρ.
Denote by Le the length of the branch e ∈ E. For any pairs of
nodes v1, v2 ∈ V , the unique path between them is denoted by
[v1, v2] and the corresponding distance between them is de!ned
as

d(v1, v2) :=
∑

e∈[v1,v2]
Le.

The height/depth of the tree is thus de!ned as the maximum of
distance between the root ρ and the other nodes of tree

d(T) = max
v∈V

d(ρ, v).

We write the Wasserstein distance between the distributions P
and Q on the tree T as

D(P, Q) = inf
{rv1,v2 }v1,v2∈V∈$(P,Q)

∑

v1,v2∈V
d(v1, v2)rv1,v2 .

where {rv1,v2}v1,v2∈V is the joint probability distribution on V ×
V and $(P, Q) is the collection of the joint probability dis-
tributions of which the marginal distributions are P and Q,
respectively. If we de!ne the descendants of a given branch e ∈ E
as

τ(e) = {v ∈ V : e ∈ [ρ, v]},

then the above Wasserstein distance can be rewritten (see, e.g.,
Evans and Matsen 2012) as

D(P, Q) =
∑

e∈E
Le |Pe − Qe| , (2)

where Pe and Qe are the total proportion of subtree below edge
e

Pe =
∑

v∈τ(e)
pv and Qe =

∑

v∈τ(e)
qv.

Note that Equation (2) is also the original form of the weighted
UniFrac distance (see Lozupone and Knight 2005; Lozupone
et al. 2007).

In microbiome studies, the sequencing read data can be mod-
eled by a Poisson-multinomial model. More concretely, denote
by X1, ..., XnX and Y1, ..., YnY the reads from the two samples. We
assume the total numbers of reads nX and nY are independent
random variables drawn from a Poisson distribution, that is,
nX , nY

iid∼ Pois(n). Conditioning on nX and nY , the reads
are modeled as a multinomial distribution: X1, ..., XnX |nX

iid∼
Multi(1; {pv}v∈V) and Y1, ..., YnY |nY

iid∼ Multi(1; {qv}v∈V). The
empirical distribution thus can be written as

p̂v =
∑nX

i=1 I(Xi = v)
nX

and q̂v =
∑nY

i=1 I(Yi = v)
nY

.

Clearly, the Poisson-multinomial model suggests p̂vs and q̂vs are
independent from each other and

np̂v ∼ Pois(npv) and nq̂v ∼ Pois(nqv).

We also use the following notation in this article

P̂e =
∑

v∈τ(e)
p̂v and Q̂e =

∑

v∈τ(e)
q̂v.

2.2. The Classical Plug-in Estimator and the UniFrac
Distance

The most natural estimator for D(P, Q) is perhaps the plug-in
estimator

D(P̂, Q̂) :=
∑

e∈E
Le

∣∣∣P̂e − Q̂e
∣∣∣ .

This plug-in estimator, known as the UniFrac distance, has
been widely used in many applications, including community
comparison (see, e.g., Lozupone and Knight 2005; Lozupone
et al. 2007; Chang, Luan, and Sun 2011; Evans and Matsen
2012), clustering based on pairwise distance (see, e.g., Lozupone
et al. 2007) and two sample testing (see, e.g., Charlson et al.
2010; Wong, Wu, and Gloor 2016). Despite its popularity, the
performance of the plug-in estimator is still unclear.

We now examine the theoretical performance of D(P̂, Q̂).
We use the mean squared error to evaluate the accuracy of an
estimator D̂,

E
(

D̂ − D(P, Q)
)2

.

The following proposition characterizes the performance of the
plug-in estimator.

Proposition 1. Suppose T is a tree of height d. There exists some
constant C such that

E
(

D(P̂, Q̂) − D(P, Q)
)2

≤ CRplug−in(T; P, Q)

where

Rplug−in(T, P, Q) =
(

∑

e∈E
Pe ∧

√
Pe
n

)2

+
(

∑

e∈E
Qe ∧

√
Qe
n

)2

+ d2

n .
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Furthermore, there exist two pairs of distributions (T, P1, Q1)
and (T, P2, Q2) such that

inf
D̂

sup
(T,P1,Q1),(T,P2,Q2)

E
(

D̂ − D(P, Q)
)2

≥ c d2

n .

where c > 0 is some constant and the in!mum takes over all
possible estimators.

In Rplug−in(T, P, Q), the !rst two terms corresponding to the
bias of the plug-in estimator and the last term is the variance
of the plug-in estimator. The lower bound suggests that the last
term in the upper bound cannot be improved in the minimax
sense. This naturally brings about the question of whether it is
possible to reduce the bias in order to construct a more e$cient
estimator for D(P, Q).

3. Moment-Screening Estimator on a Tree

3.1. Behavior of the Bias Term in the Plug-in Estimator

We !rst investigate behavior of the bias of the plug-in estimator.
The conditional expectation of the plug-in estimator given nX
and nY can be written explicitly as

E
(

D(P̂, Q̂)|nX , nY
)

=
∑

e∈E
Le

×




nX ,nY∑

k1,k2=0
f (k1, k2)Pk1

e (1 − Pe)
nX−k1 Qk2

e (1 − Qe)
nY−k2



 ,

(3)

where

f (k1, k2) =
(nX

k1

)(nY
k2

) |k1 − k2|
n .

Equation (3) suggests that the expectation of the plug-in esti-
mator is essentially a polynomial of {Pe}e∈E and {Qe}e∈E and the
bias of the plug-in estimator mainly results from the polynomial
approximation error for absolute value function |x − y| near the
diagonal line x = y. Actually, the expectation of any estimator
based on P̂ and Q̂ can always be expressed as a polynomial.
Similar phenomena are observed in functional estimation of
single distribution (see, e.g., Paninski 2003; Jiao et al. 2015; Wu
and Yang 2016). It is clear from the above discussion that we
can reduce the bias by redesigning the coe$cient of polynomial
f (k1, k2) to better approximating the absolute value function
near diagonal line.

A prerequisite step for the bias reduction is to identify the
pairs (Pe, Qe) that are near diagonal line. We consider the fol-
lowing uncertain set covering the diagonal line:

P =
{

(p, q) :
∣∣p − q

∣∣ ≤ min
(√

1.1c1(p + q) log n
n , |p + q|

)}

for some constant c1 that will be speci!ed later. To identify if
(Pe, Qe) belongs to P , we adopt sample splitting techniques on
the Poisson distribution. To be speci!c, we draw an independent
uniform Bernoulli variable P(B = 0) = P(B = 1) = 0.5 for

each Xi and each Yi, and then split the samples according to the
value of B. The split empirical distributions thus can be written

p̂v,j =
∑nX

i=1 I(Xi = v)I(BX
i = j)

nX
and

q̂v,j =
∑nY

i=1 I(Yi = v)I(BY
i = j)

nY

for j = 0, 1. Here BX
i s and BY

i s are independent uni-
form Bernoulli random variables. Similarly, we write P̂e,j =∑

v∈τ(e) p̂v,j and Q̂e,j = ∑
v∈τ(e) q̂v,j for j = 0, 1. The

construction suggests that p̂v,0 and p̂v,1 are independent Poisson
random variables with mean npv/2, and q̂v,0 and q̂v,1 are
independent Poisson random variables with mean nqv/2.
Herea%er, we rede!ne n/2 as n. This sample splitting strategy
allows us to use (P̂e,0, Q̂e,0) to localize whether (Pe, Qe) belong to
P and estimate the functional by (P̂e,1, Q̂e,1). When (P̂e,0, Q̂e,0) /∈
P , it holds with high probability that (Pe, Qe) satis!es either
Qe < Pe or Pe < Qe only. This implies that |Pe − Qe| can be
estimated by |P̂e,1 − Q̂e,1| in an unbiased way and we could
simply adopt the classical plug-in estimator. On the other hand,
if (P̂e,0, Q̂e,0) ∈ P , it is necessary to design an estimator to
carefully reduce the approximation bias. For brevity, we write
herea%er

Er =
{

e ∈ E : (P̂e,0, Q̂e,0) ∈ P
}

and

Ec =
{

e ∈ E : (P̂e,0, Q̂e,0) /∈ P
}

.

It is worth noting that the sample splitting technique is mainly
used to simplify the analysis. It is not necessary to split the
samples in practice and we do not split the samples in the
numerical experiments in Section 7.

3.2. A Bias Reduction Strategy

A natural bias reduction strategy inspired by Equation (3) is to
construct an unbiased estimator of the best polynomial approx-
imation for the target function |x − y| or e ∈ Er . As mentioned
earlier, the use of the best polynomial approximation method
was pioneered in Cai and Low (2011) for bias reduction in
estimation of non-smooth functionals. Its popularity is justi!ed
as it leads to the construction of the rate-optimal estimators
in di"erent problems (see, e.g., Cai and Low 2011; Jiao et al.
2015; Wu and Yang 2016; Jiao, Han, and Weissman 2018, and
references therein). To be more speci!c, let FK

e (Pe, Qe) be some
polynomial of degree at most K designed for (Pe, Qe) at edge
e ∈ Er

FK
e (Pe, Qe) =

K∑

k1,k2=0
fe(k1, k2)Pk1

e Qk2
e .

The choice of FK
e (Pe, Qe) is usually determined by (P̂e,0, Q̂e,0)

to approximate target functional locally (see, e.g., Jiao, Han,
and Weissman 2018). The corresponding unbiased estimator of
FK

e (Pe, Qe) can be written as

F̂K
e =

K∑

k1,k2=0
fe(k1, k2)Hk1(P̂e,1)Hk2(Q̂e,1),
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Figure 2. Bias and variance decomposition of polynomial approximation estimator
and moment screening estimator.

where Hk(P̂e,1) is an unbiased estimator for Pk
e , i.e. Hk(x) =∏k−1

m=0
(
x − m

n
)

if k ≥ 1 and Hk(x) = 1 when k = 0. Thus,
the bias of estimator

∑
e∈Er LeF̂K

e is mainly the approximation
error of the carefully chosen polynomials
∣∣∣∣∣∣
E

∑

e∈Er

Le
(

F̂K
e − |Pe − Qe|

)
∣∣∣∣∣∣
≤

∑

e∈Er

Le sup
x,y

∣∣FK
e (x, y) − |x − y|

∣∣ .

The squared error of estimator
∑

e∈Er LeF̂K
e can thus be decom-

posed into bias (Bias A) and variance (Variance A) as illustrated
in le% half of Figure 2.

However, one of the main di$culties of this strategy is that we
need to construct the best polynomial approximation explicitly
for each edge and each target functional. For instance, the best
approximated polynomials for |x−y|α are di"erent for di"erent
α > 0. To address this issue, we appeal to the observation
that the unbiased estimator F̂K

e can be further approximated by
some plug-in estimator. To illustrate the intuition, we consider
a simple example that FK

e (Pe, Qe) are the same across di"erent
e ∈ Er , that is, there exists a polynomial FK(Pe, Qe) such that
FK

e (Pe, Qe) = FK(Pe, Qe). Suppose (P̃e, Q̃e) are chosen in a way
such that

∣∣∣∣∣∣

∑

e∈Er

LeFK(Pe, Qe) −
∑

e∈Er

LeF̂K
e

∣∣∣∣∣∣

≈

∣∣∣∣∣∣

∑

e∈Er

LeFK(P̃e, Q̃e) −
∑

e∈Er

LeF̂K
e

∣∣∣∣∣∣
. (4)

In other words, variance A and “variance B" are almost equal in
Figure 2. Since the approximation error of chosen polynomial is
under control uniformly, bias A and bias B in Figure 2 have the
same order. Combining bias and variance term implies

∣∣∣∣∣∣

∑

e∈Er

Le|Pe − Qe| −
∑

e∈Er

LeF̂K
e

∣∣∣∣∣∣

≈

∣∣∣∣∣∣

∑

e∈Er

Le|P̃e − Q̃e| −
∑

e∈Er

LeF̂K
e

∣∣∣∣∣∣
.

This suggests that the plug-in estimator
∑

e∈Er Le|P̃e − Q̃e| is
as e$cient as polynomial approximation estimator

∑
e∈E LeF̂e,K ,

but has no need for explicit knowledge of the best approximated
polynomial.

To search for (P̃e, Q̃e) satisfying Equation (4), it is su$cient
to consider each monomial of FK(Pe, Qe). More speci!cally,
(P̃e, Q̃e) can be chosen in a way such that

∣∣∣∣∣∣

∑

e∈Er

Le
(

P̃k1
e Q̃k2

e − Hk1(P̂e,1)Hk2(Q̂e,1)
)
∣∣∣∣∣∣

≈

∣∣∣∣∣∣

∑

e∈Er

Le
(

Pk1
e Qk2

e − Hk1(P̂e,1)Hk2(Q̂e,1)
)
∣∣∣∣∣∣

(5)

for k1, k2 = 0, . . . , K. The way to choose (P̃e, Q̃e) in Equation (5)
is referred as moment screening herea%er. Because of no need
for explicit construction of the best approximated polynomial,
we adopt moment screening strategy to improve the classical
plug-in estimator.

3.3. Moment-Screening Estimator on Tree (MET)

Although the above approximation strategy could help reduce
the bias, the main di$culty of moment screening is that we need
to estimate the deviation of the unbiased estimator on the right-
hand side of Equation (5) in the presence of heteroscedastic vari-
ance and the complex dependence structure among (P̂e,1, Q̂e,1).
To address this challenge, we adopt the following proposition to
decouple the dependence structure among (P̂e,1, Q̂e,1).

Proposition 2. Suppose {xv}v∈V is a collection of nonnegative
number such that

∑
v∈V xv ≤ W. Let Ẽ(w) be a subset of edges

on tree T such that

Ẽ(w) =




e ∈ E : w/2 <
∑

v∈τ(e)
xv ≤ w




 .

Then, Ẽ(w) can be decomposed into a collection of disjoint
paths

Ẽ(w) =
S⋃

l=1
[vL

l , vU
l ],

where vL
l and vU

l l = 1, . . . , S, are the nodes of the tree, and the
number of disjoint paths S satis!es S ≤ 2W/w. In addition, any
two edges from di"erent paths in the above decomposition do
not share any descendants.

This proposition suggests that if subset of E can be written in
the form of Ẽ(w) for some {xv}v∈V , then it can be decomposed
into a collection of disjoint paths. A typical example of Ẽ(w)

is colored in red in Figure 3, where Ẽ(w) is decomposed into
two paths [vL

1 , vU
1 ] and [vL

2 , vU
2 ]. Because of this decomposition,

the dependence structure of (P̂e,1, Q̂e,1) is clear on Ẽ(w). To be
speci!c, (P̂e,1, Q̂e,1) are highly dependent for any two edges on
the same path, but (P̂e,1, Q̂e,1) are independent for any two edges
from di"erent path since they do not share any descendants.

Motivated by Proposition 2, we decompose Er with respect
to the value of P̂e,0 + Q̂e,0 = ∑

v∈τ(e)(p̂v,0 + q̂v,0). We consider
the following strati!cation of Er :

Ej =
{

e ∈ Er : 1
2j < P̂e,0 + Q̂e,0 ≤ 1

2j−1

}
,
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Figure 3. Examples of Ẽ(w) and Ej : the red edges in (a) shows an example of Ẽ(w)

with respect to P̂e,0 + Q̂e,0, which can be decomposed two paths [vL
1, vU

1 ] and
[vL

2, vU
2 ]; solid red edges in (b) shows an example of Ej , which is a subset of Ẽ(w)

in (a); dashed red edges in (b) belong to Ec .

for j = 1, . . . , J :=
⌊

log2
(
n/c1 log n

)⌋
. By de!nition, Ej is a

subset of {e ∈ E : 2−j < P̂e,0 + Q̂e,0 ≤ 2−(j−1)}, which
satis!es the condition of Proposition 2. Therefore, each Ej can
be decomposed into a collection of subsets of disjoint paths and
has a clear dependence structure as well. Figure 3 shows a typical
example of Ej. Besides each Ej, j = 1, . . . , J, we also de!ne

E0 =
{

e ∈ Er : P̂e,0 + Q̂e,0 ≤ 2−J
}

.

Since E0 does not satisfy the conditions of Proposition 2, the
bounded di"erence property can be used to estimate deviation
in Equation (5). We are now in a position to carry out moment
screening in Equation (5) for each Ej.

We de!ne the following set for E0:

I0 =




{(xe, ye)}e∈E0 ∈ A|E0|
0 :

∣∣∣∣∣∣

∑

e∈E0

Le
(

xk1
e yk2

e − Ĥk1,k2

)
∣∣∣∣∣∣

≤ R0,k1,k2 , 0 ≤ k1, k2 ≤ K
}

,

where Ĥk1,k2 = Hk1(P̂e,1)Hk2(Q̂e,1), K = c2 log n for some
constant c2 and deviation in the right-hand side of Equation (5)
is

R0,k1,k2 = C0,k1,k2 d
√

n log2 n
( log n

n

)k1+k2
.

Here, d is the height of tree T and C0,k1,k2 = 4dM2(76c1)k1+k2 ,
where M = maxe∈E Le. A0 is de!ned as small 2D region
A0 =

[
0, 2c1 log n/n

]2 so that each (xe, ye) is constrained in this
region. We choose {(P̃e, Q̃e)}e∈E0 arbitrarily from I0. When Pe +
Qe is large than c1 log n/n, |Pe − Qe| can be well approximated
by a polynomial of Pe − Qe (see Jiao, Han, and Weissman
2018). Following this observation, we shall conduct the moment
screening for Pe − Qe directly in order to simplify the moment
screening procedure. In particular, {(P̃e − Q̃e)}e∈Ej is chosen
directly from the following set:

Ij =




{xe}e∈Ej ∈ A|Ej|
j :

∣∣∣∣∣∣

∑

e∈Ej

Le
(

xk
e − Gk(P̂e,1, Q̂e,1)

)
∣∣∣∣∣∣

≤ Rj,k, 0 ≤ k ≤ K
}

,

where Gk(P̂e,1, Q̂e,1) is unbiased estimator of (Pe − Qe)k

Gk(P̂e,1, Q̂e,1) =
k∑

l=0

(k
l

)
(−1)lHl(P̂e,1)Hk−l(Q̂e,1),

and the deviation can be represented as

Rj,k = Cj,kd
√

Sj log n
( log n

2jn

)k/2
.

Here, Aj is de!ned as an interval [−
√

4c1 log n/2jn,√
4c1 log n/2jn], Sj is the number of the disjoint paths in Ej in

Proposition 2 and Cj,k = 6dM2(48c1)k/2. By doing this, instead
of (K + 1)2 constraints, only K + 1 constraints are required
to choose (P̃e, Q̃e). A%er moment screening, we plugin (P̃e, Q̃e)
into estimator D(P, Q) to obtain our new estimator

D̃MET =
J∑

j=0

∑

e∈Ej

Le|P̃e − Q̃e| +
∑

e∈Ec

Le|P̂e,1 − Q̂e,1|. (6)

In light of the fact that 0 ≤ D(P, Q) ≤ dM, our !nal estimator
is de!ned as

D̂MET = min(D̃MET, dM).

We call this estimator the moment-screening estimator on tree
(MET). The corresponding algorithm is summarized in Algo-
rithm 1.

Algorithm 1 Moment-screening Estimator on Tree (MET)
Input: Empirical distribution {P̂e}e∈E, {Q̂e}e∈E and Tree T.
Output: Estimation of distance D(P, Q).

Split samples into {P̂e,0, Q̂e,0}e∈E and {P̂e,1, Q̂e,1}e∈E.
Use {P̂e,0, Q̂e,0}e∈E to group edges into Ej, 0 ≤ j ≤ J and Ec.
if I0 = ∅ then

{(P̃e, Q̃e)}e∈E0 = {(P̂e,1, Q̂e,1)}e∈E0
else

Choose {(P̃e, Q̃e)}e∈E0 from I0 arbitrarily.
end if
for j ∈ 1 : J do

if Ij = ∅ then
{(P̃e − Q̃e)}e∈Ej = {(P̂e,1 − Q̂e,1)}e∈Ej

else
Choose {(P̃e − Q̃e)}e∈Ej from Ij arbitrarily.

end if
end for
Evaluate D̂MET = min(

∑J
j=0

∑
e∈Ej Le|P̃e − Q̃e| +

∑
e∈Ec Le|P̂e,1 − Q̂e,1|, dM).

return D̂MET

We close this section by comparing MET with local moment
matching (LMM) proposed by Han, Jiao, and Weissman (2018).
Although both methods adopt implicit approximation method
through comparing monomials a%er “localization” of (Pe, Qe),
there are several key di"erences between two methods. LMM
is designed for estimating symmetric functionals of a single
discrete distribution adaptively, while MET aims to estimate a
collection of asymmetrical distances between a pair of discrete
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distributions on a tree. Because of di"erent purposes, MET
incorporates branch length Le in moment screening (5) and
adopts a new scheme of partition for edges of tree in order to
account for complex dependence structure among (P̂e, Q̂e) and
two-dimensional nature of the problem.

4. Theoretical Properties

We now turn to analyzing the theoretical properties of the
proposed estimator D̂MET, and compare it with the classical
plug-in estimator. We evaluate the performance of an estimator
D̂ based on the samples X and Y by the maximum mean squared
error

R(D̂; &) := sup
(T,P,Q)∈&

E(D̂(X, Y) − D(P, Q))2,

where parameter set & is a collection of combinations of tree
T and probability distributions P and Q. The minimax risk in
estimating D(P, Q) is de!ned as

R∗(&) = inf
D̂

R(D̂; &),

where the in!mum is taken with respect to all measurable
estimators based on the samples X and Y . In particular, we are
interested in the following parameter set:

&(s, d) :=
{
θ = (T, P, Q) : T ∈ T (s, d), P, Q ∈ M|V|

}
,

where Ms is collection of all discrete distribution with alpha-
beta size s and

T (s, d) =
{

T : 1 ≤ Le ≤ M, ∀e ∈ E; d(T) ≤ d; |V| ≤ s
}

.

The choices of M ≥ 1 in above de!nition is arbitrarily, but need
to be a !xed constant. For simplicity of analysis, we shall focus
on the case when T is a binary tree, i.e. each node has at most
two children, although all the analysis can also be applied to the
more general cases. The parameter space &(s, d) requires that
the number of the nodes of the tree T is less than or equal to s
and the depth of the tree T is less than or equal to d. Clearly, an
implicit constraint for d and s is log2 s ≤ d ≤ Ms due to the facts
that the shortest tree T is a complete binary tree and highest tree
is a chain. For brevity, we also write R∗(D̂; &(s, d)) as R∗(D̂; s, d)

and R∗(&(s, d)) as R∗(s, d).
The performance of MET on &(s, d) is characterized by the

following theorem.

Theorem 1. Consider estimating D(P, Q) by D̂MET on &(s, d).
Let K = c2 log n for some constant c2 < c1 and c1 > 40. If
n log n # s log(2d+2/s) and log n ≤ C1 log(s/d) for arbitrary
constant C1, then there exists a constant C such that

R(D̂MET; s, d) ≤ C s log(2d+2/s)
n log n ,

when c2 is chosen small enough.

One main challenge in the proof of Theorem 1 is that
(P̃e, Q̃e)s can be highly dependent. To decouple the high
dependence, Proposition 2 helps to segment the collections of
nodes into relatively independent ones by taking advantage of
the tree structure. The analysis itself may be of independent
interest and can be applied to other problems on trees such
as deriving the asymptotic distribution for the test statistics
of UniFrac distance. Theorem 1 assumes an upper bound
condition on sample size (log n ≤ C1 log(s/d)). The similar
upper bound of sample size also appears in previous papers
(see, e.g., Jiao et al. 2015; Wu and Yang 2016; Jiao, Han, and
Weissman 2018). Under this kind of condition, the bias of
estimator dominates its variance so the plugin estimator can
be improved by bias reduction. Another implication of this
condition is log n " log(s/d) when log n ≤ C1 log(s/d),
thus the result in Theorem 1 is still valid if we replace log n
by log(s/d).

The following lower bound shows that MET as shown in
Theorem 1 is indeed rate-optimal.

Theorem 2. Consider estimating D(P, Q) on &(s, d). We have

inf
D̂

R(D̂; s, d) ≥ c s log(2d+2/s)
n log n

for some constant c > 0. Moreover, if n log n . s log(2d+2/s),
there is no consistent estimator for D(P, Q).

Theorems 1 and 2 together show that the optimal rate of
convergence under condition log n ≤ C1 log(s/d) is

R∗(s, d) " s log(2d+2/s)
n log n .

Depending on d and s, there are two di"erent regimes for the
minimax optimal rate.

• For the short trees where s " 2d, the optimal rate for
estimating D(P, Q) is s/n log n. Recall that estimating the L1
distance has the same minimax optimal rate (see Jiao, Han,
and Weissman 2018). Putting di"erently, estimating D(P, Q)

is as di$cult as estimating the L1 distance when the tree is
short enough, that is, almost like a complete binary tree.

• For the trees of tall heights, that is, s . 2d, the optimal rate
becomes sd/n log n. We can see that the distance on taller tree
is more di$cult to estimate.

We now compare the performance of D̂MET and the classical
plug-in estimator D(P̂, Q̂). The performance of the classical
plug-in estimator D(P̂, Q̂) on &(s, d) is characterized in the
following theorem.

Theorem 3. Let D(P̂, Q̂) be the classical plug-in estimator for
D(P, Q). When n . s log(2d+2/s), D(P̂, Q̂) is inconsistent. And
when n # s log(2d+2/s), there exist constants c and C such that

c s log(2d+2/s)
n ≤ R(D(P̂, Q̂); s, d) ≤ C s log(2d+2/s)

n .

Comparison between Theorems 1 and 3 shows that the accu-
racy of MET is better than the classical plug-in estimator when
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log n ≤ C1 log(s/d). In particular, the loss of D(P̂, Q̂) is in#ated
by log n times, although it is much simpler to implement plug-
in estimator. If the tree is !xed, that is, s and d are determined,
the minimax risk is of the order n−1, which is consistent with
asymptotic results in Sommerfeld and Munk (2018). We provide
a more accurate characterization when s and d increase along
with n.

5. Estimation of the Lα Zolotarev-type Distance

Evans and Matsen (2012) generalize D(P, Q) into Lα Zolotarev-
type distance

(
∑

e∈E
Le |Pe − Qe|α

)(1/α)∧1

where 0 < α < ∞. To !x the idea, we focus on estimating its
equivalent form

Dα(P, Q) =
∑

e∈E
Le |Pe − Qe|α . (7)

It is clear that, as a special case, D1(P, Q) is just the Wasserstein
distance we discussed in the previous sections. As pointed by
Fukuyama et al. (2012), D2(P, Q) is the distance used in DPCoA
(see, Pavoine, Dufour, and Chessel 2004). To assess the perfor-
mance of an estimator D̂ of Dα(P, Q), we still adopt the mean
squared error on &(s, d)

Rα(D̂; s, d) := sup
(T,P,Q)∈&(s,d)

E(D̂ − Dα(P, Q))2.

The corresponding minimax risk can then be de!ned as
R∗

α(s, d) := inf D̂ Rα(D̂; s, d).
Through the discussion in Section 2, the main reason for the

in#ated bias in the classical plug-in estimator for D(P, Q) is that
the approximation error for |x − y| when (x, y) lies around the
diagonal line x = y. This naturally brings about the question of
whether the classical plug-in estimator for Dα(P, Q) also su"ers
from the same bias problem. We show that this actually depends
on the choice of α, determining the smoothness of |x − y|α at
x = y. More speci!cally, we !rst show that, when α ≥ 2, the
bias in#ation is negligible so that the classical plug-in estimator
achieves the minimax optimal rate.

Theorem 4. Consider estimating Dα(P, Q) by the classical plug-
in estimator Dα(P̂, Q̂) on &(s, d). If we assume α ≥ 2, then there
exist constants C and c such that

Rα(Dα(P̂, Q̂); s, d)) ≤ C d2

n and inf
D̂

Rα(D̂; s, d) ≥ c d2

n .

Furthermore, there is no consistent estimator for Dα(P, Q) when
n . d2.

The reason that the classical plug-in estimator attains the
optimal rate when α ≥ 2 is that the function |x − y|α is smooth
in this case. Obviously, the smaller α is, the sharper |x − y|α at
x = y becomes. This leads to signi!cant bias for the classical
plug-in estimator when 0 < α < 2. One might expect to only
need to adopt the same approximation strategy in Section 2 to

reduce bias when (Pe, Qe)s are around diagonal line. It turns out
that it is also necessary to reduce the bias of |P̂e − Q̂e|α even
when it lies outside of the adjacent region of the diagonal line.

To address this issue, we reduce the bias of |P̂e − Q̂e|αs in
two steps. Speci!cally, the same moment screening strategy is
used to reduces the bias, when (P̂e,0, Q̂e,0) ∈ ∪J

j=0Ej. Since
no explicit polynomial construction is required by MET, we
can simply plugin (P̃e, Q̃e) into |Pe − Qe|α to achieve the bias
reduction. On the other hand, another step based on the Taylor
expansion is adopted when (P̂e,0, Q̂e,0) ∈ Ec. In particular, the
Taylor expansion suggests

E|P̂e,1 − Q̂e,1|α − |Pe − Qe|α

≈ α(α − 1)

2
|Pe − Qe|α−2Var(P̂e,1 − Q̂e,1).

Thus, we consider the following !rst order bias-corrected esti-
mator for |Pe − Qe|α :

Uα(P̂e,1, Q̂e,1) = |P̂e,1 − Q̂e,1|α + α(1 − α)

2n In(P̂e,1, Q̂e,1)

× |P̂e,1 − Q̂e,1|α−2(P̂e,1 + Q̂e,1).

Here, In(Pe, Qe) = I
(|Pe−Qe|>

√
c1(Pe+Qe) log n/4n)

I(Pe+Qe>c1 log n/4n) is a truncation function designed to make
Uα(P̂e,1, Q̂e,1) a bounded function. This is inspired by interpola-
tion function in Jiao et al. (2015). Putting the two bias reduction
steps together yields our MET estimator for Dα(P, Q)

D̂MET,α :=
J∑

j=0

∑

e∈Ej

Le|P̃e − Q̃e|α +
∑

e∈Ec

LeUα(P̂e,1, Q̂e,1). (8)

It is worth noting that D̂MET,1 coincides with the estimator in
(6). When 0 < α < 1, the performance of D̂MET,α can be
characterized in the following theorem.

Theorem 5. Let D̂MET,α be the estimator de!ned in Equation (8).
Let K = c2 log n for some small enough constant c2 and c1 > 40.
For 0 < α < 1, there exist constants C > 0 and c > 0 such that

Rα(D̂MET,α ; s, d) ≤ C s2−α logα(2d+2/s)
(n log n)α

,

when n log n # s(2−α)/α log(2d+2/s) and

inf
D̂

Rα(D̂; s, d) ≥ c s2−α logα(2d+2/s)
(n log n)α

.

Moreover, no consistent estimator for Dα(P, Q) exists when
n log n . s(2−α)/α log(2d+2/s).

Theorem 5 shows that the minimax rate is dominated by bias
and D̂MET,α is a minimax rate-optimal estimator for Dα(P, Q)

when 0 < α < 1. We now show that the bias and variance
dominate in di"erent regimes when 1 < α < 2. In the following
theorem, we write r(s, d, n) = log n/ log(s/d) and T(α) = (2 −
α)/(α − 1).
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Theorem 6. Consider estimating Dα(P, Q) when 1 < α < 2.
Let D̂MET,α be the estimator de!ned in Equation (8) and D(P̂, Q̂)

be the plugin estimator. For the MET, we assume K = c2 log n
for some small enough constant c2 and c1 > 40. If r(s, d, n) ≤
C1 < T(α) and n log n # s(2−α)/α log(2d+2/s), then there exist
constants C > 0 such that

Rα(D̂MET,α ; s, d) ≤ C s2−α logα(2d+2/s)
(n log n)α

.

On the other hand, if r(s, d, n) ≥ T(α) and n # d2, then

Rα(Dα(P̂, Q̂); s, d) ≤ C d2

n .

Furthermore, there exists a small constant c such that

inf
D̂

Rα(D̂; s, d) ≥ c
(

s2−α logα(2d+2/s)
(n log n)α

+ d2

n

)

.

Moreover, no consistent estimator for Dα(P, Q) exists when
n log n . max(s(2−α)/α log(2d+2/s), d2).

This theorem suggests that a composite estimator shall be
adopted to achieve the minimax optimal rate of estimating
Dα(P, Q) when 1 < α < 2. More speci!cally, a new composite
estimator of MET and plugin estimator can be de!ned as

D̂COM,α =
{

D̂MET,α r(s, d, n) < T(α)

Dα(P̂, Q̂) r(s, d, n) ≥ T(α)
.

Theorem 6 shows that D̂COM,α is minimax rate-optimal either
r(s, d, n) < T(α) or r(s, d, n) ≥ T(α). Theorems 4–6 together
characterize the minimax rate R∗

α(s, d) for di"erent value of α.
We summarize the minimax rate and optimal sample complex-
ity in Table 1. The minimax rates suggest that the estimation
of Dα(P, Q) becomes more di$cult as α decreases. Putting it
di"erently, given s, d and n, Dα(P, Q) is only estimable for some
value of α.

6. Implementation of MET

We now address several practical issues in implementation of
MET in this section. As mentioned earlier, the purpose of sam-
ple splitting is mainly for simplifying the theoretical analysis. We
do not split the samples in the numerical experiments. In other
words, we replace the role of both (P̂e,0, Q̂e,0) and (P̂e,1, Q̂e,1)
by (P̂e, Q̂e). To implement MET, we need to assign appropriate
values for two turning parameters: c1 and c2. The choices of
c1 and c2 are crucial to tradeo" between bias and variance,
because c1 a"ects the size of uncertain set P and the deviation
of moment screening R0,k1,k2 and Rj,k, and c2 determines the
degree of moment screening K. A combination of larger c1 and

c2 implies applying bias reduction to more pairs of (Pe, Qe) and
higher degree of approximated polynomial in MET, thus leading
to smaller approximation error along with increasing variance.
On the other hand, the variance is well controlled when both c1
and c2 are chosen to be small. The choice of c1 = 1.8 and c2 = 1
is supported by our experience and will be used in all numerical
experiments in Section 7.

Algorithm 2 Algorithm for Implementing the Moment-
screening Estimator on Tree (MET)
Input: Empirical distributions {P̂e}e∈E, {Q̂e}e∈E and Tree T.
Output: Estimate of the distance D(P, Q).

Use {P̂e, Q̂e}e∈E to group edges into Ej, 0 ≤ j ≤ J and Ec.
Solve

min
Wh1,h2

∑

h1,h2

|Wh1,h2 − Wo
h1,h2

|

s.t.

∣∣∣∣∣∣

∑

h1,h2

Wh1,h2(h1w0)
k1(h2w0)

k2 −
∑

e∈E0

LeHk1(P̂e)Hk2(Q̂e)

∣∣∣∣∣∣

≤ R0,k1,k2

for all 0 ≤ k1, k2 ≤ K

if above problem is infeasible then
Wh1,h2 = Wo

h1,h2
.

end if
D0 = ∑

h1,h2 Wh1,h2 |(h2 − h1)w0|α .
for j ∈ 1 : J do

Solve

min
Wh

∑

h
|Wh − Wo

h|

s.t.

∣∣∣∣∣∣

∑

h
Wh(hwj)

k −
∑

e∈Ej

LeGk(P̂e, Q̂e)

∣∣∣∣∣∣
≤ Rj,k,

for all 0 ≤ k ≤ K.

if above problem is infeasible then
Wh = Wo

h .
end if
Dj = ∑

h Wh
∣∣hwj

∣∣α .
end for
Evaluate D̂MET,α = ∑J

j=0 Dj + ∑
e∈Ec LeUα(P̂e, Q̂e).

return D̂MET,α

The core component of MET is the moment screening:
choosing (P̃e, Q̃e) or (P̃e − Q̃e) from Ij for j = 0, . . . , J. The
main di$culty is to check the feasibility of each Ij as the
constraints of Ij are highly nonlinear. To overcome this issue, we

Table 1. Summary of the minimax risk rate and optimal sample complexity.

0 < α < 1 1 < α < 2 α ≥ 2

Minimax Rate
s2−α logα(2d+2/s)

(n log n)α
s2−α logα(2d+2/s)

(n log n)α
+ d2

n
d2

n

Sample Complexity
s(2−α)/α log(2d+2/s)

log s
max

(
s(2−α)/α log(2d+2/s)

log s
, d2

)

d2
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formulate the moment screening as a linear programming. A
similar formulation has been used in Han, Jiao, and Weissman
(2018). More speci!cally, for E0, the square [0, c1 log n/n] ×
[0, c1 log n/n] is divided into a collection of small bins with the
width w0: Hh1,h2 := [(h1 − 1)w0, h1w0) × [(h2 − 1)w0, h2w0),
1 ≤ h1, h2 ≤ 2c1 log n/w0n3. The width of w0 can be chosen as
1/2n. We assign a weight Wh1,h2 for each Hh1,h2 and write

Wo
h1,h2

=
∑

e∈E0

LeI((P̂e, Q̂e) ∈ Hh1,h2).

Thus, I0 can be approximated by

Ĩ0 =




{Wh1,h2} :

∣∣∣∣∣∣

∑

h1,h2

Wh1,h2(h1w0)
k1(h2w0)

k2

−
∑

e∈E0

LeHk1(P̂e)Hk2(Q̂e)

∣∣∣∣∣∣
≤ R0,k1,k2 , 0 ≤ k1, k2 ≤ K




 ,

and the feasibility of Ĩ0 can then be checked by linear program-
ming. To make the choice of Wh1,h2 more stable, we consider the
following optimization problem:

min
Wh1,h2

∑

h1,h2

|Wh1,h2 − Wo
h1,h2

|

s.t.

∣∣∣∣∣∣

∑

h1,h2

Wh1,h2(h1w0)
k1(h2w0)

k2 −
∑

e∈E0

LeHk1(P̂e)Hk2(Q̂e)

∣∣∣∣∣∣

≤ R0,k1,k2

for all 0 ≤ k1, k2 ≤ K.

Because of the L1 minimization, the sparse structure of Wo
h1,h2

is kept by the above optimization form. This optimization prob-
lem is equivalent to a linear programming that can be solved
e$ciently. We use the optimization so%ware MOSEK (https://
www.mosek.com/) to solve the corresponding linear program.
A%er calculating Wh1,h2 ,

∑
e∈E0 Le|P̃e−Q̃e|α thus can be approx-

imated by
∑

h1,h2

Wh1,h2 |(h2 − h1)w0|α .

We use the same strategy to !nd a solution for
∑

e∈Ej Le|P̃e −
Q̃e|α . Speci!cally, we divided the interval [−

√
4c1 log n/2jn,√

4c1 log n/2jn] as a collection of small bins Hh := [(h −
1)wj, hwj) with the width wj = 1/

√
2jn. For each Hh, we de!ne

the weights Wh and Wo
h = ∑

e∈Ej LeI(P̂e − Q̂e ∈ Hh). The
optimization problem is then

min
Wh

∑

h
|Wh − Wo

h|

s.t.

∣∣∣∣∣∣

∑

h
Wh(hwj)

k −
∑

e∈Ej

LeGk(P̂e, Q̂e)

∣∣∣∣∣∣
≤ Rj,k,

for all 0 ≤ k ≤ K.

Thus,
∑

e∈Ej Le|P̃e−Q̃e|α can be approximated by
∑

h Wh
∣∣hwj

∣∣α .
A%er incorporating this optimization formulation, the algorith-
mic version of MET is summarized in Algorithm 2.

7. Numerical Studies

In this section, we study the numerical performance of the
proposed MET. We carry out simulation studies in Section 7.1
and real data analysis in Section 7.2 to investigate the numerical
properties of MET in various settings.

7.1. Simulation Studies

We !rst demonstrate the merit of MET through simulation
studies. In particular, the tree T we use here is phylogenetic
tree of bacteria within the class Gammaproteobacteria, which
is extracted from Greengenes 16S rRNA database version 13.8
clustered at 85% similarity (see, DeSantis et al. 2006, http://
greengenes.secondgenome.com) by the package metagenomeFea-
tures. There is a total of 247 leaves (tips), which are denoted
by VL, and 246 internal nodes, which are denoted by VI , on
tree T and the length of edges/branches ranges from 0.00015
to 0.23597. The structure of the phylogenetic tree is shown in
Figure 4.

We consider three distributions on T in the next two sets of
simulation experiments. Speci!cally, the !rst distribution is a
uniform distribution on all nodes, that is, pv = 1/493, ∀v ∈ V ,
and is denoted by P(1). The second distribution P(2) we consider
here is a uniform distribution on all leaves, that is, pv = 1/247
if v ∈ VL and pv = 0 if v ∈ VI . To de!ne the third distribution
P(3), we rank the leaves according to its labeled number (which
is shown in Figure 4) in increasing order and write them as
v(1), . . . , v(247). Then, we let pv(i) ∝ i such that

∑
v∈VL pv = 0.75

and pv = 0.25/246 if v ∈ VI .
The !rst set of simulation experiments is to assess the per-

formance of MET when two target distributions are equal, that
is, Dα(P, Q) = 0. To this end, we simulate reads data of both
samples from the same multinomial distribution. In particu-
lar, the true distributions of P and Q are P(1), P(2), and P(3),
respectively. To investigate the e"ect of the sample size n and
α, we chose n = 2000, 4000, 6000, 8000, and 10,000, and α =
1, 1.5, and 2 in the simulation experiments. The experiment is
repeated 100 times for each combination of the sample size n
and di"erent distributions. For comparison purpose, both MET
and the plug-in estimator are calculated for each simulation run.
The average squared error (D̂ − Dα(P, Q))2 with error bar at
10% and 90% quantile are summarized in Figure 5. These results
clearly demonstrate the improved accuracy of the proposed
estimator MET. The observed e"ect of n and α is consistent
with the theoretical results given in the previous sections: the
Wasserstein distance can be estimated more accurately when n
and α are larger.

Next, we compare the performance of MET with that of the
plug-in estimator on the simulated data when Dα(P, Q) 5= 0. We
consider distance estimation between three pair of distributions:
P(1) vs. P(2), P(1) vs. P(3), and P(2) vs. P(3). As in the previous
simulation experiments, we still vary n and α. Instead of squared
error, we use the ratio of absolute error to the true distance
|D̂−Dα(P, Q)|/Dα(P, Q) to assess the estimation accuracy. The
simulation results in Figure 6 are based on 100 runs for each
combination of the sample size n and the distribution pairs.
These results again demonstrate the advantage of the proposed
method MET over the simple plug-in estimator.

https://www.mosek.com/
https://www.mosek.com/
http://greengenes.secondgenome.com
http://greengenes.secondgenome.com
https://bioconductor.org/packages/release/bioc/html/metagenomeFeatures.html
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Figure 4. Phylogenetic tree of bacteria within the class Gamma proteobacteria used in simulation studies. There is a total of 247 leaves(tips) and 246 internal nodes. The
leave number labels the bacterial species.

The last set of simulation experiments aims to further com-
pare MET and the plug-in estimator on estimation of di"erent
distances. More speci!cally, we consider a mixture of uniform
distributions on VL and VI , that is, pv = 0.75/247 if v ∈ VL
and pv = 0.25/246 if v ∈ VI , denoted by P(4) herea%er. We

focus on estimation of these two distances D(P(2), P(2)) = 0
and D(P(2), P(4)) = 0.026 when the sample size n = 3000.
The histograms of the estimated distances by both methods are
reported in Figure 7, which are based on 200 runs for each
distance. The naive plug-in estimator resulted in a larger bias
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Figure 5. Comparison of the quadratic estimation losses between MET and the plug-in estimator when Dα(P, Q) = 0 for three di!erent read count distributions, P1, P2,
and P3.

than MET. It is clear from Figure 7 that MET is able to better
distinguish these two distances from each other than the plug-
in estimator due to the bias reduction strategy in MET. This
also suggests that the new estimator might be used as a more
powerful test statistic to detect the di"erence between the two
communities.

7.2. A Real Data Example

We apply MET to a 16S rRNA microbiome dataset of 16 patients
with inactive Crohn’s disease and 18 normal controls in order

to test the intestinal microbiome di"erence between these two
groups of individual samples. These data were collected as part
of a larger microbiome study of Crohn diseases conducted
at the University of Pennsylvania. For each sample, the raw
sequence reads data were placed into a reference phylogenic
tree from Greengenes 16S rRNA database version 13.8 with
a 99% similarity by using SEPP (see Mirarab, Nguyen, and
Warnow 2012; Janssen et al. 2018). All the processing steps
were performed using QIIME 2 (see, https://qiime2.org). A%er
the phylogenic placement of the reads, the reference phylo-
genic tree is trimmed by keeping all nodes related to the OTUs
observed in the samples. The !nal phylogenetic tree is shown

https://qiime2.org
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Figure 6. Comparison of the ratio of absolute error to the true distance between MET and the plug-in estimator when Dα(P, Q) 5= 0 for three di!erent P and Q distributions.

in Figure 1. On this phylogenetic tree, there are a total of
3991 leaves (tips) and 3990 internal nodes. Before applying
MET, the OTU table is normalized by rarefaction so that all
the samples have the same number of reads (see Weiss et al.
2017).

The newly proposed MET is applied to calculate the micro-
biome distance for every pair of the 34 samples. As a com-
parison, we also applied the plugin estimator to calculate the
UniFrac distance between samples. To compare these two meth-
ods, Figure 8 shows the di"erence between the estimated dis-
tances by these two methods, D̂MET − D(P̂, Q̂), versus the
estimated distance by MET, D̂MET. As shown in Figure 8, D̂MET

tends to be smaller than the plug-in estimator D(P̂, Q̂) and tends
to be shrunk toward 0. This is mainly due to the bias reduction
technique in MET. This was observed in the third simulation
experiment as well. Furthermore, the di"erence between the two
methods tends to increase as the estimated distance decreases.
This is reasonable as more pairs of (Pe, Qe) get closer and thus
result in more bias in#ation of the plug-in estimator when the
distance becomes smaller.

To further compare these two distance estimation methods,
we conduct graph-based two sample testing by using the
estimated distance matrix. Graph-based two-sample testing
method is introduced by Friedman and Rafsky (1979) and
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Figure 7. Histograms of the estimated distances by the plug-in estimator and MET when the true distance is 0.00 or 0.026.

Figure 8. Comparison of the estimated distances of the Crohn’s disease data sets. The di!erence between estimated distances by two methods, D̂MET − D(P̂, Q̂), versus
the estimated distance by MET, D̂MET, are plotted for each pair of the samples.

further developed by Schilling (1986), Callahan et al. (2016),
and Chen and Friedman (2017). We !rst build a graph using
the distance thresholding and then use the number of edges
between samples from di"erent groups as the test statistic. The
graphs obtained by thresholding at 0.3 are presented in Figure 9.
The statistical signi!cance is evaluated by permuting the sample
labels randomly 1000 times. The p-values calculated from the
distance matrix estimated by MET and the plug-in estimator
are 0.0099 and 0.0249, respectively, indicating more signi!cant
di"erence in overall microbiome compositions between the
inactive Crohn’s disease patients and the controls. If we choose
the critical value at 0.01, p-value calculated from MET indicates
an overall di"erence in gut microbiome composition between
the two groups.

8. Concluding Remarks

In this article, we considered the problem of optimal estimation
of the distance between two microbial communities based on
the sequencing reads that are mapped to a phylogenetic tree,
including the Wasserstein distance and its Lα Zolotarev-type
generalization. Although the classical plug-in estimator imple-
mented as the UniFrac distance has been widely used in the
microbiome applications, our results show that it can be sub-
optimal and the accuracy can be improved by a bias reduction
technique. In particular, we proposed a novel and adaptive
distance estimation procedure, MET, by adopting a polynomial
approximation approach on trees. Due to the incorporation
of the moment screening method, MET does not require any
explicit construction of the best polynomial approximation,
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Figure 9. Estimated sample connectivity graphs by thresholding the distance matrix estimated by MET and the plug-in estimator for the inactive Crohn’s disease samples
and the control samples.

thus allowing estimation of Dα(P, Q) for multiple α simultane-
ously. Through this implicit approximation strategy, MET is able
to reduce the bias in distance estimation e"ectively and hence
results in minimax rate optimal estimator.

Although the main focus of this article is estimation of the
Wasserstein distance and its Lα Zolotarev-type generalization,
the techniques are readily applicable to more generalized cases.
For instance, the results for the L1 distance estimation in Jiao,
Han, and Weissman (2018) can be generalized to estimating the
Lα distance and leads to the following optimal rate of conver-
gence,

inf
D̂

sup
P,Q∈Ms

E(D̂ − ‖P − Q‖α
α)2 " s2−α

(n log n)α
+ 1

n ,

where Ms is the collection of the discrete distributions with
alpha-beta size s. It is also interesting to compare estimation of
Dα(P, Q) and ‖P − Q‖α

α . The optimal rates becomes the same
when s " 2d. In other words, when the tree is very short (almost
the same with complete binary tree), the behaviors of estimation
of the two distances are very similar. Another potential gener-
alization of our result is the estimation of Wasserstein distance
on a tree when the tree has at most λ > 2 children. The MET
itself is still rate optimal but log(2d+2/s) needs to be replaced by
log(λd+2/s) in the optimal rate.

We focused on estimation of the Wasserstein distance
between two distributions on a tree in this article, but the
Wasserstein distance between distributions on other spaces,
such as Rd space, has been also used in many applications,
including computer vision (see, e.g. Ni et al. 2009; Solomon
et al. 2015) and machine learning(see, e.g., Arjovsky, Chintala,
and Bottou 2017; Gulrajani et al. 2017). The results in this
paper are di$cult to be generalized directly in this case as the
general Wasserstein distance cannot be written in an explicit
way like Equation (2). The empirical Wasserstein distance
(plug-in estimator) on !nite spaces has been studied when
the !nite space is !xed and sample size goes to in!nity (see,

e.g., Do Ba et al. 2011; Weed and Bach 2017; Sommerfeld and
Munk 2018; Tameling, Sommerfeld, and Munk 2017; Klatt,
Tameling, and Munk 2018; Singh and Póczos 2018). However,
our paper provides a high-dimension results to the problem
of distance estimation, allowing that all d, s and n can go to
in!nity.

Although our discussion is mainly in the context of microbial
community comparisons, it is worth noting that the Wasserstein
distance may also be used in other applications. For instance,
one may be interested in comparing the protein expression
levels measured by the #ow/mass cytometry across di"erent
cell populations (see, e.g., Orlova et al. 2016; Chen et al. 2018)
when the di"erentiation tree of the cells is available. In prac-
tice, the di"erentiation tree structure across the cells can be
built by several techniques such as minimum spanning tree
construction or hierarchical clustering (see, e.g., Anchang et al.
2016; Mao et al. 2017; Liu et al. 2018). In these situations, the
Wasserstein distance on a tree re#ects the di"erence between
the cell populations in a more accurate fashion as the similarity
between the cells along the di"erentiation tree is taken into
account. Therefore, the methodology and theory developed
in this paper can then be employed in these applications as
well.
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Supplementary Materials

In the online supplemental materials, we prove all the theorems and rele-
vant lemmas in this online Supplementary Materials.
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