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ABSTRACT ARTICLE HISTORY
Background and Context: Lopez and Lister first presented evi- Received 15 November 2020
dence for a skill hierarchy of code reading, tracing, and writing for Accepted 17 May 2022
introductory programming students. Further support for this hier- KEYWORDS

archy could help computer science educators sequence course Introductory programming;
content to best build student programming skill. programming skills; skill
Objective: This study aims to replicate a slightly simplified hierar- hierarchy; replication;

chy of skills in CS1 using a larger body of students (600+ vs. 38) in a structural equation modeling
non-major introductory Python course with computer-based

exams. We also explore the validity of other possible hierarchies.

Method: We collected student score data on 4 kinds of exam

questions. Structural equation modeling was used to derive the

hierarchy for each exam.

Findings: We find multiple best-fitting structural models. The ori-

ginal hierarchy does not appear among the “best” candidates, but

similar models do. We also determined that our methods provide us

with correlations between skills and do not answer a more funda-

mental question: what is the ideal teaching order for these skills?

Implications: This modeling work is valuable for understanding the

possible correlations between fundamental code-related skills.

However, analyzing student performance on these skills at a

moment in time is not sufficient to determine teaching order. We

present possible study designs for exploring this more actionable

research question.

1. Introduction

Since the work of McCracken et al. (2001) and Lister et al. (2004), there have been
multiple studies investigating the relationship between different sets of programming
skills and the potential hierarchy they form. Researchers sought to establish the
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existence of a hierarchy, as knowing the relation between programming skills would
help educators structure their course content and scaffold their students through the
learning process. For example, perceptions of such a hierarchy motivates a recent
theory that that suggests students should understand how to read code before
students can write code (Xie et al., 2019). Lopez et al. (2008) are notable for first
presenting potential evidence for a skill hierarchy, most notably between tracing,
reading, and writing code. Their work in investigating the potential hierarchy of skills
in introductory programming set off a flurry of follow up work investigating whether
a hierarchy exists, what that hierarchy is, and how that hierarchy can be statistically
supported (see, Section 2.3).

While the original Lopez et al. (2008) paper is of great importance given the line of
work it has inspired, it presents some methodological concerns. We began the project
aiming to solve what we considered the primary concern: a sample size that was too
small to strongly support the claims about the hierarchy, which was also a concern in
subsequent work looking at the hierarchy or the relationships between programming
skills (Corney et al. 2014; Kikuchi & Hamamoto, 2016; Lister et al., 2009; Murphy,
Fitzgerald et al., 2012; Murphy, McCauley et al., 2012; Venables et al., 2009). Multiple
studies brought stronger structural equation modeling (SEM) methods to bear, but
retained problems with sample size (Yamamoto et al., 2012, 2011).

We performed a quantitative, conceptual replication of Lopez et al. (2008)’s program-
ming skill hierarchy using a large, non-major introductory Python course. To the original
study, we bring a larger student pool (600+ students vs 38) and the more powerful
modeling technique of SEM. In order to guarantee the presence of sufficient data to
present our results with confidence, our analysis uses a simplified hierarchy to focus on
four key latent variables (Sequence, Tracing, Explaining, Writing).

With this replication, we ask the following question:

RQ1: Will the hierarchy between Sequence, Tracing, Explaining, and Writing programming
skills replicate with structural equation modeling?

To this research question, there are two potential and dueling hypotheses. We present
these hypotheses below:

H1: The results of our study will conceptually replicate the original order of skills from the
Lopez hierarchy of skills with a 95% confidence interval.

H2: The results of our study will suggest a hierarchy of fundamental programming skills
(i.e. Sequence, Tracing, Explaining, and Writing) that is better supported.

We, like many others in the community (Corney et al. 2014; Kikuchi & Hamamoto, 2016;
Lister et al., 2009; Murphy, Fitzgerald et al., 2012; Murphy, McCauley et al.,, 2012; Teague
et al, 2012; Venables et al., 2009; Yamamoto et al, 2012, 2011), find the idea that
a programming hierarchy may exist compelling and highly relevant to the development
of practices to teach introductory programming. As such, we were particularly interested
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whether or not our replication supports H1. At the same time, given the amount of data we
will have available, we find it important to also judge the hierarchy against other potential
options to determine what the true relationship between these skills is.

However, in the process of completing this replication, we came to a realization: we can
determine only the strength of correlational relationships with this approach and data.
We discuss how we may move past these limitations in Section 6. Ultimately, work
investigating skill hierarchies should not stop at the correlations between skills, but
determine the ordering of skills in how they should be taught. This is not a question
that can be answered with our experimental design, but is the motivation for work on
programming skill hierarchies.

The rest of the manuscript is organized as follows. We review prior work with respect to
skill hierarchies in Section 2. In Section 3, we discuss our methods and instrument and
how we differ from the original study. In Section 4, we discuss the original analysis and
then lay out our analysis and its statistical power. In Section 5 we discuss our findings and
elaborate on what they can and cannot say about these programming skills. Section 6
provides a discussion of the implications of our findings, as well as possible study designs
for truly determining the order skills should be taught. We discuss the limitations present
in our study design Section 7. Finally, we briefly conclude in Section 8.

2. Literature review
2.1. The early days of novice programming skills research

2.1.1. Early studies in novice knowledge acquisition
Studies investigating how students progress through learning the fundamentals of pro-
gramming has been a topic of interest since the emergence of computing education
research as a discipline (Soloway & Spohrer, 1989). Though the concepts of a skills
hierarchy in programming is relatively new, the idea of there being different categories
of skills that students must master is one that is long standing. One example of this is
a 1986 article by Soloway in which the process of “chunking” a program into multiple sub-
problems through stepwise decomposition was formalized (Soloway, 1986). The method
of decomposition is defined as being dependent on a student’s ability to draw relation-
ships between the set of subproblems they are currently presented with and those with
which they are already familiar. Similarly, program composition is defined as a student’s
ability to break a large problem into smaller ones, solve those, and build a larger program
up from those subproblems. Though not explicitly stated by Soloway, both stepwise
decomposition and program composition are implied to be dependent on a student’s
ability to trace through code and extract a more abstract purpose. Winslow (1996) offered
similar suggestions stating that programming is an act of mastering many basic problems
and gaining the ability to solve and recognize problems through pattern recognition.
Perkins and Martin (1986) conducted investigations into the problems faced by begin-
ner programmers enrolled in their second semester of a course taught in BASIC. The key
finding they present is that beginner knowledge is “fragile”, meaning it is difficult for
students in the formative stages of learning to program to draw relationships between
concepts and leverage what they have previously learned to solve new problems. They
state that providing students with explicit problem-solving strategies was sufficient to
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scaffold learners and lead to a measurable improvement in problem-solving skills.
Findings by Soloway et al. (1983) reinforce the idea of introductory students’ knowledge
as being fragile with findings showing that a significant portion of students were unable
to solve even the simplest of problems. Kurland et al. (1986) provided even further
reinforcement with a study showing that high school students with two years of experi-
ence still had difficulty with the fundamentals of programming.

2.1.2. Early steps towards proposing a hierarchy

These early studies on student knowledge acquisition and the fundamental hurdles
introductory programming students face motivated a 2001 ITiCSE working group that
has generally been referred to as “The McCracken Group” (McCracken et al., 2001). This
multi-national, multi-institutional study developed and administered an assessment on
student grasp of programming fundamentals. Despite all students having prior program-
ming experience at a level commensurate with the problems administered, the average
score was around 20%. Their findings suggest that students lack a concrete understand-
ing of how to take a large problem statement, decompose it into a number of manage-
able sub-problems, and construct a complete solution to the original problem.

These findings prompted a series of studies and working groups, one of which
included the “Leeds Group”. This group performed a multi-national study seeking to
answer one question: “To what degree did students perform poorly in the McCracken
study because of poor problem-solving skills or because of fragile knowledge and skills
that are a precursor to problem-solving?” (Lister et al., 2004). This question was formed on
the idea that problem-solving and programming are fundamentally interrelated in that
one's programming abilities must be proportionate to the complexity of the problem at
hand. That is, if a student fails to solve a problem despite having command of all tools
necessary to do so then this indicates a failure of problem solving ability rather than
a student simply needing to solidify their fragile knowledge through further practice. The
findings of this study indicate that in most cases students experience difficulty in pro-
blem-solving due to deficiencies in skills that precede the ability to write programs.

These findings spurred the subsequent investigations by the BRACElet project aimed at
further investigating the issue of poor student performance on basic code writing tasks
(Clear et al., 2011; Tan & Venables, 2010). The first study to come from this project was
a multi-institutional investigation on the existence of a relationship between code reading
and writing skills amongst introductory programmers (Whalley et al., 2006). The findings
of this study indicate that CS1 students, upon completion of their course, are not yet able
to work at a fully abstract level and those who cannot describe code are less likely to be
able to write functional code of their own. Lister et al. (2006) described their use of the
SOLO taxonomy to evaluate solutions to code reading problems and presented the
argument that students should first be taught how to read basic code prior to attempting
to write it.
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2.2. “Relationships between reading, tracing and writing skills in introductory
programming” - Lopez et al.

Of the BRACEIet studies that were performed Lopez et al. (2008) was among the most
influential in terms of the line of work it inspired. Their study sought to investigate the
existence of a learning hierarchy in introductory programming courses through statistical
analysis of student performance on specific question categories in a comprehensive, end-
of-first semester exam. The question categories they employed are:

(1) Basics: Questions that emphasize recall memory by requiring students to identify
terms and recognize syntax errors.

(2) Sequence: These questions included recognizing where lines of code were missing
and Parsons problems (Parsons & Haden, 2006).

(3) Non-iterative Tracing (Tracing 1): Simple tracing tasks that do not involve loop-
ing and ask students to predict program state at some state during runtime.

(4) Iterative Tracing (Tracing 2): Tracing tasks that involve iteration and ask students
to predict program state at some point during runtime.

(5) Exceptions: Questions that test for a conceptual understanding of exceptions by
proposing situations where errors might occur and how those errors might be
handled by exceptions.

(6) Data: Tested students on their knowledge of data types present in Java (e.g.
ArrayList, Boolean, double, int, String) and scoping.

(7) Writing: Tested students on their ability to write simple programs given a list of
specifications.

(8) Explain: Tested students on their ability to explain the functionality of given code
at an abstract level.

Their study included a group of 38 programming novices that had completed one
semester of introductory Java prior to taking the exam. In preprocessing their assessment
data, they employed the use of a polytomous Rasch Model to transform the ordinal
grading grades into an interval scale (Andrich, 1978; Rasch, 1993). Following this, stepwise
regression via backward elimination was used to construct a path diagram (see, Figure 1)
representing the relationship between performance on different types of questions. Their
most significant findings is that individually Tracing 2 and Explain only explain 15% and
7% of the variance in Writing respectively. However, when combined they explain 46% of
the variance. These findings indicate a possible hierarchy in programming skills wherein

Data Exceptions
Tracing 1 Sequence —— Tracing 2 ——— Explain
Basics Writing

Figure 1. The skill hierarchy proposed by Lopez et al. (2008).
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both the ability to trace non-trivial code and convey its purpose in plain English precede
the ability to write code. However, their limited sample size prevents proper verification of
the model at which they ultimately arrived (Figure 1).

2.3. Further investigations into hierarchies

Following the study by Lopez et al. (2008) in 2008, the BRACElet project continued to
study the relationship between categories of programming skills. Lister et al. (2009)
performed a replication of Lopez et al. (2008) in an introductory programming course
taught in Python. Their replication was successful, suggesting that if such a hierarchy
could be said to exist, it may exist independent of programming language. Venables et al.
(2009) performed a more direct replication of Lopez's study and, though their findings
were consistent with those of Lopez, they noted the results were particularly sensitive to
the types of questions asked. Sheard et al. (2008) also found a positive correlation
between students’ performance on code reading and writing tasks. Teague et al. (2012)
performed a replication of the hierarchies across two separate institutions. Though the
majority of their findings were consistent with those of Lopez et al. (2008), they did find
some variability in the structure of the hierarchy’s intermediary components suggesting
the hierarchy suggested by Lopez et al. (2008) may not be as consistent as other studies
seem to suggest.

Some studies have sought to investigate code writing’s position in the hierarchy at
a finer granularity and with more sophisticated tools, namely structural equation model-
ing (SEM). Yamamoto et al. (2011) performed a conceptual replication of Lopez's study
using SEM and extended the hierarchy it presented to include two new levels: 1)
Modification — The ability of a student to modify a piece of code given a specification
and 2) Programming - The ability of a student to write a program from scratch given some
set of specifications. Each of these levels was further divided into two subcategories, one
that involved questions with loops and the other which did not. They concluded that both
modification and programming are dependent on the ability of a student to explain their
code abstractly and write code that has been scaffolded in some way (Yamamoto et al.,
2012, 2011). Similar to Lopez et al. (2008), they lacked the required amount of data to
properly falsify models with the amount of complexity that they proposed.

Given the suggestion that within this supposed programming hierarchy, the ability to
trace through a program precedes the ability to write one, one would expect that
explicitly teaching code tracing would improve a student’s ability to write a program.
Kumar (2013) performed a study wherein students were first given a code writing pre-test,
then performed a problem-solving session with code tracing problems, and finally given
a post-test on code writing. The results of this study show that students performed
significantly better on the post-test specifically with regard to the use of correct syntax.
In a follow-up study, Kumar (2015) performed a study aimed at determining whether the
code-tracing practice could improve code writing skills with regard to semantics and
found that the ability to trace code is strongly correlated with the ability to write code.
Mendoza and Zavala (2018) implemented an intervention plan aimed at facilitating the
development of fundamental programming understanding towards improving the ability
of students program writing skills. Their findings indicate that these early interventions
have a positive impact on the ability of students to write programs.
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Murphy, McCauley et al. (2012) investigated the relationship between “Explain in plain
English” (EipE) responses and code writing and, in keeping with prior works, noted that
students’ fundamental knowledge is fragile. A student’s ability to complete EipE questions
was strongly correlated with their ability to write code later in the course. They addition-
ally discuss the implications such findings have for teaching with their primary suggestion
being that instructors should provide students with instruction and assessment on the
basics of programming much later into the term than they might expect. In a follow-up
study, Murphy, Fitzgerald et al. (2012) compared using paper-based EipE question to
computer-based ones and achieved the same outcomes as their previous study across
both mediums. They suggest that there is an underlying skill on which writing code and
explaining it at a high-level is dependent. In a study investigating the relationship
between the ability of students to abstractly describe algorithms and their ability to
write the algorithms. Their findings show that the greater the ability of a student to
write code the more likely they were to abstract the functionality of an implementation
when attempting to describe the functionality of the algorithm they were implementing
(Sudol-Delyser, 2015).

Though the vast majority of investigations on the relationship between code tracing,
writing, and explaining has been done with respect to CS1 courses, there have been
several studies with investigations pertaining to CS2. Two studies, Harrington and Cheng
(2018) and Corney et al. (2014), both investigated these relationships but reached contra-
dictory conclusions regarding the relationship between tracing and writing. Harrington
and Cheng (2018) investigated the degree to which the tracing-writing gap still existed in
an introductory data structures course (CS2). Their findings indicate that the directional
gaps between tracing and writing had largely disappeared by CS2 as students had
mastered the fundamentals of programming. Corney et al. (2014) presented an analysis
of CS2 students with a specific focus on data structure problems that included recursion in
which they showed a strong correlation between the ability to abstractly explain
a segment of code and the abilities of code writing and tracing. Given the contradictory
conclusions reached by the former two studies, Pelchen et al. (2020) sought to further
investigation the presence of a hierarchy in CS2. Their findings corroborate those of
Corney et al. (2014) and they make the suggestion that the contradiction may have
occurred due to a failure to maintain an even level of problem difficulty across categories
on the part of Harrington and Cheng (2018).

Unique among these studies, Simon et al. (2009) failed to find any evidence either for
or against a correlation between code reading and writing skills, due in large part to their
small data set and use of questions that were not carefully designed for their research
purposes. Despite this, they perform an in-depth and insightful discussion of the issues
related to attempting to create a pure hierarchy of programming skills, the most notable
of which is that there is no formal and reliable method for determining the difficulty of
code reading or writing questions. Similar to Venables et al. (2009) they discuss the
sensitivity of such findings to the questions that are used in the measurement instrument.
This makes it particularly difficult to engage in any objective comparison between reading
and writing as questions can only be categorized into different levels of difficulty based
on some arbitrary heuristics. Similarly, Clear (2005) states that our current understanding
of code comprehension is comparable to attempting to study reading comprehension
without the concept of reading level.
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As it stands, no study to date has performed a replication of the original hierarchy by
Lopez et al. (2008) with both a sufficiently large dataset and appropriate methods (e.g.
SEM). The majority of studies have instead opted to investigate the relationships between
sets of skills (Corney et al. 2014; Harrington & Cheng, 2018; Murphy, Fitzgerald et al., 2012;
Sheard et al., 2008) or a simplified hierarchy (Venables et al., 2009). The studies by
Yamamoto et al. are a notable exception to this as they employed the use of Structural
Equation Modeling (SEM; Yamamoto et al., 2012, 2011) to investigate a hierarchy similar to
that which was proposed by Lopez et al. (2008). However, their design added additional
latent variables to their model which increased both the complexity of their model and
the number of data points required to validate it. In both of their studies, the number of
data points required to validate the models they suggest significantly exceeds the
number they had access too, and thus draws the conclusions of their study into question.
We sought to remedy this gap in the literature by performing a conceptual replication of
the hierarchy presented by Lopez et al. (2008) using both SEM and a dataset that is
sufficiently large to validate the model(s).

3. Methods

Our aim is a conceptual replication of the Lopez et al. (2008) analysis of the relationship
between reading, tracing, and writing skills in introductory programming. Our measure
differs from the original, in part due to course context and in part to collect enough data
to be confident of our findings’ validity. This paper was a preregistered study, with our
plan of analysis and the differences in assessment formats between our study and Lopez
et al.’s study, discussed later in Sections 4.2 and 7.1, registered before study execution.
The analysis procedure from Section 4.2 was updated with details on model counts for
added clarity, but modeling was otherwise the same as was preregistered. The use of post
hoc power analysis was made after preregistration to verify our original power calcula-
tions. Additionally, Section 7.2 was added after the preregistration to address validity
concerns related to the item difficulty balance in the question pools used by the exam
form generators in the course. Below, we present the ways in which our methods differ
from the original study.

3.1. Course context differences

The Lopez et al. (2008) study was conducted in an introductory Java course using the
course’s final exam. Of the 78 students who completed the exam, 38 gave approval for
their data to be used (Lopez et al., 2008). The original study was also conducted using
paper-based examinations. Our replication study was conducted in an introductory
Python course for non-technical majors during Spring 2021. Due to the COVID-19 pan-
demic, all lectures, labs, and exams were hosted online. This course uses a computer-
based platform (PrairieLearn) to host all homework and exams (West et al., 2015). We also
note that the student population we study is larger than the original study (Spring 2021
Final Enrollment of 252 women/399 men), with a total of 674 students taking exam 1, and
612 students taking the final exam.
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3.2. Instrument differences

The instruments we used differ from those used in the original study. Lopez et al. used
a paper-based final exam with 3 years of previous research-based refinement. Their exam
had 13 questions assigned to different statistical variables for later analysis: Basics,
Sequence, Tracing, Data, Writing, Explain, Exceptions, and General.

The scale of the Python course under study necessitates a different format for our
instrument. The assessments used in this studied employed the use of PrairieLearn ’s
autograder for all questions on our instrument except for “Explain in plain English” (EipE)
questions. These questions are exercises where students are given a code snippet and must
provide a high level, natural language description of the code (Corney et al., 2014; Fowler
et al.,, 2021). These questions were manually graded by members of the Python course’s
staff, including some of the authors on this paper. To guarantee accuracy in grading, all EipE
questions were marked as correct or incorrect by two members of course staff.
Disagreements were reconciled with the input of a third member of the grading team.

The course had three exams throughout the semester and a final exam, all of which
were used independently to model the skill hierarchy. Exams were largely constructed
from existing question banks where prior performance data was available. Additionally,
new questions were constructed by the course instructor, two graduate teaching assis-
tants, and one graduate research assistant, all with either significant teaching or research
experience relating to the course. Due to Covid-19, all exams administered in the Spring
2021 semester took place in a synchronous, online format proctored using video con-
ferencing software (Zoom). In order to mitigate the potential for collaborative cheating
while taking the exam, exams were constructed with pools of questions. Each student
receives their own exam generated by randomly selecting a question from each of these
pools. The homework and exams were predominantly auto-graded using PrairieLearn.

As we later discuss in Section 4.2, creating a hierarchy we can validate requires some
changes in the number of latent variables we analyze. Specifically, we analyzed four from
the original study: Sequence, Tracing, Writing, and Explain. We keep the last three as they
are of primary interest to both the original authors and other studies in the field. We also
retain Sequence to validate where it belongs within the hierarchy.

Each latent variable is measured with different kinds of questions. Writing is the most
straight-forward, with students being tasked with writing small functions in Python to
accomplish some task, e.g. summing the numbers in a list. Explain questions are structured
as short EipE exercises. Students are given a snippet of code and have to write a short, high-
level English language description of what the code does. Sequence was measured similarly to
Lopez et al. (2008)’s method as our exams also use Parson’s problems (Parsons & Haden, 2006).

Tracing requires a bit more consideration. In a typical tracing question, students are
provided with a code snippet and are asked to find the output of the code. As the course’s
exams are computer-based (and allow IDE usage - see, Section 7.1), students could
potentially execute the given code snippet to find the output easily. To discourage this
unwanted action, the tracing skill was primarily measured with a new type of question
measuring the same knowledge, Reverse-tracing questions (Hassan & Zilles, 2021). Reverse-
tracing questions ask students to input a value for a missing variable (in the code snippet)
that would produce a desired output. Figure 2 provides an example of this type of question
on PrairieLearn. Since a value of a variable is missing in the given code snippet, students can
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Find Input from Output: Value of serial conditional expressions (initial value)

Input a value for the variable y so that the variable x is the integer 24 after the code executes.

y= 6 (2]

Submitted answer -
Submitted at 2020-10-25 03:38:35 (CDT)
Score: 10/10 (100%)

Figure 2. Sample reverse-tracing question on PrairieLearn.

not solve the problem by executing the given code alone, otherwise the student will
encounter a variable undefined error. Reverse-tracing questions are difficult to brute force
with an interpreter (e.g. solve with just randomly guessing inputs and repeatedly executing
the code); students perform similarly on them with and without access to an interpreter
(Hassan & Zilles, 2021). However, we set a minimum of 3 tracing question pools, overall, for
our expected data to fit our hierarchy models. Our decision to prefer reverse-tracing
questions was made after many of the exams were already written, leaving a gap in some
of the exams. As such, where the number of reverse tracing question pools was 3 or lower,
we retained more traditional tracing pools to bolster our measurement of the tracing skill.

In order to match up the question pools to the latent variables, specific question pools
on each exam were designed to measure each variable. This did not include all of the
questions on each exam. Further, as the exams, particularly the final, differed in makeup
during the semester, the precise number of question pools per latent variable varied
slightly between examinations. The distribution of question pools for the study on each
exam is presented in Table 1.

The four exams in the Python course allowed us to take a “snapshot” of student ability
at four points in the semester. While the focus of each exam was different (i.e. each exam
focused on topics introduced since the previous exam), the four question types under
study for a given exam focused on the same set of topics. For example, the topics of focus
on the first exam included strings and conditionals, so the model generated from the first
exam is built from string and conditional tracing questions, string and conditional
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Table 1. Each exam in the course featured pools specifically prepared to measure the
latent variables. There was some variance in how many questions measured each
variable on each exam based on when in the semester the exam took place. We
provide that breakdown for each exam above. Where more traditional tracing ques-
tions were retained, they are included in the table in parentheses.

Latent Variable Exam 1 Exam 2 Exam 3 Final
Sequence 2 2 2 3
Reverse-Tracing (Tracing) 4 3(2) 2(2) 4
Writing 6 6 4 6
Explain 2 2 2 3

Parson’s questions, string and conditional code-reading questions, string and conditional
code-writing questions. A benefit of this approach is that the skills measured by the
hierarchy for each exam were in the context of the same topics.

3.3. Data collection

Data is collected automatically by PrairieLearn over the course of students taking exams in
the class. No additional data was collected from the students in the course. This data
collection was approved by our Institutional Review Board (IRB), protocol number 21780.
Consent was opt-out, with all students provided an informed consent document. The opt-
out rate was low, with only 4.4% opting-out (thus, 95.6% of students remained in the study).

For each exam, the scores for all the questions were downloaded from the platform.
Student identifiers were stripped from the data prior to any analysis via a script. The same
script that anonymized student data was also used to label question submissions with the
latent variable they measure and which question pool they belong to in order to feed the
data into our hierarchy model.

4. Plan of analyses

In this section, we first discuss the analysis used in the original study. We then discuss the
differences in our analysis for the replication.

4.1. Original analysis

In the original study by Lopez et al. (2008), they leveraged a polytomous Rasch model to
address interval differences between scores by creating new interval marks. The issue they
were attempting to address is that, in a rubric that uses whole numbers to signify level of
correctness, the difference in ability levels associated with receiving a 1 versus a 2 might
not be the same as receiving a 3 over a 2 (Venables et al., 2009). The assumption of
unidimensionality was verified with principal component analysis.

Lopez et al. (2008) then used step-wise multiple regression via backward elimination to
identify the relationships that existed between the various skills on which students were
being tested (i.e. tracing 1 & 2, explain, writing, sequence, data, basics, exception). The
regression was performed with each of these variables acting as criterion variables
individually with the remaining variables in each case acting as explanatory variables.
The process of removing the explanatory variable with the least predictive power was



12 (&) M.FOWLERET AL.

repeated until all of the three stopping conditions were met: 1) maximum Rgdj, 2)
significance of 0.01, and 3) all explanatory variables were significant (a = 0.05). This
process was used to build the path diagram of associations between skills seen in
Figure 1. This was followed up with Pearson correlation analysis between tracing, writing,
and explain skills in order to further explore the relationships that exist between them.
The assumptions of normality and homoscedasticity associated with these parametric
tests were verified with the Jarque-Bera test of normality (Jarque & Bera, 1980).

The main drawback of the literature on the skill hierarchy thus far is that the proposed
structural models are very complex and thus cannot be falsified without very large amounts of
data. For example, take the skill hierarchy proposed in the original Lopez et al. (2008) paper.
Suppose that their model was misspecified, and the correct model did not have the arrow
going from “Tracing2” to “Writing". If that was the case, it would take a sample size of 1131 in
order to falsify their proposed model-over 1000 data points more than what they had access
to. The more complex models proposed by Yamamoto et al. (2012) would take even more data
points to confidently falsify than the Lopez models. Thus, they can not say with a high level of
confidence that an alternative proposed hierarchy would not be better.

Another drawback of models used in papers thus far is that they convert each of the
sections of the test into a single score (either through a Rasch model, or just by summing
the points from each question), and use that single score as an input to the model. Using
these aggregated scores as inputs to the model requires the assumption that the few
questions on the exam are a perfect measurement of each of the students skills (explain-
ing, writing, etc.) without any error, making it impossible to quantify the amount of
uncertainty in the final model. We propose to fix this problem by including each of the
questions individually into the structural model which we build.

4.2. Our analysis

This study borrowed elements from aforementioned studies towards providing a more
complete and robust analysis of any programming learning hierarchies that may emerge.
Specifically, we use structural equation modeling (SEM) to model the programming skill
hierarchy because it is a currently accepted approach for quantifying relationships between
many interconnected measurements in social science settings (Bollen, 1989; Fan et al.,, 2016)
and, as observed by Yamamoto et al. (2012), SEM allows us to fit multiple skill hierarchies
and test them against one another to see which model is the best fit for the data.

To enable better handling of measurement error in student testing, we include the
student score for each question in our model, rather than collapsing the categories into
single scores. To allow proper falsification of incorrect hierarchy specifications, we pro-
pose a simplified model of the hierarchy, shown in Figure 3, which contains only the main
skills of interest (Sequencing, Tracing, Explaining, and Writing code):

Using this simplified structure enabled us to our model against alternate structural
models at a high level of confidence (95%), while requiring a more feasible number of
data points. We used the “semPower” package in R (R Core Team, 2020; Moshagen, 2020)
to quantify the data points we need.

For example, suppose that the skill hierarchy is actually a strict hierarchy, as shown in
Figure 4. Using our SEM techniques, the “semPower” package’s power analysis informs us we
are able to rule out this model with only 605 data points, which all of our exams obtained.
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As verification of our results following the study, we further used the postHoc method
of “semPower” to calculate the actual power for the four exams. Degrees of freedom and
the effect size as root mean square error of approximation (RMSEA), which is used to
assess model fit, were pulled from the run models directly, with RMSEA averaged for the
models for each exam to provide an overall view of our results. The power calculations
provide the following results: exam 1 models have a power of 0.98 with an average RMSEA
of 0.036, exam 2 models have a power of 0.98 with an RMSEA of 0.034, exam 3 models
have a power of 0.99 with an RMSEA of 0.042, and exam 4 models have a power of 0.99
with an RMSEA of 0.046. Given this, we achieved over 95% confidence that the models
accurately measure the relationships between skills, per the practice of measuring statis-
tical power to determine and verify sample sizes for SEM (Wolf et al., 2013).

We were able to test many other skill hierarchies that involve the Sequence, Tracing,
Explaining, and Writing skills. Specifically, we fit all possible structural models, which
corresponds to all possible directed acyclic graphs (DAGs) on 4 nodes. We enumerated
these using the connection between DAGs and adjacency matrices set forth in Royle et al.
(2004). There are 543 total DAGs on four nodes, but we remove all disconnected graphs
(which would correspond to a structural model where at least one variable is not used to
predict any others) to get to 458 candidate models. These models are unconstrained,
allowing for the Write skill to predict other skills in the hierarchy. This allows us to identify
if there are alternative relationships between the four skills that are missed if we consider
Writing as the terminal point of the hierarchy of skills. Equivalent models without Writing
constrained as the end point could suggest a back-channel where students improve in
earlier skills as they get better at Writing or could help us better understand the existing
proposed hierarchy and how the skills relate.

For one stage of the analysis, we also optionally remove all models that use Write as
a predictor of other variables to replicate the methodology used in the original paper, which
brought us down to testing among only 151 models. This subset of models not only
includes the original hierarchy, simplified down to the four latent variables we measure,
but all possible SEM models where the Writing skill is not used to predict any others.

Figure 4. A possible alternative hierarchy with no edge between trace and write. We had enough data
to include models like these at 95% confidence.
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Our analysis was run on each of the four exams in the introductory Python course. SEM
analysis is run on each exam separately to see if the hierarchy replicates regardless of the
point in the semester. We then used the Bayesian Information Criteria (BIC) to rank the
models for best fit so as to select the models that “best” represent the possible relation-
ships between skills.

4.3. Identifiability of SEM models

As stated, one of the benefits of using SEM is that we can properly model the error
in measuring each latent skill based on multiple questions, rather than just assum-
ing no error as previous studies have done. The drawback of this method is that
the model will have many unknown variables, and it can be a challenge to prove an
estimated model is identifiable (Bollen, 1989) - that there exists a unique solution
to the system of linear equations necessary to fit an SEM. By making a few reason-
able assumptions and utilizing proven theorems regarding identifiability, we are
able to show that all of the potential models we fit are, in fact, identifiable.

One method of showing identifiability for SEM with latent variables is to first show the
identifiability of the measurement model and then show that the structural model is
identifiable, thus showing the identifiability of the model as a whole. This is known as the
“two-step rule”(Bollen, 1989, p. 328).

The “two-indicator rule” (Bollen, 1989, p. 244) states that a measurement model is
identifiable if there are at least two measurements for each latent variable, each measure-
ment is being predicted by only one latent variable, and all the latent variables have nonzero
correlation. In our case, we do have at least two measurements for each latent variable, we
only use one latent variable to predict each measured variable, and prior research confirms
that the skills are correlated. Therefore, the measurement model is identifiable.

The “recursive rule” (Bollen, 1989, p. 95) states that if (1) the coefficient matrix of the
structural model can be written as a lower triangular matrix (equivalent to saying that the
graph structure of the model is a DAG) and (2) the error terms for the prediction of each of
the latent variables are uncorrelated, then the model is identifiable. As we are only searching
through DAGs, the first assumption is clearly true. The second assumption, that error terms
are uncorrelated, is essentially the same assumption used in any context where researchers
use regression models to predict exam performance, and so we find to be a reasonable
assumption. Therefore the structural model is also identifiable and so is the entire model.

5. Findings
5.1. Candidate models for skill hierarchies

The analysis was run separately for each of the exams in an effort to identify if a skill
hierarchy, or set of skill hierarchies, remained similar across exams. Additionally, we ran
two sets of models for each exam: those constrained to have the code Writing skill at
the end of the hierarchy (the “write” variable is not used as a regressor for other skills
in the structural model) and those without that constraint (the “write” variable is used
as a regressor for predicting other variables in the structural model). Of the models, we
keep the 29 models from across the four exams that are equivalently explained by the
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data. These models are selected as those with the highest, tied BIC score for each
exam. BIC' was chosen to accommodate the differing number of parameters, repre-
sented by arrows in the models, and for its commonality as a model selection metric
(Haughton et al, 1997; Lin et al, 2017; Preacher & Merkle, 2012). Together, these
graphs are the “best” candidate explanation for the relationship between these four
skills. Note that because models are fit per exam, the precise value of the “highest” BIC
differs between exams.

Most notably, each exam produces different possible models as the “best” models for
the skill hierarchy. Additionally, there is no direct overlap between these models for the
various exams. There are some common trends that appear in many of the exams’ models.
Sequence and Explain, Writing and Explain, and Writing and Tracing are still often linked,
although the direction of the prediction varies across models and not all “best” models
feature these links.

The original hierarchy from Figure 3 does not strictly appear in these candidate
models. It is instead ranked 112th, 9th, 18th, and 125th out of the 151 possible
constrained models for exams 1, 2, 3, and 4 respectively. However, closely similar
hierarchies exist within the best model set. These are hierarchies that may have one
different link or one missing link. They are: exam 1a, exam 1b, exam 3b, and exam 3c
from Figures 6-9. However, these similar hierarchies are not unique in the strength or
confidence of the correlations they present between skills compared to the other
“best” candidates.

In Figure 5, we use one of the exam 1 graphs as a representative sample of the
way the graphs were constructed. Each of the latent traits is estimated by their
respective question pools. For space, we will not present the individual weights of
the question pools for each latent trait for the remaining 28 equally supported
models. We present all the constrained models in Figures 6-9 and the unconstrained
models in Figures 10-13.

cond| | list cond| | list | [string| | arith cond| | list cond| |cond| | list | |string| |arith| | list

Figure 5. One of the best candidate graphs from Exam 1, with the questions which estimate each
latent trait shown. This particular hierarchy is close to, if not the same as, the original hierarchy of
skills.
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Figure 6. Exam 1: Structural models constrained to write.
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Figure 7. Exam 2: Structural models constrained to write.
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Figure 8. Exam 3: Structural models constrained to write.
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Figure 9. Exam 4: Structural models constrained to write.
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Unconstrained Models
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Figure 10. Exam 1: Unconstrained structural models.
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Figure 11. Exam 2: Unconstrained structural models.
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Figure 12. Exam 3: Unconstrained structural models.
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Figure 13. Exam 4: Unconstrained structural models.
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With respect to RQ1, the hierarchy between Sequence, Tracing, Explaining, and Writing
programming skills does not replicate with structural equation modeling as one of the
candidate “best” models. However, the original hierarchy is still within the top 10 BIC
scores for exam 2 and notably similar hierarchies appear in the “best” models for exam 1
and 3. The answer to the research question, then, is that our results do not support the
specific hierarchy proposed by Lopez et al. (2008) as the strongest hierarchy. However,
similar models are among the set of models our results deem the “best”, supporting the
existence of relationships between these skills in similar configurations. Broadly speaking,
we see no support for singling out the model from the original paper as the only hierarchy
between these skills.

5.2. On selection of SEM models

Some may find it surprising that there are so many models competing for the best fit in
our analysis. We feel that this is an accurate reflection of the true nature of our data, due to
the tight association of these skills, and the limitations of finding knowledge in data
collected without a true experimental intervention.

All the prior research, and indeed our own data set, has supported that sequencing,
tracing, explaining, and writing code all have a very high correlation. This correlation
varies a bit from exam to exam due to random chance, question construction, exam topics,
and other factors. As such, the best fitting models are different from one exam to the next
as some skills appear more highly correlated than others as a result of this variance.

For skills where there is a very large difference in difficulty, and one skill is a hard
prerequisite to another, it is possible to detect this by concurrent measurements (Guay &
McCabe, 1986). One classic example would be the relationship between calculus and
algebra. But for our skills of interest, the data show that none of them reach the point of
being a “hard” prerequisite. The skills are too strongly correlated to be able to tell what
skill is a prerequisite of another simply by a measurement without an experimental
intervention.

Selection of SEM models is known to be a difficult problem (Bollen, 1989;
Haughton et al., 1997; Preacher & Merkle, 2012). However, the space of models
which are being selected from is usually restricted by some of the variables being
independent and some being dependent (Bollen, 1989). Often, an experimental
intervention would be an independent variable which would only be used as
a predictor (not predicted by other variables) in a SEM model. For example, if
students in a class were randomly assigned to either group work or individual
work focused lab sections, the section could be limited to use as a predictor.
However, in the data collection method used in this study and all prior studies in
this vein, there are no independent variables, only dependent variables. Thus, the
model space is not constrained, giving many possible models.

5.3. What our data give us - correlation, but not an order of teaching or learning

After performing our analysis, we realized that our chosen data collection and analysis
method (along with those of all prior studies in this vein that we were replicating) do not
answer the question we truly care about as educators. The models from SEM give us
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correlations between skills. The directionality of the correlations does not prove that
certain skills are pre-requisites to others nor does it prove that certain skills should be
taught before others. The end goal for a hierarchy of skills is determining the optimal
order for teaching these skills. What our SEM models show is that students who can
succeed at a given skill have a higher chance of succeeding at other, related programming
skills, but they do not provide causality. It is unlikely, given the tightly coupled nature of
these skills, that more data alone would be able to sufficiently determine the absolute
best form of the hierarchy. Instead, even with our data’s sufficient statistical power, the
tightly coupled nature of these skills makes determining a “best” hierarchy through
correlations alone unreliable.

As stated, this is a weakness in the data collection process. We collected snap-
shots of students’ ability through exams. We did not collect sequence data over
time, measuring the change in all the skills from their first application in the class.
We cannot use our exam data to determine the optimal order for teaching these
skills as we lack a progression of students’ skills over time and the data is
confounded with other factors, such as exam conditions. In the next section, we
discuss some ways in which our true interest — what is the correct order to teach
programming skills? — could be determined.

6. Implications

6.1. This approach to understanding the skill hierarchy is limited to (helpful)
correlations

Per our findings and the existing work we build upon, the hierarchy as it exists is
reasonably supported but may not be the “best” possible hierarchy. However, all of
this work is largely a set of correlations. This is helpful from a course design and
assessment point of view, as it supports that practice for all of these skills con-
tributed to a student’s development as a programmer and allow for multiple
different kinds of activities to assess a student’s programming skills. Regardless,
the message from these findings is limited to correlation between students’ abilities
on various skills in the set of programming skills we teach. By using directed
arrows, these skill hierarchy diagrams suggest causality — e.g. that the Explaining
skill improves the Writing skill but not vice-versa — that is not supported by these
methods.

This is particularly important to keep in mind given the hopes for the skill hierarchy
(Lister, 2020). In Lister's 2020 keynote at the 9th Computer Science Education Research
Conference, he expanded on his hopes for the original hierarchy. In brief, the hierarchy
was part of establishing a neo-Piagetian model of how students learn to code. Lister
proposes students move through a pre-tracing stage, to a tracing stage, to a post-tracing,
deductive reasoning stage. This alone does not mean the student has become an expert
programmer, but rather that they can now “proceed to coding to learn”, having gone
through the process of “learning to code (Lister, 2020)". The verification of a hierarchy
would be a powerful step toward structuring course content to guide students through
this process.
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In practice, we should hedge the claims we make about these skill hierarchies. They
remain a valuable picture of the relationships between skills and different ways we reason
about code. They also help us understand how some of the ways we reason about code
are more closely connected to others. However, they do not provide us with actionable
proof of the order we should teach skills.

6.2. Possible future work: experiments to test competing skill trajectories and
determine directionality

The correlation between these programming skills is well established and now supported
by sufficient statistical power. As such, there may be more fruitful directions for research
to pursue beyond further correlation studies for these skills. In order to truly understand
how these skills influence each other and the order in which we should teach program-
ming skills, we must compare the effectiveness of teaching the skills in different orders.
Determining the optimal instructional choices without a rigorous testing framework is
largely intractable (Koedinger et al., 2013). We suggest testing the possible hierarchies of
skills as a set of A-B tests, similar to instructional methods testing in massive online
courses (Z. Chen et al., 2016). In general, A-B tests are proficient at allowing for controlled
experiments with large amounts of participants and numerous options to explore.

Xie et al. (2019) showed an example for a skill hierarchy based, multi-step learning
process for their proposed theory of instruction. In their study, students received instruc-
tion, practice, and feedback on each skill in the hierarchy. This pattern of instruction could
be used to design a suite of exercises testing different skill orderings. Specifically, inter-
ventions based on different candidate skill hierarchies could be developed for course lab
or discussion sections where students receive instruction, some form of practice, and
feedback on their performance. This feedback could use automatic test cases, such as the
exams in our study, or could be provided by course staff. Weinman et al. (2021) provide
one format used for computerized testing of different skills via different problem inter-
faces in their work on Faded Parsons Problems, which may provide a starting point for
building out the interventions in a scalable way. Of course, similar formats can be
deployed using the same platform our study used, PrairieLearn.

These A-B tests could be run in the context of a semester long course by teaching
different sections or across semesters of the same course using multiple different skill
orderings. One section could teach skills in the order of Sequence — Tracing — Explaining
— Writing, another section could teach Tracing — Sequence — Explaining — Writing, and
so on. Differences in how students learn as they progress through different orderings
could be measured and the most effective hierarchy for learning by the end determined.
The large number of possible orderings makes an exhaustive survey somewhat untenable:
with 24 orderings of skills into a four-step chain alone, that is 24 different sections.

An alternative approach would be to have students use an intelligent online tutor in
a course to learn concepts. This approach is beneficial in that a true experiment is
possible. Students could be randomly assigned to a skill order, and with a large enough
community (e.g. Kahn Academy, Code4All) testing all orderings would be feasible.
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7. Limitations

The primary limitations related to the findings of this study are the differences in exam
platform and content we use and those used by Lopez et al. (2008). Because of the scale of
the course that we studied, there are differences between how exams were conducted
compared to the original study. We highlight the limitations that these differences pose on
this study as a replication in the following subsection. While these differences should not
be trivialized, we feel that if the skill hierarchy is sufficiently important to guide pedagogy
in introductory programming courses, these superficial differences should not prevent our
measurement of it. Additionally, past studies that have performed conceptual replications
of the skills hierarchy initially suggested by Lopez et al. (2008) have made similar modifica-
tions to the skill hierarchies they investigated while preserving the core structure and
pedagogical utility of the original hierarchy (see, Section 2.3 for further details).

7.1. Assessment format differences

The experience of our students taking exams on PrairieLearn differed from Lopez et al.’s
(2008) paper-based exams in five ways: 1) students had access to an Integrated
Development Environment (IDE) during exams, 2) exams provided students with auto-
mated instant feedback, 3) student access access to sketching space differed, 4) students
had access to practice exam generators, 5) and exams featured item generators that
create parameterized question variants (Gierl & Haladyna, 2012).

7.1.1. Access to an IDE

Exams in this course allow students access to the repl.it website, a web-based IDE
featuring syntax error underlining, code-execution, and “help” documentation. These
features may help students solve code tracing, reading, writing and Parson’s problems.
In addition, students can execute any code in repl.it as many times as desired, and it does
not count toward the allowed number of submissions on problems. These could be seen
as advantages not found in paper-based formats. Prior work found no significant differ-
ences in student performance semantic-wise across paper- and computer-based formats
on easier code writing problems, but on more difficult code writing problems, the
computer-based group significantly outperformed the paper-based group (Corley et al.,
2020; Grissom et al., 2016; Lappalainen et al., 2017).

There are small risks related to tracing questions given the computer-based testing
environment. Traditional tracing questions may be vulnerable to students simply copying
code to run it rather than properly tracing (Hassan & Zilles, 2021). Per our discussion in
Section 3.2, our expectation is that reverse-tracing problems can assess a similar skill to on-
paper tracing problems.

7.1.2. Access to automatic feedback during the exam

The PrairieLearn exams used in this study permit students to interactively grade their
answers on a per-question basis. When a question is graded, the student is provided
(nearly) immediate feedback. Most questions support multiple attempts with partial credit
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being assigned based on how many attempts were required to provide a correct answer.
Code writing and Parson’s problems also automatically assign partial credit based on the
degree of correctness of the submitted solution.

The availability of immediate feedback and assigning partial credit automatically
instead of manually likely affects both the scores students achieve and their test taking
strategy. Corbett and Anderson (2001) found that immediate feedback can lead students
to complete exams more quickly with no negative impact on scores. Schooler and
Anderson (1990) found the opposite, with immediate feedback increasing error rates. It
is unclear, however, if these differences would materially affect the outcomes of this study.

7.1.3. Sketching
While students are allowed to use scratch-paper while taking our computer-based
exams, their inability to write directly on the test may affect student behavior, especially
with respect to tracing questions. We discuss sketching’s impact on tracing briefly below.

Past sketching studies found that students who correctly kept track of all variables in
code tracing problems tend to perform better than students who do not. These studies
found students writing the values of variables and their change per-iteration on paper
(Cunningham et al,, 2017, 2019; Vainio & Sajaniemi, 2007; Xie et al., 2018). This improve-
ment in performance is due to the distributed cognition framework, where cognitive tasks
can be off-loaded onto physical artifacts (e.g. scratch-paper) as notes or diagrams for
memory aids and can be manipulated to help solve programming problems (Cunningham
et al, 2017). Some sketching methods can be more successful in off-loading cognition
than others. For instance, some students may keep track of only one variable on paper,
which has lower cognitive load than keeping track of all variables but is much more error-
prone (Cunningham et al., 2017; Vainio & Sajaniemi, 2007). In Cunningham et al. (2017)’s
study, students who sketched on fixing code problems kept track of the value of only one
variable and as a result performed worse than students who did not sketch.

For the Parson’s problems given on PrairieLearn, we use an interactive drag-n-drop
interface. This interface includes highlighting of correctly placed blocks and the first
incorrectly placed block, as part of the automatic instant feedback with partial credit, as

Submitted answer 2 (partially correct: 42% 10
(] ‘ hide ~
Submitted at 2021-12-28 14:02:39 (CST) Rcnedbnl|

Your answer:

oumat=0]
Re-arrange the code-blocks below such that the autput o the code is: 3.5 (E.9. the average of llthe numbers _
in the fe)
Drag from here: Construct your solution here: _
lines = file1.readlines() output =0
for lines in file1: lines = open(file1 txt) readlines() _
print(lines) for line in lines: -
filel = open(file1', ) fine += int(iine)
wm(ompm)@\ X42.0% Green means cell is correct, yellow means code is in the right location but wrong
indentation, red means wrong location/wrong cell. Cells are checked for correctness up
until the first occurence of an error and the rest are left grey.

Figure 14. Sample Parson’s question on PrairieLearn.
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shown in Figure 14. This allows students to view their solution as a complete code snippet
after dragging and arranging the blocks. This may impact student behavior differently
compared to Parson’s problems given on paper-based exams.

7.1.4. Automatic practice exam generation

In the course under study, we provided students access to a practice exam generator
through PrairieLearn. Practice exams are automatically generated by randomly selecting
subsets of questions from pools. Each pool consisted of a set of questions on a specific
topic, where that topic would be on the corresponding actual exam. The tracing and
reverse-tracing pools of the practice exams had some overlapping questions to the
pools of the actual exams due to the varying parameters of each auto-generated
question (covered in Section 7.1.5), but the pools of the code-reading, writing, and
Parson’s problems were different (completely unique sets of questions) from the actual
exams. Since students had the ability to generate practice exams similar in topic to the
actual exams, this may impact student performance relative to the Lopez et al. (2008)
study.

7.1.5. Item generators
Each tracing and reverse-tracing question on the exams and practice exams consist of
problems with varying parameters, also known as isomorphic variants. These varying
parameters include different operators (e.g. greater than vs. less than), initialized integer
values (e.g. variables), similar constructs (e.g. string upper vs lower), and so on. Chen
found that, out of 378 problems that auto-generated isomorphic variants in introductory
engineering courses, only 20 problems produced variants with statistically significantly
different difficulty levels (B. Chen et al., 2019). For code-reading, Parson’s, and program-
ming problems, students were given a random selection from a set of completely unique
questions (i.e. question pools).

In the following subsection, we present an analysis on our exams’ question pools to
determine how balanced the pools were and if any existing imbalance would significantly
impact our results.

7.2. The balance of the question pools

A potential problem of randomly selecting questions from pools as compared to each
student receiving the same questions is whether each question in the pool is of
equivalent difficulty. If the difficulty of the questions within pools are not similar, this
might cause a problem with the validity of our analysis, as all questions within each pool
are supposed to measure the same latent variable. To understand the degree to which
our question pools were appropriately balanced, we compared all possible pairs of
questions within each pool and determined the difference in standard deviations
between each possible pair. A cumulative distribution of these differences is shown in
Figures 15(a,b).

While the majority of the questions on the exams were reasonably balanced, there
were still some questions of concern. We set a threshold at 0.4 standard deviations, as this
generally represents a mean difference of 10% in the score received for a question. For all
of the exams, more than half of the question pairs were less than 0.4 standard deviations
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Exams 1-3: Number of Question Pairs that are Less than a set SD Different
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(a) Exam 1: 155 of 220 pairs < 0.4 SDs apart. Nearly all pairs < 0.9 SDs apart.
Exam 2: 167 of 266 pairs < 0.4 SDs apart. All pairs < 1 SDs apart.
Fxam 3: 132 of 198 pairs < 0.4 SDs apart. Nearly all pairs < 1.1 SDs apart.
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(b) Exam 4: 429 of 661 pairs < 0.4 SDs apart. Nearly all pairs < 1.1 SDs apart.

Figure 15. For all of the exams, the number of pairs at or below .4 standard deviations apart in
students’ scores was above 60%.

different. We further investigated how many pools on each exam had unbalanced ques-
tions within them. Specifically, this equates to 4 questions on Exam 1 from 4 pools, 10
questions on Exam 2 from 3 pools, 10 questions on Exam 3 from 6 pools, and 19 questions
on Exam 4 from 7 pools.
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While a small number of unbalanced question pairs were unlikely to harm our
analysis due to sample size, we still wanted to investigate their possible impact. To
measure this impact, we dropped each of the 43 problematic questions, one at a time,
and reran the analysis. We then determined, on average, how many of the top 5 SEM
models from Figure 9 stayed in the top 10 after removing a problematic question. For
constrained graphs, where write is not a predictor, on average 4.58 (95% Cl [4.32, 4.48])
of the top 5 models remain in the top 10. For all possible models, the average is 4.35
(95% ClI [3.93, 4.72]). This gives us confidence that even with some imbalance in some
question pools, the impact of individual imbalances was not so large as to threaten our
study’s results.

8. Conclusion

In this paper, we conducted a quantitative, conceptual replication of Lopez et al. (2008)’s
hierarchy of programming skills in introductory computer science. We leveraged both our
significantly larger number of data points and SEM to more rigorously explore the
existence of this hierarchy of skills. While we did not find strong evidence for the hierarchy
suggested by Lopez et al. (2008), our findings do not outright dispute the spirit of those
findings. Additionally, among the “best” hierarchies we identify, near neighbors of the
original skill hierarchy do appear. Broadly, the body of work on skill hierarchies supports
the inter-connected nature of these skills and the value of teaching and assessing multiple
skills in the hierarchy. We believe, however, that the community’s true interest is under-
standing the order these skills should be taught in, which we conclude cannot be
discovered through this method. Instead, optimal order of instruction should be studied
directly as the next step of work in this area.

Note

1. For simplicity of exposition, we maintain BIC over other selection methods, such as boot-
strapping (Preacher & Merkle, 2012). Initial explorations with bootstrapping suggest the
overall conclusions of our work would not change with another selection criteria.

Disclosure statement

The authors have no relevant financial or non-financial competing interests to report.

Funding

This work was supported by the National Science Foundation [DUE 21-21424].

ORCID

David H. Smith IV {2) http://orcid.org/0000-0002-6572-4347
Matthew West (12} http://orcid.org/0000-0002-7605-0050



26 M. FOWLER ET AL.

References

Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43(4),
561-573. https://doi.org/10.1007/BF02293814

Bollen, K. A. (1989). Structural equations with latent variables. Wiley.

Chen, Z., Chudzicki, C., Palumbo, D., Alexandron, G., Choi, Y.-J., Zhou, Q., & Pritchard, D. E. (2016,
April). Researching for better instructional methods using AB experiments in MOOCs: Results and
challenges. Research and Practice in Technology Enhanced Learning, 11(1), 9. Retrieved December
30, 2021 from https://doi.org/10.1186/s41039-016-0034-4

Chen, B, Zilles, C., West, M., & Bretl, T. (2019). Effect of discrete and continuous parameter variation
on difficulty in automatic item generation. In S. Isotani, E. Millan, A. Ogan, P. Hastings, B. McLaren,
& R. Luckin, (Eds.), Artificial intelligence in education (pp. 11625). Lecture Notes in Computer
Science, Springer, Cham. https://doi.org/10.1007/978-3-030-23204-7-7

Clear, T. (2005). Comprehending large code bases-the skills required for working in a” brown fields”
environment. ACM SIGCSE Bulletin, 37(2), 12-14. https://doi.org/10.1145/1083431.1083439

Clear, T., Whalley, J., Robbins, P., Philpott, A., Eckerdal, A., & Laakso, M.-J. (2011 ()). Report on the final
bracelet workshop: Auckland university of technology. CITRENZ, September 2010.

Corbett, A. T., & Anderson, J. R. (2001). Locus of feedback control in computer-based tutoring:
Impact on learning rate, achievement and attitudes. In Proceedings of the Sigchi conference on
human factors in computing systems (pp. 245-252). New York, NY, USA: Association for Computing
Machinery. https://doi.org/10.1145/365024.365111

Corley, J., Stanescu, A., Baumstark, L., & Orsega, M. C. (2020). Paper or ide? the im- pact of exam
format on student performance in a ¢s1 course. In Proceedings of the 51st ACM technical
symposium on computer science education (pp. 706-712). New York, NY, USA: Association for
Computing Machinery. https://doi.org/10.1145/3328778.3366857

Corney, M., Fitzgerald, S., Hanks, B., Lister, R., McCauley, R., & Murphy, L. (2014). ‘explain in plain
English’ questions revisited: Data structures problems. In Proceedings of the 45th ACM technical
symposium on computer science education (pp. 591-596). New York, NY, USA: Association for
Computing Machinery. https://doi.org/10.1145/2538862.2538911

Cunningham, K., Blanchard, S., Ericson, B., & Guzdial, M. (2017). Using tracing and sketching to solve
programming problems: Replicating and extending an analysis of what students draw. In
Proceedings of the 2017 ACM conference on international computing education re-search (pp.
164-172). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/
3105726.3106190

Cunningham, K., Ke, S., Guzdial, M., & Ericson, B. (2019). Novice rationales for sketching and tracing,
and how they try to avoid it. In Proceedings of the 2019 ACM conference on innovation and
technology in computer science education (pp. 37-43). New York, NY, USA: Association for
Computing Machinery. https://doi.org/10.1145/3304221.3319788

Fan, Y., Chen, J, Shirkey, G., John, R.,, Wu, S. R,, Park, H., & Shao, C. (2016, November). Applications of
structural equation modeling (SEM) in ecological studies: An updated review. Ecological Processes,
5(1), 19. Retrieved December 28, 2021 from https://doi.org/10.1186/513717-016-0063-3

Fowler, M., Chen, B., & Zilles, C. (2021). How should we ‘explain in plain English’? voices from the
community. In Proceedings of the 17th ACM conference on international computing education
research (pp. 69-80). New York, NY, USA: Association for Computing Machinery. https://doi.org/
10.1145/3446871.3469738

Gierl, M., & Haladyna, T. (Eds.). (2012). Automatic item generation: Theory and practice (1st ed.).
Routledge. https://doi.org/10.4324/9780203803912

Grissom, S., Murphy, L., McCauley, R., & Fitzgerald, S. (2016). Paper vs. computer- based exams:
A study of errors in recursive binary tree algorithms. In Proceedings of the 47th ACM technical
symposium on computing science education (pp. 6-11). New York, NY, USA: Association for
Computing Machinery. https://doi.org/10.1145/2839509.2844587

Guay, R. B., & McCabe, G. P. (1986). A binomial test for hierarchical dependency. Psychometrika, 51(3),
467-474. http://doi.org/10.1007/BF02294067


https://doi.org/10.1007/BF02293814
https://doi.org/10.1186/s41039-016-0034-4
https://doi.org/10.1007/978-3-030-23204-7-7
https://doi.org/10.1145/1083431.1083439
https://doi.org/10.1145/365024.365111
https://doi.org/10.1145/3328778.3366857
https://doi.org/10.1145/2538862.2538911
https://doi.org/10.1145/3105726.3106190
https://doi.org/10.1145/3105726.3106190
https://doi.org/10.1145/3304221.3319788
https://doi.org/10.1186/s13717-016-0063-3
https://doi.org/10.1145/3446871.3469738
https://doi.org/10.1145/3446871.3469738
https://doi.org/10.4324/9780203803912
https://doi.org/10.1145/2839509.2844587
http://doi.org/10.1007/BF02294067

COMPUTER SCIENCE EDUCATION e 27

Harrington, B., & Cheng, N. (2018). Tracing vs. writing code: Beyond the learning hierarchy. In
Proceedings of the 49th ACM technical symposium on computer science education (pp. 423-428).

Hassan, M., & Zilles, C. (2021). Exploring ‘reverse-tracing’questions as a means of assessing the
tracing skill on computer-based CS 1 exams. In Proceedings of the 17th ACM conference on
international computing education research (pp. 115-126).

Haughton, D. M., Oud, J. H.,, & Jansen, R. A. (1997). Information and other criteria in structural
equation model selection. Communications in Statistics-Simulation and Computation, 26(4),
1477-1516. https://doi.org/10.1080/03610919708813451

Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial
Independence of regression residuals. Economics Letters, 6(3), 255-259. https://doi.org/10.1016/
0165-1765(80)90024-5

Kikuchi, S., & Hamamoto, K. (2016). Investigating the relationship between tracing skill and mod-
ification skill for different programming statements. Proceedings of the School of Information and
Telecommunication Engineering, 9(1), 8-14. Tokai University.

Koedinger, K. R,, Booth, J. L., & Klahr, D. (2013). Instructional complexity and the science to constrain
it. Science, 342(6161), 935-937. https://doi.org/10.1126/science.1238056

Kumar, A. N. (2013). A study of the influence of code-tracing problems on code-writing skills. In
Proceedings of the 18th ACM conference on innovation and technology in computer science educa-
tion (pp. 183-188).

Kumar, A. N. (2015). Solving code-tracing problems and its effect on code-writing skills pertaining to
program semantics. In Proceedings of the 2015 ACM conference on innovation and technology in
computer science education (pp. 314-319).

Kurland, D. M., Pea, R. D., Clement, C,, & Mawby, R. (1986). A study of the development of
programming ability and thinking skills in high school students. Journal of Educational
Computing Research, 2(4), 429-458. https://doi.org/10.2190/BKML-B1QV-KDN4-8ULH

Lappalainen, V., Lakanen, A.-J., & Hogmander, H. (2017). Towards computer-based exams in CS1. In
Proceedings of the 9th international conference on computer supported education. SCITEPRESS
Science and Technology Publications.

Lin, L.-C,, Huang, P.-H., & Weng, L.-J. (2017). Selecting path models in sem: A comparison of model
selection criteria. Structural Equation Modeling: A Multidisciplinary Journal, 24(6), 855-869. https://
doi.org/10.1080/10705511.2017.1363652

Lister, R, Adames, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Mostrém, J. E.,
Sanders, K., Seppald, O., Simon, B, Thomas, L. (2004). A multi-national study of reading and
tracing skills in novice programmers. ACM SIGCSE Bulletin, 36(4), 119-150. https://doi.org/10.
1145/1041624.1041673

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for the
trees: Novice programmers and the solo taxonomy. ACM SIGCSE Bulletin, 38(3), 118-122. https://
doi.org/10.1145/1140123.1140157

Lister, R., Fidge, C., & Teague, D. (2009). Further evidence of a relationship between explain- ing,
tracing and writing skills in introductory programming. ACM SIGCSE Bulletin, 41(3), 161-165.
https://doi.org/10.1145/1595496.1562930

Lister, R. (2020). On the cognitive development of the novice programmer: And the development of
a computing education researcher. In Proceedings of the 9th computer science education research
conference. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/
3442481.3442498

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between reading, tracing and
writing skills in introductory programming. In Proceedings of the fourth international workshop on
computing education research (pp. 101-112).

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D., ... Wilusz, T. (2001). A
multi-national, multi-institutional study of assessment of programming skills of first-year cs
students. In Working group reports from iticse on innovation and technology in computer science
education (pp. 125-180).


https://doi.org/10.1080/03610919708813451
https://doi.org/10.1016/0165-1765(80)90024-5
https://doi.org/10.1016/0165-1765(80)90024-5
https://doi.org/10.1126/science.1238056
https://doi.org/10.2190/BKML-B1QV-KDN4-8ULH
https://doi.org/10.1080/10705511.2017.1363652
https://doi.org/10.1080/10705511.2017.1363652
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/1140123.1140157
https://doi.org/10.1145/1140123.1140157
https://doi.org/10.1145/1595496.1562930
https://doi.org/10.1145/3442481.3442498
https://doi.org/10.1145/3442481.3442498

28 M. FOWLER ET AL.

Mendoza, B., & Zavala, L. (2018). An intervention strategy to hone students’ code under- standing
skills. Journal of Computing Sciences in Colleges, 33(3), 105-114. http://doi.org/10.5555/3144687.
3144714

Moshagen, M. (2020). sempower: Power analyses for sem [Computer software manual]. (R package
version 1.1.0) https://CRAN.R-project.org/package=semPower

Moubayed, A., Injadat, M., Shami, A., & Lutfiyya, H. (2018, March). Relationship between student
engagement and performance in e-learning environment using association rules. In 2018 IEEE
World Engineering Education Conference (EDUNINE) (pp. 1-6). Retrieved December 28, 2021, from
http://arxiv.org/abs/2101.02006 (arXiv: 2101.02006)

Murphy, L., McCauley, R., & Fitzgerald, S. (2012). ‘explain in plain English’questions: Im- plications for
teaching. In Proceedings of the 43rd ACM technical symposium on computer science education (pp.
385-390).

Murphy, L., Fitzgerald, S., Lister, R., & McCauley, R. (2012). Ability to’explain in plain English’linked to
proficiency in computer-based programming. In Proceedings of the ninth annual international
conference on international computing education research (pp. 111-118).

Parsons, D., & Haden, P. (2006). Parson’s programming puzzles: A fun and effective learning tool for
first programming courses. Proceedings of the 8th Australasian conference on computing educa-
tion, 52, 157-163.

Pelchen, T., Mathieson, L., & Lister, R. (2020). On the evidence for a learning hierarchy in data
structures exams. In Proceedings of the twenty-second Australasian computing education confer-
ence (pp. 122-131).

Perkins, D., & Martin, F. (1986). Fragile knowledge and neglected strategies in novice programmers.
In At empirical studies of programmers, 1st workshop (pp. 213-229). Washington, DC: Ablex
Publishing Corp.

Preacher, K. J., & Merkle, E. C. (2012). The problem of model selection uncertainty in structural
equation modeling. Psychological Methods, 17(1), 1. https://doi.org/10.1037/a0026804

R Core Team. (2020). R: A language and environment for statistical computing [Computer software
manual]. https://www.R-project.org/

Rasch, G. (1993). Probabilistic models for some intelligence and attainment tests. ERIC.

Royle, G., Mckay, B., Oggier, F., Sloane, N., Wanless, I., & Wilf, H. (2004). Acyclic digraphs and
eigenvalues of (0, 1)-matrices. Journal of Integer Sequences, 7(3), online—approx. https://doi.org/
10.48550/arXiv.math/0310423

Schooler, L. J., & Anderson, J. R. (1990). The disruptive potential of immediate feedback. Proceedings of
the Twelfth Annual Conference of the Cognitive Science Society, Cambridge, MA.

Sheard, J., Carbone, A, Lister, R., Simon, B., Thompson, E., & Whalley, J. L. (2008). Going solo to assess
novice programmers. In Proceedings of the 13th annual conference on innovation and technology
in computer science education (pp. 209-213).

Simon, B., Lopez, M., Sutton, K., & Clear, T. (2009). Surely we must learn to read before we learn
to write! Proceedings of the eleventh Australasian conference on computing education, 95,
165-170.

Soloway, E., Bonar, J., & Ehrlich, K. (1983). Cognitive strategies and looping constructs: An empirical
study. Communications of the ACM, 26(11), 853-860. https://doi.org/10.1145/182.358436

Soloway, E. (1986, September). Learning to program = learning to construct mechanisms and
explanations. Communications of the ACM, 29(9), 850-858. http://doi.org/10.1145/6592.6594

Soloway, E., & Spohrer, J. C. (1989). Studying the novice programmer. Psychology Press.

Sudol-Delyser, L. A. (2015). Expression of abstraction: Self explanation in code production. In
Proceedings of the 46th ACM technical symposium on computer science education (pp.
272-277).

Tan, G., & Venables, A. (2010). Wearing the assessment ‘bracelet’. Journal of Information Technology
Education: Innovations in Practice, 9(1), 25-34. http://doi.org/10.28945/707

Teague, D. M., Corney, M. W., Ahadi, A., & Lister, R. (2012). Swapping as the” hello world” of relational
reasoning: Replications, reflections and extensions. Proceedings of conferences in research and
practice in information technology (crpit), 123.


http://doi.org/10.5555/3144687.3144714
http://doi.org/10.5555/3144687.3144714
https://CRAN.R-project.org/package=semPower
http://arxiv.org/abs/2101.02006
https://doi.org/10.1037/a0026804
https://www.R-project.org/
https://doi.org/10.48550/arXiv.math/0310423
https://doi.org/10.48550/arXiv.math/0310423
https://doi.org/10.1145/182.358436
http://doi.org/10.1145/6592.6594
http://doi.org/10.28945/707

COMPUTER SCIENCE EDUCATION e 29

Vainio, V., & Sajaniemi, J. (2007). Factors in novice programmers’ poor tracing skills. In Proceedings of
the 12th annual Sigcse conference on innovation and technology in computer science education (pp.
236-240). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/
1268784.1268853

Venables, A, Tan, G., & Lister, R. (2009). A closer look at tracing, explaining and code writing skills in
the novice programmer. In Proceedings of the fifth international workshop on computing education
research workshop (pp. 117-128).

Weinman, N., Fox, A., & Hearst, M. A. (2021). Improving instruction of programming patterns with
faded parsons problems. In Proceedings of the 2021 chi conference on human factors in computing
systems. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/
3411764.3445228

West, M., Herman, G. L., & Zilles, C. (2015). PrairieLearn: Mastery-based online problem solving with
adaptive scoring and recommendations driven by machine learning. Paper presented at the ASEE
Annual Conference & Exposition, ASEE Conferences, Seatttle, Washington.

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P., & Prasad, C. (2006). An
Australasian study of reading and comprehension skills in novice programmers, using the
bloom and solo taxonomies. Proceedings of the 8th Australasian conference on computing educa-
tion, 52, 243-252.

Winslow, L. E. (1996). Programming pedagogy—a psychological overview. ACM Sigcse Bulletin, 28(3),
17-22. https://doi.org/10.1145/234867.234872

Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013, December). Sample size requirements
for structural equation models: An evaluation of power, bias, and solution propriety. Educational
and Psychological Measurement, 76(6), 913-934. (25705052[pmid]) https://pubmed.ncbi.nim.nih.
gov/25705052

Xie, B., Nelson, G. L., & Ko, A. J. (2018). An explicit strategy to scaffold novice program tracing. In
Proceedings of the 49th ACM technical symposium on computer science education (pp. 344-349).
New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3159450.
3159527

Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D., Kwik, H., Tan, A. H.,, Hwa, L., Li, M., & Ko, A. J.
(2019). A theory of instruction for introductory programming skills. Computer Science Education,
29(2-3), 205-253. https://doi.org/10.1080/08993408.2019.1565235

Yamamoto, M., Sekiya, T., & Yamaguchi, K. (2011). Relationship between programming concepts
underlying programming skills. In 2071 international conference on information technology based
higher education and training (pp. 1-7).

Yamamoto, M., Sekiya, T., Mori, K., & Yamaguchi, K. (2012). Skill hierarchy revised by sem and
additional skills. In 2012 international conference on information technology based higher educa-
tion and training (ithet) (pp. 1-8).


https://doi.org/10.1145/1268784.1268853
https://doi.org/10.1145/1268784.1268853
https://doi.org/10.1145/3411764.3445228
https://doi.org/10.1145/3411764.3445228
https://doi.org/10.1145/234867.234872
https://pubmed.ncbi.nlm.nih.gov/25705052
https://pubmed.ncbi.nlm.nih.gov/25705052
https://doi.org/10.1145/3159450.3159527
https://doi.org/10.1145/3159450.3159527
https://doi.org/10.1080/08993408.2019.1565235

	Abstract
	1. Introduction
	2. Literature review
	2.1. The early days of novice programming skills research
	2.1.1. Early studies in novice knowledge acquisition
	2.1.2. Early steps towards proposing a hierarchy

	2.2. “<italic>Relationships between reading, tracing and writing skills in introductory programming” – Lopez</italic> et al.
	2.3. Further investigations into hierarchies

	3. Methods
	3.1. Course context differences
	3.2. Instrument differences
	3.3. Data collection

	4. Plan of analyses
	4.1. Original analysis
	4.2. Our analysis
	4.3. Identifiability of SEM models

	5. Findings
	5.1. Candidate models for skill hierarchies
	5.2. On selection of SEM models
	5.3. What our data give us – correlation, but not an order of teaching or learning

	6. Implications
	6.1. This approach to understanding the skill hierarchy is limited to (helpful) correlations
	6.2. Possible future work: experiments to test competing skill trajectories and determine directionality

	7. Limitations
	7.1. Assessment format differences
	7.1.1. Access to an IDE
	7.1.2. Access to automatic feedback during the exam
	7.1.3. Sketching
	7.1.4. Automatic practice exam generation
	7.1.5. Item generators

	7.2. The balance of the question pools

	8. Conclusion
	Note
	Disclosure statement
	Funding
	ORCID
	References

