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Abstract—Conditional disclosure of secrets ((
lem of disclosing as efficiently as possible, one :
and Bob to Carol if and only if the inputs a
satisfy some function f. The information theo
CDS is the maximum number of bits of the
be securely disclosed per bit of total commun
instances, where the capacity is the highest anc
are recently characterized through a noise and
approach and are described using a graph rep:
function f, G 4. In this work, we go beyond the b
and further develop the alignment approach to
linear capacity of a class of CDS instances to
where p is a covering parameter of Gy .

I. INTRODUCTION

The conditional disclosure of secrets (CD
classical cryptographic primitive! with rich
many other primitives such as symmetric pri
retrieval [2] and secret sharing [3], [4]. The §
problem is to find the most efficient way for /... .. ___ ..
disclose a common secret to Carol if and only if the inputs at
Alice and Bob satisfy some function f (see Fig. 1). The CDS
problem was initially studied in the setting where the secret is
one bit long, and the cost of a CDS scheme is measured by the
worst case total amount of communication over all functions
f, typically as order functions of the input size [2], [S]-[9].
That is, the focus is on the scaling law of the communication
complexity as the input size grows to infinity. What is pursued
in this work is the traditional Shannon theoretic formulation,
where the secret size is allowed to be arbitrarily large, and the
communication rate is the number of bits of the secret that
can be securely disclosed per bit of total communication. The
aim is to characterize the maximum rate, termed the capacity
of CDS, for a fixed function f.

In [1], we obtain a complete characterization for all func-
tions f where the CDS capacity is the highest, and is equal
to 1/2. In describing this result, we find it convenient to
represent the function f by a bipartite graph, where each
node denotes a possible signal for certain input and two
types (colors) of edges are used to denote whether f is 1
or 0 (see Fig. 1.2). We will use this graph representation of
functions f throughout this work. The feasibility condition for
capacity 1/2 is then stated in terms of the graphic properties
of f. Furthermore, this result is obtained using a novel noise

"More background on CDS is referred to [1] and references therein.

Alice has x, S, Z Bob has vy, S, Z

Carol has =,y
learns S iff f(z,¥) =1

1)

Fig. 1. 1). Alice and Bob (with secret .S, noise variable Z, respective
inputs x,y) wish to disclose the secret S to Carol if and only if
f(z,y) = 1 for a binary function f, through signals A, B,. 2)
An example of f(z,y) in graph representation. From pair of nodes
connected by a solid black edge (i.e., f(z,y) = 1), Carol can decode
S; from pair of nodes connected by a dashed red edge (ie., f(z,y) =
0), Carol learns nothing about S in the information theoretic sense.

and signal alignment approach, which guides the proof of
both (information theoretic) impossibility claims and (linear)
protocol designs.

Beyond the best rate scenarios, the simplest uncovered case
is also considered in [1] (see Theorem 2), where the linear
capacity? has been found and this is our starting point. Our
goal in this work is to further develop the alignment approach
to characterize the linear capacity of a larger class of CDS
instances. As our first main result (see Theorem 1), we obtain
a general converse bound for linear CDS schemes, which
applies to any CDS instance, is parameterized by a covering
parameter p of the graph representation of f, and is equal to
(p—1)/(2p). As our second main result (see Theorem 2), we
show that the above converse bound is achievable for a class of
graphs, i.e., CDS instances, through a vector linear code based
achievable scheme with matching rate. While we find that the
converse bound appears to be achievable for more graphs (by
verifying a number of examples), an explicit condition of a
larger class and a universal code design that applies generally
remain elusive. Interestingly, all results are obtained through
a more refined view of the alignment approach.

21t turns out that the linear capacity, i.., the highest rate achievable by
linear schemes, does not match the best converse bound produced by only
Shannon information inequalities [1].
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II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a binary function f(x,y), where (z,y) is from
some set Z C {1,2,--- , X} x {1,2,--- Y} and its charac-
teristic undirected bipartite graph Gy = (V, E), where the
node set V.= {A;,---,Ax, Bi1,---,By} and the edge
set E is comprised of the unordered pairs {A,, By} such
that (z,y) € Z. The edges have two types: if f(x,y) = 1,
{A., By} is a solid black edge and is referred to as a qualified
edge; if f(x,y) = 0, {A;, By} is a dashed red edge and is
referred to as an unqualified edge (see Fig. 1.2 for an example).

The variable x (y) denotes the input available only to Alice
(Bob) and A, (B,) denotes the signal sent from Alice (Bob) to
Carol for securely disclosing the secret S, which is comprised
of L i.i.d. uniform symbols from a finite field I,,. In addition to
the secret .S, Alice and Bob also hold an independent common
noise variable Z (to assist with the secure disclosure task) that
is comprised of Lz i.i.d. uniform symbols from I,

H(S)=L, H(Z) = Ly, (in p-ary units)
H(S,Z)=H(S)+H(Z)=L+ L.

ey
2

Each signal A, (B,) is assumed to be comprised of N
symbols from IF, and must be determined by information
available to Alice (Bob).

H(A,;,By|S,Z) =0. 3)

The disclosure task is said to be successful if the following
conditions are satisfied. From a qualified edge, Carol can
recover S with no error; from an unqualified edge, Carol must
learn nothing about S. For all (z,y) € Z, we have

[Correctness] H(S|Ag,By) =0, if f(z,y) = 1; “4)
[Security] H(S|A,, By) = H(S), otherwise f(z,y) = 0. (5)

The collection of the mappings from z,y,S,Z to A,, B, as
specified above is called a CDS scheme.

The CDS rate R characterizes how many symbols of the se-
cret are securely disclosed per symbol of total communication
and is defined as follows.

L
R= SN
A rate R is said to be achievable if there exists a CDS scheme,
for which the correctness and security constraints (4), (5) are
satisfied and the rate is no smaller than R. The supremum of

achievable rates is called the capacity of CDS, C.

(6)

A. Graph Definitions

We will use some graphic notions of G; = (V, E) to state
our results, defined as follows. Without loss of generality, we
assume that for any node v € V/, there exists some node u € V/
such that {u,v} € E is an unqualified edge (otherwise, for
any v that is connected to only qualified edges, we can set v
to be the secret .S and then eliminate v and its edges).

Definition 1 (Qualified/Unqualified Path/Component): A
sequence of distinct connecting qualified (unqualified) edges is
called a qualified (unqualified) path. A qualified (unqualified)

connected component is a maximal induced subgraph of G
such that any two nodes in the subgraph are connected by a
qualified (unqualified) path.

Definition 2 (Internal Qualified Edge): A qualified edge that
connects two nodes in an unqualified path is called an internal
qualified edge.

For example, in Fig. 1.2, the edge e = {A;, B} is an
internal qualified edge that connects the two nodes Ap, B; in
the unqualified path P = {{Ay, B2}, {B2, A3}, {43, B1}}.

Definition 3 (Connected Edge Cover): Consider an internal
qualified edge e in an unqualified path P and the node set of
P is denoted as Vp C V. A connected edge cover of Vp is
a set of connected® qualified edges M C FE such that each
node in Vp is covered by at least one qualified edge in M
and e € M. The size of a connected edge cover for (e, P)
is the number of edges in M and is denoted as p(e, P). If
no such M exists, then p(e, P) is defined as +oo. Further,
p = min, p p(e, P).

For example, in Fig. 1.2, consider the internal qualified
edge e = {A;, By} in the unqualified path P = {{A4,, B>},
{Bs, A3}, {As, B1}}, then the nodes in P are Vp = {A;,
Bs, As, By} and a connected edge cover of Vp is M =
{{A4, Bl}, {A4, BQ}, {A4, Bd}, {Al, Bl}, {A37 Bd}} In this
case, p(e, P) = 5 as M contains 5 edges and we can verify
that the minimum value of p(e, P) over all internal qualified
edges and unqualified path pairs (e, P) is p = 5.

B. Linear Feasibility
The feasibility of a linear CDS scheme is specified below.

Linear Scheme: For a feasible linear CDS scheme, each
signal (equivalently, each node v € V')

v=F,5+H,Z F, e F)*"' H, e F)/*"7 (7

is specified by two precoding matrices, ¥, for the secret
S € FL*' and H, for* the noise Z € F}7*! such that the
following properties are satisfied.

o Consider any edge {v,u} and identify the overlap of their
noise spaces, i.e., the row space of H,, and H,,. That is,
find matrices P,, and P, such that

PH, = P,H,, (8)
rank(P,) = dim(rowspan(H,) N rowspan(H,)),
then the secret spaces satisfy
[Correctness) rank(P,F, — P, F,) =L,
if {u, v} is qualified; 9)
[Security] P, F, =P, F,, else {u,v} is unqualified.(10)
It is immediate to inspect that the correctness constraint

(9) and the security constraint (10) for linear schemes imply
the entropic versions (4), (5). Conversely, any feasible linear

3That is, any two nodes in M are connected by a qualified path.

4Without loss of generality, we assume that H, has full row rank, i.e.,
rank(H,) = N, because each v is assumed to connect to at least an
unqualified edge so that I(v;S) = 0, then the linearly dependent rows of
H,, in v must be linearly dependent as well (thus redundant).
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scheme must satisfy (9), (10). Such a linear feasibility frame-
work has appeared in related problems [10], [11]. To facilitate
later use, we summarize some useful properties of feasible
linear schemes in the following lemma. A detailed proof can
be found in Lemma 6 and Lemma 7 of [1].

Lemma 1: For any linear scheme as defined above and any
edge {v,u}, we have

[Noise Align] dim(rowspan(H,) Nrowspan(H,)) > L,
if {u,v} is qualified; (11)
[Signal Align] P, F, =P,F,, if {u,v} is unqualified. (12)

The intuition of the lemma is as follows. (11) follows from
the correctness constraint (9), which requires the overlap of the
noise spaces to have at least L dimensions as decoding is only
possible over the overlapping space (so referred to as ‘noise
alignment’) and other spaces are covered by independent noise
variables. (12) follows from the security constraint (10), which
says that over the overlapping noise space, the secret space
must also be fully overlapping (so referred to as ‘signal
alignment’ since both noise and secret fully align in this space)
as otherwise the unqualified edge can reveal some information
of the secret symbols, violating the security constraint.

In the remainder of this paper, we use (9) and (10) to
verify the correctness and security of a linear scheme. To
illustrate how it works, let us consider again the CDS instance
in Fig. 1.2 (reproduced in Fig. 2). We show that rate R = 2/5
is achievable, through presenting a vector linear scheme with
L =4, N = 5. That is, the secret has L = 4 symbols over Fa
(S = (s1; 82; S3; S4)), and each signal has N = 5 symb
F3. The assignment of the signals is given in Fig. 2. £

(814 21,82 + 22;
S3 + 23, 84 + 24, 2

(81 + 22,283 + 23;
254 + 2a; S1 + 26, 29)

(82 + 21, 81 + 22;
253 + 23, 53 + Sa

(s1 4 21; 83 + 23;
2(s3 + 1) + 255 81 + 27; 29)

(81 + 215 81 + 22;
/ 2(s3 + 82) + 2552
—————— (2s; z6; 27; 28; 29)

Fig. 2. A CDS instance and the linear scheme of rate R -

(814 82+ 21 + 22; 84 + 2a4;
83 4 84 + 2s; 51 + 28; 29)

(21; 282 + 22; 23; 24; 25)

Let us verify that the above scheme is correct and

For simplicity, we do not write out explicitly the precoding ma-
trices F,, and H,, for a signal v. Instead, we will directly find
the overlap by inspection. Consider qualified edge {As, B3}.
Az, Bs both contain (21 + 22; 24; 25; 28) (noise overlaps) and
can then obtain 4 equations of the secret symbols, (—s; +
S2; 845 83 + 84;81), which can recover S = (s1;82;83; S4).
Other cases of qualified edges can be verified similarly. Con-
sider the unqualified edge {As, Ba}. (21 + 22; 25) lies in the
overlap of the noise spaces and the secret symbols projecting
to this space are both (s1 + $2; S3 + s4), thus no information
is leaked. Other unqualified edges follow similarly. The rate
achieved is thus L/(2N) =4/10 = 2/5.

III. RESULTS

Our first result is a converse bound of linear CDS schemes,
parameterized by the minimum connected edge cover number
of internal qualified edges, p and stated in Theorem 1.

Theorem 1: For any CDS instance, the following converse
bound holds for all linear schemes.

Rlinear < prl

The proof of Theorem 1 is presented in Section IV.

To give an example, let us consider the CDS instance in
Fig. 2. Note that e = {41, By} is an internal qualified edge in
unqualified path P = {{Ah Bg}, {Bg, Ag}, {Ag, Bl}}’ with
node set Vp = {A;, Ba, Az, B1}, where Vp is covered by a
connected edge cover M = {{A4, B1},{A4, B2},{A4, B3},
{A1,B1},{As, Bs}} so that p(e, P) = |[M| = 5 and this edge
cover number turns out to be the minimum, i.e., p = 5. Then
Theorem 1 indicates that Rjpear < (p — 1)/(2p) = 2/5. As
rate 2/5 is linearly achievable (see Fig. 2), the linear capacity
of this CDS instance is 2/5.

Next, we proceed to our second result, which shows that
the linear converse in Theorem 1 is tight for a class of CDS
instances and is stated in Theorem 2.

Theorem 2: For any CDS instance where the qualified edges
in each qualified component form either a path or a cycle’,
the linear capacity is Clipear = (p — 1)/(2p).

Note that Theorem 2 only places constraints on the structure
of qualified edges and works for any possible configuration of

[ PNSULERE & 4

(13)

USRS o S (RS [N o ! TSR o R T

S1 S2 S3 84 281 282 283 284 2S5 S1

+ + + + + ([ )+ + + + + +

20, Z1, Z2, 23, Z4, s 2 N ,~ 21, 22, 23, Z4, Zs5, %6
1
355 353 354 355 251 So ‘«\ N S3 S4 S5 S1 28 S3
1
e S e o P B|)+ + + + + +
N
22, 23, 24, Zs, Ze, 27 \\,’ N 23, Za, 25, Z6, 27, %8
/
45, 455 351 352 253 Sa G ,\'\ 355 251 S2 3S3 254 Ss
1
++++++A3\, Bsy] + + + + + +
Za, 25, Z6, Z7, Z8, 29 P Zs, Zs, 27, 28, Zo, Z10
7"
S1 28, S3 354 2S5 S1 ‘\ 355 253 Sa 3S5 251 S
+ o+ o+ o+ + (A Bl + + + + + +
26, 27, 28, Z9, 210,211 ~—~ 27, Zg, 29, Z10, 211, %12

Fig. 3. A CDS instance where the qualified component is a path and
a linear capacity achieving scheme.

We give a path example here (and the cycle case is similar)
to illustrate the idea. Consider the CDS instance in Fig. 3
and we show that the linear capacity is Clipear = 5/12. The-
orem 2 can be applied as the instance contains one qualified
component, where the qualified edges form a path. p = 6,
because there is an internal qualified edge e = {A1, B1} (see
the blue circle) in unqualified path P = {{A1, B2}, { B2, A4},
{A4,B1}} (see the red circles), which is then covered by
a qualified path with 6 edges M = {{41,B1}, {B1, 42},
{A27 BQ}, {BQ, Ag}, {1437 Bg}, {Bg, A4}} It can be verified
that this M has the minimum cardinality, so p = 6. Then the
converse bound follows from Theorem 1.

A cycle is a path where the first node is the same as the last node.
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We now consider the achievable scheme, where the as-
signment of each signal is given in Fig. 3. The uniform
and ii.d. noise variables are assigned sequentially to the
nodes in the path following a sliding window manner, where
the first node Ay uses zg, 21, , 25, the second node uses
z1,---,%6, and so on. The secret symbols sp,---,s5 are
assigned cyclicly to the noise variables, i.e., (s1,--- ,s5) are
assigned to (z1,---,25), (26, - ,210) etc. The coefficients
of s; are the only left and most important part. To this end,
focus on each z; in an arbitrary order and consider only the
nodes that contain z;. For example, consider zg, which appears
in 6 nodes B1, As, Bo, A3, B3, A4 and consider the subgraph
induced by these 6 nodes. For the induced subgraph, consider
each unqualified component sequentially and assign the same
signal to each node in the unqualified component. So here
first consider the unqualified path {{B;, A4}, {A4, B2}} and
assign s1 + z¢ to By, A4, Be; second consider the unqualified
path {As, B3} and assign 251 + z to Ag, Bs; lastly consider
Ajs (a trivial unqualified component) and assign 3s1 42 to As.
All other z; can be treated in the same manner. This completes
the description of the scheme. The security and correctness of
the scheme can be inspected from Fig. 3. The rate achieved
is R=L/(2N) = 5/12 as the secret has L = 5 symbols and
each signal has N = 6 symbols.

IV. PROOF OF THEOREM 1

For vy, ,v;, define ay,..,, = dim(rowspan(H,,) N

- N rowspan(H,,,)). Consider any CDS instance G;(V, E)
where p # +oo such that there exists an internal qualified
edge e in an unqualified path P and p(e, P) = p. Then the
connected edge cover M for nodes Vp in P contains p edges
and p + 1 nodes, denoted as Vs = {vi,v2,--- ,v,41} Note
that M has minimal size and is a spanning tree of nodes V.

Start with the internal qualified edge e in M, say e =
{vi,vi, } C M,iy,i9 € {1,2,---, p+1}. As M is connected,
there must exist a node v;, € Vys,i3 ¢ {i1,92} and a node
uy € {v;,,v;,} such that {us,v;,} is a qualified edge. Then
from sub-modularity, we have

(14)

Then we proceed similarly to find v;, € Vy,iq4 ¢
{i1,12,i3} such that {ug,v;,} is a qualified edge, where
uz € {vi,, Viy, Vi, ;. Again from sub-modularity, we have

avilvi2vi3 Z avilvi2 + aulvia - N.

Qi vigvi5i, > Qv vy, + Qugv;, — N (15)
(14)
Z avilviz + aulvia + augvi4 —2N. (16)
Continue this procedure, i.e., we include one node vi; €
Var,tj & {iv,--- 451}, € {5,---, p+ 1} at one time such
that {u;_o,v;,} € M and u;_o € {vs,--- ,vi;_, }. Then
Qg vy, 2 Qe T Qu, vy~ N >...
Z avilviz + aulviB + Oéugvm + e
+ Quy_yvi,, ) — (p—1)N. (17)

Note that i4q,---

{'Ul,"'

are distinct so that V; =
, Vi, }- As the p+1 noise spaces

) ip+1
s Upt1}t = {0y,

have an overlap of dimension av, 4;, .

vi,,,» there exist p+1
P
projection matrices P{! .- - ,PQPH

of rank v, v,

o~
each such that
n = N — .. = n
PWIHW1 = P% Hvi2 = = Pvip+1HUip+1' (18)

Next, switch focus to the unqualified path P. Consider
the nodes Vp C Vi and denote Vp = {vi,viy, V), Vs
. 7Uj\vp\72} C {Ui17vi27"' 7Uip+1} ES V]y[. By (12), i.e.,
the signal alignment constraint from Lemma 1, and (18),
P F,, :Pg, F.. .
i1 ig i2

’L),;1

19)

Finally, consider the internal qualified edge e = {v;,,v;,}
and identify the noise overlap through matrices P, ,P,, that
have rank Qo iy ie., P%H,,m1 = P% viy - Noting that
rowspan(PQl) is a subspace of rowspan(P,, ), we set

n _ : .
P, =Py, (1: Qo viyevi ),

P, = Pu, (1 ay, v, (20)

'Uip+17:)

without loss of generality, i.e., the first &y, v,,...v,  TOWS Of
PUZ.1 are PQ- . Then from the correctness constraint (9) for
qualified edge e = {v;,,v;, }, we have

L 2

(19)(20)

rank (Pu” F,,, — Py, F%)

rank(Pyz.1 (Qvgy vy, 15 Oy, 1
-P,, (avilvi2~--vip+1 +1: v, :)FUQ)

< Oy, v,. — Q. ps ey,

i1Vig i1 Vig Uiy g

- (avil’uiz + aulvig + auzvu + e
+ aupfwz‘erl - (p - 1)N)

(p= DN - (auwi3 +eoeet a“pflviﬁl)

(p=1)N—(p—1)L

Riinear = L/(2N) < (p —1)/(2p)-

V. PROOF OF THEOREM 2

$IAE

We present a vector linear CDS scheme that achieves rate
(p — 1)/(2p) whe each qualified component of the CDS
instance is a path or cycle. Specifically, we set L = p — 1,
i.e., each secret has L symbols S = (s1,---,s,-1) from [,
and N = p, i.e.,, each signal (node) v has N symbols from
F,. We assume that p is a prime number and p > 2p — 2.

Define l1,--- ,1,—1 as L generic linear combinations of S.

(1

Clo-)x(p-1(i,g) =

+Sp—1)

ilo—1) = Clomiyx(p—1) X (515"~

Ti —Yj

where x;,y; are distinct elements from [F, so C(,_1)x(p—1)
is a Cauchy matrix.

Consider any CDS instance G¢(V, E) such that the min-
imum connected edge cover number for any internal qual-
ified edge is p. Suppose the instance contains () qualified
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components, where each qualified component is either a path
or a cycle of qualified edges. Denote the node set of the
g-th qualified component by V4,¢ € {1,---,Q} such that
V = V!'U--- UV For each qualified component, we will
use independent uniform i.i.d. noise symbols from IF,,, denoted
as 29 = (28,20,24,--+). So Z = (2%, ,2%). We are now
ready to specify the signal design.

1. Consider each qualified component sequentially. If the
g-th qualified component is a path, go to 2; otherwise the ¢-th
qualified component is a cycle, go to 3.

2. The nodes Vi= {v{, ---, vlqvql} form a path. Suppose
{vf, o3}, {v3,v3} -, {vfa 1, vy} are qualified edges.

2.1. Assign the noise variables sequentially as follows.

’U;I = (Zg’zg"" 733—1%“(21 = (21172’(21,“- azg)a

(22)

q f— q e q
av‘vq\ - (Z\Vq‘fla 7Z‘Vq‘+p72)‘

2.2. We now include the secret symbols to each node.
Consider the nodes that contain each noise symbol zf, cee
Z|qV4\ o2 sequentially and the induced subgraph formed by
these nodes. Note that each noise symbol zjl jgedL, -,
|[Vi| 4+ p — 2} appears at no more than p nodes and denote
the induced subgraph by G C Gy. Suppose G contains
K unqualified componentssj. For each node v! in the k-th
unqualified component of G%, k € {1,--- K]}, j € {1, ---,
V9| + p — 2}, replace z by k X 5} moa (p—1) + 2. Note that
in 5; mod (p—1), the subscript is defined over {1,---,p — 1}

as the secret symbols are S = (s1,--- ,8,-1).
3. The nodes V7 = {v{, - ,vlqvql} form a cycle. Suppose
{vi,v3}, -, {U|qva|717 vquql}’ {vlqvq‘,v‘f} are qualified edges.

3.1. Assign the noise variables cyclicly as follows.

q __ q .9 q __ q 9 q
U] = (ZlaZQa"' 723)71)2 - (22,23,'” 7Zp+1)a
q _ q q q
o tve = Gy 2 Zpen)- (23)

3.2. We now include the secret symbols to each node. Con-
sider the nodes that contain each noise symbol z{,- - - ’Zquql
sequentially and the induced subgraph formed by these nodes.
Note that each noise symbol z7,j € {1,---,|V|} appears
at p nodes and denote the induced subgraph by G? C Gy.
Suppose Gg- contains KJ‘? unqualified components. For each
node v{ in the k-th unqualified component of G?, ked{l,---,
K;?}7 ifje{l,---, p—1}, replace z;? by kxlj—i—z?; otherwise
j € {p, -, [Vyl}, replace z by k X 8 moa (p—1) + 25 -

After describing the signal design, we proceed to show that
the scheme is correct and secure and complete the proof.

First, we prove that the correctness constraint (9) is satisfied.
We consider each qualified component and have two cases.

1. The qualified component is a path. From the noise
assignment (22), we know that the two nodes u,v in any
qualified edge share L = p—1 noise symbols with consecutive
subscripts. Further, according to the signal assignment, these
L consecutive noise symbols are each mixed with one distinct
secret symbol from the L symbols in S. In addition, each

%A node that connects to no unqualified edge is a trivial unqualified
component. As there are at most p nodes in G;l, we have that Kj‘.z <p.

shared secret symbol s;,i € {1,---,L} in v and u is
multiplied by different coefficients k. We prove this claim
by contradiction, i.e., suppose that the coefficients k are the
same. Then e = {u,v} must be an internal qualified edge
in an unqualified path P, and we can find a connected edge
cover M for the nodes in P and all nodes in M share one same
noise symbol. Recall from Definition 3 that M contains at least
p + 1 nodes while these nodes share one same noise symbol,
which is not possible because from the noise assignment (22),
each noise symbol only appears at p nodes at most. Thus the
coefficients for the L secret symbols in v,u are all distinct
and from {v,u} we can recover S with no error.

2. The second case is when the qualified component is a
cycle, whose proof is similar to the path case. Similarly from
the noise assignment (23), any two nodes u,v in a qualified
edge share L = p— 1 noise symbols with cyclicly consecutive
subscripts. Further, according to the signal assignment, these
L noise symbols are each mixed with either one distinct
secret symbol s; from the L symbols in S or one generic
linear combination [;. With a similar reasoning as above (due
to the definition of p and each noise appears at p nodes),
the multiplicative coefficients k for s;,[; are distinct. As [;
are from a Cauchy matrix (see (21)), whose every square
sub-matrix has full rank [12], from {v,u} we can obtain L
equations of form s;,[; thus recover S with no error.

Second, we prove that the security constraint (10) is satis-
fied. We have two cases for an unqualified edge.

1. The two nodes u, v of the unqualified edge are from the
same qualified component. Security is guaranteed because in
the signal assignment, when the noise space overlaps, the same
signal equation is assigned, i.e., signal alignment is ensured
and (10) holds.

2. The two nodes u, v of the unqualified edge are from two
different qualified components. As the noise symbols 29, 24
are independent for distinct qualified components, the noise
spaces of u, v have no overlap and (10) trivially holds.

VI. DISCUSSION

We take a Shannon theoretic perspective at the canonical
CDS problem to seek capacity characterizations where the
secret size is allowed to approach infinity. This Shannon
theoretic perspective follows the footsteps of recent attempts
in information theory on other cryptographic primitives [13]-
[22]. To this end, we further develop the noise and signal
alignment approach (introduced in [1]), which is a variation
of interference alignment originally studied in wireless com-
munication [23]-[25], to characterize the linear capacity of a
class of CDS instances, which go beyond the highest capacity
scenarios found in [1]. Along the line, we identify a general
linear converse bound (see Theorem 1) and a linear feasibility
framework that facilitates the design of linear schemes once
the target rate value is fixed (see Section II-B). However, these
results are not sufficient to fully understand the linear capacity
of CDS in general - an open problem.
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