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Abstract

High-throughput sequencing technology has enabled re-
searchers to profile microbial communities from a variety
of environments, but analysis of multivariate taxon count
data remains challenging. We develop a Bayesian nonpara-
metric (BNP) regression model with zero inflation to ana-
lyse multivariate count data from microbiome studies. A
BNP approach flexibly models microbial associations with
covariates, such as environmental factors and clinical char-
acteristics. The model produces estimates for probability
distributions which relate microbial diversity and differ-
ential abundance to covariates, and facilitates community
comparisons beyond those provided by simple statistical
tests. We compare the model to simpler models and popu-
lar alternatives in simulation studies, showing, in addition
to these additional community-level insights, it yields su-
perior parameter estimates and model fit in various set-
tings. The model's utility is demonstrated by applying it
to a chronic wound microbiome data set and a Human
Microbiome Project data set, where it is used to compare

microbial communities present in different environments.
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1 | INTRODUCTION

The statistical community has increasingly focused on developing techniques to model high-throughput
sequencing (HTS) data produced by microbiome studies. Although HTS data has been successfully
used to profile complex microbial communities, analysis of such data remains challenging. In this
work, we focus on the analysis of multivariate count data with excess zeros, in particular, read count
data of taxa produced by 16S ribosomal RNA (rRNA) sequencing. As a motivating application, we
consider the chronic wound microbiome data in Verbanic et al. (2019), which consists of microbiome
samples taken from human subjects’ chronic wounds, both pre- and post-debridement, as well as
from their healthy skin. Verbanic et al. (2019) studied changes to the chronic wound microbiome by
debridement, which is known to be an effective treatment for chronic wounds. We present a Bayesian
nonparametric regression model that includes a submodel for zero inflation and flexibly accommo-
dates covariates such as environmental factors and clinical characteristics for differential abundance
analysis. The model provides an inferential framework to gain further insights into complex microbial
communities.

In microbiome studies, samples are taken from some environment of interest, and the 16S rRNA
gene in DNA extracts of the samples is amplified and sequenced using HTS. Counts of the resulting
sequence reads are produced by comparing the reads to a database and grouping them into operational
taxonomic units (OTUs) that exhibit some degree of similarity. The data from each sample are sum-
marized in a multivariate vector of OTU counts. These counts commonly exhibit zero inflation and
overdispersion, making their analysis more complicated. Standard errors will be underestimated if the
model does not properly accommodate overdispersion. Failing to account for zero inflation can bias
estimation of the relationships between covariates and OTU abundance, and lead to incorrect predic-
tions. Total counts in the samples vary due to experimental artefacts such as the sequencing depth, and
the raw counts do not reflect the absolute microbial abundance in the samples. Consequently, the OTU
counts need to be normalized for meaningful comparison across samples, and determining whether a
zero count is due to an OTU truly being absent from the environment versus a detection failure is not
straightforward.

Various statistical models haven been proposed for microbiome data analysis that take these
features into account. Zero-inflated count models, including zero-inflated Poisson (ZIP) and zero-
inflated negative binomial (ZINB), are common choices to address the problem of excessive zeros. To
detect associations or differential abundance, these models generally relate OTU abundance to a set
of covariates by modelling the mean counts or some transformation of the counts via a link function.
Some of these models, such as Chen and Li (2016) analyse each OTU individually, while many more
recent models analyse OTUs jointly through some hierarchical structure. Hierarchical models allow
for borrowing strength across taxa for enhanced estimation of covariate effects or increased power to
detect differential abundance. In this vein, Jonsson et al. (2018) model the counts directly using a ZIP
model with OTU and sample specific random effects to account for overdispersion. Lee et al. (2018)
use a ZIP model with spike-and-slab priors for variable selection on regression parameters related to
taxa abundances and zero inflation. This model also includes a multivariate random effect to account
for interdependence among OTU counts in a sample. Paulson et al. (2013) developed a zero-inflated
Gaussian mixture model, called metagenomeSeq, on log-transformed counts after adding the value
of 1 to avoid numerical problems. Sohn et al. (2015) proposed a similar approach, called RAIDA,
which first selects an OTU that has non-zero counts in all samples as a common divisor and uses a
zero-inflated log-normal model on the ratios of OTU counts to the count of the chosen divisor. See
Sankaran and Holmes (2018), Tang and Chen (2018) and Kaul et al. (2017) among many others
for more examples of using zero inflated models. We also note that there are statistical models that
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account for relationships across taxa using a latent factor model or a graph in modelling taxa abun-
dances. For example, see Grantham et al. (2020), Mao et al. (2020) and Ren et al. (2020). But those
models do not address a potential problem of zero inflation.

We develop a Bayesian nonparametric multivariate regression model with zero inflation that en-
ables assessment of taxa richness and diversity that potentially varies with covariates. We use a ZINB
distribution for OTU counts and assume an OTU count is either equal to zero or follows a NB distri-
bution. The ZINB model properly accounts for the overdispersion and excess zeros that are common
in microbiome data. We build nonparametric regression prior models on the probability of an OTU
count being zero and the mean count of an OTU to study the effects of covariates x on microbial
communities. The probit of the probability of an OTU count being zero, &, and the logarithm of the
OTU's differential abundance compared to the baseline counts, 0, are assumed to follow unknown dis-
tribution functions indexed by x, F’ f and F g, respectively. We use a dependent Dirichlet process (DDP)
(MacEachern, 1999, 2000), a flexible nonparametric Bayesian model to model Ff and F' g. The DDP
is a popular choice to model a set of random functions related through x. Our model is highly flexible
with regard to the nature of the relationship of the covariates and an OTU's abundance and presence.
In addition to inference on the association of individual taxa with covariates through & and 6, F: f and F)f
provide community-level insights related to alpha-diversity and species evenness, which distinguishes
our method from other commonly used models for differential abundance analysis. To improve the in-
ference on F; f and Fﬁ, we construct an elaborate model for the baseline abundance of OTUs in samples.
The baseline count of an OTU in a sample is modelled as a function of a sample-specific size factor
and an OTU-specific baseline abundance factor to account for count variation related to sequencing
depth and different baseline abundances of OTUs. The baseline abundance factor of an OTU is shared
by samples from a group, such as the subject or location where each sample was collected, to reflect
the dependent taxa abundance levels shared across these samples. These two factors constitute a basis
for the estimation and meaningful interpretation of £ and 6.

In the remainder of the paper, we describe the model and its applications. Section 2 describes
the proposed Bayesian nonparametric multivariate NB regression model with zero-inflation (called
‘BNP-ZIMNR’) and Section 3 has results from the model applied to some simulation studies. Section
4 has results from the model applied to a chronic wound microbiome data set and an additional human
microbiome data set collected from NIH Human Microbiome Project, and Section 5 concludes with
some discussion of the results and areas of future research.

2 | PROBABILITY MODEL
2.1 | Sampling model

Assume that non-negative integer counts Y; are observed for OTU j in sample i, j =1, ..., J and
i=1, ..., n, and are organized in a n X J table, Y = [Yij]. Let a sample have a categorical covariate
x; € & = {1, ..., K} and a grouping factoru; € % = {1, ..., M}. In our motivating data set, skin
type provides three levels of a covariate, that is, & = {1, 2, 3}. The samples were taken from 18
subjects, which we use as a grouping factor, % = {1, ..., 18} with M = 18. Although we use a setting
with one categorical covariate to present the model, it can be easily extended to accommodate more
factors and continuous covariates. We use a ZINB regression model. For OTU count ¥;; with covariate
level x; and grouping factor u;,

indep
Yil€jns My 5j ™~ €810/ (V) + (1= €1) NB (1(xi, ), ;) )
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where 9,(-) is the Dirac measure at A and NB(y, s) the negative binomial (NB) distribution with mean y
and dispersion parameter s (so the variance is y + syz). The zero-inflated model in Equation (1) assumes
that abundance is conditional on the presence of an OTU. (1 — ¢; , ) is the probability of presence for OTU
J in sample £, and is a function of covariate x;. With probability (1 — ¢; ) the NB generates counts, some
of which can be zero. The model specification implies that a zero count can be produced in two ways. An
OTU may truly be absent in a sample with x;. Conversely, zero counts may be produced for rare OTUs
even when those OTUs are truly present if the sequencing effort is not sufficient to surface their presence.
HTS data is commonly modelled using NB models, as in Equation (1), which are more flexible in ac-
commodating overdispersion than their single-parameter Poisson counterparts, distributions for which the
mean must be equal to the variance. Overdispersion parameter s; controls the amount of overdispersion,
with larger s; indicating a greater amount of overdispersion, and the Cequrvalent Poisson model with mean
Hij 18 recovered as s; > 0. We let the overdispersion parameters s; ~ Log-Normal(a,, bz) with a, and b?
fixed. The mixture model in Equation (1) can be represented w1th latent indicator variables 6; € {0, 1}
for presence and absence of OTU j in sample i. We assume 6; ~ Ber(l €y ), andlet ¥y = O for6;=0
and Y, P NB (my(x;, uy), s;)for ;= 1.

We decompose the mean abundance y;; for OTU j present in sample i as follows: For sample with
x;=kand u; =m,

log(p;i(k, m)) = a;,, + r; + 0. 2)

A baseline abundance factor of OTU j for samples from group m, a;,, accounts for different baseline abun-
dances of OTUs. It is shared by the samples from group u; = m and induces dependence among Y; with
u; = m. r; is a sample specific normalization factor to account for different library sizes across samples.
Parameters a;,, and r; together form the baseline count of OTU j in sample i. It is common that r; is set to
the logarithm of the total counts Y}, Z 4 ;j as an offset variable (e.g. see Lee et al. (2018) and Zhang
et al. (2017)). We instead let r; be random whrch enables full model-based inference with appropriate
uncertainty quantification. §; in Equation (2) represents a multiplicative change in abundance of OTU j
for covariate level k compared to its baseline abundance. A value of 8 close to zero implies that the abun-
dance of an OTU is close to the baseline abundance, that is, non-differentially abundant, and positive or
negative values of 6 imply low or high abundance of OTU j in a sample with x; = k, respectively.
Comparison of 6 across k can be used to infer differential abundance of OTU j. Similarly, comparison of
0 across j provides insights on relative abundances of OTUs in a sample with level &, such as species
diversity compared to the baseline.

Using regression models for €;, and ;, is common to quantify covariate effects on the occurrence
of excess zeros and differential abundances. Using our motivating data set as a specific example, one
may choose one & of the levels as a reference and let Op = 0.0y, k# k is then interpreted as an effect
size relative to the abundance of OTU j under the reference. A potential drawback of this approach
is that 0y, k # k cannot be meaningfully estimated if the OTU is absent under the reference level. A
common workaround to address this issue is to replace zeros with a small value, known as pseudo
count, if an OTU has zeros in all samples of the reference level. However, this arbitrary modification
of the data may result in biased inference. On the other hand, the decomposition of y in Equation
(2) can avoid potential biases because ¢, represents differential abundance compared to the baseline
abundance r; + a;,,. The baseline count of an OTU can be estimated if an OTU exists for at least one k.
We let 0 = 0if an OTU is present only for one level of & so that 6, can be fully interpreted. For £, we
use a probit link function, @ ~ 1(ejk) = &jr, Where @~ 1(-) is a inverse cumulative distribution function
of the standard normal distribution. In the presence of a high proportion of zeros, differentiating the
event 6; = 0 from the event 6; = 1 for the cases of ¥;; = 0 is challenging. Specifically, more than 65%
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of the OTU counts are equal to zero in two conditions for our application in Section 4. As discussed
in Agarwal et al. (2002), in such cases including random group effects for € may result in unstable
model fitting and computational intractability. For this reason, we let ¢, be a function of x; only. The
dependence of & on x; only is in contrast with y;, which depends on both u; and ;. If non-zero counts
are observed for most of Y;; or enough samples are obtained from each group, group-specific random
effects could be included in the model for € similar to the approach in Jonsson et al. (2018) to account
for potential heterogeneity between groups. Simulation studies in Section 3 show that the proposed
model without group random effects for e performs reasonably well even when there is mild between-
group heterogeneity in e or the zero inflation levels are not very high. In the following, we consider a
flexible BNP approach to model £; and 6, to improve inference on presence/absence and differential
abundance.

2.2 | Prior

We assume & k ~ F and ‘9,k ~ and use a BNP approach to build a model for F} *and F. % In addition
to inference on 1nd1V1dua1 OTUs through &jw and 0y, their distributions F} * and Fy 0 capture useful infor-
mation relating microbial communities with different levels of the covarlate and provide biological
insights into community changes in k. In particular, F* f describes the distribution of the probabilities
of OTUs in a community under condition x, and is closely related to species richness (number of dif-
ferent species in a community). For F,f that assigns more probability mass to small values, OTUs in a
sample with x; = k are more likely to be present and have non-zero counts, potentially implying higher
microbial species richness for the sample. Similarly, F]f captures the distribution of differential abun-
dance of OTUs present in a sample with x; = k. If F ,f is greatly concentrated around zero, many OTUs
in a sample with x; = k are not differentially abundant compared to their baseline counts. Comparison
of F"E and F 9 across k tells how community composition changes by covariates. To build flexible prior
models for F ¢ and F; 9 that are possibly related across different k, we consider a dependent Dirichlet
process (DDP) model in a Dirichlet process (DP) mixture model. For OTU j in a sample with x; = k,
we assume

Sik ~ Fp = Z v, N (51:,” Uék) and 0y, ~ ~ Z weN (075, 05, - S
fid =%

The mixture locations ék and gkf depend on k and we let ‘:kf ~ N(f é) nd Op ~ NGO, 7 ). The
covarlate -independent weights Wf, x € {0, & take the form wi =v ][, (1 -V ) with
v ~ Be(l p%). That is, the ‘single-p’ DDPs that assume predictor-independent Welghts are used in
Equatlon (3) as priors over the distributions of the mixture locations. MacEachern (1999, 2000) proposed
the DDP to model related random probability distributions. When flexible point mass processes are con-
sidered for 9; = {9; ,Xx € I'}and §; = {{,,, x € X}, the ‘single-p” DDP has full weak support,
implying that the prior model is flexible enough to generate sample paths sufficiently close to any proba-
bility distribution. DDP and its variations have been successfully used to model related probability distri-
butions in many applications including ANOVA (De Iorio et al., 2004), survival (De Iorio et al., 2009; Jara
et al., 2010), time series analysis (Griffin & Steel, 2011; Nieto-Barajas et al., 2012) and spatial modelling
(Gelfand et al., 2005) among many others. The DDP mixture formulation in Equation (3) allows us to
flexibly specify and, after fitting the model, analyse and compare F 9 and Fe ¢ without restrictive parametric
assumptions about their functional forms. We assume (; [G( ,bh). X € {¢&, 8}. The model can be
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further extended to accommodate additional categorical/continuous covariates; for example, if the effects
of additional covariates can be reasonably assumed to be simple, the additional covariates can be included
by adding a conventional regression function in Equation (2), similar to the constructions in edgeR
(Robinson et al., 2010) and DESeq?2 (Love et al., 2014). A similar extension can be used to accommodate
additional covariates in modelling . When a fully nonparametric approach is more desirable, a stochastic
process such as Gaussian process prior can be placed on on 0; (x)and é; (x)in Equation (3) as a function
of x. Thus, the dependence of F’ f ,x €16, £}, is induced over a continuum of covariates and the model can
capture more general relationships between F{¥ and x. We refer the reader to MacEachern (1999, 2000) for
details.

Parameters r; and a;,, form the baseline count of OTU j in a sample with u; = m, and serve as an
‘overall mean’. Observe that the parameters in Equation (2) are not identifiable due to the multiplica-
tive structure, E(Y; | 6; = 0) = €" *+%u+0i We place constraints on the distributions of both r; and

@y, to circumvent the 1dent1f1ab111ty issue in estimating the baseline counts, exp (r; + a;,,). More im-
portantly, the constraints allow parameters of primary interest ¢, and F]f to be 1dent1f1ed. Specifically,
we use mean-constrained priors with a mixture-of-mixtures structure (Li et al., 2017) for r; and X

L 7T

iid l)r—Wfl’]f

i~ ) Wy {w;N(n;, uf)+(1—w;)N<—,, uf)}
f—l

1-w)
B “
id a
iid wa {w N#Z, u 2)—}—(1 Wf)N(l——vj”f’ Mi)},
=1 4

where 0, X € {r, a} are the distribution's fixed, prespecified mean constraints, and V/j,f and wi,f are mixture
weights with 3 27 w% = 1and 0 < w7, w < 1. Although mean-constrained, the mixture-of-mixture
formulation provides significant flexibility, as it can accurately characterize a wide range of distributions,
including multi-modal and skewed distributions. Lee and Sison-Mangus (2018) and Shuler et al. (2019)
used the distributions in Equation (4) for model based normalization in similar settings, and their results
indicate the baseline abundance and covariate effects can be estimated without issues related to identifi-
ability. In contrast to using plug-in empirical estimates for normalizing factors, the flexible model-based
approach can further improve estimation of &; and 6;, and thus enhance estimation of F]f and F' Z. We
follow Li et al. (2017) and set v, = 0, which can be interpreted as on average no scaling adjustment; al-
though other approaches are available, such as using an empirical estimate like in Shuler et al. (2019) or
setting the constraint using prior information if it is available. We use an empirical approach to set v,. We
compute 7; = log (Y,./Y..) - L 2slog (Y, /Y.) withy, = .Y, a mean zero empirical estimates of 7; and
seto, = [Zi Jir>0 {10g(Yy) — 7, }] / {Zl Ay > 0)} Inference on @ and ¢ is not sensitive to specification of v,
and v, (Lee & Sison-Mangus, 2018; Shuler et al., 2019). Our simulation studies and real data analyses also
show robustness of inference to different specifications of v, and v,,. We place a Dirichlet prior on the outer
mixture welghts and a beta prior on the inner mixture welghts lettmg g y = (W1 y e y/’L’X) Dir(ai)
and w ~ Be(aw, bY), y € {r, a}, where a = (awl, oo ), af and b?, are flxed hyperparameters.

We let n? iid N@,. n*) with bnl fixed.

WU

2.3 | Posterior computation

Let 0 =1[s;, 6, Ii» s & O (X050 V5, aik, X €10, &), Wi, wi,nt, x € {r, a})] denote the
vector of all unknown parameters. The joint posterior distribution is P@ | Y, x, u) « P(Y | 8, x, u) P(9).
We use standard Markov chain Monte Carlo (MCMC) methods consisting of Gibbs and Metropolis
steps to draw samples from the posterior distribution. As is standard in mixture modelling we
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introduce auxiliary variables to indicate the mixture components from which the parameters of inter-
est belong. We add auxiliary variables of this type to aid in the posterior computation for r;, @, Oy,
and &;.. For computational convenience, when fitting the model we approximate the DDP in Equation
(3) by truncating the number of mixture components of F} “to L%, y € {, 0). The final weight
y/Ll 1- ?f ‘]1 vt ; 1s set to ensure F; £ s proper. With large enough L7 the truncated process pro-
duces inference almost identical to that w1th the infinite process (Ishwaran & James, 2001; Rodriguez
& Dunson, 2011). As discussed in Rodriguez and Dunson (2011) if there is discrepancy between the
posterior distributions under the truncated and infinite processes, the model is typically sensitive to
the choice of L¥. We examined the posterior distribution of q/’L(Z and the sensitivity of the model to a
choice of L*. We found that the truncated process is robust to a choice of L¥ if L7 is sufficiently large.
We diagnose convergence and mixing of the described posterior MCMC simulation using trace plots
and autocorrelation plots of imputed parameters. For both the upcoming simulation examples and the
data analysis, we found no evidence of practical convergence problems. An R package for the model,
bnpzimnr, is available at https://github.com/kurtis-s/bnpzimnr. Details of posterior computation are
given in Supplementary Section 1.

3 | SIMULATION STUDIES

To assess the performance of the proposed model, BNP-ZIMNR, we performed simulation studies and
compared its performance to alternative models. We included a factor with three levels and simulated data
for 100 OTUs from 20 subjects, that is, / = 100, M = 20 and K = 3, resulting in n = 60 samples, a covari-
atex; € {1, 2,3},i=1,..., Nand a grouping factoru; € {1, ..., 20}. We used Gaussian mixtures to set
the simulation truth for FI'™% and FO™, k = 1, 2, 3; let F¥™ = 0.6N(~2, 0.25)+0.4N(~ 1, 0.5),
F5™ = 02N(-0.5, 0.25) + 0.8N(0.5, 0.5) and F5™ = 0.5N(0, 0.25) + 0.5N(1, 0.5). Similarly, we set to
FgTR 0.3N(3, 0.25) + 0.6N(2, 0.25) + 0.1 N(— 1.5, 0.5), F‘qTR 0.3N(2, 0.5)+0.6N(—1, 0.25)+ 0.1 N( =2, 0.25)
and FO™R = 03N(2, 0.5) +035N(— 1, 0.25) + 0.35N( =2, 0.25). F-'"~ and F''™ are illustrated with the
solid black lines in Figure 3. F ¢ generally favours smaller values of flk, 1ndrcat1ng greater species richness
in level 1 than in the other 1evels When an OTU is present in a sample with k = 1, it tends to have a value
of 6 greater than zero, that is, a higher abundance. On the other hand, for levels k = 2, 3, OTUs are likely
to be absent, and when they are present, their abundances are low with large probability. In a simulated
data set, the three levels of x; approximately have 9%, 59% and 69% of Y;; being equal to 0, respectively.
We drew & independently from F; TR and generated ai® "EP Ber(1 — eIR) for a sample with x; = k, where

ekaR = CI)(fTR) If an OTU is present for two or more levels of the factor that is, differential abundance
can be meamngfully defined, then we drew ¢ ,k X from Fe OTR If an OTU is present for only one level 0 =0.

Otherwise, 0 is not defined. We simulated group factors ajT ~NQo, 1), normalization factors

(exp(rf®), . exp(rTR)) ~ Dir(5, ..., 5) and dispersion parameters STR % Log- -Normal (-2, (1/10)?). For (i;j)
with 53‘* = 1, we simulated OTU counts Y using the NB d1str1but10n with mean MTR = exp(aTR +rR 4+ aTR)
and dispersion sJTR When 5TR = 0, we set yTR = 0and ¥; =0.

Posterior Inference. When fitting the model, we set the hyperparameters as follows: For the
mean-constrained distribution of normalization factors r;, let v, = 0, L" = 20, a, = 1, a =5,
b =5, u2 = 0.05 and b2 = 0.25. Similarly, for the group-specific baseline abundance of OTU
] jm, let v, be specrﬁed usmg the empirical approach described in Sectron 2.2, L* = 150, a, = =1,

=Lb =1, u = 2andb2 =1L FortheDDPprrors we let p? =1, 0" = Oandr = 10 For
the DDP prior of f;/a we used pf =1, 5 = 2 and T = 1, which encourages a preference for a
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higher probability for zero inflation, but is still flexible enough to accommodate OTUs with little
sparsity. For the mixtures’ kernel dispersions, we leta? = b% =1, y € {£, 0}. We set the DDP trun-
cation levels to L? = L = 50. Finally, we used a, = 0.3, bf = 0.1 for the prior of OTU-specific
dispersion parameters s;. To run the MCMC simulation, we used data to initialize the parameters.
For example, we initialized r; with the empirical sample size factors 7; used to set v,. Empirical
proportions of zero counts, p; = ﬁ Y e =k 1(y; = 0) were used to set initial values of ¢; and
éjk*f. We ran the MCMC for 70,000 iterations, discarding the first 20,000 iterations, and thinned to
use every fifth sample, resulting in 10,000 samples from the posterior distribution. On a 3.2 GHz
Intel i5-6500 CPU running Ubuntu Linux the MCMC took approximately 12 mins for every 5000
iterations of the MCMC.

We first examine the inference on species richness in samples with k. Recall th/a\t 0j; =A1 implies the
presence of OTU j in sample i. We used posterior means of & as their point estimates 6; = P(5;; = 1]y).
The model recovers the indicators for zero inflation well, as shown by the histograms of Sij when
E;R = 0 and 1 in Figure la and b, respectively. The model yields good estimates of ekaR, as seen in
Figure 1c, which shows posterior estimates of ¢, plotted against the simulation truth. Figure 2 shows
the resulting posterior inference on ¢y for individual OTUs. To account for zero inflation, we define
Ky = 1{ > ?’z 1;xi=k1(5ij = 1) > 0}, abinary indicator taking 0 if OTU j is absent in all samples from
level k, or 1 otherwise. Note that 6 is defined only when kj; = 1. We incorporate k; and compute point

posterior estimates of ij; éjk =Y2, K;}’:) X 9}?}’? /XE K;_f’, where b = 1, ..., B indexes the posterior sam-
® _ ® _ 3 i ible i
ples and Ky = UL, 16 =0> 009, along with 95% credible intervals (CIs) are shown. The

plots show that the model provides good estimates for differential abundance in different levels of the
factor. The differences between the estimates and truth and CI lengths are greater for levels k = 2 and
3 because fewer non-zero counts are observed due to the high prevalence of absence. Panel (d) shows

posterior estimates of K, = = > &_ (% when kTR = 0 in the simulation truth. The plot illustrates
= Jk

the model does a good job of ?dentifyingthe absence in factor levels and further enhances the estima-
tion of 0. Figure 3 shows posterior inference for communities through ff and ]/‘;f. In each panel, the
posterior estimates are shown by dashed coloured lines with shaded 95% pointwise Cls, and the sim-
ulation truth is shown in solid black. From the plot, the BNP regression approach flexibly captures
non-Gaussian patterns such as bimodality and skewness in the distributions. Even for levels k = 2, 3,
where many OTUs are not present, the model produces good estimates of fkg, potentially because it
borrows information across different levels through the DDP as well as across different OTUs. We
also examined estimates of baseline counts of OTU j in sample i, r; + a;,,. These estimates are shown
in Supplementary Figure 1. The posterior estimates recover the true baseline counts well. There is no
indication that the model suffers identifiability problems.

The model is complex and we performed prior robustness diagnostics. From the diagnostics, spec-
ification of the prior for & k* may need careful attention. For a particular condition, the observed pro-
portion of zero counts is commonly either O or 1. That is, p; = i Y ' lxizkl()/,j =0)=0or
pjx = 1, meaning for every subject in that condition an OTU count of 0 was observed, or alternatively,
for every subject an OTU count > 0 was observed. For such cases, a wide range of small/large values
of &, can almost equally well explain the observed pj, and a large value of rz may result in undesirable
inference on ff We also re-fit the model with different values of the fixed parameters including L", L,
L’ and L%, and examined the robustness of the model. Changes in the posterior inference by specifica-
tion of other parameters such as L”, L*, L% and Lf are minimal. We did not observe evidence of conver-
gence or mixing problems. In addition, the model shows robustness to the estimation of the baseline
counts r; + a;, with different specifications of the fixed hyperparameter values. A discussion includ-
ing more details of sensitivity analyses, the chain's convergence and run-time is in Supplementary
Section 2.
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FIGURE 1 [Simulation 1] Panels (a) and (b): Histograms of :S\ij = IA’(éij = 1) when 5? = 0and 6? = 1. Panel
(c): Posterior means of ¢ plotted against the simulation truth. Colours/shapes indicate the factor levels: k = 1, red
squares; k = 2, green circles; k = 3, blue triangles [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 [Simulation 1] Panels (a)-(c): Posterior means of differential abundances 6 for k =1, 2, 3,
respectively, along with 95% credible intervals and reference lines. Panel (d): Posterior estimates of x; for cases
of (j, k) with K};{R = 0, that is, when OTU j is absent in all samples with level k [Colour figure can be viewed at
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FIGURE 3 [Simulation 1] Panels (a)—(c) shows posterior estimates of ff for each k, k =1, 2, 3, and panels (d)—
(f) of f?. Dashed coloured lines are estimates with shaded 95% pointwise credible intervals. Black solid lines represent
the simulation truth. Rugs show &% and 6% [Colour figure can be viewed at wileyonlinelibrary.com]

Comparison. We used 100 simulated data sets to compare results of BNP-ZIMNR to those of
alternative models: A Bayesian nonparametric multivariate regression model with NB (BNP-MNR),
a Bayesian nonparametric multivariate regression model with fixed normalization factors (BNP-
ZIMNR-FN), a Bayesian multivariate regression model (B-ZIMNR), the zero inflated overdispersed
Poisson (ZoP) model (Jonsson et al., 2018), edgeR (Robinson et al., 2010), and DESeq?2 (Love et al.,
2014). BNP-MNR is similar to BNP-ZIMNR, but does not include the submodel for zero inflation in
Equation (1). BNP-ZIMNR-FN likewise is similar to BNP-ZIMNR, but does not use the mean con-
strained priors for r; as in Equation (4). Rather, BNP-ZIMNR-FN uses fixed, plug-in estimates for r;,
set to the logarithm of the total OTU counts for each sample. Unlike BNP-ZIMNR, B-ZIMNR does
not utilize a Dirchlet Process Mixture (DPM) to model Fl‘f and Flf. Instead, B-ZIMNR assumes F]f
and FZ are single Gaussian distributions. ZoP is a Bayesian generalized linear model that uses a zero-
inflated Poisson distribution for OTU counts, and beta and normal priors for the probability of being
zero and the regression coefficients, respectively. Under ZoP, each Y,-j has a random effect, that is,
sample and OTU-specific random effects to handle overdispersion. EdgeR, one of popular likelihood
based methods, uses a NB generalized linear regression approach. It uses OTU-specific plugin esti-
mates for the normalization factors produced by an empirical Bayes strategy and analyses individual
OTUs separately. DESeq?2 is another popular likelihood based method which models counts using a
NB log-linear model. EdgeR and DESeq2 do not include random effects for the group factor and do
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not account for the dependence among samples taken from the same subject. A primary difference
between edgeR and DESeq2 is in the estimation of OTU-specific dispersion parameters s;. For more
details, we refer to the papers. Although edgeR and DESeq2 were originally designed for gene count
data, they have been successfully adapted for amplicon data and are frequently used for microbiome
analyses (McMurdie & Holmes, 2014). For this reason, we include them in our comparison. ZoP,
edgeR and DESeq?2 set one level of a factor as a reference level to formulate the regression, and their
regression coefficients represent differential abundance compared to the abundance in the reference
level. ZoP uses the pseudo count approach when all samples of the reference level have zeros. Both
methods include library sizes Y,, as plugin offsets for normalization. EdgeR has an option to use em-
pirically pre-estimated sample size factors instead of ¥,,, but we used their default option using V..
For comparison, we fit each of the models and compared parameter estimates to their truth using
root mean square error (RMSE). The different formulation for the regression model under ZoP, edgeR
and DESeq?2 precludes a direct comparison of their differential abundance estimates to 0.TkR. As an al-
ternative, we arbitrarily set the reference to the first level k = 1 and compare the model performances
i1» k=2, 3. By default, DESeq2 produces regression coefficient
estimates for log base 2 changes in the taxa abundance; for purposes of comparison to the other mod-
els, we adjust these estimates to be on the scale of the natural logarithm. The RMSE computed for &,
0 — 0;; and p is shown in Table la. For BNP-MNR, we used the posterior mean estimates of y; as
a point estimate ;’ZU For the zero-inflated models, similar to 9 we computed /’Zij =y f: 15;@ X ,uf.f) /B.
BNP-ZIMNR outperforms the other methods in comparison for estimating &; and (6, — 6;,). BNP-
ZIMNR is the best performer in terms of estimating y;;, closely followed by B-ZIMNR and ZoP. Due

on the estimation of differences 6}, —

TABLE 1 [Simulation 1: Comparison] RMSEs of 6, 8, — 6;,

metric averages over 100 simulated data sets with standard deviations in parenthesis. k = 1 is used as the reference

k=23, and p; are shown in (a). Performance

group for the difference in 6. For (b), k = 3 is used as the reference group and RMSE of 0 — 0;3, k =1, 2 is given

Model 0 0, — 0 03— 6 Hij

(a) Parameter estimation
BNP-ZIMNR 0.019 (0.005) 0.308 (0.060) 0.325 (0.057) 3154 (818)
BNP-MNR - 3.909 (0.504) 4.762 (0.504) 65,190,628

(89,816,163)

BNP-ZIMNR-EN  0.021 (0.005) 2.234(0.279) 2.386 (0.263) 4680 (2032)
B-ZIMNR 0.019 (0.005) 0.325 (0.066) 0.340 (0.056) 3277 (839)
ZoP 0.200 (0.033) 2.759 (0.278) 3.156 (0.249) 3769 (1282)
edgeR - 2.218 (0.303) 2.693 (0.303) 7924 (1860)
DESeq2 - 3.157 (0.640) 4.085 (0.712) 8200 (1954)

Model 0,—0; 0,6,

(b) Estimation of difference in 8 with k = 3 as a reference
BNP-ZIMNR 0.325 (0.057) 0.393 (0.054)
BNP-MNR 4.762 (0.504) 4.468 (0.446)
BNP-ZIMNR-FN 2.386 (0.263) 0.610 (0.182)
B-ZIMNR 0.340 (0.056) 0.418 (0.053)
ZoP 4.348 (0.356) 3.636 (0.388)
edgeR 2.693 (0.303) 3.302 (0.380)
DESeq2 4.102 (0.663) 5.184 (0.801)

The bold is used to indicate the best performing model.
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to OTU and sample specific random effects under ZoP, it obtains good estimates of y;;, but may tend
to overfit the data, leading to worse estimates for (6, — 6;,), as is indicated by model comparison de-
scribed later. The detrimental impact of excluding zero inflation can be seen by the much larger RMSE
of p; for BNP-MNR. The comparison of BNP-ZIMNR to BNP-ZIMNR-FN and B-ZIMNR indicates
the model-based normalization and the use of a nonparametric approach to modelling of F* and F°
improve inference under this simulation setting. Since selecting a level for the reference is arbitrary,
we re-fit the data using a different level of the factor as the reference for ZoP, edgeR and DESeq?2, and
computed the RMSE of the differences in 6. Table 1b illustrates the RMSE of (6, — 6;3) with k =3
instead of k = 1 as the reference level. Recall that level k = 3 has a higher degree of zero inflation than
level k = 1 in the truth. The performances of ZoP, edgeR and DESeq2 degrade when using this sparser
factor level as the reference, indicating bias in the estimation of 8 due to using arbitrary pseudo counts.
In contrast, the inference on 6; under BNP-ZIMNR and its variants do not depend on the choice of
reference level.

For further comparison of model fit among the Bayesian models, the log pseudo marginal like-
lihood (LPML) and the deviance information criterion (DIC) were calculated for the Bayesian
models. These metrics are summarized in Table 2a. Similar to other information criterion, DIC
assesses model performance based on the model's predictive accuracy with a penalty for model
complexity (Spiegelhalter et al., 2002). Lower values of DIC are preferred. LPML is the sum of the
logarithms of conditional predictive ordinates (Gelfand & Dey, 1994; Gelfand et al., 1992). It gives
a measure of the leave-one-out cross validated posterior predictive probability, with higher values
preferred. For more reliable comparison, we evaluated DIC and LPML based on the partially mar-
ginalized likelihood that integrates out random effects at the observation level for the ZoP (Millar,
2009). The table shows BNP-ZIMNR has improved model fit compared to the Bayesian competi-
tors. DIC and LPML based on the partially marginalized likelihood indicate that BNP-ZIMNR fits
the data better, potentially implying overfit under ZoP. Different from ZoP, edgeR and DESeq2,
BNP-ZIMNR and its variants also provide community-level inferences. To assess the impact of

TABLE 2 [Simulation 1: Comparison] (a) Average model comparison metrics over 100 simulated data sets with
standard deviations in parenthesis. (b) Average total variation distance of Flf as compared to the simulation truth both
with and without zero inflation. Standard deviations in parenthesis

Model DIC LPML
(@) DIC and LPML

BNP-ZIMNR 50,994 (1107) —26,391 (528)
BNP-MNR 62,909 (1317) —32,328 (647)
BNP-ZIMNR-FN 51,780 (1098) —26,964 (529)
B-ZIMNR 51,017 (1109) —26,413 (535)
ZoP 2,600,574 (91,077) —486,874 (31,409)
Model i i 1

(b) Total variation distance between FZ’TR and ?7]’5

BNP-ZIMNR 0.158 (0.063) 0.195 (0.073) 0.163 (0.060)
BNP-MNR 0.209 (0.069) 0.489 (0.033) 0.510 (0.039)
BNP-ZIMNR-FN 0.775 (0.029) 0.269 (0.108) 0.304 (0.116)
B-ZIMNR 0.330 (0.037) 0.341 (0.005) 0.330 (0.006)

The bold is used to indicate the best performing model.
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omitting zero inflation in the estimation of F ? we considered the total variation distance between
Ff’TR and I?If estimated from BNP-ZIMNR and its variants. Letting 9 denote the class of all Borel
sets in R, the total variation distance measures the closeness between two densities as
SUPpegs |IBJf’TR do — If,f d9| = % J lf,f’TR —f,f| do, where ke’TR and ]/‘;f denote the densities of Fz’TR and f’g
(Devroye & Lugosi, 2001). Table 2b shows the computed total variation distances. We use median
estimates of f,f as our point estimate ]A‘]f. The benefits of incorporating zero inflation into the model,
not using fixed normalization factors, and the flexibility of the DPM over simple Gaussians are
clearly observed for estimating a distribution of differential abundances. The total variation dis-
tance under BNP-ZIMNR is notably reduced, especially for k = 2 and 3, the levels with higher
probability of OTU absence.

Additional simulations. We performed additional simulations, Simulations 2-7, to further
assess the model's performance and scalability. For Simulation 2, we used a data simulation
setup similar to the one for Simulation 1, but assumed a more complex structure with K = 6
different levels of a factor. We fit BNP-ZIMNR and the comparators to 100 simulated data sets
using a specification similar to Simulation 1. In the simulation, BNP-ZIMNR outperformed the
comparator models for all of the metrics that we considered. We found that the model scaled well
with additional factor levels, providing accurate OTU level inference via 6, as well as commu-
nity level inference via F! and F]f For Simulation 3 we assumed that F]f’TR, x € {0, &}is asingle
Gaussian distribution as assumed under one of the comparators, B-ZIMNR, and kept the remain-
ing simulation setup similar to that of Simulation 1. Although the simulation truth is closer to
the assumptions made under B-ZIMNR, the results show that BNP-ZIMNR performs almost as
well, and it exceeds that of B-ZIMNR for some criteria. For Simulation 4 we assumed a greater
number of OTUs, J = 500, with K = 3. We assumed M = 30 subjects without replicates, resulting
in fewer samples, n = 30. We further introduced between-subject heterogeneity for the zero in-
flation levels, which is different from the assumption under BNP-ZIMR, and assumed fewer
excess zeros for conditions k = 2 and 3. BNP-ZIMNR performs better under most of the compar-
ison criteria. It yields better estimates of 6; and 6}, and better predictive metrics than the other
models. We find, however, that BNP-ZIMNR and its variants suffer in the estimation of Hijs
possibly due to the smaller sample size with no replicates, as we show in Simulation 5, which
has a similar setup to Simulation 4 but with replicates across the conditions. The results of
Simulation 5 show that the estimation of y; under BNP-ZIMNR and its variants is improved by
replicates. For Simulation 6, we considered a case where two continuous covariates, z, = (2,1, Z,2)
are present in addition to the experimental conditions, x; € {1, ..., K}. Although BNP-ZIMNR
can accommodate z; through FY, in Equation (3) fully nonparametrically, we considered a linear
regression similar to edgeR and DESeq2, for a simple and more comparable exercise. In partic-
ular, we let log(u;(x;, z;, m)) = @, +r; + 6, +2;B;, and placed normal priors on the regression co-
efficients, . g, | 73, "*" N, 73 ) and 22 2 1G(al, b)), a’ = b = 1. We also considered the same
extension for the other Bayesian models in comparison. Because ZoP does not allow continuous
covariates, we did not include ZoP for comparison. BNP-ZIMNR performs very well for the
estimation of f;, as well as of 5;; and 6. The estimation of §;, is significantly better under BNP-
ZIMNR than under edgeR and DESeq2, potentially due to better estimation of ¢; under BNP-
ZIMNR. For simulation 7, we fit the model to a data set with fewer samples, using M = 5
subjects and n = 10 total samples, with J = 50 OTUs over K = 2 conditions. For most of the
metrics considered, BZNP-ZIMNR outperforms the comparators under a setting with a smaller
sample size. ZoP produces better estimates of ;'s due to its sample and OTU specific random
effects, but their estimates of 6, 's are very poor. The detailed results of the additional simulation
studies are shown in Supplementary Section 3.
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4 | CHRONIC WOUND MICROBIOME DATA ANALYSIS

In this section, we apply BNP-ZIMNR to study chronic wound microbiomes using the data set in
Verbanic et al. (2019). The data set consists of microbiome samples collected from M = 18 subjects
with chronic wounds. Swab samples were collected from chronic wounds pre- and post-debridement,
along with a healthy skin swab sample from a control site, for each of the subjects. The K = 3 ex-
perimental conditions result in n = 54 samples in total. We let k = 1, 2, and 3 represent healthy skin,
pre-debridement wound swabs, and post-debridement wound swabs, respectively. The study aims to
investigate how debridement influences the composition of the microbial community of the wound,
and also to compare the microbial composition of the wound surface to that of healthy skin. We
analysed the data to infer changes in the community-level microbial richness and diversity as well as
differential abundances of individual OTUs. Better understanding of the wound microbiome and the
effects of debridement on the wound microbiota can further elucidate the role of the microbiome on
wound healing. From the swab samples, the 16S rRNA gene was amplified by PCR and sequenced
using high throughput sequencing, and the sequence reads were organized into an OTU table for
statistical analysis. A total of 22,753 OTUs were observed after removing singletons. We restricted
our attention to OTUs with nonzero counts in more than 20% of the samples for at least one experi-
mental condition to obtain reliable inference. After pre-processing, J = 92 OTUs were included in
the analysis. It was checked by our biological collaborators that biologically interesting OTUs were
not removed from analysis. The degree of zero inflation varies widely by experimental condition,
with 8% of the OTU counts equal to zero from the healthy skin samples, versus 65% and 67% of
the OTU counts equal to zero in the pre-debridement and post-debridement conditions, respectively.
Supplementary Figure 8a—c illustrate histograms of the empirical proportions pj, of zero counts in
the samples for the conditions. Panels (d)—(f) show histograms of total counts Y}, in samples for each
k. From the figures, the samples from conditions k = 2 and 3 have more zeros and have lower total
counts. The observed zeros in the pre/post-debridement conditions may be due to the absence of the
OTUs under those conditions.

We specified hyperparameters similar to those in the simulations. The MCMC simulation was run
over 140,000 iterations, with the first 40,000 iterations discarded as burn-in and every fifth sample
kept as thinning and used for inference. The MCMC took approximately 11 mins for every 5000 iter-
ations of the MCMC on a 3.2 GHz Intel i5-6500 CPU running Ubuntu Linux.

Community level inference provided by ff and f,f is shown in Figure 4. Posterior estimates of fl‘f
and fko are shown by the coloured lines, with pointwise 95% Cls shown by the shaded regions, where
the colours, red, blue and green, represents the healthy skin (k = 1), pre-debridement wound (k = 2),
and post-debridement wound (k = 3), respectively. The differences between the estimates under the
healthy skin condition and those under the wound conditions are substantial, but the wound micro-
bial community does not change immediately after debridement, similar to the previous findings in
Gardiner et al. (2017) and Verbanic et al. (2019). In panel (a), ]/“\f is stochastically lower for the healthy
skin condition, suggesting greater species richness in a healthy skin sample than in a wound sample.
For the wound conditions, f{ assigns more density to larger values and also has higher dispersion.
Panel (b) shows that f;f assigns more density to higher values in the healthy skin condition than in
the pre-/post-debridement conditions. The bulk of the density for the wound conditions is given to
values less than zero and the density estimates have long left tails. The distributions imply that on
average OTUs in the wound conditions tend to have low abundance compared to their baseline. ]A“]f are
slightly skewed, but overall ]/‘;f and fkg do not show a substantial departure from unimodal symmetric
distributions.
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The model also provides inference for individual OTUs. Figure 5 illustrates the posterior distribu-
tions of ¢; and 0;, for some selected OTUs, j = 28, 34 and 75. From panels (b), (¢), () and (f), OTUs
34 and 75 that belong to genus Micrococcus and Corynebacterium, respectively, are highly abundant
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FIGURE 4 [Chronic Wound Data] Estimates of f,‘f and f,f are shown in panels (a) and (b). The three experimental
conditions, healthy skin (k = 1), pre-debridement (k = 2) and post-debridement (k = 3), are indicated by the colours

red, green and blue, respectively. 95% pointwise credible intervals for each condition are shown by the shaded areas

[Colour figure can be viewed at wileyonlinelibrary.com]
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[Chronic Wound Data] Panels (a)—(c) illustrate the posterior distributions of &; for each of the conditions
for three selected OTUs j = 28, 34, 75. Panels (d)—(f) have the posterior distributions of 0.

.k=1,2, and 3 denote healthy

skin, pre-debridement, and post-debridement, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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in skin, but not in wounds. The OTUs are absent in wounds with high probability. The increased likeli-
hood of absence from wound samples and the depleted abundance in wound samples when present are
consistent with the previous findings in Verbanic et al. (2019) and Grice et al. (2009), indicating these
OTUs are associated with a healthy skin microbiome. OTU j = 28 belonging to genus Pseudomonas
is noted to be significantly associated with wounds (Verbanic et al., 2019), and is also known to be a
pathogen in chronic wounds (Kalan et al., 2019; Loesche et al., 2017; Wolcott et al., 2016). However,
panels (a) and (d) do not show a significant association with wounds. The lack of significant differ-
ences may be due to the high variability of wound composition among patients and small sample size.
We also conducted sensitivity analyses to the specification of some fixed hyperparameters, L’ L5, L,
L% v, and v,. Changes in the posterior inference was minimal under these alternative specifications.
More details are discussed in Supplementary Section 4.

The comparators are applied to the chronic wound data and their inferences are compared to the
posterior inference under our BNP-ZIMNR. The healthy skin condition is used as the reference group
for ZoP, edgeR, and DESeq?2 to infer differential abundance for individual OTUs. Supplementary
Figure 11b—g compare estimates of 6 — 6;;, k = 2 and 3, from the comparators to those from BNP-
ZIMNR. For the Bayesian models, we computed DIC and LPML. Both DIC and LPML indicate
BNP-ZIMNR provides a better fit to the data than BNP-MNR, BNP-ZIMNR-FN and ZoP as shown in
Supplementary Table 3. It is observed that the inferences under BNP-ZIMNR and B-ZIMNR are sim-
ilar as implied by fk‘f and ]A”]f in Figure 4. DIC and LPML indicate the two models yield close model fit.

Additional Real Microbiome Analysis. For more illustration, we analysed a second real microbi-
ome data from the Human Microbiome Project (HMB), where microbiome samples were collected
from two different skin subsites for 90 subjects. We constructed four experimental conditions, one for
each combination of the subsites and sex of the subjects. The number of samples from a subject varies
from 1 to 4, and the data set has a total of 146 samples. Zeros are less prevalent in this data set than in
the wound microbiome data. In this analysis, we find that BNP-ZIMNR sensibly characterizes differ-
ential abundance across subsites and sex, indicating potential for BNP-ZIMNR's broad applicability
to microbiome studies. More details are included in Supplementary Section 5.

5 | DISCUSSION

We have presented BNP-ZIMNR, a Bayesian nonparametric regression approach to model count data in
the presence of high zero inflation, with application to microbiome studies. Estimates of F f ,x € {0, &},
which are produced from the BNP modelling approach, give a different, more nuanced look at how
diversity and differential abundance are related to covariates than statistical tests alone. Our model con-
struction for baseline abundances through mean-constrained regularizing priors removes the need to ar-
bitrarily set a reference condition which would affect posterior inference. The simulation studies indicate
BNP-ZIMNR provides better parameter estimates than popular alternatives across a range of different
settings, but more importantly show the model can recover F If after accounting for sequencing depth,
zero inflation, and baseline taxa abundance levels. Direct, community-level comparison of differential
abundance and diversity is thus possible by examining F ]f across different values of k. This use was il-
lustrated by applying BNP-ZIMNR to two real data sets, where F’ ]f confirmed findings from previous
literature, and also provided a richer view of differential abundance and diversity in these communities.

BNP-ZIMNR may be extended to accommodate more complex data structures. In microbiome
studies, where samples are taken from different geographic locations or from the same environment
over time, the composition of the microbial communities is expected to change by spatial locations/
time points x. Parfrey and Knight (2012) and Galloway-Pefia et al. (2017) studied spatial and temporal
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changes in the human microbiota, the latter understanding longitudinal variability in the microbiome
as ‘critical’ to the development and use of microbiome-based therapeutics in clinical practice. In gen-
eral, DDPs provide a convenient way to model a collection of distributions which may be related to
each other across x. Griffin and Steel (2011) and Nieto-Barajas et al. (2012), for example, use a DDP
prior for a time series of random probability distributions, and Gelfand et al. (2005) and Duan et al.
(2007) developed a variation of the DDP to flexibly model spatial dependence for point-referenced
spatial data. In this vein, BNP-ZIMNR can be extended to accommodate spatial/temporal dependence
in random distributions F{, and may offer a different way of exploring temporal/spatial changes in
microbial abundance and diversity.
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