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Abstract
High-throughput sequencing technology has enabled re-
searchers to profile microbial communities from a variety 
of environments, but analysis of multivariate taxon count 
data remains challenging. We develop a Bayesian nonpara-
metric (BNP) regression model with zero inflation to ana-
lyse multivariate count data from microbiome studies. A 
BNP approach flexibly models microbial associations with 
covariates, such as environmental factors and clinical char-
acteristics. The model produces estimates for probability 
distributions which relate microbial diversity and differ-
ential abundance to covariates, and facilitates community 
comparisons beyond those provided by simple statistical 
tests. We compare the model to simpler models and popu-
lar alternatives in simulation studies, showing, in addition 
to these additional community-level insights, it yields su-
perior parameter estimates and model fit in various set-
tings. The model's utility is demonstrated by applying it 
to a chronic wound microbiome data set and a Human 
Microbiome Project data set, where it is used to compare 
microbial communities present in different environments.
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1  |   INTRODUCTION

The statistical community has increasingly focused on developing techniques to model high-throughput 
sequencing (HTS) data produced by microbiome studies. Although HTS data has been successfully 
used to profile complex microbial communities, analysis of such data remains challenging. In this 
work, we focus on the analysis of multivariate count data with excess zeros, in particular, read count 
data of taxa produced by 16S ribosomal RNA (rRNA) sequencing. As a motivating application, we 
consider the chronic wound microbiome data in Verbanic et al. (2019), which consists of microbiome 
samples taken from human subjects’ chronic wounds, both pre- and post-debridement, as well as 
from their healthy skin. Verbanic et al. (2019) studied changes to the chronic wound microbiome by 
debridement, which is known to be an effective treatment for chronic wounds. We present a Bayesian 
nonparametric regression model that includes a submodel for zero inflation and flexibly accommo-
dates covariates such as environmental factors and clinical characteristics for differential abundance 
analysis. The model provides an inferential framework to gain further insights into complex microbial 
communities.

In microbiome studies, samples are taken from some environment of interest, and the 16S rRNA 
gene in DNA extracts of the samples is amplified and sequenced using HTS. Counts of the resulting 
sequence reads are produced by comparing the reads to a database and grouping them into operational 
taxonomic units (OTUs) that exhibit some degree of similarity. The data from each sample are sum-
marized in a multivariate vector of OTU counts. These counts commonly exhibit zero inflation and 
overdispersion, making their analysis more complicated. Standard errors will be underestimated if the 
model does not properly accommodate overdispersion. Failing to account for zero inflation can bias 
estimation of the relationships between covariates and OTU abundance, and lead to incorrect predic-
tions. Total counts in the samples vary due to experimental artefacts such as the sequencing depth, and 
the raw counts do not reflect the absolute microbial abundance in the samples. Consequently, the OTU 
counts need to be normalized for meaningful comparison across samples, and determining whether a 
zero count is due to an OTU truly being absent from the environment versus a detection failure is not 
straightforward.

Various statistical models haven been proposed for microbiome data analysis that take these 
features into account. Zero-inflated count models, including zero-inflated Poisson (ZIP) and zero-
inflated negative binomial (ZINB), are common choices to address the problem of excessive zeros. To 
detect associations or differential abundance, these models generally relate OTU abundance to a set 
of covariates by modelling the mean counts or some transformation of the counts via a link function. 
Some of these models, such as Chen and Li (2016) analyse each OTU individually, while many more 
recent models analyse OTUs jointly through some hierarchical structure. Hierarchical models allow 
for borrowing strength across taxa for enhanced estimation of covariate effects or increased power to 
detect differential abundance. In this vein, Jonsson et al. (2018) model the counts directly using a ZIP 
model with OTU and sample specific random effects to account for overdispersion. Lee et al. (2018) 
use a ZIP model with spike-and-slab priors for variable selection on regression parameters related to 
taxa abundances and zero inflation. This model also includes a multivariate random effect to account 
for interdependence among OTU counts in a sample. Paulson et al. (2013) developed a zero-inflated 
Gaussian mixture model, called metagenomeSeq, on log-transformed counts after adding the value 
of 1 to avoid numerical problems. Sohn et al. (2015) proposed a similar approach, called RAIDA, 
which first selects an OTU that has non-zero counts in all samples as a common divisor and uses a 
zero-inflated log-normal model on the ratios of OTU counts to the count of the chosen divisor. See 
Sankaran and Holmes (2018), Tang and Chen (2018) and Kaul et  al. (2017) among many others 
for more examples of using zero inflated models. We also note that there are statistical models that 
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account for relationships across taxa using a latent factor model or a graph in modelling taxa abun-
dances. For example, see Grantham et al. (2020), Mao et al. (2020) and Ren et al. (2020). But those 
models do not address a potential problem of zero inflation.

We develop a Bayesian nonparametric multivariate regression model with zero inflation that en-
ables assessment of taxa richness and diversity that potentially varies with covariates. We use a ZINB 
distribution for OTU counts and assume an OTU count is either equal to zero or follows a NB distri-
bution. The ZINB model properly accounts for the overdispersion and excess zeros that are common 
in microbiome data. We build nonparametric regression prior models on the probability of an OTU 
count being zero and the mean count of an OTU to study the effects of covariates x on microbial 
communities. The probit of the probability of an OTU count being zero, ξ, and the logarithm of the 
OTU's differential abundance compared to the baseline counts, θ, are assumed to follow unknown dis-
tribution functions indexed by x, F�

x and F�
x
, respectively. We use a dependent Dirichlet process (DDP) 

(MacEachern, 1999, 2000), a flexible nonparametric Bayesian model to model F�
x and F�

x
. The DDP 

is a popular choice to model a set of random functions related through x. Our model is highly flexible 
with regard to the nature of the relationship of the covariates and an OTU's abundance and presence. 
In addition to inference on the association of individual taxa with covariates through ξ and θ, F�

x and F�
x
 

provide community-level insights related to alpha-diversity and species evenness, which distinguishes 
our method from other commonly used models for differential abundance analysis. To improve the in-
ference on F�

x and F�
x
, we construct an elaborate model for the baseline abundance of OTUs in samples. 

The baseline count of an OTU in a sample is modelled as a function of a sample-specific size factor 
and an OTU-specific baseline abundance factor to account for count variation related to sequencing 
depth and different baseline abundances of OTUs. The baseline abundance factor of an OTU is shared 
by samples from a group, such as the subject or location where each sample was collected, to reflect 
the dependent taxa abundance levels shared across these samples. These two factors constitute a basis 
for the estimation and meaningful interpretation of ξ and θ.

In the remainder of the paper, we describe the model and its applications. Section 2 describes 
the proposed Bayesian nonparametric multivariate NB regression model with zero-inflation (called 
‘BNP-ZIMNR’) and Section 3 has results from the model applied to some simulation studies. Section 
4 has results from the model applied to a chronic wound microbiome data set and an additional human 
microbiome data set collected from NIH Human Microbiome Project, and Section 5 concludes with 
some discussion of the results and areas of future research.

2  |   PROBABILITY MODEL

2.1  |  Sampling model

Assume that non-negative integer counts Yij are observed for OTU j in sample i, j = 1, …, J and 
i = 1, …, n, and are organized in a n × J table, Y = [Yij]. Let a sample have a categorical covariate 
xi ∈ � = {1, …, K} and a grouping factor ui ∈ � = {1, …, M}. In our motivating data set, skin 
type provides three levels of a covariate, that is, � = {1, 2, 3}. The samples were taken from 18 
subjects, which we use as a grouping factor, � = {1, …, 18} with M = 18. Although we use a setting 
with one categorical covariate to present the model, it can be easily extended to accommodate more 
factors and continuous covariates. We use a ZINB regression model. For OTU count Yij with covariate 
level xi and grouping factor ui,

(1)Yij |�j,xi , �ij, sj
indep
∼ �j,xi�{0}(Yij) +

(
1 − �j,xi

)
NB

(
�ij(xi, ui), sj

)
,
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where δA(·) is the Dirac measure at A and NB(μ, s) the negative binomial (NB) distribution with mean μ 
and dispersion parameter s (so the variance is μ + sμ2). The zero-inflated model in Equation (1) assumes 
that abundance is conditional on the presence of an OTU. (1 − �j,xi ) is the probability of presence for OTU 
j in sample i, and is a function of covariate xi. With probability (1 − �j,xi ) the NB generates counts, some 
of which can be zero. The model specification implies that a zero count can be produced in two ways. An 
OTU may truly be absent in a sample with xi. Conversely, zero counts may be produced for rare OTUs 
even when those OTUs are truly present if the sequencing effort is not sufficient to surface their presence. 
HTS data is commonly modelled using NB models, as in Equation (1), which are more flexible in ac-
commodating overdispersion than their single-parameter Poisson counterparts, distributions for which the 
mean must be equal to the variance. Overdispersion parameter sj controls the amount of overdispersion, 
with larger sj indicating a greater amount of overdispersion, and the equivalent Poisson model with mean 
μij is recovered as sj → 0. We let the overdispersion parameters sj

iid
∼ Log-Normal(as, b

2
s
) with as and b2

s
 

fixed. The mixture model in Equation (1) can be represented with latent indicator variables �ij ∈ {0, 1} 
for presence and absence of OTU j in sample i. We assume �ij

indep
∼ Ber(1 − �j,xi ), and let Yij = 0 for δij = 0 

and Yij
indep
∼ NB

(
�ij(xi, ui), sj

)
 for δij = 1.

We decompose the mean abundance μij for OTU j present in sample i as follows: For sample with 
xi = k and ui = m,

A baseline abundance factor of OTU j for samples from group m, αjm accounts for different baseline abun-
dances of OTUs. It is shared by the samples from group ui = m and induces dependence among Yij with 
ui = m. ri is a sample specific normalization factor to account for different library sizes across samples. 
Parameters αjm and ri together form the baseline count of OTU j in sample i. It is common that ri is set to 
the logarithm of the total counts Yi∙ =

∑
J
j=1

Yij as an offset variable (e.g. see Lee et al. (2018) and Zhang 
et al. (2017)). We instead let ri be random, which enables full model-based inference with appropriate 
uncertainty quantification. θjk in Equation (2) represents a multiplicative change in abundance of OTU j 
for covariate level k compared to its baseline abundance. A value of θjk close to zero implies that the abun-
dance of an OTU is close to the baseline abundance, that is, non-differentially abundant, and positive or 
negative values of θjk imply low or high abundance of OTU j in a sample with xi  =  k, respectively. 
Comparison of θjk across k can be used to infer differential abundance of OTU j. Similarly, comparison of 
θjk across j provides insights on relative abundances of OTUs in a sample with level k, such as species 
diversity compared to the baseline.

Using regression models for εjk and θjk is common to quantify covariate effects on the occurrence 
of excess zeros and differential abundances. Using our motivating data set as a specific example, one 
may choose one k′ of the levels as a reference and let �jk� = 0. θjk, k ≠ k′ is then interpreted as an effect 
size relative to the abundance of OTU j under the reference. A potential drawback of this approach 
is that θjk, k ≠ k′ cannot be meaningfully estimated if the OTU is absent under the reference level. A 
common workaround to address this issue is to replace zeros with a small value, known as pseudo 
count, if an OTU has zeros in all samples of the reference level. However, this arbitrary modification 
of the data may result in biased inference. On the other hand, the decomposition of μ in Equation 
(2) can avoid potential biases because θjk represents differential abundance compared to the baseline 
abundance ri + αjm. The baseline count of an OTU can be estimated if an OTU exists for at least one k. 
We let θjk = 0 if an OTU is present only for one level of k so that θjk can be fully interpreted. For εjk, we 
use a probit link function, Φ − 1(εjk) = ξjk, where Φ − 1(·) is a inverse cumulative distribution function 
of the standard normal distribution. In the presence of a high proportion of zeros, differentiating the 
event δij = 0 from the event δij = 1 for the cases of Yij = 0 is challenging. Specifically, more than 65% 

(2)log(�ij(k, m)) = �jm + ri + �jk.
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of the OTU counts are equal to zero in two conditions for our application in Section 4. As discussed 
in Agarwal et al. (2002), in such cases including random group effects for ε may result in unstable 
model fitting and computational intractability. For this reason, we let εjk be a function of xi only. The 
dependence of εjk on xi only is in contrast with μij, which depends on both ui and xi. If non-zero counts 
are observed for most of Yij or enough samples are obtained from each group, group-specific random 
effects could be included in the model for ε similar to the approach in Jonsson et al. (2018) to account 
for potential heterogeneity between groups. Simulation studies in Section 3 show that the proposed 
model without group random effects for ε performs reasonably well even when there is mild between-
group heterogeneity in ε or the zero inflation levels are not very high. In the following, we consider a 
flexible BNP approach to model ξjk and θjk to improve inference on presence/absence and differential 
abundance.

2.2  |  Prior

We assume �jk
iid
∼ F

�

k
 and �jk

iid
∼ F�

k
, and use a BNP approach to build a model for F�

k
 and F�

k
. In addition 

to inference on individual OTUs through ξjk and θjk, their distributions F�

k
 and F�

k
 capture useful infor-

mation relating microbial communities with different levels of the covariate, and provide biological 
insights into community changes in k. In particular, F�

x
 describes the distribution of the probabilities 

of OTUs in a community under condition x, and is closely related to species richness (number of dif-
ferent species in a community). For F�

k
 that assigns more probability mass to small values, OTUs in a 

sample with xi = k are more likely to be present and have non-zero counts, potentially implying higher 
microbial species richness for the sample. Similarly, F�

k
 captures the distribution of differential abun-

dance of OTUs present in a sample with xi = k. If F�
k
 is greatly concentrated around zero, many OTUs 

in a sample with xi = k are not differentially abundant compared to their baseline counts. Comparison 
of F�

k
 and F�

k
 across k tells how community composition changes by covariates. To build flexible prior 

models for F�

k
 and F�

k
 that are possibly related across different k, we consider a dependent Dirichlet 

process (DDP) model in a Dirichlet process (DP) mixture model. For OTU j in a sample with xi = k, 
we assume

The mixture locations 𝜉 ⋆
k�

 and 𝜃
⋆
k� depend on k and we let 𝜉 ⋆

k�

iid
∼ N(𝜉

⋆
, 𝜏2

𝜉
) and 𝜃

⋆
k�

iid
∼ N(𝜃

⋆
, 𝜏2

𝜃
). The  

covariate-independent weights �
�

�, χ  ∈  {θ,  ξ} take the form �
�

�
= v

�

�

∏
�−1

�
� =1

�
1 − v

�

�
�

�
 with  

v
�

�

iid
∼ Be(1, �� ). That is, the ‘single-p’ DDPs that assume predictor-independent weights are used in  

Equation (3) as priors over the distributions of the mixture locations. MacEachern (1999, 2000) proposed 
the DDP to model related random probability distributions. When flexible point mass processes are con-
sidered for �⋆

�
= {𝜃⋆

x�
, x ∈ �} and � ⋆

�
= {𝜉x� , x ∈ �}, the ‘single-p’ DDP has full weak support, 

implying that the prior model is flexible enough to generate sample paths sufficiently close to any proba-
bility distribution. DDP and its variations have been successfully used to model related probability distri-
butions in many applications including ANOVA (De Iorio et al., 2004), survival (De Iorio et al., 2009; Jara 
et al., 2010), time series analysis (Griffin & Steel, 2011; Nieto-Barajas et al., 2012) and spatial modelling 
(Gelfand et al., 2005) among many others. The DDP mixture formulation in Equation (3) allows us to 
flexibly specify and, after fitting the model, analyse and compare, F�

x
 and F�

x
 without restrictive parametric 

assumptions about their functional forms. We assume �2
�k

iid
∼ IG(a

�
� , b

�
� ), χ ∈ {ξ, θ}. The model can be 

(3)𝜉jk
iid
∼ F

𝜉

k
=

∞∑

� = 1

𝜓
𝜉

�
N
(
𝜉 ⋆
k�
, 𝜎2

𝜉k

)
and 𝜃jk

iid
∼ F𝜃

k
=

∞∑

� = 1

𝜓𝜃
�
N
(
𝜃⋆
k�
, 𝜎2

𝜃k

)
.
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further extended to accommodate additional categorical/continuous covariates; for example, if the effects 
of additional covariates can be reasonably assumed to be simple, the additional covariates can be included 
by adding a conventional regression function in Equation (2), similar to the constructions in edgeR 
(Robinson et al., 2010) and DESeq2 (Love et al., 2014). A similar extension can be used to accommodate 
additional covariates in modelling ξ. When a fully nonparametric approach is more desirable, a stochastic 
process such as Gaussian process prior can be placed on on 𝜃⋆

�
(x) and 𝜉 ⋆

�
(x) in Equation (3) as a function 

of x. Thus, the dependence of F�
x , χ ∈ {θ, ξ}, is induced over a continuum of covariates and the model can 

capture more general relationships between F�
x  and x. We refer the reader to MacEachern (1999, 2000) for 

details.
Parameters ri and αjm form the baseline count of OTU j in a sample with ui = m, and serve as an 

‘overall mean’. Observe that the parameters in Equation (2) are not identifiable due to the multiplica-
tive structure, E(Yij | �ij = 0) = eri +�jm +�jk. We place constraints on the distributions of both ri and 
αjm to circumvent the identifiability issue in estimating the baseline counts, exp (ri + αjm). More im-
portantly, the constraints allow parameters of primary interest θjk and F�

k
 to be identified. Specifically, 

we use mean-constrained priors with a mixture-of-mixtures structure (Li et al., 2017) for ri and αjm,

where υχ, χ ∈ {r, α} are the distribution's fixed, prespecified mean constraints, and ��

�
 and w�

�
 are mixture 

weights with 
∑

L�

�=1
�

�

�
= 1 and 0 < 𝜓

𝜒

�
, w

𝜒

�
< 1. Although mean-constrained, the mixture-of-mixture 

formulation provides significant flexibility, as it can accurately characterize a wide range of distributions, 
including multi-modal and skewed distributions. Lee and Sison-Mangus (2018) and Shuler et al. (2019) 
used the distributions in Equation (4) for model based normalization in similar settings, and their results 
indicate the baseline abundance and covariate effects can be estimated without issues related to identifi-
ability. In contrast to using plug-in empirical estimates for normalizing factors, the flexible model-based 
approach can further improve estimation of ξjk and θjk, and thus enhance estimation of F�

k
 and F�

k
. We 

follow Li et al. (2017) and set υr = 0, which can be interpreted as on average no scaling adjustment; al-
though other approaches are available, such as using an empirical estimate like in Shuler et al. (2019) or 
setting the constraint using prior information if it is available. We use an empirical approach to set υα. We 
compute r̃i = log

�
Yi∙∕Y∙∙

�
−

1

N

∑
i� log

�
Yi�∙∕Y∙∙

�
 with Y∙∙ =

∑
i,jYij as mean zero empirical estimates of ri and 

set 𝜐𝛼 =
�∑

i,j�Yij>0
�
log(Yij) − r̃i

��
∕
�∑

i,j1(Yij > 0)
�
. Inference on θ and ε is not sensitive to specification of υr 

and υα (Lee & Sison-Mangus, 2018; Shuler et al., 2019). Our simulation studies and real data analyses also 
show robustness of inference to different specifications of υr and υα. We place a Dirichlet prior on the outer 
mixture weights and a beta prior on the inner mixture weights, letting ��

�
= (�

�

1
, …, �

�

L�
) ∼ Dir(a

�
� ) 

and w�

�

iid
∼ Be(a

�
w, b

�
w), χ ∈ {r, α}, where a�� = (a

�

�1
, …, a

�

� ,L�
), a�w and b�w are fixed hyperparameters. 

We let ��
�

iid
∼ N(�� , b

2
��
) with b2

��
 fixed.

2.3  |  Posterior computation

Let � = [sj, 𝛿ij, ri, 𝛼jm, 𝜉jk, 𝜃jk, (𝜒
⋆
k�
, v

𝜒

�
, 𝜎2

𝜒k
, 𝜒 ∈ {𝜃, 𝜉}), (𝜓

𝜒

�
, w

𝜒

�
, 𝜂

𝜒

�
, 𝜒 ∈ {r, 𝛼})] denote the 

vector of all unknown parameters. The joint posterior distribution is P(θ  | Y, x, u) ∝ P(Y  | θ, x, u) P(θ).  
We use standard Markov chain Monte Carlo (MCMC) methods consisting of Gibbs and Metropolis 
steps to draw samples from the posterior distribution. As is standard in mixture modelling we 

(4)
ri
iid
∼

Lr∑

� = 1

� r
�

{
wr
�
N(�r

�
, u2

r
)+ (1−wr

�
) N

(
�r−wr

�
�r
�

1−wr
�

, u2
r

)}
,

�jm

iid
∼

L�∑

� = 1

��
�

{
w�
�
N(��

�
, u2

�
)+ (1−w�

�
) N

(
��−w�

�
��
�

1−w�
�

, u2
�

)}
,
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introduce auxiliary variables to indicate the mixture components from which the parameters of inter-
est belong. We add auxiliary variables of this type to aid in the posterior computation for ri, αjm, θjk, 
and ξjk. For computational convenience, when fitting the model we approximate the DDP in Equation 
(3) by truncating the number of mixture components of F�

k
 to L�, χ  ∈  {ξ,  θ}. The final weight 

�
�

L�
= 1 −

∑
L� −1
�=1

�
�

�
 is set to ensure F�

k
 is proper. With large enough L� the truncated process pro-

duces inference almost identical to that with the infinite process (Ishwaran & James, 2001; Rodriguez 
& Dunson, 2011). As discussed in Rodriguez and Dunson (2011) if there is discrepancy between the 
posterior distributions under the truncated and infinite processes, the model is typically sensitive to 
the choice of L�. We examined the posterior distribution of ��

L�
 and the sensitivity of the model to a 

choice of L�. We found that the truncated process is robust to a choice of L� if L� is sufficiently large. 
We diagnose convergence and mixing of the described posterior MCMC simulation using trace plots 
and autocorrelation plots of imputed parameters. For both the upcoming simulation examples and the 
data analysis, we found no evidence of practical convergence problems. An R package for the model, 
bnpzimnr, is available at https://github.com/kurti​s-s/bnpzimnr. Details of posterior computation are 
given in Supplementary Section 1.

3  |   SIMULATION STUDIES

To assess the performance of the proposed model, BNP-ZIMNR, we performed simulation studies and 
compared its performance to alternative models. We included a factor with three levels and simulated data 
for 100 OTUs from 20 subjects, that is, J = 100, M = 20 and K = 3, resulting in n = 60 samples, a covari-
ate xi ∈ {1, 2, 3}, i = 1, …, N and a grouping factor ui ∈ {1, …, 20}. We used Gaussian mixtures to set 
the simulation truth for F�,TR

k
 and F�,TR

k
, k  =  1,  2,  3; let F�,TR

1
= 0.6N( − 2, 0.25) + 0.4N( − 1, 0.5), 

F
�,TR

2
= 0.2N( − 0.5, 0.25) + 0.8N(0.5, 0.5) and F�,TR

3
= 0.5N(0, 0.25) + 0.5N(1, 0.5). Similarly, we set to 

F
�,TR
1

= 0.3N(3, 0.25) + 0.6N(2, 0.25) + 0.1N( − 1.5, 0.5), F�,TR
2

= 0.3N(2, 0.5) + 0.6N( − 1, 0.25) + 0.1N( − 2, 0.25) 
and F�,TR

3
= 0.3N(2, 0.5) + 0.35N( − 1, 0.25) + 0.35N( − 2, 0.25). F�,TR

k
 and F�,TR

k
 are illustrated with the 

solid black lines in Figure 3. F�

1
 generally favours smaller values of ξjk, indicating greater species richness 

in level 1 than in the other levels. When an OTU is present in a sample with k = 1, it tends to have a value 
of θjk greater than zero, that is, a higher abundance. On the other hand, for levels k = 2, 3, OTUs are likely 
to be absent, and when they are present, their abundances are low with large probability. In a simulated 
data set, the three levels of xi approximately have 9%, 59% and 69% of Yij being equal to 0, respectively. 
We drew �TRjk  independently from F�,TR

k
 and generated �TR

ij

indep
∼ Ber(1 − �TR

jk
) for a sample with xi = k, where 

�TR
jk

= Φ(�TR
jk
). If an OTU is present for two or more levels of the factor, that is, differential abundance 

can be meaningfully defined, then we drew �TRjk  from F�,TR
k

. If an OTU is present for only one level �TR
jk

= 0.  
Otherwise, �TR

jk
 is not defined. We simulated group factors �TR

j,ui

iid
∼ N(10, 1), normalization factors 

(exp(rTR
1
), …, exp(rTR

N
)) ∼ Dir(5, …, 5) and dispersion parameters sTR

j

iid
∼ Log-Normal

(
−2, (1∕10)2

). For (i,j) 
with �TR

ij
= 1, we simulated OTU counts Yij using the NB distribution with mean �TR

ij
= exp(�TR

j,ui
+ rTR

i
+ �TR

j,xi
) 

and dispersion sTR
j

. When �TR
ij

= 0, we set �TR
ij

= 0 and Yij = 0.

Posterior Inference. When fitting the model, we set the hyperparameters as follows: For the 
mean-constrained distribution of normalization factors ri, let υr  =  0, Lr = 20, ar

�
= 1, ar

w
= 5, 

br
w
= 5, u2

r
= 0.05 and b2

�r
= 0.25. Similarly, for the group-specific baseline abundance of OTU 

j αjm, let υα be specified using the empirical approach described in Section 2.2, L� = 150, a�
�
= 1, 

a�
w
= 1, b�

w
= 1, u2

�
= 2 and b2

��
= 1. For the DDP priors, we let ρθ = 1, 𝜃⋆

= 0 and �2
�
= 10. For 

the DDP prior of ξjk, we used ρξ = 1, 𝜉 ⋆
= 2 and �2

�
= 1, which encourages a preference for a 

https://github.com/kurtis-s/bnpzimnr
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higher probability for zero inflation, but is still flexible enough to accommodate OTUs with little 
sparsity. For the mixtures’ kernel dispersions, we let a�� = b

�
� = 1, χ ∈ {ξ, θ}. We set the DDP trun-

cation levels to Lθ = Lξ = 50. Finally, we used as = 0.3, b2
s
= 0.1 for the prior of OTU-specific 

dispersion parameters sj. To run the MCMC simulation, we used data to initialize the parameters. 
For example, we initialized ri with the empirical sample size factors r̃i used to set υr. Empirical 
proportions of zero counts, pjk =

1

M

∑
n
i=1 � xi = k

1(yij = 0) were used to set initial values of εjk and 
𝜉 ⋆
k�

. We ran the MCMC for 70,000 iterations, discarding the first 20,000 iterations, and thinned to 
use every fifth sample, resulting in 10,000 samples from the posterior distribution. On a 3.2 GHz 
Intel i5-6500 CPU running Ubuntu Linux the MCMC took approximately 12 mins for every 5000 
iterations of the MCMC.

We first examine the inference on species richness in samples with k. Recall that δij = 1 implies the 
presence of OTU j in sample i. We used posterior means of δij as their point estimates �̂ij = P̂(�ij = 1 | y).  
The model recovers the indicators for zero inflation well, as shown by the histograms of �̂ij when 
�TR
ij

= 0 and 1 in Figure 1a and b, respectively. The model yields good estimates of �TR
jk

, as seen in 
Figure 1c, which shows posterior estimates of εjk plotted against the simulation truth. Figure 2 shows 
the resulting posterior inference on θjk for individual OTUs. To account for zero inflation, we define 
𝜅 jk = 1{

∑
N
i=1;xi = k

1(𝛿ij = 1) > 0}, a binary indicator taking 0 if OTU j is absent in all samples from 
level k, or 1 otherwise. Note that θjk is defined only when κjk = 1. We incorporate κjk and compute point 
posterior estimates of θjk; �̂jk =

∑
B
b=1

�
(b)

jk
× �

(b)

jk
∕
∑

B
b=1

�
(b)

jk
, where b = 1, …, B indexes the posterior sam-

ples and 𝜅(b)

jk
= 1{

∑
N
i=1 � xi = k

1(𝛿
(b)

jk
= 0) > 0}. �̂jk along with 95% credible intervals (CIs) are shown. The 

plots show that the model provides good estimates for differential abundance in different levels of the 
factor. The differences between the estimates and truth and CI lengths are greater for levels k = 2 and 
3 because fewer non-zero counts are observed due to the high prevalence of absence. Panel (d) shows 
posterior estimates of �̂ jk =

1

B

∑
B
b=1

�
(b)

jk
 when �TR

jk
= 0 in the simulation truth. The plot illustrates 

the model does a good job of identifying the absence in factor levels and further enhances the estima-
tion of θjk. Figure 3 shows posterior inference for communities through f̂ �

k
 and f̂ �

k
. In each panel, the 

posterior estimates are shown by dashed coloured lines with shaded 95% pointwise CIs, and the sim-
ulation truth is shown in solid black. From the plot, the BNP regression approach flexibly captures 
non-Gaussian patterns such as bimodality and skewness in the distributions. Even for levels k = 2, 3, 
where many OTUs are not present, the model produces good estimates of f �

k
, potentially because it 

borrows information across different levels through the DDP as well as across different OTUs. We 
also examined estimates of baseline counts of OTU j in sample i, ri + αjm. These estimates are shown 
in Supplementary Figure 1. The posterior estimates recover the true baseline counts well. There is no 
indication that the model suffers identifiability problems.

The model is complex and we performed prior robustness diagnostics. From the diagnostics, spec-
ification of the prior for 𝜉 ⋆

k
 may need careful attention. For a particular condition, the observed pro-

portion of zero counts is commonly either 0 or 1. That is, pjk =
1

M

∑
n
i=1 � xi = k

1(Yij = 0) = 0 or 
pjk = 1, meaning for every subject in that condition an OTU count of 0 was observed, or alternatively, 
for every subject an OTU count  > 0 was observed. For such cases, a wide range of small/large values 
of ξjk can almost equally well explain the observed pjk, and a large value of �2

�
 may result in undesirable 

inference on f �
k
. We also re-fit the model with different values of the fixed parameters including Lr, L�,  

Lθ and Lξ, and examined the robustness of the model. Changes in the posterior inference by specifica-
tion of other parameters such as Lr, L�, Lθ and Lξ are minimal. We did not observe evidence of conver-
gence or mixing problems. In addition, the model shows robustness to the estimation of the baseline 
counts ri + αjm with different specifications of the fixed hyperparameter values. A discussion includ-
ing more details of sensitivity analyses, the chain's convergence and run-time is in Supplementary 
Section 2.
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F I G U R E  1   [Simulation 1] Panels (a) and (b): Histograms of �̂ij = P̂(�ij = 1) when �TR
ij

= 0 and �TR
ij

= 1. Panel 
(c): Posterior means of εjk plotted against the simulation truth. Colours/shapes indicate the factor levels: k = 1, red 
squares; k = 2, green circles; k = 3, blue triangles [Colour figure can be viewed at wileyonlinelibrary.com]
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Comparison. We used 100 simulated data sets to compare results of BNP-ZIMNR to those of 
alternative models: A Bayesian nonparametric multivariate regression model with NB (BNP-MNR), 
a Bayesian nonparametric multivariate regression model with fixed normalization factors (BNP-
ZIMNR-FN), a Bayesian multivariate regression model (B-ZIMNR), the zero inflated overdispersed 
Poisson (ZoP) model (Jonsson et al., 2018), edgeR (Robinson et al., 2010), and DESeq2 (Love et al., 
2014). BNP-MNR is similar to BNP-ZIMNR, but does not include the submodel for zero inflation in 
Equation (1). BNP-ZIMNR-FN likewise is similar to BNP-ZIMNR, but does not use the mean con-
strained priors for ri as in Equation (4). Rather, BNP-ZIMNR-FN uses fixed, plug-in estimates for ri, 
set to the logarithm of the total OTU counts for each sample. Unlike BNP-ZIMNR, B-ZIMNR does 
not utilize a Dirchlet Process Mixture (DPM) to model F�

k
 and F�

k
. Instead, B-ZIMNR assumes F�

k
 

and F�
k
 are single Gaussian distributions. ZoP is a Bayesian generalized linear model that uses a zero-

inflated Poisson distribution for OTU counts, and beta and normal priors for the probability of being 
zero and the regression coefficients, respectively. Under ZoP, each Yij has a random effect, that is, 
sample and OTU-specific random effects to handle overdispersion. EdgeR, one of popular likelihood 
based methods, uses a NB generalized linear regression approach. It uses OTU-specific plugin esti-
mates for the normalization factors produced by an empirical Bayes strategy and analyses individual 
OTUs separately. DESeq2 is another popular likelihood based method which models counts using a 
NB log-linear model. EdgeR and DESeq2 do not include random effects for the group factor and do 

F I G U R E  3   [Simulation 1] Panels (a)–(c) shows posterior estimates of f �
k
 for each k, k = 1, 2, 3, and panels (d)–

(f) of f �
k
. Dashed coloured lines are estimates with shaded 95% pointwise credible intervals. Black solid lines represent 

the simulation truth. Rugs show �TR
jk

 and �TR
jk

 [Colour figure can be viewed at wileyonlinelibrary.com]
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not account for the dependence among samples taken from the same subject. A primary difference 
between edgeR and DESeq2 is in the estimation of OTU-specific dispersion parameters sj. For more 
details, we refer to the papers. Although edgeR and DESeq2 were originally designed for gene count 
data, they have been successfully adapted for amplicon data and are frequently used for microbiome 
analyses (McMurdie & Holmes, 2014). For this reason, we include them in our comparison. ZoP, 
edgeR and DESeq2 set one level of a factor as a reference level to formulate the regression, and their 
regression coefficients represent differential abundance compared to the abundance in the reference 
level. ZoP uses the pseudo count approach when all samples of the reference level have zeros. Both 
methods include library sizes Yi∙ as plugin offsets for normalization. EdgeR has an option to use em-
pirically pre-estimated sample size factors instead of Yi∙, but we used their default option using Yi∙.

For comparison, we fit each of the models and compared parameter estimates to their truth using 
root mean square error (RMSE). The different formulation for the regression model under ZoP, edgeR 
and DESeq2 precludes a direct comparison of their differential abundance estimates to �TR

jk
. As an al-

ternative, we arbitrarily set the reference to the first level k = 1 and compare the model performances 
on the estimation of differences θjk − θj1, k = 2, 3. By default, DESeq2 produces regression coefficient 
estimates for log base 2 changes in the taxa abundance; for purposes of comparison to the other mod-
els, we adjust these estimates to be on the scale of the natural logarithm. The RMSE computed for δjk, 
θjk − θj1 and μjk is shown in Table 1a. For BNP-MNR, we used the posterior mean estimates of μij as 
a point estimate �̂ij. For the zero-inflated models, similar to �̂ we computed �̂ij =

∑
B
b=1

�
(b)

ij
× �

(b)

ij
∕B.  

BNP-ZIMNR outperforms the other methods in comparison for estimating δij and (θjk − θj1). BNP-
ZIMNR is the best performer in terms of estimating μij, closely followed by B-ZIMNR and ZoP. Due 

T A B L E  1   [Simulation 1: Comparison] RMSEs of δij, θjk − θj1, k = 2,3, and μij are shown in (a). Performance 
metric averages over 100 simulated data sets with standard deviations in parenthesis. k = 1 is used as the reference 
group for the difference in θ. For (b), k = 3 is used as the reference group and RMSE of θjk − θj3, k = 1, 2 is given

Model δij θj2 − θj1 θj3 − θj1 μij

(a) Parameter estimation

BNP-ZIMNR 0.019 (0.005) 0.308 (0.060) 0.325 (0.057) 3154 (818)

BNP-MNR – 3.909 (0.504) 4.762 (0.504) 65,190,628 
(89,816,163)

BNP-ZIMNR-FN 0.021 (0.005) 2.234 (0.279) 2.386 (0.263) 4680 (2032)

B-ZIMNR 0.019 (0.005) 0.325 (0.066) 0.340 (0.056) 3277 (839)

ZoP 0.200 (0.033) 2.759 (0.278) 3.156 (0.249) 3769 (1282)

edgeR – 2.218 (0.303) 2.693 (0.303) 7924 (1860)

DESeq2 – 3.157 (0.640) 4.085 (0.712) 8200 (1954)

Model θj1 − θj3 θj2 − θj3

(b) Estimation of difference in θ with k = 3 as a reference

BNP-ZIMNR 0.325 (0.057) 0.393 (0.054)

BNP-MNR 4.762 (0.504) 4.468 (0.446)

BNP-ZIMNR-FN 2.386 (0.263) 0.610 (0.182)

B-ZIMNR 0.340 (0.056) 0.418 (0.053)

ZoP 4.348 (0.356) 3.636 (0.388)

edgeR 2.693 (0.303) 3.302 (0.380)

DESeq2 4.102 (0.663) 5.184 (0.801)

The bold is used to indicate the best performing model.



972  |      SHULER et al.

to OTU and sample specific random effects under ZoP, it obtains good estimates of μij, but may tend 
to overfit the data, leading to worse estimates for (θjk − θj1), as is indicated by model comparison de-
scribed later. The detrimental impact of excluding zero inflation can be seen by the much larger RMSE 
of μij for BNP-MNR. The comparison of BNP-ZIMNR to BNP-ZIMNR-FN and B-ZIMNR indicates 
the model-based normalization and the use of a nonparametric approach to modelling of Fξ and Fθ 
improve inference under this simulation setting. Since selecting a level for the reference is arbitrary, 
we re-fit the data using a different level of the factor as the reference for ZoP, edgeR and DESeq2, and 
computed the RMSE of the differences in θjk. Table 1b illustrates the RMSE of (θjk − θj3) with k = 3 
instead of k = 1 as the reference level. Recall that level k = 3 has a higher degree of zero inflation than 
level k = 1 in the truth. The performances of ZoP, edgeR and DESeq2 degrade when using this sparser 
factor level as the reference, indicating bias in the estimation of θ due to using arbitrary pseudo counts. 
In contrast, the inference on θjk under BNP-ZIMNR and its variants do not depend on the choice of 
reference level.

For further comparison of model fit among the Bayesian models, the log pseudo marginal like-
lihood (LPML) and the deviance information criterion (DIC) were calculated for the Bayesian 
models. These metrics are summarized in Table 2a. Similar to other information criterion, DIC 
assesses model performance based on the model's predictive accuracy with a penalty for model 
complexity (Spiegelhalter et al., 2002). Lower values of DIC are preferred. LPML is the sum of the 
logarithms of conditional predictive ordinates (Gelfand & Dey, 1994; Gelfand et al., 1992). It gives 
a measure of the leave-one-out cross validated posterior predictive probability, with higher values 
preferred. For more reliable comparison, we evaluated DIC and LPML based on the partially mar-
ginalized likelihood that integrates out random effects at the observation level for the ZoP (Millar, 
2009). The table shows BNP-ZIMNR has improved model fit compared to the Bayesian competi-
tors. DIC and LPML based on the partially marginalized likelihood indicate that BNP-ZIMNR fits 
the data better, potentially implying overfit under ZoP. Different from ZoP, edgeR and DESeq2, 
BNP-ZIMNR and its variants also provide community-level inferences. To assess the impact of 

T A B L E  2   [Simulation 1: Comparison] (a) Average model comparison metrics over 100 simulated data sets with 
standard deviations in parenthesis. (b) Average total variation distance of F�

k
 as compared to the simulation truth both 

with and without zero inflation. Standard deviations in parenthesis

Model DIC LPML

(a) DIC and LPML

BNP-ZIMNR 50,994 (1107) −26,391 (528)

BNP-MNR 62,909 (1317) −32,328 (647)

BNP-ZIMNR-FN 51,780 (1098) −26,964 (529)

B-ZIMNR 51,017 (1109) −26,413 (535)

ZoP 2,600,574 (91,077) −486,874 (31,409)

Model F
�

1
F
�

2
F
�

3

(b) Total variation distance between F�,TR
k

 and F̂�
k

BNP-ZIMNR 0.158 (0.063) 0.195 (0.073) 0.163 (0.060)

BNP-MNR 0.209 (0.069) 0.489 (0.033) 0.510 (0.039)

BNP-ZIMNR-FN 0.775 (0.029) 0.269 (0.108) 0.304 (0.116)

B-ZIMNR 0.330 (0.037) 0.341 (0.005) 0.330 (0.006)

The bold is used to indicate the best performing model.
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omitting zero inflation in the estimation of F�
k
, we considered the total variation distance between 

F
�,TR
k

 and F̂�
k
 estimated from BNP-ZIMNR and its variants. Letting ℬ denote the class of all Borel 

sets in ℝ, the total variation distance measures the closeness between two densities as 
supB∈ℬ

|||∫Bf
�,TR
k

d� − ∫
B
f̂ �
k
d�

||| =
1

2
∫ |||f

�,TR
k

− f̂ �
k

||| d�, where f �,TR
k

 and f̂ �
k
 denote the densities of F�,TR

k
 and F̂�

k
 

(Devroye & Lugosi, 2001). Table 2b shows the computed total variation distances. We use median 
estimates of f �

k
 as our point estimate f̂ �

k
. The benefits of incorporating zero inflation into the model, 

not using fixed normalization factors, and the flexibility of the DPM over simple Gaussians are 
clearly observed for estimating a distribution of differential abundances. The total variation dis-
tance under BNP-ZIMNR is notably reduced, especially for k = 2 and 3, the levels with higher 
probability of OTU absence.

Additional simulations. We performed additional simulations, Simulations 2–7, to further 
assess the model's performance and scalability. For Simulation 2, we used a data simulation 
setup similar to the one for Simulation 1, but assumed a more complex structure with K = 6 
different levels of a factor. We fit BNP-ZIMNR and the comparators to 100 simulated data sets 
using a specification similar to Simulation 1. In the simulation, BNP-ZIMNR outperformed the 
comparator models for all of the metrics that we considered. We found that the model scaled well 
with additional factor levels, providing accurate OTU level inference via θjk, as well as commu-
nity level inference via F�

k
 and F�

k
. For Simulation 3 we assumed that F� ,TR

k
, � ∈ {�, �} is a single 

Gaussian distribution as assumed under one of the comparators, B-ZIMNR, and kept the remain-
ing simulation setup similar to that of Simulation 1. Although the simulation truth is closer to 
the assumptions made under B-ZIMNR, the results show that BNP-ZIMNR performs almost as 
well, and it exceeds that of B-ZIMNR for some criteria. For Simulation 4 we assumed a greater 
number of OTUs, J = 500, with K = 3. We assumed M = 30 subjects without replicates, resulting 
in fewer samples, n = 30. We further introduced between-subject heterogeneity for the zero in-
flation levels, which is different from the assumption under BNP-ZIMR, and assumed fewer 
excess zeros for conditions k = 2 and 3. BNP-ZIMNR performs better under most of the compar-
ison criteria. It yields better estimates of δij and θjk, and better predictive metrics than the other 
models. We find, however, that BNP-ZIMNR and its variants suffer in the estimation of μij, 
possibly due to the smaller sample size with no replicates, as we show in Simulation 5, which 
has a similar setup to Simulation 4 but with replicates across the conditions. The results of 
Simulation 5 show that the estimation of μij under BNP-ZIMNR and its variants is improved by 
replicates. For Simulation 6, we considered a case where two continuous covariates, zn = (zn1, zn2) 
are present in addition to the experimental conditions, xi ∈ {1, …, K}. Although BNP-ZIMNR 
can accommodate zi through F�

x,z in Equation (3) fully nonparametrically, we considered a linear 
regression similar to edgeR and DESeq2, for a simple and more comparable exercise. In partic-
ular, we let log(�ij(xi, zi, m)) = �jm + ri + �jk + z�

i
� j, and placed normal priors on the regression co-

efficients, � jp, � jp | �2�,p
indep
∼ N(0, �2

�,p
), and �2

�,p

iid
∼ IG(a

�
� , b

�
� ), a

�
� = b

�
� = 1. We also considered the same 

extension for the other Bayesian models in comparison. Because ZoP does not allow continuous 
covariates, we did not include ZoP for comparison. BNP-ZIMNR performs very well for the 
estimation of � jp as well as of δij and θjk. The estimation of � jp is significantly better under BNP-
ZIMNR than under edgeR and DESeq2, potentially due to better estimation of θjk under BNP-
ZIMNR. For simulation 7, we fit the model to a data set with fewer samples, using M  =  5 
subjects and n = 10 total samples, with J = 50 OTUs over K = 2 conditions. For most of the 
metrics considered, BZNP-ZIMNR outperforms the comparators under a setting with a smaller 
sample size. ZoP produces better estimates of μij's due to its sample and OTU specific random 
effects, but their estimates of θj,k's are very poor. The detailed results of the additional simulation 
studies are shown in Supplementary Section 3.
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4  |   CHRONIC WOUND MICROBIOME DATA ANALYSIS

In this section, we apply BNP-ZIMNR to study chronic wound microbiomes using the data set in 
Verbanic et al. (2019). The data set consists of microbiome samples collected from M = 18 subjects 
with chronic wounds. Swab samples were collected from chronic wounds pre- and post-debridement, 
along with a healthy skin swab sample from a control site, for each of the subjects. The K = 3 ex-
perimental conditions result in n = 54 samples in total. We let k = 1, 2, and 3 represent healthy skin, 
pre-debridement wound swabs, and post-debridement wound swabs, respectively. The study aims to 
investigate how debridement influences the composition of the microbial community of the wound, 
and also to compare the microbial composition of the wound surface to that of healthy skin. We 
analysed the data to infer changes in the community-level microbial richness and diversity as well as 
differential abundances of individual OTUs. Better understanding of the wound microbiome and the 
effects of debridement on the wound microbiota can further elucidate the role of the microbiome on 
wound healing. From the swab samples, the 16S rRNA gene was amplified by PCR and sequenced 
using high throughput sequencing, and the sequence reads were organized into an OTU table for 
statistical analysis. A total of 22,753 OTUs were observed after removing singletons. We restricted 
our attention to OTUs with nonzero counts in more than 20% of the samples for at least one experi-
mental condition to obtain reliable inference. After pre-processing, J = 92 OTUs were included in 
the analysis. It was checked by our biological collaborators that biologically interesting OTUs were 
not removed from analysis. The degree of zero inflation varies widely by experimental condition, 
with 8% of the OTU counts equal to zero from the healthy skin samples, versus 65% and 67% of 
the OTU counts equal to zero in the pre-debridement and post-debridement conditions, respectively. 
Supplementary Figure 8a–c illustrate histograms of the empirical proportions pjk of zero counts in 
the samples for the conditions. Panels (d)–(f) show histograms of total counts Yi∙ in samples for each 
k. From the figures, the samples from conditions k = 2 and 3 have more zeros and have lower total 
counts. The observed zeros in the pre/post-debridement conditions may be due to the absence of the 
OTUs under those conditions.

We specified hyperparameters similar to those in the simulations. The MCMC simulation was run 
over 140,000 iterations, with the first 40,000 iterations discarded as burn-in and every fifth sample 
kept as thinning and used for inference. The MCMC took approximately 11 mins for every 5000 iter-
ations of the MCMC on a 3.2 GHz Intel i5-6500 CPU running Ubuntu Linux.

Community level inference provided by f �
k
 and f �

k
 is shown in Figure 4. Posterior estimates of f �

k
 

and f �
k
 are shown by the coloured lines, with pointwise 95% CIs shown by the shaded regions, where 

the colours, red, blue and green, represents the healthy skin (k = 1), pre-debridement wound (k = 2), 
and post-debridement wound (k = 3), respectively. The differences between the estimates under the 
healthy skin condition and those under the wound conditions are substantial, but the wound micro-
bial community does not change immediately after debridement, similar to the previous findings in 
Gardiner et al. (2017) and Verbanic et al. (2019). In panel (a), f̂ �

k
 is stochastically lower for the healthy 

skin condition, suggesting greater species richness in a healthy skin sample than in a wound sample. 
For the wound conditions, f̂ �

k
 assigns more density to larger values and also has higher dispersion. 

Panel (b) shows that f̂ �
k
 assigns more density to higher values in the healthy skin condition than in 

the pre-/post-debridement conditions. The bulk of the density for the wound conditions is given to 
values less than zero and the density estimates have long left tails. The distributions imply that on 
average OTUs in the wound conditions tend to have low abundance compared to their baseline. f̂ �

k
 are 

slightly skewed, but overall f̂ �
k
 and f̂ �

k
 do not show a substantial departure from unimodal symmetric 

distributions.
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The model also provides inference for individual OTUs. Figure 5 illustrates the posterior distribu-
tions of εjk and θjk for some selected OTUs, j = 28, 34 and 75. From panels (b), (c), (e) and (f), OTUs 
34 and 75 that belong to genus Micrococcus and Corynebacterium, respectively, are highly abundant 

F I G U R E  4   [Chronic Wound Data] Estimates of f �
k
 and f �

k
 are shown in panels (a) and (b). The three experimental 

conditions, healthy skin (k = 1), pre-debridement (k = 2) and post-debridement (k = 3), are indicated by the colours 
red, green and blue, respectively. 95% pointwise credible intervals for each condition are shown by the shaded areas 
[Colour figure can be viewed at wileyonlinelibrary.com]
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in skin, but not in wounds. The OTUs are absent in wounds with high probability. The increased likeli-
hood of absence from wound samples and the depleted abundance in wound samples when present are 
consistent with the previous findings in Verbanic et al. (2019) and Grice et al. (2009), indicating these 
OTUs are associated with a healthy skin microbiome. OTU j = 28 belonging to genus Pseudomonas 
is noted to be significantly associated with wounds (Verbanic et al., 2019), and is also known to be a 
pathogen in chronic wounds (Kalan et al., 2019; Loesche et al., 2017; Wolcott et al., 2016). However, 
panels (a) and (d) do not show a significant association with wounds. The lack of significant differ-
ences may be due to the high variability of wound composition among patients and small sample size. 
We also conducted sensitivity analyses to the specification of some fixed hyperparameters, Lθ, Lξ, Lr,  
L�, υr and υα. Changes in the posterior inference was minimal under these alternative specifications. 
More details are discussed in Supplementary Section 4.

The comparators are applied to the chronic wound data and their inferences are compared to the 
posterior inference under our BNP-ZIMNR. The healthy skin condition is used as the reference group 
for ZoP, edgeR, and DESeq2 to infer differential abundance for individual OTUs. Supplementary 
Figure 11b–g compare estimates of θjk − θj1, k = 2 and 3, from the comparators to those from BNP-
ZIMNR. For the Bayesian models, we computed DIC and LPML. Both DIC and LPML indicate 
BNP-ZIMNR provides a better fit to the data than BNP-MNR, BNP-ZIMNR-FN and ZoP as shown in 
Supplementary Table 3. It is observed that the inferences under BNP-ZIMNR and B-ZIMNR are sim-
ilar as implied by f̂ �

k
 and f̂ �

k
 in Figure 4. DIC and LPML indicate the two models yield close model fit.

Additional Real Microbiome Analysis. For more illustration, we analysed a second real microbi-
ome data from the Human Microbiome Project (HMB), where microbiome samples were collected 
from two different skin subsites for 90 subjects. We constructed four experimental conditions, one for 
each combination of the subsites and sex of the subjects. The number of samples from a subject varies 
from 1 to 4, and the data set has a total of 146 samples. Zeros are less prevalent in this data set than in 
the wound microbiome data. In this analysis, we find that BNP-ZIMNR sensibly characterizes differ-
ential abundance across subsites and sex, indicating potential for BNP-ZIMNR's broad applicability 
to microbiome studies. More details are included in Supplementary Section 5.

5  |   DISCUSSION

We have presented BNP-ZIMNR, a Bayesian nonparametric regression approach to model count data in 
the presence of high zero inflation, with application to microbiome studies. Estimates of F�

k
, χ ∈ {θ, ξ}, 

which are produced from the BNP modelling approach, give a different, more nuanced look at how 
diversity and differential abundance are related to covariates than statistical tests alone. Our model con-
struction for baseline abundances through mean-constrained regularizing priors removes the need to ar-
bitrarily set a reference condition which would affect posterior inference. The simulation studies indicate 
BNP-ZIMNR provides better parameter estimates than popular alternatives across a range of different 
settings, but more importantly show the model can recover F�

k
 after accounting for sequencing depth, 

zero inflation, and baseline taxa abundance levels. Direct, community-level comparison of differential 
abundance and diversity is thus possible by examining F�

k
 across different values of k. This use was il-

lustrated by applying BNP-ZIMNR to two real data sets, where F�

k
 confirmed findings from previous 

literature, and also provided a richer view of differential abundance and diversity in these communities.
BNP-ZIMNR may be extended to accommodate more complex data structures. In microbiome 

studies, where samples are taken from different geographic locations or from the same environment 
over time, the composition of the microbial communities is expected to change by spatial locations/
time points x. Parfrey and Knight (2012) and Galloway-Peña et al. (2017) studied spatial and temporal 
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changes in the human microbiota, the latter understanding longitudinal variability in the microbiome 
as ‘critical’ to the development and use of microbiome-based therapeutics in clinical practice. In gen-
eral, DDPs provide a convenient way to model a collection of distributions which may be related to 
each other across x. Griffin and Steel (2011) and Nieto-Barajas et al. (2012), for example, use a DDP 
prior for a time series of random probability distributions, and Gelfand et al. (2005) and Duan et al. 
(2007) developed a variation of the DDP to flexibly model spatial dependence for point-referenced 
spatial data. In this vein, BNP-ZIMNR can be extended to accommodate spatial/temporal dependence 
in random distributions F�

x , and may offer a different way of exploring temporal/spatial changes in 
microbial abundance and diversity.
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