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Abstract— Coded caching is a promising technique to smooth
out network traffic by storing part of the library content at
the users’ local caches. The seminal work on coded caching for
single file retrieval by Maddah-Ali and Niesen (MAN) showed
the existence of a global caching gain that scales with the
total memory in the system, in addition to the known local
caching gain in uncoded systems. This paper formulates a novel
cache-aided matrix multiplication retrieval problem, relevant
for data analytics and machine learning applications. In the
considered problem, each cache-aided user requests the product
of two matrices from the library. A structure-agnostic solution is
to treat each possible matrix product as an independent file and
use the MAN coded caching scheme for single file retrieval. This
paper proposes two structure-aware schemes, which partition
each matrix in the library by either rows or columns and let
a subset of users cache some sub-matrices, that improve on
the structure-agnostic scheme. For the case where the library
matrices are “fat” matrices, the structure-aware row-partition
scheme is shown to be order optimal under some constraint.

Index Terms— Coded caching, matrix multiplication retrieval.

I. INTRODUCTION

IT IS predicted that an order of magnitude increase in

network throughput is needed to support the tremendous

growth of data traffic expected for the near future [1]. Con-

ventional technologies are severely limited towards the goal of

achieving such a dramatic throughput gain. A clever usage of

low-cost storage capacity on user devices to cache data plays a
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key role in the design of content distribution schemes. Coded

caching is an effective way to smooth out network traffic dur-

ing peak traffic hours by jointly designing cache placement and

coded delivery schemes. The coded caching strategy originally

proposed by Maddah-Ali and Niesen (MAN) in [2] has the

potential to trade off relatively cheap memory for expensive

bandwidth, i.e., the total traffic load on the network is inversely

proportional to the aggregate cache memory in the network,

a phenomenon referred to as global coded caching gain.
The MAN original model consists of a server, with access

to the whole library, that is connected to several cache-aided

users through an error-free shared-link. The MAN scheme

contains two phases: (i) placement phase (peak-off hours):

each cache-aided user stores some bits in its local cache

without knowledge of later demands; (ii) delivery phase (peak-

traffic hours): each user requests one file from the library

and the server broadcasts coded packets to satisfy all users’

requests simultaneously. The goal is to minimize the number

of broadcasted bits for the worst-case demands, referred to as

worst-case load. It was surprisingly shown in [2] that if each

bit in the library can be cached by t users, the total load can

potentially be reduced by t + 1 times compared to the con-

ventional uncoded caching scheme, in which the server simply

broadcasts to each user the uncached part of the demanded file.

The MAN shared-link coded caching problem for single file

retrieval has been extended to a number of different network

models (such as Device-to-Device networks [3], topological

networks [4], multi-server networks [5], wireless interference

channels [6], etc.) and different problems where reducing the

communication cost is paramount (such as coded distributed

computing [7], coded data shuffling [8]–[11], etc.).

A common point of the above problems is that users request

whole files. Motivated by the fact that linear and multivariate

polynomial operations are widely used fundamental primitives

for building the complex queries that support many engineer-

ing problems, coded caching was introduced into the scalar

linear function retrieval in [12]. Instead of letting each user

download all the input files in the desired scalar linear function

of files, an optimal coded caching scheme with uncoded

cache placement was proposed in [12], which lets each user

directly recover the desired function. In this paper, we turn our

attention from scalar linear function to matrix multiplication.

Matrix multiplication plays a key role in a wide variety

of domains, such as for example data analytics, machine

learning, and scientific computing [8], [13], [14]. Recently,

information theoretic coding techniques have been proposed

for the distributed matrix multiplication problem [13]–[19].
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In a distributed computing system a master node aims to

compute the multiplication of two large-scale matrices with

the help of workers, where the workers can only store and

compute on small parts of the matrices. Since workers may

take different amounts of time to complete their assigned task,

i.e., some are stragglers, the goal here is for the master node to

recover the matrix product as soon as the number of responses

received from the workers reaches the so-called recovery

threshold. Different coding schemes have been proposed to

mitigate the impact of stragglers on the completion time of a

distributed computing task, such as polynomial codes [13],

[20] and Matdot codes [14]. Recently, distributed matrix

multiplication for resilience against stragglers was extended

to wireless channels [21], where several users without local

cache are connected to edge nodes with computation resources

through a wireless link and where each user requests the

product of a user-generated data matrix with a network-stored

matrix. In this work, we are not interested in the problem of

straggler mitigation, but rather in the problem of reducing the

communication load across a shared-link network.

This paper formulates a novel shared-link cache-aided

matrix multiplication retrieval problem, where we consider that

each cache-aided user requests the product of two matrices in

the library, instead of a single file. For example, each user aims

to compute the linear correlation between each two vectors of

two vector sets,1 which can be seen as the multiplication of

two matrices representing these two vector sets.

In our setting, the library contains N files that are thought

of as matrices of dimension s× r on some finite field. In the

placement phase, each of the K users can store up to Msr
symbols from the library (corresponding to the size of up to

M matrices). During the delivery phase, each user requests the

product of two arbitrary matrices in the library, which are not

known in advance at the time of cache placement. Different

from existing information theoretic distributed matrix multipli-

cation works for straggler mitigation, we aim to apply coded
caching strategies to the matrix multiplication retrieval
problem with the goal of minimizing the load on the shared
link between the server and the users by leveraging the
cached contents and performing coded multicast delivery.

A. Main Contributions

Our main contributions are as follows.

• We formulate an information theoretic shared-link coded

caching problem for matrix multiplication retrieval, where

each user requests the product of two matrices in the

library.

• We propose a structure-agnostic scheme that treats each

possible demanded matrix product as an independent file

and attains the load corresponding to the MAN coded

caching problem for single file retrieval.

• Then, we propose two coded caching schemes that

leverage the specific structure of matrix multiplication.

1 Linear correlation is used to find the linear relationship between two
numerically expressed variables, which has wide applications in lots of

areas, such as engineering research (including pattern recognition [22], signal

detection [23], etc.) and medical science [24].

Different from the structure-agnostic matrix multipli-

cation retrieval scheme, which lets the users directly

cache some entries of the matrix products, the proposed

structure-aware schemes let each user cache some entries

of each matrix. One scheme partitions each library matrix

into sub-matrices by rows and the other by columns.

A subset of the users cache each sub-matrix, or some

linear transformation of this sub-matrix. The delivery

phase is designed so as to leverage the users’ cached

contents and the “correlation” among the elements of the

demanded matrix products, i.e., the fact that some entries

of a matrix product can be written as a function of the

other entries of the same matrix product.

• When s ≤ r (i.e., the library matrices are “fat” matrices),

we prove that the proposed row-partition scheme is order

optimal within a factor of 2 under the constraint of

uncoded cache placement (i.e., each user directly copies

some entries of the matrices in the library into its local

cache) and N ≥ 2K. This is accomplished by proposing

a novel genie-aided converse bound.

B. Paper Organization

The rest of this paper is organized as follows. Section II

gives some results used later in the paper. Section III

formulates the cache-aided matrix multiplication retrieval

problem. Section IV summarizes the main results in this

paper. Section V provides the details of the proposed

coded cache-aided matrix multiplication retrieval schemes.

Section VI concludes the paper. Some proofs can be found

in the Appendix.

C. Notation Convention

Calligraphic symbols denote sets, bold symbols denote

vectors and matrices, and sans-serif symbols denote system

parameters. We use | · | to represent the cardinality of a set

or the length of a vector; [a : b] := {a, a + 1, . . . , b} and

[n] := [1 : n]; ⊕ represents bit-wise XOR; a! = a × (a −
1)× . . .×1 represents the factorial of a; Fq represents a finite

field with order q; AT and A−1 represent the transpose and the

inverse of matrix A, respectively; rank(A) represents the rank

of matrix A; In represents the identity matrix of dimension

n × n; (A)m×n explicitly indicates that the matrix A is of

dimension m×n; the matrix [a; b] is written in a Matlab form,

representing

[
a
b

]
; we let

(
x
y

)
= 0 if x < 0 or y < 0 or x < y.

In the rest of the paper entropies will be in base q, where q
will be introduced later.

II. PRELIMINARY RESULTS ON THE ENTROPY OF A

MATRIX PRODUCT

In this section we describe a procedure to “compress” matrix

products that may not be full rank so as to reduce the load on

the shared-link.

Consider a matrix A ∈ F
M×m
q on a finite field Fq of rank ρ

with M ≥ m ≥ ρ > 0. We can choose ρ linearly independent

rows of A and call the resulting matrix A1 ∈ F
ρ×m
q , that is,

A1AT
1 ∈ F

ρ×ρ
q is full rank. We then can express each of the
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remaining M − ρ rows of A as a linear combination of the

rows of A1; let the matrix of the coefficients for the linear

combinations be A2 ∈ F
(M−ρ)×ρ
q . Finally, the original matrix

A can be written as A = A3

[
Iρ

A2

]
A1, for some permutation

matrix A3 ∈ {0, 1}M×M that only depends on the set of

indices of the ρ chosen rows out of M rows. Thus we can

write

H(A) = H(A,A1,A2,A3) (1a)

= H(A1,A2,A2) + H(A|A1,A2,A3) (1b)

= H(A1,A2,A3) (1c)

≤ H(A1) + H(A2) + H(A3) (1d)

≤ ρm + (M − ρ)ρ + logq

((
M

ρ

))
. (1e)

In other words, we need at most (M + m)ρ− ρ2 symbols on

Fq to specify any A ∈ F
M×m
q of rank ρ, up to a permutation

matrix that contributes logq

((
M
ρ

))
to the entropy.

Next, for any two matrices C ∈ F
m×n
q and B ∈ F

n×p
q , the

entropy bound in (1), together with

rank[CB] ≤ min(rank[C], rank[B]) ≤ min(n, m, p), (2)

implies that we need, up to some symbols needed to describe a

permutation, at most f(m, n, p) = f(p, n, m) symbols on Fq

to specify the matrix product CB ∈ F
m×p
q where the function

f(m, n, p) is defined as

f(m, n, p) := (m + p−min(n, m, p))min(n, m, p) (3a)

=

{
(m + p− n)n min(m, p) ≥ n

mp min(m, p) ≤ n
. (3b)

For later use, we express f(m, n, p) = g
(

m
n , p

n

)
n2, where

g(α, β) is a symmetric function in its arguments as is defined

as

g(α, β) :=

{
α + β − 1 min(α, β) ≥ 1
αβ min(α, β) ≤ 1

. (4)

Note that
g(α,α)

α ≤ 2.

In the rest of the paper, we will use P (C,B) to denote the

f(m, n, p) + H(A3) symbols on Fq that specify the matrix

product CB, where we set A = CB ∈ F
m×p
q in (1). Next,

we will consider the following two cases:
• n is large. For each product CB considered in formulated

cache-aided matrix multiplication problem (which will

be clarified later), we assume that m = a1n and p =
a2n, where a1, a2 are fixed positive numbers and n �
max{a1, a2}. In this case of large matrices, for any field

size q,

logq

((
max(m, p)

min(n, m, p)

))
≤ logq (max(m, p)!)

≤ 3
2

logq(e) + (max(m, p) +
1
2
) logq(

max(m, p)
e

)︸ ︷︷ ︸
by Stirling’s approximation

.

Hence, we have (recall that f(m, n, p) is with order

O(n2))

logq

(( max(m,p)
min(n,m,p)

))
f(m, n, p)

≤
3
2 logq(e) + (max(a1, a2)n + 1

2 ) logq(
max(a1,a2)n

e )
f(a1 n, n, a2n)

= εn,

where limn→∞ εn = 0. So in this case of large enough

matrices, we have |P (C,B)| ≤ (1 + εn)f(m, n, p).
• q is large. [25, Lemma 2] proved that for any two

independent matrices C ∈ F
m×n
q and B ∈ F

n×p
q with

uniformly i.i.d. entries on Fq, we have

lim
q→∞

H(CB) = f(m, n, p). (5)

That is because, in this case we have

1) the matrices corresponding to A1,A2 in (1a) for

the matrix A = CB ∈ F
m×p
q have uniformly

i.i.d. entries, which leads H(A1,A2) = H(A1) +
H(A2) = f(m, n, p);

2) H(A3) ≤ logq

(( max(m,p)
min(n,m,p)

))
= εq, where

limq→∞ εq = 0.

Thus we have f(m, n, p) < H(CB) ≤ |P (C,B)| =
f(m, n, p)+ εq, which leads to (5). Hence, we also have

limq→∞ |P (C,B)| = f(m, n, p).

III. SYSTEM MODEL

The (K, N, a) shared-link cache-aided matrix multiplication

retrieval problem is defined as follows. A server has access to

a library of N matrices, denoted by W1, . . . ,WN, and each

matrix is of dimension s×r on a finite field Fq, for some prime-

power q. The column-row ratio of each matrix is denoted by

a := r/s ∈ (0,∞). We further assume that each element of

each matrix is uniformly i.i.d. over Fq and that q is sufficiently

large so that the entropy of any matrix product WT
i Wj where

(i, j) ∈ [N]2 is

B := f(r, s, r) = s2g(a, a) ≤ 2rs, (6)

i.e., B is the number of symbols on Fq that suffices to specify

any matrix product, as argued in Section II.2 We also assume

that s is finite and sufficiently large, such that any sub-matrix

division is possible. The server is connected to K users through

an error-free shared link. The system operates as follows.

a) Placement Phase: During the cache placement phase,

each user stores information about the N matrices in its local

cache without knowledge of future users’ demands, that is,

there exist placement functions φk, k ∈ [K], such that

φk : F
Nsr
q → F

�Msr�
q . (7)

2 Note that without the assumption that q → ∞, each proposed achievable

scheme can still work to let each user retrieve its demanded matrix product.

As showed in Section II, q → ∞ is needed for the converse of (5), which
characterizes the entropy of matrix product. In addition, this assumption is

also needed for the proposed converse bounds on the minimum worst-case

load.
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We denote the content in the cache of user k ∈ [K] by Zk =
φk(W1, . . . ,WN). The non-negative parameter M is the cache
size, measured in multiple of the size of each matrix in the

library.

b) Delivery Phase: During the delivery phase, user k ∈
[K] sends its demand dk = (dk,1, dk,2) to the server,

where (dk,1, dk,2) ∈ [N]2 means that user k requests the

matrix product WT
dk,1

Wdk,2 ∈ F
r×r
q . Given the demand

[d1;d2; · · · ;dK] ∈ [N]2×K, the server broadcasts the message

X = ψ([d1;d2; · · · ;dK],W1, . . . ,WN) to the users, where

the encoding function ψ is such that

ψ : [N]2K × F
Nsr
q → F

�RB�
q . (8)

The non-negative parameter R is referred to as the load on the

shared link, measured in multiple of the entropy of a matrix

product B defined in (6).

c) Correctness: Each user k ∈ [K] decodes its desired

matrix product from ([d1;d2; · · · ;dK], Zk, X) through the

decoding function ξk, defined as

ξk : [N]2K × F
�Msr�
q × F

�RB�
q → F

B
q . (9)

The worst-case probability of error is defined as

ε := max
[d1;d2;··· ;dK]

Pr{ξk([d1;d2; · · · ;dK], Zk, X) 	=

WT
dk,1

Wdk,2 , for some k ∈ [K]}. (10)

d) Objective: In this paper, we assume that the computa-

tion power of the server and users is unlimited. Therefore, our

focus is on the optimal tradeoff between communication cost

and cache storage capacity. More precisely, a communication

cost (a.k.a. load) R is achievable if there exists a caching

scheme with placement, encoding, and decoding functions

such that limq→∞ ε = 0. We aim to determine the minimum
worst-case load among all possible demands, defined for

M ∈ [0, N] as

R� := inf
(φk,k∈[K]),

ψ, (ξk,k∈[K])

{R : R is achievable}. (11)

e) Uncoded Cache Placement: If each user directly

copies some symbols of the N matrices into its cache,

the cache placement is said to be uncoded. The minimum

worst-case load under the constraint of uncoded cache place-

ment is denoted by R�
u .

f) Isomorphic Demands: Since W T
i Wj =

(
W T

j Wi

)T
for

any (i, j) ∈ [N]2, we say that the demands W T
i Wj and W T

j Wi

are isomorphic. The number of non-isomorphic demands is(
N
2

)
+ N = N(N+1)

2 =
(
N+1

2

)
. In this paper, without loss of

generality, we thus can assume that dk,1 ≤ dk,2 for each k ∈
[K].

Remark 1 (Range of M): Note that when M ≥
min

(
N, N(N+1)

2
g(a,a)

a

)
, we have R� = 0. Indeed, the server

does not need to send anything if each user can either store all

possible matrices in the library (requiring Nrs symbols) or all

possible non-isomorphic matrix products (requiring
N(N+1)

2 B

symbols). Recall that B
rs = g(a,a)

a = min(a, 2 − 1/a). Hence,

only for M < min
(
N, N(N+1)

2
g(a,a)

a

)
the load may be non-

zero, in which case we have R� ≤ min
(
K, N(N+1)

2 , N a
g(a,a)

)
,

as the server can satisfy all requests by either sending

all demanded non-isomorphic matrix products (requiring

min(K, N(N+1)
2 )B symbols), or all matrices in the library

(requiring Nrs symbols). �

IV. MAIN RESULTS AND DISCUSSIONS

This Section is organized as follows. We first summarize our

main results in Section IV-A. We then provide two examples to

illustrate the main ingredients of our novel achievable schemes

in Section IV-B. We provide some numerical evaluations in

Section IV-C. Finally, we discuss the difference between the

proposed cache-aided matrix multiplication retrieval schemes

and the existing works on distributed matrix multiplication for

straggler mitigation in Section IV-D.

A. Main Results

For the (K, N, a) shared-link cache-aided matrix multipli-

cation retrieval problem, a simple solution is to treat each

non-isomorphic product as an independent file, and thus the

considered problem becomes a coded caching problem for

single file retrieval with K users and
N(N+1)

2 files, for which we

can directly use the MAN coded caching scheme for single file

retrieval. Such a scheme is agnostic of the structure of matrix

multiplication, and thus we refer to it as structure-agnostic
scheme. The achieved load by the structure-agnostic scheme

is given as follows. The proof can be found in Appendix A.

Theorem 1 (Structure-Agnostic Scheme): For the (K, N, a)
shared-link cache-aided matrix multiplication retrieval prob-

lem, R� ≤ Rsa, where Rsa is the lower convex envelope of the

following memory-load pairs

(M, Rsa) =
(

N(N + 1)
2

g(a, a)
a

t

K
,
K− t

t + 1

)
, t ∈ [0 : K].

(12)

Note that when M = N(N+1)
2

g(a,a)
a , i.e., t = K, we have

Rsa = 0—see also Remark 1.

The structure-agnostic scheme does not perform well when

N is large, because the number of non-isomorphic matrix

products increases quadratically with N. We can improve on

Theorem 1 by designing structure-aware caching schemes,

which leverage the specific structure of matrix multiplica-

tion. In the structure-agnostic scheme, each user directly

caches the elements in the matrix products; in the proposed

structure-aware caching schemes, each user caches M
N sr sym-

bols of each matrix in the library.

We first introduce two baseline structure-aware schemes.

In the first baseline scheme, referred to as uncoded caching
baseline scheme, each user caches M

N r columns of each matrix

in the library; thus each user can reconstruct
(

M
N r
)2

elements

of each matrix product from its cached content. In the second

baseline scheme, referred to as mutli-request baseline scheme,

each user directly recovers the two library matrices instead

of their product, akin to a coded caching scheme for mul-

tiple files retrieval [26]. The achieved loads by the baseline

structure-aware schemes are given as follows. The proof

details can be found in Sections V-A and V-B, respectively.
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Theorem 2 (Baseline Structure-Aware Schemes): For

the (K, N, a) shared-link cache-aided matrix multiplication

retrieval problem, R� ≤ min(R1, R2) where R1 is defines as

R1 := K

(
1− M2

N2

)
a2

g(a, a)
, (13)

and R2 is the lower convex envelope of the following memory-

load pairs

(M, R2) =
(

N
t

K
, 2

K− t

t + 1
a

g(a, a)

)
, ∀t ∈ [0 : K]. (14)

The main limitation of the first baseline scheme in (13)

is the use of uncoded caching (i.e., there is no multicasting

gain). The main limitation of the second baseline scheme

in (14) is that it directly recovers the two library matrices

in order to recover their product, which is not necessary.

In order to improve on the baseline structure-aware schemes,

we next propose two schemes where we partition the matrices

in the library into sub-matrices and then let a subset of the

users cache (a linear transformation of) each sub-matrix. The

achieved load of the row-partition scheme is given as follows.

The proof details can be found in Section V-C.

Theorem 3 (Row-Partition Scheme): For the (K, N, a)
shared-link cache-aided matrix multiplication retrieval prob-

lem, R� ≤ Rrow, where

Rrow := min
�∈[K]

⌈
K
�

⌉
g(a, a)

(
g

(
a
(

�
t�

)
α�

,
a
(

�
t�

)
α�

)
α2

�(
�
t�

)2
(

	

t� + 1

)

+ g

(
a
(

�
t�+1

)
1− α�

,
a
(

�
t�+1

)
1− α�

)
(1− α�)2(

�
t�+1

)2
(

	

t� + 2

))
, (15a)

α� := t� + 1− 	M

N
, 	 ∈ [K], (15b)

t� :=
⌊

	M

N

⌋
, 	 ∈ [K], (15c)

with the convention that

Rrow = min
�∈[K]

⌈
K

	

⌉ g
(
a
(

�
t�

)
, a
(

�
t�

)) (
�

t�+1

)
g(a, a)

(
�
t�

)2 when α� = 1, and

(15d)

Rrow = min
�∈[K]

⌈
K

	

⌉ g
(
a
(

�
t�+1

)
, a
(

�
t�+1

)) (
�

t�+2

)
g(a, a)

(
�

t�+1

)2 when α� = 0.

(15e)

In Remark 7 we shall argue that the row-partition strategy

for Theorem 3 can be used with any known (for the shared-link

caching problem for single file retrieval) caching scheme with

uncoded cache placement.

The achieved load of the column-partition scheme is given

as follows. The proof details can be found in Section V-D.

Theorem 4 (Column-Partition Scheme): For the (K, N, a)
shared-link cache-aided matrix multiplication retrieval prob-

lem, R� ≤ Rcol, where

Rcol :=

⎧⎨
⎩y, if a ≤ 1;

y+2(a−1)
�

αK
K−tK
tK+1 +(1−αK)

K−tK−1
tK+2

�

2a−1 if a > 1;

(16a)

y :=
∑

i∈[0:tK+1]

(
K

i + 1

)(
α2

K(
K
tK

)2
(

K− i

tK − i

)(
K− tK
tK − i

)

+
(1 − αK)2(

K
tK+1

)2
(

K− i

tK + 1− i

)(
K− tK − 1
tK + 1− i

)

+ 2
αK(1− αK)(

K
tK

)(
K

tK+1

) (K− i

tK − i

)(
K− tK

tK + 1− i

))
, (16b)

where tK :=
⌊

KM
N

⌋
∈ [0 : K] and αK =

⌊
KM
N

⌋
+1− KM

N ∈ [0, 1]
were defined in (15c) and (15b), respectively.

In Remark 6 and Remark 9 we will show that the proposed

row- and column-partition schemes outperform the two base-

line schemes, respectively, and therefore we have the following

Corollary.

Corollary 1: For the (K, N, a) shared-link cache-aided

matrix multiplication retrieval problem, we have Rrow ≤ R2

and Rcol ≤ R1, for all M ∈ [0, N].
Remark 2 (Structure-Agnostic vs Structure-Aware Schemes):

We note that the proposed structure-aware schemes in this

paper are not always better than the proposed structure-

agnostic scheme. When a is very small, the structure-agnostic

scheme outperforms the other schemes, because in this case

the dimension of each matrix product is much less than the

input matrices and thus it is more efficient to directly cache

the matrix products. For example, if
N(N+1)

2
g(a,a)

a < N (i.e.,

a < 2
N+1 ) and M = N(N+1)

2
g(a,a)

a , the achieved load of the

structure-agnostic scheme is 0 (see also Remark 1), while

the achieved loads of the structure-aware schemes are strictly

larger than 0.

In general, see also Section IV-C for numerical evaluations,

the row-partition scheme does not uniformly outperforms the

column-partition scheme, or vice versa. Thus, for the proposed

schemes, we cannot infer any uniform superiority of a certain

placement strategy. �
Remark 3 (On Redundant Multicast Messages): In this

paper’s proposed coded caching schemes, after generating

the coded symbols desired by the users, we use the MAN

delivery scheme to generate multicast messages to deliver

those coded symbols. Yu, Maddah-Ali and Avestimehr in [27]

showed that some MAN multicast messages may be redundant

when a file is requested by multiple users, and thus need not

be transmitted. In our coded caching schemes, if there exist

some products demanded by several users, we could use the

approach in [27] to remove the redundant multicast messages.

We do not report here this type of enhancement for sake of

conciseness. �
Remark 4 (Extensions): Similarly to [12, Remark 3],

we can extend the proposed schemes to Device-to-Device

networks [3], where in the delivery phase each user broadcasts

coded packets based on its cached content to all other users,

and to the coded caching problem with private demands [28],
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[29], where we aim to preserve the privacy of the demand of

each user from other users. We do not report here this type of

extensions for sake of conciseness. �
So far we looked at achievable schemes. We now turn to

converse bounds. We can directly use the cut-set bounds in [2],

[30] for the shared-link coded caching problem for single

file retrieval into our problem, which leads to the following

theorem.

Theorem 5 (Cut-Set Converse Bound): For the (K, N, a)
shared-link cache-aided matrix multiplication retrieval prob-

lem, we have

R� ≥ max
b∈[min(N′,K)]

(
b− b2 M

N′
a

g(a, a)

)
, (17)

where N′ =
⌊

N
2

⌋
.

Proof: For each i ∈ [N′], define W ′
i = WT

2(i−1)+1W2i.

Consider a cut with b ∈ [min(N′, K)] users, and let each user

demand one product W ′
i where i ∈ [N′]. By using the cut-set

bound in [2, Theorem 2], we have⌊
N′

b

⌋
R�B + bMsr ≥ b

⌊
N′

b

⌋
B. (18)

Then, by using the strategy in [30, By-product 1], we can

remove the ‘floor operator’ in (18) and thus obtain (17). �
When a ≥ 1 and N ≥ 2K, we propose a novel genie-aided

converse bound under the constraint of uncoded cache place-

ment (proved in Appendix B), which smartly bounds the load

by the converse bound in [27], [31] for the original MAN

coded caching problem for single file retrieval. By using this

novel converse bound, we have the following order optimality

results.

Theorem 6 (Converse Bound and Order Optimality Result
Under Uncoded Cache Placement): For the (K, N, a) shared-

link cache-aided matrix multiplication retrieval problem where

a ≥ 1 and N ≥ 2K, the worst-case load under the constraint of

uncoded cache placement R�
u is lower bounded by the lower

convex envelop of(
Nt

K
,
K − t

t + 1
sr

f(r, s, r)

)
=
(

Nt

K
,
K− t

t + 1
a

2a− 1

)
, ∀t ∈ [0 : K].

(19)

In addition, we have

R�
u ≥

R2

2
≥ Rrow

2
when a ≥ 1 and N ≥ 2K. (20)

Note that the multiplicative gap between the converse

bounds in Theorems 5 and 6 could be unbounded. For exam-

ple, when 2a divides K and M = 2a−1
2a N, from Theorem 5 we

have R� ≥ 0 and from Theorem 6 we have R�
u ≥

aK/(2a−1)
K(2a−1)+2a >

0. Hence, we cannot obtain the order optimality results in

Theorem 6 from the cut-set converse bound in Theorem 5.

B. High-Level Strategies for Theorems 3 and 4

In this section we provide one simple example to highlight

the key ideas in Theorems 3 and 4, in which we partition each

matrix in the library by columns and by rows, respectively.

Example 1 (Case a ≤ 1): In this example, there are K =
2 users and N = 4 matrices of dimension s × r = 2 × 2

(i.e., a = 1), where each user can store up to 8 symbols (i.e.,

M = 2). Denote the four matrices as

A =
[
a1 a2

a3 a4

]
,B =

[
b1 b2

b3 b4

]
,C =

[
c1 c2

c3 c4

]
,

D =
[
d1 d2

d3 d4

]
.

For the delivery phase, assume that user 1 demands ATB and

user 2 demands CTD, where

ATB =
[
a1b1 + a3b3 a1b2 + a3b4

a2b1 + a4b3 a2b2 + a4b4

]
=:
[
p1 p2

p3 p4

]
, (21a)

CTD =
[
c1d1 + c3d3 c1d2 + c3d4

c2d1 + c4d3 c2d2 + c4d4

]
=:

[
q1 q2

q3 q4

]
. (21b)

Next we compare the performances of our schemes.

1) Structure-agnostic scheme: In Theorem 1, we treat each

matrix product as an independent file and use the MAN

coded caching scheme for single file retrieval (for the

case of K = 2 users,
N(N+1)

2 = 10 files and cache size

M = 2 files) to transmit 28/5 = 5.6 symbols.

2) Column-partition scheme: here we let user 1 cache the

first column of each matrix (e.g., a1 and a3 for the first

file and similarly for the other files), and let user 2 cache

the second column of each matrix (e.g., a2 and a4 for

the first file and similarly for the other files).

Based on the cached content, p1 in (21a) can be recon-

structed by user 1 and q4 in (21b) can be reconstructed

by user 2. By (13) of Theorem 2, the server transmits the

remaining three symbols in the matrix product desired

by each user, for a total of 6 symbols.

Based on the cached content, we further note that

user 1 requests p4 in (21a) that can be reconstructed

by user 2, while user 2 requests q1 in (21b) that can

be reconstructed by user 1. Thus the server can transmit

the coded symbol p4 + q1. Hence, the server only needs

to totally transmit 5 symbols (i.e., the server transmits

(p2, p3, p4 + q1, q2, q3)) as in Theorem 4.

Note that in this scheme, each user directly recovers the

desired “sum of products” symbols (e.g., p4 = a2b2 +
a4b4).

3) Row-partition scheme: here we use 	 = K = 2, in which

case the cache replication placement for Theorem 3

reduces to the MAN cache placement—the role of 	
will be clarified further in Example 2 and Remark 5.

By (14) of Theorem 2, each user directly recovers the

two matrices that make up its desired matrix product.

In other words, during the delivery phase user 1 recov-

ers a3, a4, b3, b4, which are cached by user 2, and

user 2 recovers c1, c2, d1, d2 which are cached by user 1.

Hence, the servers transmits a3+c1, a4+c2, b3+d1, b4+
d2, totally 4 symbols.

To improve on the above, we let user 1 cache the first

row of each matrix (e.g., a1 and a2 for the first file and

similarly for the other files), and let user 2 cache the

second row of each matrix (e.g., a3 and a4 for the first
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file and similarly for the other files). The server transmits

(a3b3+c1d1, a3b4 + c1d2, a4b3 + c2d1, a4b4 + c2d2),
(22)

such that user 1 can recover (a3b3, a3b4, a4b3, a4b4) and

user 2 can recover (c1d1, c1d2, c2d1, c2d2).
By leveraging the correlation of the elements in the prod-

ucts, we can further reduce the number of transmissions.

Upon observing that

a4b4 = (a3b3)−1(a3b4)(a4b3),

c2d2 = (c1d1)−1(c1d2)(c2d1),

we do not need to transmit a4b4 + c2d2 in (22). Hence,

we only need to transmit 3 symbols as in Theorem 3.

Note that in this scheme, each user recovers each

individual term (e.g., a3b3 for user 1) in the “sum of

products” symbols (e.g., a1b1 + a3b3).

�
To conclude, the high-level ideas for the row-partition and

the column-partition schemes, as well as, their main advan-

tages and limitations, are as follows:
1) Row-partition scheme. The first approach partitions each

matrix by rows and use the cache replication strategy

in [32]. It will be explained in Remark 5 that, the

cache replication strategy in the shared-link caching

problem for single file retrieval aims to reduce the

sub-packetization level compared to the MAN scheme.

In our context, the proposed cache replication strategy

with row-partition can reduce both the load and the

sub-packetization level simultaneously.

The matrix product desired by each user can be

expressed by a sum of products of sub-matrices. By fur-

ther encoding each term in the sum into a coded packet

with length equal to its entropy, we then use the MAN

delivery scheme to transmit the coded packets.

2) Column-partition scheme. The second approach parti-

tions each matrix by columns. We separately consider

the case a ≤ 1 and the case a > 1. When a ≤
1 (see the above example), we use the MAN cache

placement strategy in [2] and propose a multi-round

delivery scheme to transmit the coded packets. When

a > 1 (see Example 4), each demanded matrix product

is not full rank; thus the entropy of each product is

(2a− 1)s2 which is strictly less than the number of its

elements a2s2, i.e., there exist some redundant elements

in each product. Hence, we partition each matrix in the

library into two blocks, where the cache placement of

the first block is as in the MAN scheme and we propose

to use a coded cache placement for the second block.

In the delivery phase, each product is also partitioned

into blocks and the correlation among blocks is taken

into consideration during the encoding procedure.

3) On types of placement. We also remark that the

structure-agnostic scheme uses an inter-file coded place-

ment, where coding occurs across the symbols of all

files (i.e., matrices). The row-partition scheme and the

column-partition scheme for a ≤ 1 use uncoded cache

placement. Finally, the column-partition scheme for a >
1 uses an intra-file coded placement, where coding only

occurs within the symbols of the same file.

4) Advantages and limitations. The main advantages and

limitations of the proposed schemes are (see also

Remarks 5 and 8):

• Row-partition scheme. Its main advantage is that

multicast opportunities are fully leveraged. In other

words, if we need to transmit a requested symbol

to a user and this symbol is cached by t other

users, it is encoded in a multicast message with

t + 1 symbols, where each symbol is cached by t
users and demanded by one user. However, each

element in a desired matrix product is the sum

of some products of the elements in the library

matrices. The main limitation of the row-partition

scheme is that each user recovers each individual

product in the sum.

• Column-partition scheme. Its main advantage is to

let each user directly recover each element in the

desired matrix product. Its main limitation is that

multicast opportunities are not fully leveraged.

5) Open problems. In Theorem 6, we show that the pro-

posed schemes are order optimal under uncoded cache

placement for the case where a ≥ 1 and N ≥ 2K. For

the remaining cases, in particular for the case a < 1, it

is part of our on-going works to improve the proposed

row-partition and column-partition schemes. This may

be attained by using inter-file coded placements and by

a new partition approach that has both the advantages of

the row-partition and of the column-partition schemes,

and overcomes their limitations. The derivation of a

non-trivial converse bound for this case is also part of

on-going works.

C. Numerical Evaluations

We now provide some numerical evaluations for the pro-

posed schemes and converse bounds. In Fig. 1, we consider

the case of K = 4 users, N = 20 files, and ratio a ∈{
1
10 , 1

2 , 1, 2, 10
}

. We observe the following from Fig. 1.

1) The row-partition scheme is always better than the

multi-request baseline scheme, and the column-partition

scheme is always better than the uncoded caching base-

line scheme, as Corollary 1 shows.

2) When a is small, the performance of the multi-request

baseline scheme is much worse than the proposed

row-partition and column-partition schemes. This is

because in the multi-request baseline scheme each user

recovers the two library matrices of its desired matrix

product, which has 2rs symbols while the desired matrix

product only has r2 symbols, which is much lower than

2rs when a is small.

3) When a is large, the performance of the uncoded

caching baseline scheme is much worse than the pro-

posed row-partition and column-partition schemes. This

is because in the uncoded caching baseline scheme each

user recovers all the r2 symbols in the desired matrix
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Fig. 1. Performance of various schemes for the shared-link cache-aided matrix multiplication retrieval problem with K = 4 users and N = 20 files for
various values of the ratio a.

product. However, when a is large, r2 is much larger

than f(r, s, r) = 2sr − s2, which is the entropy of the

matrix product.

4) The structure-agnostic scheme performs well when a is

very small, since in this regime the entropy of each

matrix product is much less than the entropy of each

library matrix, and thus it is better to let the users

directly cache the products.

5) The load v.s. cache size curves may not be convex.

This is because in our setting we cannot memory-share

between any two memory-load tradeoff points. For

example, if we partition each matrix in the library into

two parts and use a different cache placement strategy on

each part, in the product of any two matrices there may

exist some elements computed from both parts. In this

case the computation of the matrix multiplication cannot

be divided into two separate parts, each of which is

based on one cache placement strategy.

D. Comparison to Existing Distributed Matrix Multiplication
Computation Schemes for Straggler Mitigation

The distributed matrix multiplication problem has received

much attention in the recent years. The problem is as follows.

There are two uniformly i.i.d. matrices A of dimension s× r
and B of dimension s × t, where s ≥ min(r, t). The matrix
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product ATB must be computed distributidely by a group of

workers. There are mainly three strategies proposed in the

literature, which partition each matrix into sub-matrices by

rows [15], or by columns [14], or by blocks [13]. Each worker

stores a linear combination of the sub-matrices in each matrix,

and then computes the product of the two stored matrices,

which is then sent to the master. From the transmissions of

any T workers, the master must be able to correctly recover the

matrix product. The objective is to characterize the minimum

T , referred to as recovery threshold.

There are two main differences between our problem and

the distributed matrix multiplication problem:
1) In our problem, there are multiple users receiving pack-

ets from the server, each of which caches some contents

from the library and desires a product of two matrices.

Hence, our problem is a broadcast problem with side
information. By careful design, we aim to maximize the

local caching gain (i.e., if some elements in the desired

matrix product have already been cached, we need not

transmit them in the delivery phase) and the coded

caching multicasting gain. In contrast, in the distributed

matrix multiplication computation problem, only the

master wants to retrieve a product (no multicasting gain)

and this master should recover the product only from the

receiving packets (no local caching gain).

2) In the distributed matrix multiplication computation

problem, it is usually assumed that s ≥ min(r, t) (i.e.,

ATB is full rank). Hence, each element in the product

ATB is also uniformly i.i.d. over Fq. The existing

schemes let the master recover each element in the

product individually (without leveraging the correlation

among the elements in the product). Instead, our pro-

posed schemes for this case (i.e., a ≤ 1) still leverage

the correlation among the elements in each product (see

Example 1). This is possible because each user cached

some elements of each library matrix, and with this

side information its desired product could be further

compressed.

V. NOVEL STRUCTURE-AWARE ACHIEVABLE SCHEMES

A. Uncoded Caching Baseline Scheme: Proof of (13)

Placement phase: Each user caches the first M
N r columns

of each of the N matrices in the library.

Delivery phase: User k ∈ [K] demands WT
dk,1

Wdk,2 .

Note that the first M
N r rows of WT

dk,1
and the first M

N r columns

of Wdk,2 are cached by user k ∈ [K]. Hence, user k ∈ [K]
can directly recover M2r2

N2 elements of WT
dk,1

Wdk,2 . Then we

let the server directly transmit the remaining
(
1− M2

N2

)
r2 ele-

ments of WT
dk,1

Wdk,2 . Hence, the total load is

K

(
1− M2

N2

)
r2

f(r, s, r)
= K

(
1− M2

N2

)
a2

g(a, a)
,

which coincides with (13).

B. Multi-Request Baseline Scheme: Proof of (14)

We treat each matrix in the library as a file with sr
symbols, and use the coded caching scheme for multiple files

retrieval in [26]. We focus on each cache size M = Nt
K , where

t ∈ [0 : K].
Placement phase: We divide the sr symbols of each

matrix Wi into
(
K
t

)
non-overlapping and equal-length subfiles,

Wi = {Wi,T : T ⊆ [K], |T | = t}. Each subfile Wi,T contains
sr

(K
t)

symbols and is cached exclusively by the users in T .

Delivery phase: User k ∈ [K] demands WT
dk,1

Wdk,2 .

We let user k ∈ [K] recover Wdk,1 and Wdk,2 . For each set

S ⊆ [K] where |S| = t + 1, we let the server broadcast the

pair of multicast messages∑
k∈S

Wdk,1,S\{k},
∑
k∈S

Wdk,2,S\{k}. (23)

In
∑

k∈S Wdk,1,S\{k}, user k stores all subfiles except

Wdk,1,S\{k} and thus it can recover this subfile. Similarly,

user k can recover Wdk,2,S\{k} from (23).

After considering all sets of users with cardinality t + 1,

each user can recover the two library matrices of its desired

matrix product. The total load is

2
(

K

t + 1

)
sr(
K
t

) 1
f(r, s, r)

=
2(K− t)a

(t + 1)g(a, a)
,

which coincides with (14).

C. Row-Partition Scheme: Proof of Theorem 3

We will start with a more detailed example than the one

in Section IV-B to introduce the row-partition scheme in

Theorem 3. Here, we partition each matrix in the library by

rows and let each sub-matrix be cached by a set of users.

Example 2: Consider the (K, N, a) = (4, 20, 1/2) shared-

link cache-aided matrix multiplication retrieval problem, with

cache size M = 10. We use the cache replication strategy

in [32]. More precisely, we divide the 4 users into 	 ∈ [4]

groups and let the users in the same group cache the same

content.

Case 	 = 4. First we consider the case 	 = 4, in which

case the cache replication strategy in [32] is the same as the

MAN cache placement strategy in [2]. By computing t4 =⌊
4M
N

⌋
= 2, we partition each matrix Wi where i ∈ [20] into(

�
t�

)
= 6 sub-matrices as follows (the dimension of a matrix

is shown in the subscript of its parenthesis)

(Wi)s×r =

⎡
⎢⎢⎢⎢⎢⎢⎣

(Wi,{1,2})s/6×r

(Wi,{1,3})s/6×r

(Wi,{1,4})s/6×r

(Wi,{2,3})s/6×r

(Wi,{2,4})s/6×r

(Wi,{3,4})s/6×r

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Each sub-matrix Wi,T where T ⊆ [4] and |T | = 2, is cached

by users in T . Thus, each user caches 20×3× sr
6 = 10sr = Msr

symbols in total, thus satisfying the cache size constraint.

Assume that

[d1;d2; · · · ;d4] = [1, 2; 3, 4; 5, 6; 7, 8]. (24)
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The matrix product demanded by user 1 is

WT
1W2 =

∑
T ⊆ [4]:|T |=2

WT
1,TW2,T

=
∑

T ′⊆ [4]:|T ′|=2,1∈T ′
WT

1,T ′W2,T ′

+
∑

T ⊆ [4]:|T |=2,1/∈T
WT

1,TW2,T . (25)

Note that the first term on the RHS of (25) is known by

user 1 from its cache. Thus user 1 only needs to recover

the second term. For each T ⊆ [4] where |T | = 2 and

1 /∈ T , WT
1,TW2,T is cached by the users in T . In addition,

WT
1,TW2,T can be encoded into P (WT

1,T ,W2,T ) of size

f(r, s/6, r) symbols. Since a = r
s = 1

2 , we have

f
(
r,

s

6
, r
)

= f
( s

2
,
s

6
,
s

2

)
=

s

6
(
s

2
+

s

2
)−

( s

6

)2

=
5s2

36
.

(26)

We will let user 1 recover P (WT
1,T ,W2,T ) during the delivery

phase.

After generating the coded symbols for each user, the server

broadcasts ∑
k∈S

P (WT
dk,1,S\{k},Wdk,2,S\{k}), (27)

for each set S ⊆ [K] where |S| = t4 + 1 = 3. Each

user k ∈ S knows all the coded symbols in the sum (27)

from its cache except P (WT
dk,1,S\{k},Wdk,2,S\{k}), such that

it can recover P (WT
dk,1,S\{k},Wdk,2,S\{k}) and then recover

WT
dk,1,S\{k}Wdk,2,S\{k}. For example, for S = {1, 2, 3}, the

server broadcasts

P (WT
1,{2,3},W2,{2,3}) + P (WT

3,{1,3},W4,{1,3})

+ P (WT
5,{1,2},W6,{1,2}), (28)

and similarly for the remaining multicast messages. Hence,

the server broadcasts 4f
(
r, s

6 , r
)

= 5s2

9 symbols in total, thus

the achieved load is

5s2

9f(r, s, r)
=

5s2

9f(s/2, s, s/2)
=

20
9

. (29)

Case 	 = 2. Then, we consider the case 	 = 2. By com-

puting t2 =
⌊

2M
N

⌋
= 1, we partition each matrix Wi where

i ∈ [20] into
(

�
t�

)
= 2 sub-matrices as

(Wi)s×r =
[

(Wi,{1})s/2×r

(Wi,{2})s/2×r

]
.

We let users 1 and 3 cache Wi,{1}, and let users 2 and 4 cache

Wi,{2}. In other words, we divide the users into two placement

groups, where the first group contains users 1 and 3, and the

second group contains users 2 and 4. The users in the same

group have the same cache content. So each user caches 20×
sr
2 = 10sr = Msr symbols, satisfying the cache size constraint.

During the delivery phase, we assume that the users’

demands are given as in (24). The matrix product demanded

by user 1 is

WT
1W2 = WT

1,{1}W2,{1} + WT
1,{2}W2,{2}, (30)

for which user 1 only needs to recover WT
1,{2}W2,{2}.

In addition, WT
1,{2}W2,{2} can be encoded into

P (WT
1,{2},W2,{2}) of size f

(
r, s

2 , r
)

= s2

4 symbols.

After generating the coded symbols for each user, we divide

the users into two transmission groups. In the first transmission

group, we let the server satisfy the demands of users 1 and

2 by broadcasting

P (WT
1,{2},W2,{2}) + P (WT

3,{1},W4,{1}). (31)

In the second transmission group, we let the server satisfy the

demands of users 3 and 4 by broadcasting

P (WT
5,{2},W6,{2}) + P (WT

7,{1},W8,{1}). (32)

Hence, the server broadcasts 2f
(
r, s

2 , r
)

= s2

2 symbols in total,

thus the achieved load is

s2

2f(r, s, r)
=

s2

2 f(s/2, s, s/2)
= 2.

Case 	 = 1. Similarly, when 	 = 1 (i.e., one single

placement group) the achieved load is 4.

Case 	 = 3. When 	 = 3 the achieved load is 40
9 (i.e., three

placement groups).

All Cases Together. Hence, the minimum load achieved by

the proposed row-partition scheme is 2 with 	 = 2, which is

less than 64/21, 3, and 8/3 achieved by the structure-agnostic

scheme in Theorem 1 and the two baseline structure-aware

schemes in Theorem 2, respectively. �
Remark 5 (Row-Partition: 	 = 4 v.s. 	 = 2): In Exam-

ple 2, when 	 = 4, each transmitted packet is a sum of

t4 + 1 = 3 coded symbols, while when 	 = 2, it is a sum

of t2 + 1 = 2 coded symbols. However, the latter attains

the lowest load. This is because when 	 = 4, in order

to recover
∑
T ⊆ [4]:|T |=t4=2,1/∈T WT

1,TW2,T in (25), we let

user 1 recover each term in this sum, which increases the

communication load. However, when 	 = 2, there is one set

T ⊆ [2] where |T | = t2 = 1 and 1 /∈ T , and this set is

T = {2}; thus we directly let user 1 recover WT
1,{2}W2,{2}

in (30).

In other words, as already mentioned, the proposed

row-partition scheme uses the cache replication placement

in [32], which was proposed for the MAN shared-link caching

problem for single file retrieval in order to reduce the

sub-packetization at the expense of a higher load compared

to the MAN scheme. However, in our row-partition approach

for the considered cache-aided matrix multiplication retrieval

problem, such a placement can simultaneously reduce the

sub-packetization level and the load compared to the MAN

cache placement.

�
We now generalize the proposed row-partition scheme in

Example 2. We focus on each 	 ∈ [K].
Placement phase: We first compute t� =

⌊
�M
N

⌋
and α� =

t� +1− �M
N as defined in (15c) and (15b), respectively. Among

all the s rows of each matrix in the library, there are α�s rows

cached by t� users, and (1−α�)s rows cached by t� +1 users,

such that the average number of users caching each row is �M
N .

More precisely, the first α�s rows of Wi where i ∈ [N] are
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partitioned into
(

�
t�

)
sub-matrices, each of which is denoted

by Wi,T1 where T1 ⊆ [	] and |T1| = t�. Wi,T1 has dimension
α�s

( �
t�
) × r. The remaining (1−α�)s rows of Wi are partitioned

into
(

�
t�+1

)
sub-matrices, each of which is denoted by Wi,T2

where T2 ⊆ [	] and |T2| = t� + 1. Wi,T2 has dimension
(1−α�)s

( �
t�+1)

× r. Each user k ∈ [K] caches Wi,T where i ∈ [N],

T ⊆ [	], |T | ∈ {t�, t� + 1}, and Mod(k, 	) ∈ T .3 Hence,

user k caches (recall that M = t�+1−α�

� N)

N

((
	− 1
t�−1

)
α�s(

�
t�

) · r +
(

	− 1
t�

)
(1− α�)s(

�
t�+1

) · r
)

= Nsr

(
t�
	

α� +
t� + 1

	
(1− α�)

)
(33a)

= Nsr
t� + 1− α�

	
= Msr symbols, (33b)

satisfying the cache size constraint.

Note that if Mod(k1, 	) = Mod(k2, 	) where k1, k2 ∈ [K],
users k1 and k2 have the same cache content.

Delivery phase: For each 	 ∈ [K], we define

N� :=
{
T ⊆ [	] : |T | ∈ {t�, t� + 1}

}
, (34)

and sort the sets in N� in a lexicographic order. N�(j)
represents the jth set in N�, where j ∈

[(
�+1
t�+1

)]
.4

We divide the users into
⌈

K
�

⌉
groups. More precisely,

we let

Gi = [(i− 1)	 + 1 : i	], ∀i ∈
[⌈

K

	
− 1

⌉]
; (35a)

G� K
� 
 =

[
	

⌈
K

	
− 1

⌉
+ 1 : K

]
, (35b)

where the first
⌈

K
� − 1

⌉
groups contains 	 users with different

caches, and the last group contains K− 	
⌈

K
� − 1

⌉
users with

different caches.

Let us focus on the transmission for group Gi where i ∈[⌈
K
�

⌉]
. We sort the users in Gi in an increasing order and let

Gi(j) be the jth user.5 For each user k ∈ Gi, its desired matrix

product can be expressed as

WT
dk,1

Wdk,2 =

⎡
⎢⎢⎣

WT
dk,1,N�(1)

...

WT

dk,1,N�

�
( �+1

t�+1)
�

⎤
⎥⎥⎦

[
Wdk,2,N�(1) · · · W

dk,2,N�

�
( �+1

t�+1)
� ]

(36a)

=
∑

T1⊆[�]:|T1|=t�

WT
dk,1,T1

Wdk,2,T1

+
∑

T2⊆[�]:|T2|=t�+1

WT
dk,1,T2

Wdk,2,T2 (36b)

=
∑

T ′1⊆[�]:|T ′1 |=t�,Mod(k,�)∈T ′1

WT
dk,1,T ′1 Wdk,2,T ′1

3 Mod(a, b) represents the modulo operation on a with integer quotient b.

In this paper, if b divides a, we let Mod(a, b) = b.
4From the Pascal’s Triangle, we have

� �
t�

�
+

� �
t�+1

�
=

� �+1
t�+1

�
.

5 If j > |Gi|, we let Gi(j) = ∅.

+
∑

T1⊆[�]:|T1|=t�,Mod(k,�)/∈T1

WT
dk,1,T1

Wdk,2,T1

+
∑

T ′2⊆[�]:|T ′2 |=t�+1,Mod(k,�)∈T ′2

WT
dk,1,T ′2Wdk,2,T ′2

+
∑

T2⊆[�]:|T2|=t�+1,Mod(k,�)/∈T2

WT
dk,1,T2

Wdk,2,T2 . (36c)

We note that the first and third term on the RHS of (36c) can

be re-constructed by the cached content of user k. Hence,

user k only needs to recover the second and fourth terms

in (36c) during the delivery phase. For each T1 ⊆ [	]
where |T1| = t� and Mod(k, 	) /∈ T1, we can encode

WT
dk,1,T1

Wdk,2,T1 into P
(
WT

dk,1,T1
,Wdk,2,T1

)
of size

f

(
r,

α�s(
�
t�

) , r
)

= g

(
r
(

�
t�

)
α�s

,
r
(

�
t�

)
α�s

)(
α�s(

�
t�

)
)2

(37a)

= g

(
a
(

�
t�

)
α�

,
a
(

�
t�

)
α�

)(
α�s(

�
t�

)
)2

symbols, (37b)

where a = r/s, and f(·) and g(·) are defined in Section II.

We will let user k recover P
(
WT

dk,1,T1
,Wdk,2,T1

)
during

the delivery phase. For each T2 ⊆ [	] where |T2| = t� +
1 and Mod(k, 	) /∈ T2, we can encode WT

dk,1,T2
Wdk,2,T2 into

P
(
WT

dk,1,T2
,Wdk,2,T2

)
of size

f

(
r,

(1 − α�)s(
�

t�+1

) , r

)

= g

(
r
(

�
t�+1

)
(1− α�)s

,
r
(

�
t�+1

)
(1− α�)s

)(
(1 − α�)s(

�
t�+1

)
)2

(38a)

= g

(
a
(

�
t�+1

)
(1− α�)

,
a
(

�
t�+1

)
(1− α�)

)(
(1− α�)s(

�
t�+1

)
)2

symbols.

(38b)

We will also let user k recover P
(
WT

dk,1,T2
,Wdk,2,T2

)
during

the delivery phase.

After generating the desired coded symbols for all users in

Gi, the server broadcasts

Xi,S1 :=
∑
j∈S1

P
(
WT

d(i−1)�+j,1,S1\{j},Wd(i−1)�+j,2,S1\{j}

)
,

(39)

for each set S1 ⊆ [	] where S1 = t� + 1,

such that user (i − 1)	 + j can recover

P
(
WT

d(i−1)�+j,1,S1\{j},Wd(i−1)�+j,2,S1\{j}

)
from Xi,S1 ,

where j ∈ S1. Similarly, for each set S2 ⊆ [	] where

S2 = t� + 2, the server broadcasts

Xi,S2 :=
∑
j∈S2

P
(
WT

d(i−1)�+j,1,S2\{j},Wd(i−1)�+j,2,S2\{j}

)
,

(40)

such that user (i − 1)	 + j can recover

P
(
WT

d(i−1)�+j,1,S2\{j},Wd(i−1)�+j,2,S2\{j}

)
. Hence, for

the users in Gi, the total number of symbols transmitted
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by the server is
(

�
t�+1

)
g

(
a( �

t�
)

α�
,

a( �
t�
)

α�

)(
α�s

( �
t�
)

)2

+

(
�

t�+2

)
g

(
a( �

t�+1)
(1−α�)

,
a( �

t�+1)
(1−α�)

)(
(1−α�)s

( �
t�+1)

)2

.

Considering all the
⌈

K
�

⌉
transmission groups, the total load

is ⌈
K
�

⌉
f(r, s, r)

((
	

t� + 1

)
g

(
a
(

�
t�

)
α�

,
a
(

�
t�

)
α�

)(
α�s(

�
t�

)
)2

+
(

	

t� + 2

)
g

(
a
(

�
t�+1

)
(1 − α�)

,
a
(

�
t�+1

)
(1− α�)

)(
(1− α�)s(

�
t�+1

)
)2)

=

⌈
K
�

⌉
g(a, a)

((
	

t� + 1

)
g

(
a
(

�
t�

)
α�

,
a
(

�
t�

)
α�

)(
α�(
�
t�

)
)2

+
(

	

t� + 2

)
g

(
a
(

�
t�+1

)
(1 − α�)

,
a
(

�
t�+1

)
(1− α�)

)(
(1− α�)(

�
t�+1

)
)2)

,

(41)

which coincides with (15a).

Remark 6 (Row-Partition Scheme v.s. Multi-Request Base-
line Scheme): If we let 	 = K, encode WT

dk,1,T1
Wdk,2,T1

into the concatenation of all the symbols in WT
dk,1,T1

and

Wdk,2,T1 whose length is strictly larger than the length

of P
(
WT

dk,1,T1
,Wdk,2,T1

)
, and encode WT

dk,1,T2
Wdk,2,T2

into the concatenation of all the symbols in WT
dk,1,T2

and

Wdk,2,T2 whose length is strictly larger than the length of

P
(
WT

dk,1,T2
,Wdk,2,T2

)
, then it is equivalent to let each

user recover the two library matrices of its desired matrix

product; thus the proposed row-partition scheme becomes

the multi-request baseline scheme for Theorem 2. Therefore,

the proposed row-partition scheme is strictly better than the

multi-request baseline scheme when M < N. �
Remark 7 (Application of Other Shared-Link Coded

Caching Schemes): Obviously, with the proposed row-

partition strategy, we can apply any coded caching scheme

with uncoded cache placement for the original MAN coded

caching problem for single file retrieval to the considered

cache-aided matrix multiplication retrieval problem. More pre-

cisely, for any existing scheme with uncoded cache placement

for the single file retrieval problem, each file W ′
i where i ∈ [N]

is divided into non-overlapping subfiles, W ′
i = {W ′

i,T : T ⊆
[K]}. In the considered matrix multiplication retrieval problem,

we can partition each matrix Wi into 2K sub-matrix by rows,

each sub-matrix denoted by Wi,T of dimension
s|W ′

i,T |
|W ′

i |
× r.

We then encode WT
dk,1,TWdk,2,T into P

(
WT

dk,1,TWdk,2,T
)

symbols. Finally, we use the delivery phase of this existing

scheme to deliver P
(
WT

dk,1,TWdk,2,T
)

as delivering W ′
dk,T

in the original file retrieval problem, where dk represents the

desired file of user k. �

D. Column-Partition Scheme: Proof of Theorem 4

We continue Example 2 to introduce the column-partition

scheme in Theorem 4. Here we partition each matrix in the

library by columns and let each sub-matrix be cached by a set

of users.

Example 3: Recall that we consider the (K, N, a) =
(4, 20, 1/2) shared-link cache-aided matrix multiplication

retrieval problem with cache size M = 10.

Placement phase: We use the MAN cache placement

in [2]. With tK =
⌊

KM
N

⌋
= 2, we partition each matrix Wi

where i ∈ [20] into
(

K
tK

)
= 6 sub-matrices as follows, Wi =[

Wi,{1,2},Wi,{1,3},Wi,{1,4},Wi,{2,3},Wi,{2,4},Wi,{3,4}
]
,

where sub-matrix Wi,T of dimension s × r
6 , for T ⊆ [4]

and |T | = 2, is cached by users in T . Each user thus caches

20× 3× sr
6 = 10sr = Msr symbols, satisfying the cache size

constraint.

Delivery phase: Assume that the users’ demands are

as in (24). The matrix product demanded by user 1 can be

expressed as

(WT
1W2)r×r =⎡

⎢⎢⎢⎢⎣
(WT

1,{1,2}W2,{1,2}) r
6×

r
6
· · · (WT

1,{1,2}W2,{3,4}) r
6×

r
6

(WT
1,{1,3}W2,{1,2}) r

6×
r
6
· · · (WT

1,{1,3}W2,{3,4}) r
6×

r
6

...
. . .

...

(WT
1,{3,4}W2,{1,2}) r

6×
r
6
· · · (WT

1,{3,4}W2,{3,4}) r
6×

r
6

⎤
⎥⎥⎥⎥⎦ .

(42)

Each sub-matrix WT
1,T1

W2,T2 in (42) where T1, T2 ⊆ [4]

and |T1| = |T2| = 2, is then encoded into P (WT
1,T1

,W2,T2)
of f

(
r
6 , s, r

6

)
= f

(
s
12 , s, s

12

)
= s2

144 symbols. Note that

P (WT
1,T1

,W2,T2) can be directly re-constructed by each user

in T1∩T2 from their cached content. Hence, during the delivery

phase user 1 needs to recover P (WT
1,T1

,W2,T2) where 1 /∈
(T1∩T2). We divide the coded symbols desired by user 1 into

groups, such that F1,V represents the set of coded symbols

desired by user 1 and uniquely known by users in V . More

precisely, we have

F1,∅ =
{
P (WT

1,{1,2},W2,{3,4}), P (WT
1,{1,3},W2,{2,4}),

P (WT
1,{1,4},W2,{2,3}), P (WT

1,{2,3},W2,{1,4}),

P (WT
1,{2,4},W2,{1,3}), P (WT

1,{3,4},W2,{1,2})
}
; (43a)

F1,{2} =
{

P (WT
1,{1,2},W2,{2,3}), P (WT

1,{1,2},W2,{2,4}),

P (WT
1,{2,3},W2,{1,2}), P (WT

1,{2,3},W2,{2,4}),

P (WT
1,{2,4},W2,{1,2}), P (WT

1,{2,4},W2,{2,3})
}
; (43b)

F1,{3} =
{

P (WT
1,{1,3},W2,{2,3}), P (WT

1,{1,3},W2,{3,4}),

P (WT
1,{2,3},W2,{1,3}), P (WT

1,{2,3},W2,{3,4}),

P (WT
1,{3,4},W2,{1,3}), P (WT

1,{3,4},W2,{2,3})
}
; (43c)

F1,{4} =
{

P (WT
1,{1,4},W2,{2,4}), P (WT

1,{1,4},W2,{3,4}),

P (WT
1,{2,4},W2,{1,4}), P (WT

1,{2,4},W2,{3,4}),

P (WT
1,{3,4},W2,{1,4}), P (WT

1,{3,4},W2,{2,4})
}
; (43d)

F1,{2,3} =
{
P (WT

1,{2,3},W2,{2,3})
}
; (43e)

F1,{2,4} =
{
P (WT

1,{2,4},W2,{2,4})
}
; (43f)

F1,{3,4} =
{
P (WT

1,{3,4},W2,{3,4})
}
. (43g)
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From (43), and similarly for the other users, we have

|F2,∅| = |F3,∅| = |F4,∅| =
s2

24
; (44a)

|F2,{1}| = |F2,{3}| = |F2,{4}| = |F3,{1}| = |F3,{2}|

= |F3,{4}| = |F4,{1}| = |F4,{2}| = |F4,{3}| =
s2

24
; (44b)

|F2,{1,3}| = |F2,{1,4}| = |F2,{3,4}| = |F3,{1,2}| = |F3,{1,4}|

= |F3,{2,4}| = |F4,{1,2}| = |F4,{1,3}| = |F4,{2,3}| =
s2

144
.

(44c)

Next we divide the transmission into three rounds. In the

first round, the server broadcasts

F1,∅, F2,∅, F3,∅, F4,∅, (45)

for a total of 4s2

24 = s2

6 symbols. In the second round, the server

broadcasts

F1,{2} + F2,{1}, F1,{3} + F3,{1}, F1,{4} + F4,{1},

F2,{3} + F3,{2}, F2,{4} + F4,{2}, F3,{4} + F4,{3}, (46)

for a total of 6s2

24 = s2

4 symbols. In the third round, the server

broadcasts

F1,{2,3}+F2,{1,3} + F3,{1,2}, F1,{2,4} + F2,{1,4} + F4,{1,2},

F1,{3,4}+F3,{1,4} + F4,{1,3}, F2,{3,4} + F3,{2,4} + F4,{2,3},

(47)

for a total of 4s2

144 = s2

36 symbols. Hence, the achieved load is

s2

6 + s2

4 + s2

36

f(r, s, r)
=

s2

6 + s2

4 + s2

36

f(s/2, s, s/2)
=

16
9

,

which is less than all other schemes. �
Remark 8 (Row-Partition With 	 = K v.s. Column-Parti-

tion): We now compare the row-partition scheme with 	 =
K = 4 and the column-partition scheme through the above

example. In both schemes, each sub-matrix in the library

matrices is cached by t4 = 2 users. The main advantage of

the row-partition scheme with 	 = 4 is that each transmitted

packet is a sum of t4 + 1 = 3 coded symbols, while most

packets transmitted by the column-partition scheme are the

sums of t4 = 2 coded symbols. However, each element in

the desired matrix product by each user is a sum of some

products of the elements in the library matrices. Instead of

letting the user recover each individual product in the sum

as in the row-partition scheme (e.g., we let user 1 recover

each individual product in the sum (25)), the column-partition

scheme directly lets the user recover this sum (e.g., we let

user 1 recover each term in the product matrix (42)).

To conclude, as mentioned already in Section IV-B, the

main advantage of the row-partition scheme is to fully leverage

the multicast opportunities, while the main advantage of the

column-partition scheme is to let each user directly recover

each element in the product. �
We then generalize the column-partition scheme in Exam-

ple 3.

1) a ≤ 1: Let us first consider the case where a ≤ 1 (i.e.,

r ≤ s).

Placement phase: Let tK =
⌊

KM
N

⌋
and αK = tK+1− KM

N .

Among all the r columns of each matrix in the library, there

αKr columns cached by tK users, and (1 − αK)r columns

cached by tK + 1 users, such that the average number of

users caching each column is KM
N . More precisely, the first αKr

columns of Wi where i ∈ [N] are partitioned into
(

K
tK

)
sub-

matrices, each of which is denoted by Wi,T1 where T1 ⊆ [K]
and |T1| = tK. Wi,T1 has dimension s× αKr

( K
tK

) . The remaining

(1 − αK)r columns of Wi are partitioned into
(

K
tK+1

)
sub-

matrices, each of which is denoted by Wi,T2 where T2 ⊆ [K]
and |T2| = tK + 1. Wi,T2 has dimension s× (1−αK)r

( K
tK+1)

.

Each user k ∈ [K] caches Wi,T where i ∈ [N], T ⊆ [K],
|T | ∈ {tK, tK + 1}, and k ∈ T . Hence, user k ∈ [K] caches

N

((
K− 1
tK−1

)
s · αKr(

K
tK

) +
(

K − 1
tK

)
s · (1− αK)r(

K
tK+1

)
)

= Nsr

(
tK
K

αK +
tK + 1

K
(1− αK)

)
(48a)

= Nsr
tK + 1− αK

K
= Msr symbols, (48b)

thus satisfying the cache size constraint.

Delivery phase: Recall from (34) that NK :=
{
T ⊆

[K] : |T | ∈ {tK, tK + 1}
}
, where |NK| =

(
K+1
tK+1

)
. Let NK(j)

represents the jth set in NK, where j ∈
[(

K+1
tK+1

)]
.

The matrix product desired by user k ∈ [K], WT
dk,1

Wdk,2 ,

can be expressed in (49), shown at the bottom of the next

page.

For any pair (j1, j2) where j1, j2 ∈
[(

K+1
tK+1

)]
,

• if k ∈ NK(j1) ∩ NK(j2), WT
dk,1,NK(j1)Wdk,2,NK(j2) can

be reconstructed by user k from its cached content;

• otherwise, we encode WT
dk,1,NK(j1)Wdk,2,NK(j2)

into P
(
WT

dk,1,NK(j1),Wdk,2,NK(j2)

)
. We then add

P
(
WT

dk,1,NK(j1)
,Wdk,2,NK(j2)

)
into Fk,NK(j1)∩NK(j2),

which represents the set of coded symbols desired

by user k that can be reconstructed by users in

NK(j1) ∩ NK(j2).
The following lemma is proved in Appendix C.

Lemma 1: For each i ∈ [0 : tK + 1] and k ∈ [K], we have

|Fk,V | =

⎛
⎝(αKa(

K
tK

)
)2(

K− i

tK − i

)(
K− tK
tK − i

)

+

(
(1− αK)a(

K
tK+1

)
)2(

K − i

tK + 1− i

)(
K− tK − 1
tK + 1− i

)
+

+2
αK(1− αK)a2(

K
tK

)(
K

tK+1

) (
K− i

tK − i

)(
K− tK

tK + 1− i

))
s2,

(50)

for all V ⊆ ([K] \ {k}) where |V| = i.
In other words, the length of Fk,V only depends on |V|.

Hence, we define fi,a as the RHS of (50), representing the

length of each Fk,V where |V| = i.
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The transmission is divided into tK + 2 rounds. In round

i ∈ [0 : tK +1], for each S ⊆ [K] where |S| = i+1, the server

broadcasts

XS =
∑
k∈S

Fk,S\{k}, (51)

such that each user k ∈ S can recover Fk,S\{k}.

Considering all the tK + 2 rounds, the total load is∑
i∈[0:tK+1]

(
K

i+1

)
fi,a

f(r, s, r)
=

∑
i∈[0:tK+1]

(
K

i+1

)
fi,a

a2s2
, (52)

where (52) follows from a ≤ 1. From (52), we prove (16a)

for the case where a ≤ 1.

2) a > 1: We then consider the case where a > 1 (i.e.,

r > s). In this case, each demanded matrix product is not full-

rank. So compared to the proposed column-partition scheme

for a ≤ 1, we will use a novel coded cache placement and

some additional steps in the delivery phase to deal with the

rank deficiency. We first use the following example to illustrate

the key ideas.

Example 4: Consider the case of K = 2 users, N =
4 matrices of dimension s × r = 2 × 4 (i.e., a = 2), and that

each user can store up to 16 symbols (i.e., M = 2). Assume

that the four matrices are A,B,C,D. We express the matrix

A as follows

A =
[
a1 a2 a3 a4

a5 a6 a7 a8

]
= A1

[
I2,A−1

1 A2

]
,

A1 :=
[
a1 a2

a5 a6

]
,A2 :=

[
a3 a4

a7 a8

]
,

where we assumed that block A1 is full rank (this is true

with high probability when the filed size is large); same for

the remaining matrices. Note that the general column-partition

scheme described later also works for the case where A1 is not

full rank; thus for arbitrary finite field, the proposed scheme

also works.

Placement phase: user 1 caches

[
a1

a5

]
and A−1

1

[
a3

a7

]
,

and user 2 caches

[
a2

a6

]
and A−1

1

[
a4

a8

]
; similarly for the other

matrices. Hence, each user caches 4 symbols from each matrix;

thus each user caches 16 symbols in total.

Delivery phase: Assume that the users 1 and 2 demand

ATB =
[

AT
1B1 AT

1B2

AT
2B1 AT

2B2

]
,CTD =

[
CT

1D1 CT
1D2

CT
2D1 CT

2D2

]
,

respectively, where each matrix product contains 4 blocks. The

delivery phase of the column-partition scheme contains three

steps:
• In the first step, we let user 1 recover AT

1B1 and let

user 2 recover CT
1D1. The delivery is exactly the same

as the column-partition scheme in the previous example

for a ≤ 1. Thus, we need to transmit 5 symbols.

• In the second step, we let user 1 and user 2 recover

AT
1B2 =

[
AT

1

[
b3

b7

]
AT

1

[
b4

b8

] ]
,

CT
1D2 =

[
CT

1

[
d3

d7

]
CT

1

[
d4

d8

] ]
,

respectively. Since user 1 has recovered AT
1B1 in

the first step and cached B−1
1

[
b3

b7

]
, it can

recover AT
1B1B−1

1

[
b3

b7

]
= AT

1

[
b3

b7

]
. Similarly,

user 2 can recover CT
1

[
d3

d7

]
. In addition,

AT
1

[
b4

b8

]
= AT

1B1B−1
1

[
b4

b8

]
, where F ′1,{2} = B−1

1

[
b4

b8

]
is requested by user 1 and cached by user 2. Similarly,

F ′2,{1} = D−1
1

[
d3

d7

]
is requested by user 2 and cached

by user 1. We let the server transmit F ′1,{2} + F ′2,{1} for

a total of 2 symbols.

• In the third step, we let user 1 recover

AT
2B1 =

(
A−1

1 A2

)T
AT

1B1,

AT
2B2 =

(
A−1

1 A2

)T
AT

1B2,

and let user 2 recover

CT
2D1 =

(
C−1

1 C2

)T
CT

1D1,

CT
2D2 =

(
C−1

1 C2

)T
CT

1D2.

Note that AT
1B1 and AT

1B2 have been recovered by

user 1; in addition, we have

A−1
1 A2 =

[
A−1

1

[
a3

a7

]
A−1

1

[
a4

a8

] ]
,

where A−1
1

[
a3

a7

]
is cached by user 1, and F ′′1,{2} =

A−1
1

[
a4

a8

]
is requested by user 1 and cached by user 2.

Similarly, user 2 only needs to recover F ′′2,{1} =

C−1
1

[
c3

c7

]
, which is cached by user 1. We let the server

transmit F ′′1,{2} + F ′′2,{1} for a total of 2 symbols.

Thus, the server transmits 5 + 2 + 2 = 9 symbols in total.

Had we directly used the column-partition scheme for the case

a ≤ 1, the server would have sent 5 symbols for each block,

for a total of 20 symbols. �
We are now ready to generalize Example 4.

WT
dk,1

Wdk,2 =

⎡
⎢⎢⎢⎣

WT
dk,1,NK(1)Wdk,2,NK(1) · · · WT

dk,1,NK(1)Wdk,2,NK

�
( K+1

tK+1)
�

...
. . .

...

WT

dk,1,NK

�
( K+1

tK+1)
�Wdk,2,NK(1) · · · WT

dk,1,NK

�
( K+1

tK+1)
�W

dk,2,NK

�
( K+1

tK+1)
�

⎤
⎥⎥⎥⎦ . (49)
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Placement phase: We partition each matrix Wi where

i ∈ [N] into two blocks

(Wi)s×r =
[

(Wi,1)s×s (Wi,2)s×(r−s)

]
.

Up to a column permutation, the rank of Wi,1 is equal to the

rank of Wi.
6

The cache placement for Wi,1 is the same as the case where

a < 1. Recall that tK =
⌊

KM
N

⌋
and αK = tK+1− KM

N . The first

αKs columns of Wi,1 are partitioned into
(

K
tK

)
sub-matrices,

each of which is denoted by Wi,1,T1 and cached by users in

T1, where T1 ⊆ [K] and |T1| = tK. The remaining (1 − αK)s
columns of Wi,1 are partitioned into

(
K

tK+1

)
sub-matrices, each

of which is denoted by Wi,1,T2 and cached by users in T2,

where T2 ⊆ [K] and |T2| = tK + 1.

The cache placement for Wi,2 is as follows.

• We partition the first αK(r − s) columns of Wi,2 into(
K
tK

)
sub-matrices, each of which is denoted by Wi,2,T1 ,

where T1 ⊆ [K] and |T1| = tK. Wi,2,T1 has dimension s×
αK(r−s)

( K
tK

) . We let each user in T1 cache Q(Wi,1,Wi,2,T1),

where

Wi,1Q(Wi,1,Wi,2,T1) = Wi,2,T1 ,

and the dimension of Q(Wi,1,Wi,2,T1) is the same as

Wi,2,T1 . More precisely, since the rank of Wi,1 is equal

to the rank of Wi, each column of Wi,2,T1 can be

expressed by a linear combination of the columns of

Wi,1. For example, the jth column of Wi,2,T1 is equal

to

Wi,1Qj(Wi,1,Wi,2,T1),

where Qj(Wi,1,Wi,2,T1) represents the jth column

of Q(Wi,1,Wi,2,T1). Note that if Wi,1 is full-rank,

Q(Wi,1,Wi,2,T1) becomes W−1
i,1 Wi,2,T1 .

• Similarly, the remaining (1−αK)(r−s) columns of Wi,2

are partitioned into
(

K
tK+1

)
sub-matrices, each of which is

denoted by Wi,2,T2 , where T2 ⊆ [K] and |T2| = tK + 1.

Wi,2,T2 has dimension s× (1−αK)(r−s)

( K
tK+1)

. We let each user

in T2 cache Q(Wi,1Wi,2,T2).
Since the dimension of Q(Wi,1,Wi,2,T ) is the same as

Wi,2,T for any T ⊆ [K] where |T | ∈ {tK, tK + 1}, the total

number of symbols cached by each user is the same as for

the case where a ≤ 1 (which is Msr). Hence the cache size

constraint is satisfied.

Delivery phase: The matrix product desired by user k ∈
[K] can be expressed as

(WT
dk,1

Wdk,2)r×r =[
(WT

dk,1,1)s×s

(WT
dk,1,2)(r−s)×s

] [
(Wdk,2,1)s×s (Wdk,2,2)s×(r−s)

]
(54a)

=

[
(WT

dk,1,1Wdk,2,1)s×s (WT
dk,1,1Wdk,2,2)s×(r−s)

(WT
dk,1,2Wdk,2,1)(r−s)×s (WT

dk,1,2Wdk,2,2)(r−s)×(r−s)

]
.

(54b)

6 The information of permutation is also cached by each user, which is

negligible compared to the field size q and the cache size of each user.

In the following, we divide the transmission into three steps.

First step: we deliver packets for WT
dk,1,1Wdk,2,1, for all

k ∈ [K]. The transmission for WT
dk,1,1Wdk,2,1 is the same as

the proposed column-partition scheme with a = 1 as described

earlier in this subsection. Thus with the same derivation that

led to (52), the total number of symbols transmitted in the first

step is ∑
i∈[0:tK+1]

(
K

i + 1

)
fi,1 = ys2, (55)

where y is defined in (16b).

Second step: we then focus on WT
dk,1,1Wdk,2,2. We parti-

tion WT
dk,1,1Wdk,2,2 into

(
K
tK

)
+
(

K
tK+1

)
=
(

K+1
tK+1

)
sub-matrices

as

WT
dk,1,1Wdk,2,2 =[

WT
dk,1,1Wdk,2,2,NK(1) · · · WT

dk,1,1Wdk,2,2,NK

�
( K+1

tK+1)
�]

.

For each j ∈
[(

K+1
tK+1

)]
, we have

WT
dk,1,1Wdk,2,2,NK(j)

= WT
dk,1,1Wdk,2,1Q

(
Wdk,2,1,Wdk,2,2,NK(j)

)
. (56)

Note that WT
dk,1,1Wdk,2,1 has been recovered by user k in

the first delivery step. Hence, in this step user k needs to

recover Q(Wdk,2,1Wdk,2,2,NK(j) ), which is cached by users

in NK(j). We let

F ′k,NK(j) = Q(Wdk,2,1,Wdk,2,2,NK(j) ),

which contains sαK(r−s)

( K
tK

) symbols if |NK(j)| = tK, and contains

s (1−αK)(r−s)

( K
tK+1)

symbols if |NK(j)| = tK + 1.

For each set S1 ⊆ [K] where S1 = tK + 1, the server

broadcasts ∑
j∈S1

F ′k,S1\{k}. (57)

For each set S2 ⊆ [K] where S2 = tK+2, the server broadcasts∑
j∈S2

F ′k,S2\{k}. (58)

Hence, the total number of symbols transmitted in the second

step is(
K

tK + 1

)
s
αK(r − s)(

K
tK

) +
(

K

tK + 2

)
s
(1− αK)(r − s)(

K
tK+1

) . (59)

Third step: we let each user k ∈ [K] recover the remaining

parts of its desired matrix product, shown in (60b) shown at

the bottom of the next page. Note that WT
dk,1,1Wdk,2,1 and

WT
dk,1,1Wdk,2,2 have been recovered by user k in the first

and second steps, respectively. Now it only needs to recover

Q(Wdk,1,1Wdk,1,2), which can be expressed as

Q(Wdk,1,1,Wdk,1,2) =

[
Q
(
Wdk,1,1,Wdk,1,2,NK(1)

)
, . . . ,

Q
(
Wdk,1,1,Wdk,1,2,NK

�
( K+1

tK+1)
�
)]

.
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For each j ∈
[(

K+1
tK+1

)]
, we let

F ′′k,NK(j) = Q
(
Wdk,1,1,Wdk,1,2,NK(j)

)
,

which contains sαK(r−s)

( K
tK

) symbols if |NK(j)| = tK, and contains

s (1−αK)(r−s)

( K
tK+1)

symbols if |NK(j)| = tK + 1.

For each set S1 ⊆ [K] where S1 = tK + 1, the server

broadcasts ∑
j∈S1

F ′′k,S1\{k}. (61)

For each set S2 ⊆ [K] where S2 = tK+2, the server broadcasts∑
j∈S2

F ′′k,S2\{k}. (62)

Hence, the total number of symbols transmitted in the third

step is(
K

tK + 1

)
s
αK(r − s)(

K
tK

) +
(

K

tK + 2

)
s
(1− αK)(r − s)(

K
tK+1

) . (63)

Considering all the three steps, from (55), (59), and (63),

the total load is

ys2 + 2
(

K
tK+1

)
sαK(r−s)

( K
tK

) + 2
(

K
tK+2

)
s (1−αK)(r−s)

( K
tK+1)

f(r, s, r)

=
y + 2

(
K

tK+1

)αK(a−1)

( K
tK

) + 2
(

K
tK+2

) (1−αK)(a−1)

( K
tK+1)

2a− 1
, (64)

where (64) follows from that a > 1. From (64), we prove (16a)

for the case where a > 1.

Remark 9 (Column-Partition Scheme v.s. Uncoded Caching
Baseline Scheme): When a ≤ 1, for any pair (j1, j2)
where j1, j2 ∈

[(
K+1
tK+1

)]
and k /∈ NK(j1) ∩ NK(j2), if the

server directly broadcasts WT
dk,1,NK(j1)

Wdk,2,NK(j2), then our

column-partition scheme reduces to the uncoded caching

baseline scheme for Theorem 2. Hence, in this case our

column-partition scheme is strictly better than the uncoded

caching baseline scheme if 0 < M < N. When a > 1,

besides the above improvement which also appears in the first

delivery step, in the second and third steps we further compress

the desired matrix products of the users by leveraging the

correlation among the elements in the product and the users’

caches. Hence, in this case our column-partition scheme is

strictly better than the uncoded caching baseline scheme if

M < N.

�

VI. CONCLUSION

This paper introduced a novel coded caching problem for

matrix multiplication retrieval, where each cache-aided user

requests the product of two matrices in the library. We first pro-

posed a structure-agnostic scheme which treats each product as

an independent file. In order to leverage the structure of matrix

multiplication, we proposed two schemes (by row-partition

and column-partition, respectively) to attain coded caching

gain for the matrix multiplication retrieval problem, by lever-

aging the correlation among the elements in each product.

The proposed schemes outperform the baseline schemes. For

“fat” matrices, the proposed row-partition scheme is proved to

be order optimal within a factor of 2 under the constraint of

uncoded cache placement and N ≥ 2K.

APPENDIX A

STRUCTURE-AGNOSTIC SCHEME: PROOF OF THEOREM 1

For each pair (i, j) where 1 ≤ i ≤ j ≤ N, we define

W(i,j) := P
(
WT

i ,Wj

)
(65)

and treat W(i,j) as an independent file with B symbols, where

we can recover WT
i Wj from W(i,j). We then use the MAN

coded caching scheme as follows.

Placement phase: We focus on each t ∈ [0 : K]. For

each pair (i, j) where 1 ≤ i ≤ j ≤ N, we divide W(i,j)

into
(
K
t

)
non-overlapping and equal-length subfiles, W(i,j) =

{W(i,j),T : T ⊆ [K], |T | = t}, where each subfile W(i,j),T
contains B

(K
t)

symbols and is cached by users in T . As there

are
(
N
2

)
+ N = N(N+1)

2 pairs (i, j) where 1 ≤ i ≤ j ≤ N, the

total number of symbols cached by each user is

N(N + 1)
2

B
(
K−1
t−1

)(
K
t

) =
N(N + 1)Bt

2K
=

N(N + 1)Bt

2aKs2
sr = Msr,

satisfying the cache size constraint.

Delivery phase: Each user k ∈ [K] demands Wdk
. For

each set S ⊆ [K] where |S| = t + 1, the server transmits∑
k∈S

Wdk,S\{k}, (66)

where each user k ∈ S caches all subfiles except Wdk,S\{k}
such that it can recover Wdk,S\{k}.

After considering all sets of users with cardinality t + 1,

each user can recover its demanded file and thus recover its

demanded product. Hence, the total load is(
K

t+1

)(
K
t

) =
K− t

t + 1
,

which coincides with (12).

[
WT

dk,1,2Wdk,2,1 WT
dk,1,2Wdk,2,2

]
=
[ (

Wdk,1,1Q(Wdk,1,1,Wdk,1,2)
)T

Wdk,2,1

(
Wdk,1,1Q(Wdk,1,1,Wdk,1,2)

)T
Wdk,2,2

]
(60a)

=
[ (

Q(Wdk,1,1,Wdk,1,2)
)T

WT
dk,1,1Wdk,2,1

(
Q(Wdk,1,1,Wdk,1,2)

)T
WT

dk,1,1Wdk,2,2

]
. (60b)
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APPENDIX B

PROOF OF THEOREM 6

We consider the case where a ≥ 1 and N ≥ 2K.

A. Converse

We consider the worse-case demands, where [d1; . . . ;dK]
contains 2K different indices of matrices.

We use a genie-aided converse bound. We assume that

during the delivery phase there is a private link from the

server to each user k ∈ [K] through which the server

transmits WT
dk,1

to user k. In this case, the minimum

worst-case number of broadcasted symbols by the server under

uncoded cache placement is denoted by L�
genie, u. Obviously,

we have

R�
uf(r, s, r) ≥ L�

genie, u. (67)

Recall that WT
dk,1

is of dimension r × s where r ≥ s and

its elements are uniformly i.i.d. Hence, if user k can recover

WT
dk,1

Wdk,2 , with the knowledge of WT
dk,1

this user can

also recover Wdk,2 . On the other hand, if user k can recover

Wdk,2 , with the knowledge of WT
dk,1

this user can also recover

WT
dk,1

Wdk,2 . Hence, when a ≥ 1 we have

H(WT
dk,1

Wdk,2 |WT
dk,1

) = H(Wdk,2 |WT
dk,1

) = H(Wdk,2).

Under the constraint of uncoded cache placement, it is

equivalent to the problem with the same network but

each user aims to retrieve a whole file (each file has sr
symbols).

In addition, since the cache placement is uncoded and

[d1; . . . ;dK] contains 2K different indices of matrices, the

matrix transmitted through the private link cannot help each

user k ∈ [K] to decode its desired file (i.e., Wdk,2). Thus we

can use the converse bound in [27], [31] for the original MAN

coded caching problem for single file retrieval to lower bound

L�
genie, u. In other words, (M, L�

genie, u) is lower bounded by the

lower convex envelop of
(

Nt
K , K−t

t+1 sr/B
)

, for all t ∈ [0 : K].
In conclusion, from (67), (M, R�

u) is lower bounded by the

lower convex envelop of(
Nt

K
,
K − t

t + 1
sr

f(r, s, r)

)
=
(

Nt

K
,
K− t

t + 1
a

2a− 1

)
, ∀t ∈ [0 : K].

(68)

B. Achievability

From (14), the multi-request baseline scheme can achieve

the lower convex envelop of (M, R2) =
(

Nt
K , 2(K−t)a

(t+1)g(a,a)

)
, for

all t ∈ [0 : K]. Compared with the converse bound in (68), the

multi-request baseline scheme is order optimal within a factor

of 2 under the constraint of uncoded cache placement and a ≥
1. In addition, from Corollary 1, the proposed row-partition

scheme outperforms the multi-request baseline scheme. Hence,

we prove Theorem 6.

APPENDIX C

PROOF OF LEMMA 1

We fix one k ∈ [K] and one i ∈ [0 : tK + 1]. Now we want

to compute the length of Fk,V where V ⊆ ([K] \ {k}) and

|V| = i. If one pair (j1, j2) where j1, j2 ∈
[(

K+1
tK+1

)]
satisfies

that, NK(j1) ∩ NK(j2) = V , we have that Fk,V contains

P
(
WT

dk,1,NK(j1),Wdk,2,NK(j2)

)
.

Now we divide all the pairs (j1, j2) where j1, j2 ∈
[(

K+1
tK+1

)]
and NK(j1) ∩ NK(j2) = V into the following four cases.

Case 1: |NK(j1)| = |NK(j2)| = tK: In this case, the length

of P
(
WT

dk,1,NK(j1),Wdk,2,NK(j2)

)
is

f

(
αKr(

K
tK

) , s, αKr(
K
tK

)
)

= g

(
αKa(

K
tK

) ,
αKa(

K
tK

)
)

s2 (69a)

=

(
αKa(

K
tK

)
)2

s2, (69b)

where (69b) comes from that a ≤ 1 and thus αKa

( K
tK

) ≤ 1. The

number of pairs (j1, j2) where j1, j2 ∈
[(

K+1
tK+1

)]
, NK(j1) ∩

NK(j2) = V , and |NK(j1)| = |NK(j2)| = tK is(
K− |V|
tK − |V|

)(
K− tK
tK − |V|

)
=
(

K− i

tK − i

)(
K− tK
tK − i

)
. (70)

Case 2: |NK(j1)| = |NK(j2)| = tK + 1: In this case, the

length of P
(
WT

dk,1,NK(j1)
,Wdk,2,NK(j2)

)
is

f

(
(1 − αK)r(

K
tK+1

) , s,
(1− αK)r(

K
tK+1

)
)

= g

(
(1− αK)a(

K
tK+1

) ,
(1 − αK)a(

K
tK+1

)
)

s2 (71a)

=

(
(1− αK)a(

K
tK+1

)
)2

s2. (71b)

The number of pairs (j1, j2) where j1, j2 ∈
[(

K+1
tK+1

)]
,

NK(j1) ∩ NK(j2) = V , and |NK(j1)| = |NK(j2)| = tK + 1 is(
K − |V|

tK + 1− |V|

)(
K− tK − 1
tK + 1− |V|

)
=
(

K− i

tK + 1− i

)(
K− tK − 1
tK + 1− i

)
. (72)

Case 3: |NK(j1)| = tK and |NK(j2)| = tK + 1: In this

case, the length of P
(
WT

dk,1,NK(j1),Wdk,2,NK(j2)

)
is

f

(
αKr(

K
tK

) , s, (1− αK)r(
K

tK+1

)
)

= g

(
αKa(

K
tK

) ,
(1− αK)a(

K
tK+1

)
)

s2 (73a)

=
αK(1− αK)a2(

K
tK

)(
K

tK+1

) s2. (73b)

The number of pairs (j1, j2) where j1, j2 ∈
[(

K+1
tK+1

)]
,

NK(j1) ∩ NK(j2) = V , |NK(j1)| = tK, and |NK(j2)| =
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tK + 1 is(
K− |V|
tK − |V|

)(
K− tK

tK + 1− |V|

)
=
(

K− i

tK − i

)(
K− tK

tK + 1− i

)
.

(74)

Case 4: |NK(j1)| = tK + 1 and |NK(j2)| = tK: In this

case, the length of P
(
WT

dk,1,NK(j1),Wdk,2,NK(j2)

)
is

f

(
(1− αK)r(

K
tK+1

) , s,
αKr(

K
tK

)
)

= g

(
(1− αK)a(

K
tK+1

) ,
αKa(

K
tK

)
)

s2 (75a)

=
αK(1− αK)a2(

K
tK

)(
K

tK+1

) s2. (75b)

The number of pairs (j1, j2) where j1, j2 ∈
[(

K+1
tK+1

)]
,

NK(j1)∩NK(j2) = V , |NK(j1)| = tK +1, and |NK(j2)| = tK
is (

K− |V|
tK + 1− |V|

)(
K− tK − 1
tK − |V|

)
=
(

K− i

tK + 1− i

)(
K− tK − 1

tK − i

)
(76a)

=
(

K− i

tK − i

)(
K− tK

tK + 1− i

)
. (76b)

Considering all the above four cases, we can prove

Lemma 1.
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