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Abstract—Conditionaldisclosureofsecrets(CDS)istheprob-
lemofdisclosingasefficientlyaspossible,onesecretfromAlice
andBobtoCarolifandonlyiftheinputsatAliceandBob
satisfysomefunctionf.Theinformationtheoreticcapacityof
CDSisthe maximumnumberofbitsofthesecretthatcan
besecurelydisclosedperbitoftotalcommunication.AllCDS
instances,wherethecapacityisthehighestandisequalto1/2,
arerecentlycharacterizedthroughanoiseandsignalalignment
approachandaredescribedusingagraphrepresentationofthe
functionf,Gf.Inthiswork,wegobeyondthebestcasescenarios
andfurtherdevelopthealignmentapproachtocharacterizethe
linearcapacityofaclassofCDSinstancestobe(ρ 1)/(2ρ),
whereρisacoveringparameterofGf.

I.INTRODUCTION

Theconditionaldisclosureofsecrets(CDS)problemisa
classicalcryptographicprimitive1withrichconnectionsto
manyotherprimitivessuchassymmetricprivateinformation
retrieval[2]andsecretsharing[3],[4].ThegoaloftheCDS
problemistofindthemostefficientwayforAliceandBobto
discloseacommonsecrettoCarolifandonlyiftheinputsat
AliceandBobsatisfysomefunctionf(seeFig.1).TheCDS
problemwasinitiallystudiedinthesettingwherethesecretis
onebitlong,andthecostofaCDSschemeismeasuredbythe
worstcasetotalamountofcommunicationoverallfunctions
f,typicallyasorderfunctionsoftheinputsize[2],[5]–[9].
Thatis,thefocusisonthescalinglawofthecommunication
complexityastheinputsizegrowstoinfinity.Whatispursued
inthisworkisthetraditionalShannontheoreticformulation,
wherethesecretsizeisallowedtobearbitrarilylarge,andthe
communicationrateisthenumberofbitsofthesecretthat
canbesecurelydisclosedperbitoftotalcommunication.The
aimistocharacterizethemaximumrate,termedthecapacity
ofCDS,forafixedfunctionf.
In[1],weobtainacompletecharacterizationforallfunc-
tionsfwheretheCDScapacityisthehighest,andisequal
to1/2.Indescribingthisresult,wefinditconvenientto
representthefunctionfbyabipartitegraph,whereeach
nodedenotesapossiblesignalforcertaininputandtwo
types(colors)ofedgesareusedtodenotewhetherfis1
or0(seeFig.1.2). Wewillusethisgraphrepresentationof
functionsfthroughoutthiswork.Thefeasibilityconditionfor
capacity1/2isthenstatedintermsofthegraphicproperties
off.Furthermore,thisresultisobtainedusinganovelnoise
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MorebackgroundonCDSisreferredto[1]andreferencestherein.

Fig.1.1).AliceandBob(withsecretS,noisevariableZ,respective
inputsx,y)wishtodisclosethesecretStoCarolifandonlyif
f(x,y) =1forabinaryfunctionf,throughsignalsAx,By.2)
Anexampleoff(x,y)ingraphrepresentation.Frompairofnodes
connectedbyasolidblackedge(i.e.,f(x,y)=1),Carolcandecode
S;frompairofnodesconnectedbyadashedrededge(i.e.,f(x,y)=
0),CarollearnsnothingaboutSintheinformationtheoreticsense.

andsignalalignmentapproach,whichguidestheproofof
both(informationtheoretic)impossibilityclaimsand(linear)
protocoldesigns.
Beyondthebestratescenarios,thesimplestuncoveredcase
isalsoconsideredin[1](seeTheorem2),wherethelinear
capacity2hasbeenfoundandthisisourstartingpoint.Our
goalinthisworkistofurtherdevelopthealignmentapproach
tocharacterizethelinearcapacityofalargerclassofCDS
instances.Asourfirstmainresult(seeTheorem1),weobtain
ageneralconverseboundforlinearCDSschemes,which
appliestoanyCDSinstance,isparameterizedbyacovering
parameterρofthegraphrepresentationoff,andisequalto
(ρ−1)/(2ρ).Asoursecondmainresult(seeTheorem2),we
showthattheaboveconverseboundisachievableforaclassof
graphs,i.e.,CDSinstances,throughavectorlinearcodebased
achievableschemewithmatchingrate.Whilewefindthatthe
converseboundappearstobeachievableformoregraphs(by
verifyinganumberofexamples),anexplicitconditionofa
largerclassandauniversalcodedesignthatappliesgenerally
remainelusive.Interestingly,allresultsareobtainedthrough
amorerefinedviewofthealignmentapproach.

2Itturnsoutthatthelinearcapacity,i.e.,thehighestrateachievableby
linearschemes,doesnotmatchthebestconverseboundproducedbyonly
Shannoninformationinequalities[1].
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II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a binary function f(x, y), where (x, y) is from
some set I ⊂ {1, 2, · · · , X} × {1, 2, · · · , Y } and its charac-
teristic undirected bipartite graph Gf = (V,E), where the
node set V = {A1, · · · , AX , B1, · · · , BY } and the edge
set E is comprised of the unordered pairs {Ax, By} such
that (x, y) ∈ I. The edges have two types: if f(x, y) = 1,
{Ax, By} is a solid black edge and is referred to as a qualified
edge; if f(x, y) = 0, {Ax, By} is a dashed red edge and is
referred to as an unqualified edge (see Fig. 1.2 for an example).

The variable x (y) denotes the input available only to Alice
(Bob) and Ax (By) denotes the signal sent from Alice (Bob) to
Carol for securely disclosing the secret S, which is comprised
of L i.i.d. uniform symbols from a finite field Fp. In addition to
the secret S, Alice and Bob also hold an independent common
noise variable Z (to assist with the secure disclosure task) that
is comprised of LZ i.i.d. uniform symbols from Fp.

H(S) = L, H(Z) = LZ , (in p-ary units) (1)
H(S,Z) = H(S) +H(Z) = L+ LZ . (2)

Each signal Ax (By) is assumed to be comprised of N
symbols from Fp and must be determined by information
available to Alice (Bob).

H(Ax, By|S,Z) = 0. (3)

The disclosure task is said to be successful if the following
conditions are satisfied. From a qualified edge, Carol can
recover S with no error; from an unqualified edge, Carol must
learn nothing about S. For all (x, y) ∈ I, we have

[Correctness] H(S|Ax, By) = 0, if f(x, y) = 1; (4)
[Security] H(S|Ax, By) = H(S), otherwise f(x, y) = 0. (5)

The collection of the mappings from x, y, S, Z to Ax, By as
specified above is called a CDS scheme.

The CDS rate R characterizes how many symbols of the se-
cret are securely disclosed per symbol of total communication
and is defined as follows.

R =
L

2N
. (6)

A rate R is said to be achievable if there exists a CDS scheme,
for which the correctness and security constraints (4), (5) are
satisfied and the rate is no smaller than R. The supremum of
achievable rates is called the capacity of CDS, C.

A. Graph Definitions

We will use some graphic notions of Gf = (V,E) to state
our results, defined as follows. Without loss of generality, we
assume that for any node v ∈ V , there exists some node u ∈ V
such that {u, v} ∈ E is an unqualified edge (otherwise, for
any v that is connected to only qualified edges, we can set v
to be the secret S and then eliminate v and its edges).

Definition 1 (Qualified/Unqualified Path/Component): A
sequence of distinct connecting qualified (unqualified) edges is
called a qualified (unqualified) path. A qualified (unqualified)

connected component is a maximal induced subgraph of Gf
such that any two nodes in the subgraph are connected by a
qualified (unqualified) path.

Definition 2 (Internal Qualified Edge): A qualified edge that
connects two nodes in an unqualified path is called an internal
qualified edge.

For example, in Fig. 1.2, the edge e = {A1, B1} is an
internal qualified edge that connects the two nodes A1, B1 in
the unqualified path P = {{A1, B2}, {B2, A3}, {A3, B1}}.

Definition 3 (Connected Edge Cover): Consider an internal
qualified edge e in an unqualified path P and the node set of
P is denoted as VP ⊂ V . A connected edge cover of VP is
a set of connected3 qualified edges M ⊂ E such that each
node in VP is covered by at least one qualified edge in M
and e ∈ M . The size of a connected edge cover for (e, P )
is the number of edges in M and is denoted as ρ(e, P ). If
no such M exists, then ρ(e, P ) is defined as +∞. Further,
ρ , mine,P ρ(e, P ).

For example, in Fig. 1.2, consider the internal qualified
edge e = {A1, B1} in the unqualified path P = {{A1, B2},
{B2, A3}, {A3, B1}}, then the nodes in P are VP = {A1,
B2, A3, B1} and a connected edge cover of VP is M =
{{A4, B1}, {A4, B2}, {A4, B3}, {A1, B1}, {A3, B3}}. In this
case, ρ(e, P ) = 5 as M contains 5 edges and we can verify
that the minimum value of ρ(e, P ) over all internal qualified
edges and unqualified path pairs (e, P ) is ρ = 5.

B. Linear Feasibility

The feasibility of a linear CDS scheme is specified below.

Linear Scheme: For a feasible linear CDS scheme, each
signal (equivalently, each node v ∈ V )

v = FvS +HvZ, Fv ∈ FN×Lp ,Hv ∈ FN×LZp (7)

is specified by two precoding matrices, Fv for the secret
S ∈ FL×1p and Hv for4 the noise Z ∈ FLZ×1p such that the
following properties are satisfied.
• Consider any edge {v, u} and identify the overlap of their

noise spaces, i.e., the row space of Hv and Hu. That is,
find matrices Pv and Pu such that

PvHv = PuHu, (8)
rank(Pv) = dim(rowspan(Hv) ∩ rowspan(Hu)),

then the secret spaces satisfy

[Correctness] rank(PvFv −PuFu) = L,

if {u, v} is qualified; (9)
[Security] PvFv = PuFu, else {u, v} is unqualified. (10)

It is immediate to inspect that the correctness constraint
(9) and the security constraint (10) for linear schemes imply
the entropic versions (4), (5). Conversely, any feasible linear

3That is, any two nodes in M are connected by a qualified path.
4Without loss of generality, we assume that Hv has full row rank, i.e.,

rank(Hv) = N , because each v is assumed to connect to at least an
unqualified edge so that I(v;S) = 0, then the linearly dependent rows of
Hv in v must be linearly dependent as well (thus redundant).
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scheme must satisfy (9), (10). Such a linear feasibility frame-
work has appeared in related problems [10], [11]. To facilitate
later use, we summarize some useful properties of feasible
linear schemes in the following lemma. A detailed proof can
be found in Lemma 6 and Lemma 7 of [1].

Lemma 1: For any linear scheme as defined above and any
edge {v, u}, we have

[Noise Align] dim(rowspan(Hv) ∩ rowspan(Hu)) ≥ L,
if {u, v} is qualified; (11)

[Signal Align] PvFv = PuFu, if {u, v} is unqualified. (12)

The intuition of the lemma is as follows. (11) follows from
the correctness constraint (9), which requires the overlap of the
noise spaces to have at least L dimensions as decoding is only
possible over the overlapping space (so referred to as ‘noise
alignment’) and other spaces are covered by independent noise
variables. (12) follows from the security constraint (10), which
says that over the overlapping noise space, the secret space
must also be fully overlapping (so referred to as ‘signal
alignment’ since both noise and secret fully align in this space)
as otherwise the unqualified edge can reveal some information
of the secret symbols, violating the security constraint.

In the remainder of this paper, we use (9) and (10) to
verify the correctness and security of a linear scheme. To
illustrate how it works, let us consider again the CDS instance
in Fig. 1.2 (reproduced in Fig. 2). We show that rate R = 2/5
is achievable, through presenting a vector linear scheme with
L = 4, N = 5. That is, the secret has L = 4 symbols over F3

(S = (s1; s2; s3; s4)), and each signal has N = 5 symbols over
F3. The assignment of the signals is given in Fig. 2. Suppose
Z = (z1; · · · ; z9), where each zi is uniform and i.i.d. over F3.

A1 B1

A2 B2

A3 B3

A4 B4(z1; 2s2 + z2; z3; z4; z5) (z5; z6; z7; z8; z9)

(s1 + z1; s2 + z2;
s3 + z3; s4 + z4; z6)

(s2 + z1; s1 + z2;
2s3 + z3; s3 + s4 + z5; z7)

(s1 + z1; s1 + z2; 2s4 + z4;
2(s3 + s4) + z5; z8)

(s1 + z2; 2s3 + z3;
2s4 + z4; s1 + z6; z9)

(s1 + z1; s3 + z3;
2(s3 + s4) + z5; s1 + z7; z9)

(s1 + s2 + z1 + z2; s4 + z4;
s3 + s4 + z5; s1 + z8; z9)

Fig. 2. A CDS instance and the linear scheme of rate R = 2/5.

Let us verify that the above scheme is correct and secure.
For simplicity, we do not write out explicitly the precoding ma-
trices Fv and Hv for a signal v. Instead, we will directly find
the overlap by inspection. Consider qualified edge {A3, B3}.
A3, B3 both contain (z1 + z2; z4; z5; z8) (noise overlaps) and
can then obtain 4 equations of the secret symbols, (−s1 +
s2; s4; s3 + s4; s1), which can recover S = (s1; s2; s3; s4).
Other cases of qualified edges can be verified similarly. Con-
sider the unqualified edge {A3, B2}. (z1 + z2; z5) lies in the
overlap of the noise spaces and the secret symbols projecting
to this space are both (s1 + s2; s3 + s4), thus no information
is leaked. Other unqualified edges follow similarly. The rate
achieved is thus L/(2N) = 4/10 = 2/5.

III. RESULTS

Our first result is a converse bound of linear CDS schemes,
parameterized by the minimum connected edge cover number
of internal qualified edges, ρ and stated in Theorem 1.

Theorem 1: For any CDS instance, the following converse
bound holds for all linear schemes.

Rlinear ≤
ρ− 1

2ρ
. (13)

The proof of Theorem 1 is presented in Section IV.
To give an example, let us consider the CDS instance in

Fig. 2. Note that e = {A1, B1} is an internal qualified edge in
unqualified path P = {{A1, B2}, {B2, A3}, {A3, B1}}, with
node set VP = {A1, B2, A3, B1}, where VP is covered by a
connected edge cover M = {{A4, B1}, {A4, B2}, {A4, B3},
{A1, B1}, {A3, B3}} so that ρ(e, P ) = |M | = 5 and this edge
cover number turns out to be the minimum, i.e., ρ = 5. Then
Theorem 1 indicates that Rlinear ≤ (ρ − 1)/(2ρ) = 2/5. As
rate 2/5 is linearly achievable (see Fig. 2), the linear capacity
of this CDS instance is 2/5.

Next, we proceed to our second result, which shows that
the linear converse in Theorem 1 is tight for a class of CDS
instances and is stated in Theorem 2.

Theorem 2: For any CDS instance where the qualified edges
in each qualified component form either a path or a cycle5,
the linear capacity is Clinear = (ρ− 1)/(2ρ).

Note that Theorem 2 only places constraints on the structure
of qualified edges and works for any possible configuration of
unqualified edges. The proof is presented in Section V.

A1 B1

A2 B2

A3 B3

A4 B4
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+
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s2

+
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3s5

+
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3s2

+
z2;

3s3

+
z3;

3s4

+
z4;

s3

+
z3;

s4

+
z4;

s5

+
z5;

2s1

+
z1;

2s2

+
z2;

2s3

+
z3;

2s4

+
z4;

2s5

+
z5;

3s5

+
z5;

s5

+
z5z0;

2s1

+
z6;

s1

+
z6

s2

+
z7

s1

+
z6;

s1

+
z6;

3s1

+
z6;

2s1

+
z6;

2s2

+
z7;

3s2

+
z7;

2s2

+
z7;

s3

+
z8

2s3

+
z8;

4s4

+
z4;

4s5

+
z5;

s2

+
z7;

3s2

+
z7;

2s3

+
z8;

s3

+
z8;

s4

+
z9

2s4

+
z9;

3s4

+
z9;

s4

+
z9;

3s3

+
z8;

s5

+
z10

2s5

+
z10;

3s5

+
z10;

2s1

+
z11;

s1

+
z11

s2

+
z12

Fig. 3. A CDS instance where the qualified component is a path and
a linear capacity achieving scheme.

We give a path example here (and the cycle case is similar)
to illustrate the idea. Consider the CDS instance in Fig. 3
and we show that the linear capacity is Clinear = 5/12. The-
orem 2 can be applied as the instance contains one qualified
component, where the qualified edges form a path. ρ = 6,
because there is an internal qualified edge e = {A1, B1} (see
the blue circle) in unqualified path P = {{A1, B2}, {B2, A4},
{A4, B1}} (see the red circles), which is then covered by
a qualified path with 6 edges M = {{A1, B1}, {B1, A2},
{A2, B2}, {B2, A3}, {A3, B3}, {B3, A4}}. It can be verified
that this M has the minimum cardinality, so ρ = 6. Then the
converse bound follows from Theorem 1.

5A cycle is a path where the first node is the same as the last node.
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We now consider the achievable scheme, where the as-
signment of each signal is given in Fig. 3. The uniform
and i.i.d. noise variables are assigned sequentially to the
nodes in the path following a sliding window manner, where
the first node A1 uses z0, z1, · · · , z5, the second node uses
z1, · · · , z6, and so on. The secret symbols s1, · · · , s5 are
assigned cyclicly to the noise variables, i.e., (s1, · · · , s5) are
assigned to (z1, · · · , z5), (z6, · · · , z10) etc. The coefficients
of sj are the only left and most important part. To this end,
focus on each zi in an arbitrary order and consider only the
nodes that contain zi. For example, consider z6, which appears
in 6 nodes B1, A2, B2, A3, B3, A4 and consider the subgraph
induced by these 6 nodes. For the induced subgraph, consider
each unqualified component sequentially and assign the same
signal to each node in the unqualified component. So here
first consider the unqualified path {{B1, A4}, {A4, B2}} and
assign s1 + z6 to B1, A4, B2; second consider the unqualified
path {A2, B3} and assign 2s1 + z6 to A2, B3; lastly consider
A3 (a trivial unqualified component) and assign 3s1+z6 to A3.
All other zi can be treated in the same manner. This completes
the description of the scheme. The security and correctness of
the scheme can be inspected from Fig. 3. The rate achieved
is R = L/(2N) = 5/12 as the secret has L = 5 symbols and
each signal has N = 6 symbols.

IV. PROOF OF THEOREM 1
For v1, · · · , vi, define αv1···vi , dim(rowspan(Hv1) ∩

· · · ∩ rowspan(Hvi)). Consider any CDS instance Gf (V,E)
where ρ 6= +∞ such that there exists an internal qualified
edge e in an unqualified path P and ρ(e, P ) = ρ. Then the
connected edge cover M for nodes VP in P contains ρ edges
and ρ + 1 nodes, denoted as VM = {v1, v2, · · · , vρ+1} Note
that M has minimal size and is a spanning tree of nodes VM .

Start with the internal qualified edge e in M , say e =
{vi1 , vi2} ⊂M, i1, i2 ∈ {1, 2, · · · , ρ+1}. As M is connected,
there must exist a node vi3 ∈ VM , i3 /∈ {i1, i2} and a node
u1 ∈ {vi1 , vi2} such that {u1, vi3} is a qualified edge. Then
from sub-modularity, we have

αvi1vi2vi3 ≥ αvi1vi2 + αu1vi3
−N. (14)

Then we proceed similarly to find vi4 ∈ VM , i4 /∈
{i1, i2, i3} such that {u2, vi4} is a qualified edge, where
u2 ∈ {vi1 , vi2 , vi3}. Again from sub-modularity, we have

αvi1vi2vi3vi4 ≥ αvi1vi2vi3 + αu2vi4
−N (15)

(14)

≥ αvi1vi2 + αu1vi3
+ αu2vi4

− 2N. (16)

Continue this procedure, i.e., we include one node vij ∈
VM , ij /∈ {i1, · · · , ij−1}, j ∈ {5, · · · , ρ+ 1} at one time such
that {uj−2, vij} ∈M and uj−2 ∈ {vi1 , · · · , vij−1

}. Then

αvi1vi2 ···viρ+1
≥ αvi1 ···viρ + αuρ−1viρ+1

−N ≥ · · ·
≥ αvi1vi2 + αu1vi3

+ αu2vi4
+ · · ·

+ αuρ−1viρ+1
− (ρ− 1)N. (17)

Note that i1, · · · , iρ+1 are distinct so that VM =
{v1, · · · , vρ+1} = {vi1 , · · · , viρ+1

}. As the ρ+1 noise spaces

have an overlap of dimension αvi1vi2 ···viρ+1
, there exist ρ+1

projection matrices P∩vi1 , · · · ,P
∩
viρ+1

of rank αvi1vi2 ···viρ+1

each such that

P∩vi1Hvi1
= P∩vi2Hvi2

= · · · = P∩viρ+1
Hviρ+1

. (18)

Next, switch focus to the unqualified path P . Consider
the nodes VP ⊂ VM and denote VP = {vi1 , vi2 , vj1 , vj2 ,
· · · , vj|VP |−2

} ⊂ {vi1 , vi2 , · · · , viρ+1
} = VM . By (12), i.e.,

the signal alignment constraint from Lemma 1, and (18),

P∩vi1Fvi1 = P∩vi2Fvi2 . (19)

Finally, consider the internal qualified edge e = {vi1 , vi2}
and identify the noise overlap through matrices Pvi1 ,Pvi2 that
have rank αvi1 ,vi2 , i.e., Pvi1Hvi1

= Pvi2Hvi2
. Noting that

rowspan(P∩vi1 ) is a subspace of rowspan(Pvi1 ), we set

P∩vi1 = Pvi1 (1 : αvi1vi2 ···viρ+1
, :),

P∩vi2 = Pvi2 (1 : αvi1vi2 ···viρ+1
, :) (20)

without loss of generality, i.e., the first αvi1vi2 ···viρ+1
rows of

Pvi1 are P∩vi1 . Then from the correctness constraint (9) for
qualified edge e = {vi1 , vi2}, we have

L
(9)
= rank

(
Pvi1Fvi1 −Pvi2Fvi2

)
(19)(20)

= rank
(
Pvi1 (αvi1vi2 ···viρ+1

+ 1 : αv1v2 , :)Fvi1

−Pvi2 (αvi1vi2 ···viρ+1
+ 1 : αv1v2 , :)Fvi2

)
≤ αvi1vi2 − αvi1vi2 ···viρ+1

(17)

≤ αvi1vi2 −
(
αvi1vi2 + αu1vi3

+ αu2vi4
+ · · ·

+ αuρ−1viρ+1
− (ρ− 1)N

)
= (ρ− 1)N −

(
αu1vi3

+ · · ·+ αuρ−1viρ+1

)
(11)

≤ (ρ− 1)N − (ρ− 1)L

⇒ Rlinear = L/(2N) ≤ (ρ− 1)/(2ρ).

V. PROOF OF THEOREM 2

We present a vector linear CDS scheme that achieves rate
(ρ − 1)/(2ρ) whe each qualified component of the CDS
instance is a path or cycle. Specifically, we set L = ρ − 1,
i.e., each secret has L symbols S = (s1, · · · , sρ−1) from Fp
and N = ρ, i.e., each signal (node) v has N symbols from
Fp. We assume that p is a prime number and p ≥ 2ρ− 2.

Define l1, · · · , lρ−1 as L generic linear combinations of S.

(l1; · · · ; lρ−1) = C(ρ−1)×(ρ−1) × (s1; · · · , sρ−1)

C(ρ−1)×(ρ−1)(i, j) =
1

xi − yj
, i, j ∈ {1, · · · , ρ− 1} (21)

where xi, yj are distinct elements from Fp, so C(ρ−1)×(ρ−1)
is a Cauchy matrix.

Consider any CDS instance Gf (V,E) such that the min-
imum connected edge cover number for any internal qual-
ified edge is ρ. Suppose the instance contains Q qualified

3205
Authorized licensed use limited to: University of North Texas. Downloaded on September 08,2021 at 20:57:36 UTC from IEEE Xplore.  Restrictions apply. 



components, where each qualified component is either a path
or a cycle of qualified edges. Denote the node set of the
q-th qualified component by V q, q ∈ {1, · · · , Q} such that
V = V 1 ∪ · · · ∪ V Q. For each qualified component, we will
use independent uniform i.i.d. noise symbols from Fp, denoted
as zq = (zq0 , z

q
1 , z

q
2 , · · · ). So Z = (z1, · · · , zQ). We are now

ready to specify the signal design.
1. Consider each qualified component sequentially. If the

q-th qualified component is a path, go to 2; otherwise the q-th
qualified component is a cycle, go to 3.

2. The nodes V q= {vq1 , · · · , vq|V q|} form a path. Suppose
{vq1, v

q
2}, {v

q
2, v

q
3}, · · · , {v

q
|V q|−1, v

q
|V q|} are qualified edges.

2.1. Assign the noise variables sequentially as follows.

vq1 = (zq0 , z
q
1 , · · · , z

q
ρ−1), v

q
2 = (zq1 , z

q
2 , · · · , zqρ),

· · · , vq|V q| = (zq|V q|−1, · · · , z
q
|V q|+ρ−2). (22)

2.2. We now include the secret symbols to each node.
Consider the nodes that contain each noise symbol zq1 , · · · ,
zq|V q|+ρ−2 sequentially and the induced subgraph formed by
these nodes. Note that each noise symbol zqj , j ∈ {1, · · · ,
|V q| + ρ − 2} appears at no more than ρ nodes and denote
the induced subgraph by Gqj ⊂ Gf . Suppose Gqj contains
Kq
j unqualified components6. For each node vqi in the k-th

unqualified component of Gqj , k ∈ {1, · · · ,K
q
j }, j ∈ {1, · · · ,

|V q|+ ρ− 2}, replace zqj by k× sj mod (ρ−1) + zqj . Note that
in sj mod (ρ−1), the subscript is defined over {1, · · · , ρ − 1}
as the secret symbols are S = (s1, · · · , sρ−1).

3. The nodes V q = {vq1, · · · , v
q
|V q|} form a cycle. Suppose

{vq1, v
q
2}, · · · , {v

q
|V q|−1, v

q
|V q|}, {v

q
|V q|, v

q
1} are qualified edges.

3.1. Assign the noise variables cyclicly as follows.

vq1 = (zq1 , z
q
2 , · · · , zqρ), v

q
2 = (zq2 , z

q
3 , · · · , z

q
ρ+1),

· · · , vq|V q| = (zq|Vq|, z
q
1 , · · · , z

q
ρ−1). (23)

3.2. We now include the secret symbols to each node. Con-
sider the nodes that contain each noise symbol zq1 , · · · , z

q
|V q|

sequentially and the induced subgraph formed by these nodes.
Note that each noise symbol zqj , j ∈ {1, · · · , |V q|} appears
at ρ nodes and denote the induced subgraph by Gqj ⊂ Gf .
Suppose Gqj contains Kq

j unqualified components. For each
node vqi in the k-th unqualified component of Gqj , k ∈ {1, · · · ,
Kq
j }, if j ∈ {1, · · · , ρ−1}, replace zqj by k×lj+zqj ; otherwise

j ∈ {ρ, · · · , |Vq|}, replace zqj by k × sj mod (ρ−1) + zqj .

After describing the signal design, we proceed to show that
the scheme is correct and secure and complete the proof.

First, we prove that the correctness constraint (9) is satisfied.
We consider each qualified component and have two cases.

1. The qualified component is a path. From the noise
assignment (22), we know that the two nodes u, v in any
qualified edge share L = ρ−1 noise symbols with consecutive
subscripts. Further, according to the signal assignment, these
L consecutive noise symbols are each mixed with one distinct
secret symbol from the L symbols in S. In addition, each

6A node that connects to no unqualified edge is a trivial unqualified
component. As there are at most ρ nodes in Gq

j , we have that Kq
j ≤ ρ.

shared secret symbol si, i ∈ {1, · · · , L} in v and u is
multiplied by different coefficients k. We prove this claim
by contradiction, i.e., suppose that the coefficients k are the
same. Then e = {u, v} must be an internal qualified edge
in an unqualified path P , and we can find a connected edge
cover M for the nodes in P and all nodes in M share one same
noise symbol. Recall from Definition 3 that M contains at least
ρ+ 1 nodes while these nodes share one same noise symbol,
which is not possible because from the noise assignment (22),
each noise symbol only appears at ρ nodes at most. Thus the
coefficients for the L secret symbols in v, u are all distinct
and from {v, u} we can recover S with no error.

2. The second case is when the qualified component is a
cycle, whose proof is similar to the path case. Similarly from
the noise assignment (23), any two nodes u, v in a qualified
edge share L = ρ−1 noise symbols with cyclicly consecutive
subscripts. Further, according to the signal assignment, these
L noise symbols are each mixed with either one distinct
secret symbol si from the L symbols in S or one generic
linear combination lj . With a similar reasoning as above (due
to the definition of ρ and each noise appears at ρ nodes),
the multiplicative coefficients k for si, lj are distinct. As lj
are from a Cauchy matrix (see (21)), whose every square
sub-matrix has full rank [12], from {v, u} we can obtain L
equations of form si, lj thus recover S with no error.

Second, we prove that the security constraint (10) is satis-
fied. We have two cases for an unqualified edge.

1. The two nodes u, v of the unqualified edge are from the
same qualified component. Security is guaranteed because in
the signal assignment, when the noise space overlaps, the same
signal equation is assigned, i.e., signal alignment is ensured
and (10) holds.

2. The two nodes u, v of the unqualified edge are from two
different qualified components. As the noise symbols zq, zq

′

are independent for distinct qualified components, the noise
spaces of u, v have no overlap and (10) trivially holds.

VI. DISCUSSION

We take a Shannon theoretic perspective at the canonical
CDS problem to seek capacity characterizations where the
secret size is allowed to approach infinity. This Shannon
theoretic perspective follows the footsteps of recent attempts
in information theory on other cryptographic primitives [13]–
[22]. To this end, we further develop the noise and signal
alignment approach (introduced in [1]), which is a variation
of interference alignment originally studied in wireless com-
munication [23]–[25], to characterize the linear capacity of a
class of CDS instances, which go beyond the highest capacity
scenarios found in [1]. Along the line, we identify a general
linear converse bound (see Theorem 1) and a linear feasibility
framework that facilitates the design of linear schemes once
the target rate value is fixed (see Section II-B). However, these
results are not sufficient to fully understand the linear capacity
of CDS in general - an open problem.
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