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Abstract— Coded caching is a promising technique to smooth
out network traffic by storing part of the library content at
the users’ local caches. The seminal work on coded caching for
single file retrieval by Maddah-Ali and Niesen (MAN) showed
the existence of a global caching gain that scales with the
total memory in the system, in addition to the known local
caching gain in uncoded systems. This paper formulates a novel
cache-aided matrix multiplication retrieval problem, relevant
for data analytics and machine learning applications. In the
considered problem, each cache-aided user requests the product
of two matrices from the library. A structure-agnostic solution is
to treat each possible matrix product as an independent file and
use the MAN coded caching scheme for single file retrieval. This
paper proposes two structure-aware schemes, which partition
each matrix in the library by either rows or columns and let
a subset of users cache some sub-matrices, that improve on
the structure-agnostic scheme. For the case where the library
matrices are ‘“fat” matrices, the structure-aware row-partition
scheme is shown to be order optimal under some constraint.

Index Terms— Coded caching, matrix multiplication retrieval.

I. INTRODUCTION

T IS predicted that an order of magnitude increase in
network throughput is needed to support the tremendous
growth of data traffic expected for the near future [1]. Con-
ventional technologies are severely limited towards the goal of
achieving such a dramatic throughput gain. A clever usage of
low-cost storage capacity on user devices to cache data plays a
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key role in the design of content distribution schemes. Coded
caching is an effective way to smooth out network traffic dur-
ing peak traffic hours by jointly designing cache placement and
coded delivery schemes. The coded caching strategy originally
proposed by Maddah-Ali and Niesen (MAN) in [2] has the
potential to trade off relatively cheap memory for expensive
bandwidth, i.e., the total traffic load on the network is inversely
proportional to the aggregate cache memory in the network,
a phenomenon referred to as global coded caching gain.

The MAN original model consists of a server, with access
to the whole library, that is connected to several cache-aided
users through an error-free shared-link. The MAN scheme
contains two phases: (i) placement phase (peak-off hours):
each cache-aided user stores some bits in its local cache
without knowledge of later demands; (ii) delivery phase (peak-
traffic hours): each user requests one file from the library
and the server broadcasts coded packets to satisfy all users’
requests simultaneously. The goal is to minimize the number
of broadcasted bits for the worst-case demands, referred to as
worst-case load. It was surprisingly shown in [2] that if each
bit in the library can be cached by ¢ users, the total load can
potentially be reduced by ¢ 4 1 times compared to the con-
ventional uncoded caching scheme, in which the server simply
broadcasts to each user the uncached part of the demanded file.
The MAN shared-link coded caching problem for single file
retrieval has been extended to a number of different network
models (such as Device-to-Device networks [3], topological
networks [4], multi-server networks [5], wireless interference
channels [6], etc.) and different problems where reducing the
communication cost is paramount (such as coded distributed
computing [7], coded data shuffling [8]-[11], etc.).

A common point of the above problems is that users request
whole files. Motivated by the fact that linear and multivariate
polynomial operations are widely used fundamental primitives
for building the complex queries that support many engineer-
ing problems, coded caching was introduced into the scalar
linear function retrieval in [12]. Instead of letting each user
download all the input files in the desired scalar linear function
of files, an optimal coded caching scheme with uncoded
cache placement was proposed in [12], which lets each user
directly recover the desired function. In this paper, we turn our
attention from scalar linear function to matrix multiplication.
Matrix multiplication plays a key role in a wide variety
of domains, such as for example data analytics, machine
learning, and scientific computing [8], [13], [14]. Recently,
information theoretic coding techniques have been proposed
for the distributed matrix multiplication problem [13]-[19].
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In a distributed computing system a master node aims to
compute the multiplication of two large-scale matrices with
the help of workers, where the workers can only store and
compute on small parts of the matrices. Since workers may
take different amounts of time to complete their assigned task,
i.e., some are stragglers, the goal here is for the master node to
recover the matrix product as soon as the number of responses
received from the workers reaches the so-called recovery
threshold. Different coding schemes have been proposed to
mitigate the impact of stragglers on the completion time of a
distributed computing task, such as polynomial codes [13],
[20] and Matdot codes [14]. Recently, distributed matrix
multiplication for resilience against stragglers was extended
to wireless channels [21], where several users without local
cache are connected to edge nodes with computation resources
through a wireless link and where each user requests the
product of a user-generated data matrix with a network-stored
matrix. In this work, we are not interested in the problem of
straggler mitigation, but rather in the problem of reducing the
communication load across a shared-link network.

This paper formulates a novel shared-link cache-aided
matrix multiplication retrieval problem, where we consider that
each cache-aided user requests the product of two matrices in
the library, instead of a single file. For example, each user aims
to compute the linear correlation between each two vectors of
two vector sets,! which can be seen as the multiplication of
two matrices representing these two vector sets.

In our setting, the library contains N files that are thought
of as matrices of dimension s x r on some finite field. In the
placement phase, each of the K users can store up to Msr
symbols from the library (corresponding to the size of up to
M matrices). During the delivery phase, each user requests the
product of two arbitrary matrices in the library, which are not
known in advance at the time of cache placement. Different
from existing information theoretic distributed matrix multipli-
cation works for straggler mitigation, we aim to apply coded
caching strategies to the matrix multiplication retrieval
problem with the goal of minimizing the load on the shared
link between the server and the users by leveraging the
cached contents and performing coded multicast delivery.

A. Main Contributions

Our main contributions are as follows.

o We formulate an information theoretic shared-link coded
caching problem for matrix multiplication retrieval, where
each user requests the product of two matrices in the
library.

o We propose a structure-agnostic scheme that treats each
possible demanded matrix product as an independent file
and attains the load corresponding to the MAN coded
caching problem for single file retrieval.

o Then, we propose two coded caching schemes that
leverage the specific structure of matrix multiplication.

! Linear correlation is used to find the linear relationship between two
numerically expressed variables, which has wide applications in lots of
areas, such as engineering research (including pattern recognition [22], signal
detection [23], etc.) and medical science [24].
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Different from the structure-agnostic matrix multipli-
cation retrieval scheme, which lets the users directly
cache some entries of the matrix products, the proposed
structure-aware schemes let each user cache some entries
of each matrix. One scheme partitions each library matrix
into sub-matrices by rows and the other by columns.
A subset of the users cache each sub-matrix, or some
linear transformation of this sub-matrix. The delivery
phase is designed so as to leverage the users’ cached
contents and the “correlation” among the elements of the
demanded matrix products, i.e., the fact that some entries
of a matrix product can be written as a function of the
other entries of the same matrix product.

e When s < (i.e., the library matrices are “fat” matrices),
we prove that the proposed row-partition scheme is order
optimal within a factor of 2 under the constraint of
uncoded cache placement (i.e., each user directly copies
some entries of the matrices in the library into its local
cache) and N > 2K. This is accomplished by proposing
a novel genie-aided converse bound.

B. Paper Organization

The rest of this paper is organized as follows. Section II
gives some results used later in the paper. Section III
formulates the cache-aided matrix multiplication retrieval
problem. Section IV summarizes the main results in this
paper. Section V provides the details of the proposed
coded cache-aided matrix multiplication retrieval schemes.
Section VI concludes the paper. Some proofs can be found
in the Appendix.

C. Notation Convention

Calligraphic symbols denote sets, bold symbols denote
vectors and matrices, and sans-serif symbols denote system
parameters. We use | - | to represent the cardinality of a set
or the length of a vector; [a : b] := {a,a+1,...,b} and
[n] := [1 : n]; @ represents bit-wise XOR; a! = a X (a —
1) x...x 1 represents the factorial of a; Fq represents a finite
field with order q; AT and A~! represent the transpose and the
inverse of matrix A, respectively; rank(A) represents the rank
of matrix A; I,, represents the identity matrix of dimension
n X n; (A)mxn explicitly indicates that the matrix A is of
dimension m X n; the matrix [a; b] is written in a Matlab form,

representing welet (2) =0ifz<Oory<0orz<y.

al. -
b’ Y

In the rest of the paper entropies will be in base q, where q
will be introduced later.

II. PRELIMINARY RESULTS ON THE ENTROPY OF A
MATRIX PRODUCT

In this section we describe a procedure to “compress” matrix
products that may not be full rank so as to reduce the load on
the shared-link.

Consider a matrix A € Fé‘“m on a finite field Fq of rank p
with M > m > p > 0. We can choose p linearly independent
rows of A and call the resulting matrix A; € ng"", that is,
A AT € [F£*# is full rank. We then can express each of the
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remaining M — p rows of A as a linear combination of the
rows of Aj; let the matrix of the coefficients for the linear

combinations be Ay € IFE]M_” )%, Finally, the original matrix
. I .
A can be written as A = Ag Ap A, for some permutation
2
matrix Az € {0,1}M*M that only depends on the set of
indices of the p chosen rows out of M rows. Thus we can
write

H(A) = H(A,Al,AQ,Ag) (la)
:H(A17A2;A2)+H(A|A1;A27A3) (lb)
- H(A17A2)A3) (10)
< H(A1) + H(As) + H(As) (1d)
< pm+ (M —p)p+log, <<J\p4)> (le)

In other words, we need at most (M +m)p — p? symbols on
IF, to specify any A € Fé\“m of rank p, up to a permutation
matrix that contributes log, ((]Z[ )) to the entropy.

Next, for any two matrices C € Fy**™ and B € Fg*?, the
entropy bound in (1), together with

rank[CB] < min(rank[C], rank[B]) < min(n, m,p), (2)

implies that we need, up to some symbols needed to describe a
permutation, at most f(m,n,p) = f(p,n, m) symbols on [y
to specify the matrix product CB € Fg**? where the function
f(m,n,p) is defined as

f(m,n,p) := (m +p —min(n, m, p)) min(n,m,p) (3a)
_ (m+p—n)n m?n(m,p) >n . (3b)
mp min(m,p) <n
For later use, we express f(m,n,p) =g (2, 2) n%, where
g(a, B) is a symmetric function in its arguments as is defined
as
a+ -1 min(a,3) >1
o0 ) = menzl o
af min(a, 8) <1

Note that @ < 2.

In the rest of the paper, we will use P(C, B) to denote the
f(m,n,p) + H(As) symbols on Fq that specify the matrix
product CB, where we set A = CB € IFQ”'X” in (1). Next,
we will consider the following two cases:

o n is large. For each product CB considered in formulated
cache-aided matrix multiplication problem (which will
be clarified later), we assume that m = ai1n and p =
asn, where ai,ao are fixed positive numbers and n >
max{a1,as}. In this case of large matrices, for any field
size q,

log, (( max(m, p) )) < log, (max(m, p)!)

min(n, m, p)
max(m, p)

).

3 1
é 5 logq(e) + (max(m,p) + 5) logq(

by Stirling’s approximation
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Hence, we have (recall that f(m,n,p) is with order
O(n?))

tog, ()
f(m,n,p)
- Blogg(e) + (max(ar, az)n +3) log,

a f(al n,n, a2n)

( max(ael ,a2)n )

= €n,

where lim,, .o £, = 0. So in this case of large enough
matrices, we have |P(C,B)| < (1 +¢,)f(m,n,p).

e q is large. [25, Lemma 2] proved that for any two
independent matrices C € Fy"*" and B € Fg*? with
uniformly i.i.d. entries on [Fq, we have

lim H(CB) = f(m,n,p). 5)

q—00
That is because, in this case we have

1) the matrices corresponding to Aj, Ay in (la) for
the matrix A = CB € Fy**? have uniformly
i.i.d. entries, which leads H(A1,As) = H(A;) +
H(Az) = f(m,n,p);

D H(Ay) < log, &n?;sz‘xz;?;)>) .
limg .0 gq = 0.

Thus we have f(m,n,p) < H(CB) < |P(C,B)| =
f(m,n,p)+eq, which leads to (5). Hence, we also have
limg—.o0 |P(C,B)| = f(m,n,p).

where

III. SYSTEM MODEL

The (K, N, a) shared-link cache-aided matrix multiplication
retrieval problem is defined as follows. A server has access to
a library of N matrices, denoted by Wy,..., Wy, and each
matrix is of dimension sxr on a finite field Fy, for some prime-
power q. The column-row ratio of each matrix is denoted by
a:=r/s € (0,00). We further assume that each element of
each matrix is uniformly i.i.d. over [F and that q is sufficiently
large so that the entropy of any matrix product W7 W ; where
(i, j) € N is

B:= f(r,s,r) = s’g(a,a) < 2rs, (6)

i.e., B is the number of symbols on Fy that suffices to specify
any matrix product, as argued in Section I1.> We also assume
that s is finite and sufficiently large, such that any sub-matrix
division is possible. The server is connected to K users through
an error-free shared link. The system operates as follows.

a) Placement Phase: During the cache placement phase,
each user stores information about the N matrices in its local
cache without knowledge of future users’ demands, that is,
there exist placement functions ¢y, k € [K], such that

(bk . Fglsr . FngrJ. 7

2 Note that without the assumption that ¢ — oo, each proposed achievable
scheme can still work to let each user retrieve its demanded matrix product.
As showed in Section II, g — oo is needed for the converse of (5), which
characterizes the entropy of matrix product. In addition, this assumption is
also needed for the proposed converse bounds on the minimum worst-case
load.
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We denote the content in the cache of user k € [K] by Z;, =
¢ (W1, ..., Wy). The non-negative parameter M is the cache
size, measured in multiple of the size of each matrix in the
library.

b) Delivery Phase: During the delivery phase, user k €
[K] sends its demand dy = (dg1,dk2) to the server,
where (di,1,di2) € [N]? means that user k requests the
matrix product ng Wy, , € F{". Given the demand

[dy;da;- - ;dk] € [N]?*K, the server broadcasts the message

X = ([dy;da;- -+ ;dk], W1,..., Wy) to the users, where
the encoding function v is such that
¥ ¢ [N]*X x FRs" — FLRBJ (8)

The non-negative parameter R is referred to as the load on the
shared link, measured in multiple of the entropy of a matrix
product B defined in (6).

¢) Correctness: Each user k € [K] decodes its desired
matrix product from ([dy;dsg;--- ;dk], Zi, X) through the
decoding function &, defined as

& ¢ [N]?K x FiMsrl  FIRB) — 8. 9)
The worst-case probability of error is defined as
max Pr di;do;- - dk], Zk, X
e {&k([d1:d2 ks Zk, X) #

ng,lwdkm for some k € [K]}.

g =

(10)

d) Objective: In this paper, we assume that the computa-
tion power of the server and users is unlimited. Therefore, our
focus is on the optimal tradeoff between communication cost
and cache storage capacity. More precisely, a communication
cost (a.k.a. load) R is achievable if there exists a caching
scheme with placement, encoding, and decoding functions
such that limq_—.., ¢ = 0. We aim to determine the minimum
worst-case load among all possible demands, defined for
M € [0, N] as

R* = inf

in
(dr:kEIK]),
¥, (Er,k€[K])

e) Uncoded Cache Placement: If each user directly
copies some symbols of the N matrices into its cache,
the cache placement is said to be uncoded. The minimum
worst-case load under the constraint of uncoded cache place-
ment is denoted by R;.

f) Isomorphic Demands: Since W[T W; = (WJT Wi)T for
any (i,7) € [N]?, we say that the demands W' W; and WW;
are isomorphic. The number of non-isomorphic demands is
) +N = w = (MI'"). In this paper, without loss of
generality, we thus can assume that dj, ; < dj o for each k €
[K].

Remark 1 (Range of M): Note that when M >
min (N7 w 9(2’3)), we have R* = 0. Indeed, the server
does not need to send anything if each user can either store all
possible matrices in the library (requiring Nrs symbols) or all
possible non-isomorphic matrix products (requiring WB
symbols). Recall that £ = @ = min(a,2 — 1/a). Hence,

: N(N+1) g(a,a)
only for M < min (N, — e

zero, in which case we have R* < min (K7 N(N+1), N-—2 ) ,

{R : R is achievable}. (11)

) the load may be non-

2 g(a,a)
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as the server can satisfy all requests by either sending
all demanded non-isomorphic matrix products (requiring
N(N+1)

min(K, ==—)B symbols), or all matrices in the library

(requiring Nrs symbols). 0

IV. MAIN RESULTS AND DISCUSSIONS

This Section is organized as follows. We first summarize our
main results in Section IV-A. We then provide two examples to
illustrate the main ingredients of our novel achievable schemes
in Section IV-B. We provide some numerical evaluations in
Section IV-C. Finally, we discuss the difference between the
proposed cache-aided matrix multiplication retrieval schemes
and the existing works on distributed matrix multiplication for
straggler mitigation in Section IV-D.

A. Main Results

For the (K,N,a) shared-link cache-aided matrix multipli-
cation retrieval problem, a simple solution is to treat each
non-isomorphic product as an independent file, and thus the
considered problem becomes a coded caching problem for
single file retrieval with K users and w files, for which we
can directly use the MAN coded caching scheme for single file
retrieval. Such a scheme is agnostic of the structure of matrix
multiplication, and thus we refer to it as structure-agnostic
scheme. The achieved load by the structure-agnostic scheme
is given as follows. The proof can be found in Appendix A.

Theorem 1 (Structure-Agnostic Scheme): For the (K, N, a)
shared-link cache-aided matrix multiplication retrieval prob-
lem, R* < Ry,, where Ry, is the lower convex envelope of the
following memory-load pairs

~ (N(N+1) g(a,a) t K-t
(M’Rsa)< 2 a Kit+1

>, te[0:K].
(12)

Note that when M = W@, ie., t = K, we have
Rsa = 0—see also Remark 1.

The structure-agnostic scheme does not perform well when
N is large, because the number of non-isomorphic matrix
products increases quadratically with N. We can improve on
Theorem 1 by designing structure-aware caching schemes,
which leverage the specific structure of matrix multiplica-
tion. In the structure-agnostic scheme, each user directly
caches the elements in the matrix products; in the proposed
structure-aware caching schemes, each user caches %sr sym-
bols of each matrix in the library.

We first introduce two baseline structure-aware schemes.
In the first baseline scheme, referred to as uncoded caching
baseline scheme, each user caches %r columns of each matrix

in the library; thus each user can reconstruct (%r)2 elements
of each matrix product from its cached content. In the second
baseline scheme, referred to as mutli-request baseline scheme,
each user directly recovers the two library matrices instead
of their product, akin to a coded caching scheme for mul-
tiple files retrieval [26]. The achieved loads by the baseline
structure-aware schemes are given as follows. The proof
details can be found in Sections V-A and V-B, respectively.
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Theorem 2 (Baseline Structure-Aware Schemes): For
the (K,N,a) shared-link cache-aided matrix multiplication
retrieval problem, R* < min(Ry, Ry) where R; is defines as

VE a2
Ry =K (1—— )2
! ( N2>g(a,a)’

and Ry is the lower convex envelope of the following memory-
load pairs

13)

t K-t a

The main limitation of the first baseline scheme in (13)
is the use of uncoded caching (i.e., there is no multicasting
gain). The main limitation of the second baseline scheme
in (14) is that it directly recovers the two library matrices
in order to recover their product, which is not necessary.
In order to improve on the baseline structure-aware schemes,
we next propose two schemes where we partition the matrices
in the library into sub-matrices and then let a subset of the
users cache (a linear transformation of) each sub-matrix. The
achieved load of the row-partition scheme is given as follows.
The proof details can be found in Section V-C.

Theorem 3 (Row-Partition Scheme): For the (K,N,a)
shared-link cache-aided matrix multiplication retrieval prob-
lem, R* < R,ow, Where

— [%W a(ti) a(ti) % 4
Ro = TR g \ 7\ e (ti)Q(teJrl)

a(tgel) a(t/l) (1—04,)2 ¢
+g< + + . il)"Q (t4+2) , (15a)

1—0447 1—0[4

M

Qy = tg-f—l—W, KG[K], (15b)
ty := \‘%J , L e K], (15¢)

with the convention that

14 4 4
gla X
Rrow = min 5 ( (tZ) (te)) 2tf+1) when Qyp = 1, and
e[k | £ g9(a,a) (ti)
(15d)
o 14 4 4
. 9 (a (t(+1)7a(tg+1)) (tg+2)
Riow = min 7 2 when ay = 0.
telK] g(a,a) (t/,Jrl)

(15e)

In Remark 7 we shall argue that the row-partition strategy
for Theorem 3 can be used with any known (for the shared-link
caching problem for single file retrieval) caching scheme with
uncoded cache placement.

The achieved load of the column-partition scheme is given
as follows. The proof details can be found in Section V-D.

Theorem 4 (Column-Partition Scheme): For the (K,N,a)
shared-link cache-aided matrix multiplication retrieval prob-

4305
lem, R* < R, where
Y, ifa<1;
Reol 1= 0 y42(a-1) (e i +(1-a0 51557
K T F1 AK) g +2 . .
Y « if a > 1;
(16a)
S ( K )( a§2(K—i)(K—tK)
. 2 . .
el 1] 1+1 (tK) tk — 1@ tk — 1@

+(1—04K)2 K—1 K—tK—l
(K)2 tk+1—4) \tk+1—1i
tk+1

1okl Zax) <K Z.) ( " )) (16b)
(tK) (tK+1) tk =1/ \tk +1—i
where tg := [5¥ ] € [0: K] and ax = |52 [+1-K € [0,1]
were defined in (15c) and (15b), respectively.

In Remark 6 and Remark 9 we will show that the proposed
row- and column-partition schemes outperform the two base-
line schemes, respectively, and therefore we have the following
Corollary.

Corollary 1: For the (K,N,a) shared-link cache-aided
matrix multiplication retrieval problem, we have R;o < Ro
and Reo < Ry, for all M € [0, N].

Remark 2 (Structure-Agnostic vs Structure-Aware Schemes):
We note that the proposed structure-aware schemes in this
paper are not always better than the proposed structure-
agnostic scheme. When a is very small, the structure-agnostic
scheme outperforms the other schemes, because in this case
the dimension of each matrix product is much less than the
input matrices and thus it is more efficient to directly cache
the matrix products. For example, if W@ < N (.e.,
a < NLH) and M = W@ the achieved load of the
structure-agnostic scheme is 0 (see also Remark 1), while
the achieved loads of the structure-aware schemes are strictly
larger than 0.

In general, see also Section IV-C for numerical evaluations,
the row-partition scheme does not uniformly outperforms the
column-partition scheme, or vice versa. Thus, for the proposed
schemes, we cannot infer any uniform superiority of a certain
placement strategy. 0

Remark 3 (On Redundant Multicast Messages): In this
paper’s proposed coded caching schemes, after generating
the coded symbols desired by the users, we use the MAN
delivery scheme to generate multicast messages to deliver
those coded symbols. Yu, Maddah-Ali and Avestimehr in [27]
showed that some MAN multicast messages may be redundant
when a file is requested by multiple users, and thus need not
be transmitted. In our coded caching schemes, if there exist
some products demanded by several users, we could use the
approach in [27] to remove the redundant multicast messages.
We do not report here this type of enhancement for sake of
conciseness. g

Remark 4 (Extensions): Similarly to [12, Remark 3],
we can extend the proposed schemes to Device-to-Device
networks [3], where in the delivery phase each user broadcasts
coded packets based on its cached content to all other users,
and to the coded caching problem with private demands [28],
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[29], where we aim to preserve the privacy of the demand of
each user from other users. We do not report here this type of
extensions for sake of conciseness. O

So far we looked at achievable schemes. We now turn to
converse bounds. We can directly use the cut-set bounds in [2],
[30] for the shared-link coded caching problem for single
file retrieval into our problem, which leads to the following
theorem.

Theorem 5 (Cut-Set Converse Bound): For the (K,N,a)
shared-link cache-aided matrix multiplication retrieval prob-
lem, we have

M a
R* > bh—b%— 17
- be[mﬁ?ﬁ’,K)] ( N’g(a,a)) ’ an
where N’ = LNJ
Proof: For each i € [N], define W/ = Wz’T(i71)+1W2i-

Consider a cut with b € [min(N’, K)] users, and let each user
demand one product W/ where i € [N]. By using the cut-set

bound in [2, Theorem 2], we have

!/ !
{N—J R*B + bMsr > b {N—J B
b b
Then, by using the strategy in [30, By-product 1], we can
remove the ‘floor operator’ in (18) and thus obtain (17). MW

When a > 1 and N > 2K, we propose a novel genie-aided
converse bound under the constraint of uncoded cache place-
ment (proved in Appendix B), which smartly bounds the load
by the converse bound in [27], [31] for the original MAN
coded caching problem for single file retrieval. By using this
novel converse bound, we have the following order optimality
results.

Theorem 6 (Converse Bound and Order Optimality Result
Under Uncoded Cache Placement): For the (K,N,a) shared-
link cache-aided matrix multiplication retrieval problem where
a > 1and N > 2K, the worst-case load under the constraint of
uncoded cache placement R} is lower bounded by the lower
convex envelop of

EK—t sr B EK—t a W e0: K]
K t+1 f(r,s,r)) K’ t+12a—1)" Y

19)

(18)

In addition, we have
R2 Rrow
Y2 T2
Note that the multiplicative gap between the converse
bounds in Theorems 5 and 6 could be unbounded. For exam-
ple, when 2a divides K and M = 232;1 N, from Theorem 5 we
have R* > 0 and from Theorem 6 we have R} > % >
0. Hence, we cannot obtain the order optimality results in
Theorem 6 from the cut-set converse bound in Theorem 5.

when a > 1 and N > 2K. (20)

B. High-Level Strategies for Theorems 3 and 4

In this section we provide one simple example to highlight
the key ideas in Theorems 3 and 4, in which we partition each
matrix in the library by columns and by rows, respectively.

Example 1 (Case a < 1): In this example, there are K =
2 users and N = 4 matrices of dimension s X r = 2 X 2
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(i.e., a = 1), where each user can store up to 8 symbols (i.e.,
M = 2). Denote the four matrices as

A — aiy a9 ,B: bl bQ ,C: Cc1 C2 7
as ay bs by C3 ¢4

_|d1 da
p- [t 4],

For the delivery phase, assume that user 1 demands ATB and
user 2 demands CTD, where

b1 4+ asbs aibs + asb p1 P2
ATR _ |@b1 +asbs arba +azba) 21
[ath +asbs  azby + asby p3 pa’ (21a)
dy + c3ds  ci1da + cady Qo q2
C™D = |11 T 308 = . Qlb
[02d1 +cads  cady + cady g3 qa (21b)

Next we compare the performances of our schemes.

1) Structure-agnostic scheme: In Theorem 1, we treat each
matrix product as an independent file and use the MAN
coded caching scheme for single file retrieval (for the
case of K = 2 users, w = 10 files and cache size
M = 2 files) to transmit 28/5 = 5.6 symbols.

2) Column-partition scheme: here we let user 1 cache the
first column of each matrix (e.g., a; and as for the first
file and similarly for the other files), and let user 2 cache
the second column of each matrix (e.g., as and a4 for
the first file and similarly for the other files).

Based on the cached content, p; in (21a) can be recon-
structed by user 1 and g4 in (21b) can be reconstructed
by user 2. By (13) of Theorem 2, the server transmits the
remaining three symbols in the matrix product desired
by each user, for a total of 6 symbols.

Based on the cached content, we further note that
user 1 requests py in (21a) that can be reconstructed
by user 2, while user 2 requests ¢g; in (21b) that can
be reconstructed by user 1. Thus the server can transmit
the coded symbol p4 + q1. Hence, the server only needs
to totally transmit 5 symbols (i.e., the server transmits
(P2, P3,Pa + q1,q2,43)) as in Theorem 4.

Note that in this scheme, each user directly recovers the
desired “sum of products” symbols (e.g., ps = a2bs +
a4by).

3) Row-partition scheme: here we use ¢ = K = 2, in which
case the cache replication placement for Theorem 3
reduces to the MAN cache placement—the role of ¢
will be clarified further in Example 2 and Remark 5.
By (14) of Theorem 2, each user directly recovers the
two matrices that make up its desired matrix product.
In other words, during the delivery phase user 1 recov-
ers as,aq,bs, by, which are cached by user 2, and
user 2 recovers cy, ¢z, di, do which are cached by user 1.
Hence, the servers transmits az+cy, aq4+co, bg+dy, by+
ds, totally 4 symbols.

To improve on the above, we let user 1 cache the first
row of each matrix (e.g., a; and ay for the first file and
similarly for the other files), and let user 2 cache the
second row of each matrix (e.g., as and a4 for the first
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file and similarly for the other files). The server transmits

(asbs+cidi, aszbs + cids, asbs + cady, asbs + cods),
(22)

such that user 1 can recover (asbs, azbs, asbs, asby) and
user 2 can recover (c1dy, c1da, cady, cads).

By leveraging the correlation of the elements in the prod-
ucts, we can further reduce the number of transmissions.
Upon observing that

Cl4b4 = (a3b3)_1(a3b4)(a4b3),
cady = (c1dy) ™ (erda)(cady),

we do not need to transmit a4bs + cods in (22). Hence,
we only need to transmit 3 symbols as in Theorem 3.
Note that in this scheme, each user recovers each
individual term (e.g., asbs for user 1) in the “sum of
products” symbols (e.g., a1b; + asbs).

O

To conclude, the high-level ideas for the row-partition and
the column-partition schemes, as well as, their main advan-
tages and limitations, are as follows:

1y

2)

3)

Row-partition scheme. The first approach partitions each
matrix by rows and use the cache replication strategy
in [32]. It will be explained in Remark 5 that, the
cache replication strategy in the shared-link caching
problem for single file retrieval aims to reduce the
sub-packetization level compared to the MAN scheme.
In our context, the proposed cache replication strategy
with row-partition can reduce both the load and the
sub-packetization level simultaneously.

The matrix product desired by each user can be
expressed by a sum of products of sub-matrices. By fur-
ther encoding each term in the sum into a coded packet
with length equal to its entropy, we then use the MAN
delivery scheme to transmit the coded packets.
Column-partition scheme. The second approach parti-
tions each matrix by columns. We separately consider
the case a < 1 and the case a > 1. When a <
1 (see the above example), we use the MAN cache
placement strategy in [2] and propose a multi-round
delivery scheme to transmit the coded packets. When
a > 1 (see Example 4), each demanded matrix product
is not full rank; thus the entropy of each product is
(2a — 1)s? which is strictly less than the number of its
elements aZs?, i.e., there exist some redundant elements
in each product. Hence, we partition each matrix in the
library into two blocks, where the cache placement of
the first block is as in the MAN scheme and we propose
to use a coded cache placement for the second block.
In the delivery phase, each product is also partitioned
into blocks and the correlation among blocks is taken
into consideration during the encoding procedure.

On types of placement. We also remark that the
structure-agnostic scheme uses an inter-file coded place-
ment, where coding occurs across the symbols of all
files (i.e., matrices). The row-partition scheme and the
column-partition scheme for a < 1 use uncoded cache

4307

placement. Finally, the column-partition scheme for a >
1 uses an intra-file coded placement, where coding only
occurs within the symbols of the same file.

4) Advantages and limitations. The main advantages and
limitations of the proposed schemes are (see also
Remarks 5 and 8):

e Row-partition scheme. Its main advantage is that
multicast opportunities are fully leveraged. In other
words, if we need to transmit a requested symbol
to a user and this symbol is cached by ¢ other
users, it is encoded in a multicast message with
t + 1 symbols, where each symbol is cached by ¢
users and demanded by one user. However, each
element in a desired matrix product is the sum
of some products of the elements in the library
matrices. The main limitation of the row-partition
scheme is that each user recovers each individual
product in the sum.

o Column-partition scheme. Its main advantage is to
let each user directly recover each element in the
desired matrix product. Its main limitation is that
multicast opportunities are not fully leveraged.

5) Open problems. In Theorem 6, we show that the pro-
posed schemes are order optimal under uncoded cache
placement for the case where a > 1 and N > 2K. For
the remaining cases, in particular for the case a < 1, it
is part of our on-going works to improve the proposed
row-partition and column-partition schemes. This may
be attained by using inter-file coded placements and by
a new partition approach that has both the advantages of
the row-partition and of the column-partition schemes,
and overcomes their limitations. The derivation of a
non-trivial converse bound for this case is also part of
on-going works.

C. Numerical Evaluations

We now provide some numerical evaluations for the pro-
posed schemes and converse bounds. In Fig. 1, we consider
the case of K = 4 users, N = 20 files, and ratio a €
{1—10, %, 1,2, 10}. We observe the following from Fig. 1.

1) The row-partition scheme is always better than the
multi-request baseline scheme, and the column-partition
scheme is always better than the uncoded caching base-
line scheme, as Corollary 1 shows.

2) When a is small, the performance of the multi-request
baseline scheme is much worse than the proposed
row-partition and column-partition schemes. This is
because in the multi-request baseline scheme each user
recovers the two library matrices of its desired matrix
product, which has 2rs symbols while the desired matrix
product only has r? symbols, which is much lower than
2rs when a is small.

3) When a is large, the performance of the uncoded
caching baseline scheme is much worse than the pro-
posed row-partition and column-partition schemes. This
is because in the uncoded caching baseline scheme each
user recovers all the r? symbols in the desired matrix
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Fig. 1.

product. However, when a is large, r? is much larger

than f(r,s,r) = 2sr — s?, which is the entropy of the
matrix product.

4) The structure-agnostic scheme performs well when a is
very small, since in this regime the entropy of each
matrix product is much less than the entropy of each
library matrix, and thus it is better to let the users
directly cache the products.

5) The load v.s. cache size curves may not be convex.
This is because in our setting we cannot memory-share
between any two memory-load tradeoff points. For
example, if we partition each matrix in the library into
two parts and use a different cache placement strategy on

Performance of various schemes for the shared-link cache-aided matrix multiplication retrieval problem with K = 4 users and N = 20 files for
various values of the ratio a.

each part, in the product of any two matrices there may
exist some elements computed from both parts. In this
case the computation of the matrix multiplication cannot

be divided into two separate parts, each of which is
based on one cache placement strategy.

D. Comparison to Existing Distributed Matrix Multiplication
Computation Schemes for Straggler Mitigation

The distributed matrix multiplication problem has received
much attention in the recent years. The problem is as follows.
There are two uniformly i.i.d. matrices A of dimension s X r
and B of dimension s x t, where s > min(r, ¢). The matrix
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product ATB must be computed distributidely by a group of
workers. There are mainly three strategies proposed in the
literature, which partition each matrix into sub-matrices by
rows [15], or by columns [14], or by blocks [13]. Each worker
stores a linear combination of the sub-matrices in each matrix,
and then computes the product of the two stored matrices,
which is then sent to the master. From the transmissions of
any 1" workers, the master must be able to correctly recover the
matrix product. The objective is to characterize the minimum
T, referred to as recovery threshold.

There are two main differences between our problem and

the distributed matrix multiplication problem:

1) In our problem, there are multiple users receiving pack-
ets from the server, each of which caches some contents
from the library and desires a product of two matrices.
Hence, our problem is a broadcast problem with side
information. By careful design, we aim to maximize the
local caching gain (i.e., if some elements in the desired
matrix product have already been cached, we need not
transmit them in the delivery phase) and the coded
caching multicasting gain. In contrast, in the distributed
matrix multiplication computation problem, only the
master wants to retrieve a product (no multicasting gain)
and this master should recover the product only from the
receiving packets (no local caching gain).

2) In the distributed matrix multiplication computation
problem, it is usually assumed that s > min(r,¢) (i.e.,
ATB is full rank). Hence, each element in the product
ATB is also uniformly i.i.d. over F,. The existing
schemes let the master recover each element in the
product individually (without leveraging the correlation
among the elements in the product). Instead, our pro-
posed schemes for this case (i.e., a < 1) still leverage
the correlation among the elements in each product (see
Example 1). This is possible because each user cached
some elements of each library matrix, and with this
side information its desired product could be further
compressed.

V. NOVEL STRUCTURE-AWARE ACHIEVABLE SCHEMES
A. Uncoded Caching Baseline Scheme: Proof of (13)

Placement phase: Each user caches the first %r columns
of each of the N matrices in the library.

Delivery phase: User k € [K] demands ng’IWdM.
Note that the first %r rows of ng , and the first % r columns
of Wy, , are cached by user k € [K]. Hence, user k € [K]

2.2
MN2r
let the server directly transmit the remaining (1 — ",\’I'—Qz) r? ele-
ments of ng Wy, ,. Hence, the total load is

M2 r2 M2 a2
K (1 B W) f(r,s,r) =K (1 B W) g(a,a)’

which coincides with (13).
B. Multi-Request Baseline Scheme: Proof of (14)

We treat each matrix in the library as a file with sr
symbols, and use the coded caching scheme for multiple files

can directly recover elements of ng W, ,. Then we
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retrieval in [26]. We focus on each cache size M = %, where
te0:K].

Placement phase: We divide the sr symbols of each
matrix W into (';) non-overlapping and equal-length subfiles,
W, ={W, 7 :7T C[K],|T| = t}. Each subfile W; 7 contains

(ST') symbols and is cached exclusively by the users in 7.

t

Delivery phase: User k € [K] demands W} Wy, ,.
We let user k € [K] recover Wy, , and Wy, ,. For each set
S C [K] where |S| = t + 1, we let the server broadcast the
pair of multicast messages

Y Wasvimr D Wass\in)-
keS keS

(23)

In >, cs Wi, . s\{k}, user k stores all subfiles except
Wi, ,.s\{k} and thus it can recover this subfile. Similarly,
user k can recover Wy, , s\(x} from (23).

After considering all sets of users with cardinality ¢ + 1,
each user can recover the two library matrices of its desired
matrix product. The total load is

2(K—t)a
(t+1)g(a,a)’

2<t51)%f(r,1s7 0

which coincides with (14).

C. Row-Fartition Scheme: Proof of Theorem 3

We will start with a more detailed example than the one
in Section IV-B to introduce the row-partition scheme in
Theorem 3. Here, we partition each matrix in the library by
rows and let each sub-matrix be cached by a set of users.

Example 2: Consider the (K,N,a) = (4,20,1/2) shared-
link cache-aided matrix multiplication retrieval problem, with
cache size M = 10. We use the cache replication strategy
in [32]. More precisely, we divide the 4 users into ¢ € [4]
groups and let the users in the same group cache the same
content.

Case ¢ = 4. First we consider the case ¢ = 4, in which
case the cache replication strategy in [32] is the same as the
MAN cache placement strategy in [2]. By computing ¢4 =
| 42| = 2, we partition each matrix W; where i € [20] into
( f/) = 6 sub-matrices as follows (the dimension of a matrix
is shown in the subscript of its parenthesis)

Each sub-matrix W; 7 where 7 C [4] and |7 | = 2, is cached

by users in 7. Thus, each user caches 20 x 3 x %r = 10sr = Msr

symbols in total, thus satisfying the cache size constraint.
Assume that

[di;do;--- ;da] = [1,2;3,4;5,6;7,8]. (24
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The matrix product demanded by user 1 is

WT. W
§ 1,7 V2,7
TC [4:|T|=2

T'C [4:|T'|=2,1€T’
+ Z WF{’TWZT.

TC [4:|T|=2,1¢T
Note that the first term on the RHS of (25) is known by
user 1 from its cache. Thus user 1 only needs to recover
the second term. For each 7 C [4] where |7| = 2 and
1¢7T, W{TWZT is cached by the users in 7. In addition,
W1 Wy 7 can be encoded into P(WT -, Wy 1) of size

T
T
Wl,T’ WZT/

(25)

f(r,s/6,r) symbols. Since a = £ = 1, we have
s s s s s,s s s\2 5s?
5 =1G53)-56+3-G) - %

(26)

We will let user 1 recover P(W7 -, Wy 1) during the delivery
phase.

After generating the coded symbols for each user, the server
broadcasts

Y PWi, sy Waio.s\(0): 27)

keS
for each set S C [K] where |[S| = t4 + 1 = 3. Each
user £ € S knows all the coded symbols in the sum (27)
from its cache except P(ng’s\{k}, W, ,.s\{k})» such that

it can recover P(V\/Em’s\{k}7 Wy, ,.s\{k}) and then recover
ngyhs\{k}wdw@\{k}. For example, for S = {1, 2, 3}, the

server broadcasts
P(W1 1531, Wa (23y) + P(W3 1 5, W (13))
+ P(W3 (191, We (1.2}),

and similarly for the remaining multicast messages. Hence,

(28)

the server broadcasts 4 f (r, & r) = % symbols in total, thus
the achieved load is
5s? 5s? 20
> > - (29)

9f(r,s,r) - 9f(s/2,s,s/2) 9

Case ¢ = 2. Then, we consider the case ¢ = 2. By com-
puting t2 = |2M| = 1, we partition each matrix W; where

i € [20] into (ti) = 2 sub-matrices as

V[ Wiy )s2ue }
(Wi)se = { (Wi 2))ssaxr |
We let users 1 and 3 cache W (1}, and let users 2 and 4 cache
W, 2} In other words, we divide the users into two placement
groups, where the first group contains users 1 and 3, and the
second group contains users 2 and 4. The users in the same
group have the same cache content. So each user caches 20 x
3 = 10sr = Msr symbols, satisfying the cache size constraint.
During the delivery phase, we assume that the users’
demands are given as in (24). The matrix product demanded
by user 1 is

WIW, = WT (\ Wy 13 + W 3 Wo y, (30)
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for which user 1 only needs to recover WT {2}W27{2}.
In addition, WT (2yWa,2p  can b2e encoded
P(WI’{Q},WZ{Q}) of size f (r,5,r) = % symbols.

After generating the coded symbols for each user, we divide
the users into two transmission groups. In the first transmission
group, we let the server satisfy the demands of users 1 and
2 by broadcasting

into

P(WI,{Q}aWQ,{Q}) +P(W§,{1}7W4,{1})- (31

In the second transmission group, we let the server satisfy the
demands of users 3 and 4 by broadcasting

P(W3 01, We (2)) + P(W7 113, Ws 1)), (32)

2 .
Hence, the server broadcasts 2 f (r7 3 r) = % symbols in total,
thus the achieved load is

s? s?
2f(rs,0) 2 /(s/2.5,5/2)
Case ¢ = 1. Similarly, when ¢ = 1 (i.e., one single

placement group) the achieved load is 4.

Case ¢ = 3. When ¢/ = 3 the achieved load is % (i.e., three
placement groups).

All Cases Together. Hence, the minimum load achieved by
the proposed row-partition scheme is 2 with ¢ = 2, which is
less than 64/21, 3, and 8/3 achieved by the structure-agnostic
scheme in Theorem 1 and the two baseline structure-aware

schemes in Theorem 2, respectively. 0
Remark 5 (Row-Partition: ¢ = 4 v.s. £ = 2): In Exam-
ple 2, when ¢ = 4, each transmitted packet is a sum of

ty + 1 = 3 coded symbols, while when ¢ = 2, it is a sum
of to + 1 = 2 coded symbols. However, the latter attains
the lowest load. This is because when ¢ = 4, in order
{0 TECOVET D 7c (41,7 =ts—2,1¢T W1 Wy 7 in (25), we let
user 1 recover each term in this sum, which increases the
communication load. However, when ¢ = 2, there is one set
7 C [2] where |[T| =t; = 1 and 1 ¢ 7, and this set is
7T = {2}; thus we directly let user 1 recover Wi{Q}WQ?{Q}
in (30).

In other words, as already mentioned, the proposed
row-partition scheme uses the cache replication placement
in [32], which was proposed for the MAN shared-link caching
problem for single file retrieval in order to reduce the
sub-packetization at the expense of a higher load compared
to the MAN scheme. However, in our row-partition approach
for the considered cache-aided matrix multiplication retrieval
problem, such a placement can simultaneously reduce the
sub-packetization level and the load compared to the MAN
cache placement.

O

We now generalize the proposed row-partition scheme in
Example 2. We focus on each ¢ € [K].

Placement phase: We first compute t, = || and ay =
te+1— % as defined in (15¢) and (15b), respectively. Among
all the s rows of each matrix in the library, there are ays rows
cached by t; users, and (1 — ay)s rows cached by t,+ 1 useé:rs,

M

such that the average number of users caching each row is .

More precisely, the first ays rows of W; where i € [N] are
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partitioned into (é) sub-matrices, each of which is denoted
by W, 7, where 7; C [{] and |7;| = t,. W, 7, has dimension

%?3 x r. The remaining (1 — ay)s rows of W, are partitioned
te
into (, ¢ ) sub-matrices, each of which is denoted by W; 7,
where 7o C [(] and |T3| = t¢ + 1. W, 7, has dimension
(fo“;s x r. Bach user k € [K] caches W, 7 where i € [N],
ty+1
T C [, |T| € {te,te + 1}, and Mod(k,¢) € T.> Hence,
user k caches (recall that M = LH=acN)

w(( o () )
tr+1

t
= Nsr (fozg + T(l - 0@)

te+1—
% = Msr symbols,

satisfying the cache size constraint.
Note that if Mod(ky,¢) = Mod(kz, ) where ki, ks € [K],
users k1 and ko have the same cache content.
Delivery phase: For each ¢ € [K], we define

Nip={T C[0]:|T| € {te, te +1}},

(33a)

= Nsr (33b)

(34)

and sort the sets in Ny in a lexicographic order. Ay (j)

represents the j® set in Ny, where j € {(fifrll)} A

We divide the users into [%] groups. More precisely,
we let

Gi=[i—1)e+1: i, ViEHE—l—H;

0
g[%]—{ﬁ[;—l—‘—i—lﬂ(},

where the first [ — 1] groups contains £ users with different
caches, and the last group contains K — ¢ [¥ — 1] users with
different caches.

Let us focus on the transmission for group G; where i €
H%H We sort the users in G; in an increasing order and let
Gi(j) be the ™ user.’ For each user k € G;, its desired matrix
product can be expressed as

(35a)

(35b)

de,hNZ ((fit—ll))

[ Wasi o Waw(iy ] oo
- Z ng,l,ﬁwdk,mﬁ

T ClEFITa =t
+ > Wi, nWa.n (36b)

TaCl):| Ta|=t,+1

- ¥

T/ C[0):| T |=t,,Mod(k,£) €T/

T
de,h?-llwdkﬂ’?’l/

3 Mod(a, b) represents the modulo operation on a with integer quotient b.
In this paper, if b divides a, we let Mod(a, b) = b.

4 . ¢ 0o\ _ (b1

From the Pascal’s Triangle, we have (tz) + (tz+1) = (teJrl).

SIf j > |G, we let G;(5) = 0.
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+ w! W
dr,1,T1 d,2, 71
71 C[0):|T1|=t¢,Mod(k,0) ¢ T1
T
+ ) Wi, yWa .1
T Cle):| TS| =te+1,Mod(k,£) €T
T
- Z de,l,'fzwdk,zﬂé' (36¢)

T2 C[):|T2|=te+1,Mod(k,0) ¢ T2

We note that the first and third term on the RHS of (36¢) can
be re-constructed by the cached content of user k. Hence,
user k only needs to recover the second and fourth terms
in (36c) during the delivery phase. For each 7; C [{]
where |7;| = t, and Mod(k,¢) ¢ 7;, we can encode

Wi 5 Wa oz, into P (W5 7 W, .7, ) of size
¢ ¢ 2
r r
Fln3er) =g QJ,M — (37a)
(te Qes Qes (t[)
a

)

where a = r/s, and f(-) and g(-) are defined in Section II
We will let user k recover P (W[ th,de?Tl) during

the delivery phase. For each 7, C [{] where |72 = t; +
1 and Mod(k, ¢) ¢ T5, we can encode W 7 Wa, 7, into

P (ng,% , WdMTQ) of size
(1-— Oég)s )
flr,———r
( (1,51
() 6D ) (- ans)
=g <(1 —a0)s’ (L—aw)s (t/,il) (38a)
- a(t,_zi-l) a(tgﬁ-l) (1 —oy)s ’
=g <(1 o) (= ar) (teﬁl) symbols.

(38b)

(37b)

We will also let user k recover P (ngjz, de,Tz) during
the delivery phase.

After generating the desired coded symbols for all users in
G;, the server broadcasts

o T
Xis, 1= Z P (Wdu—l)“j,usl\{j}’Wd(i—1>é+.7,2151\{j}) )

JESI
(39)
for each set & C [{] where & =t + 1,
such that wser (¢ — 1)/ + j can recover
T
P(Wd(i—l)é+j>1731\{j}’Wd(i—l)lf-%—jymsl\{j} from  Xis,,

where j € &. Similarly, for each set S; C [¢] where
Sy =ty + 2, the server broadcasts

. T
Xi732 = Z P (Wd(ifl)[+]11732\{j}7Wd(i—l)[{-*—],szz\{j}) )

JES:2
(40)
such that wuser (¢ — 1)/ + j can recover
T
P(Wd(,,_wﬂl,sz\{j}aWd(i_l)zﬂ,msz\{j}~ Hence, for

the users in G;, the total number of symbols transmitted
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server  is (wil)g( &é

by the
( ¢ ) a(f,/%l) a(f/eﬁ'l) (I1—ay)s
te+2)9\ T=ae)> T=an) ) \ (7))
Considering all the [£] transmission groups, the total load

Me)( >2>
<ni1>g< o) (&5) |
o[, oo () i (U,

(41)

[\S]

is

to+1 (1- Oée

which coincides with (15a).

Remark 6 (Row-Partition Scheme v.s. Multi-Request Base-
line Scheme): 1f we let £ = K, encode W} N ledk 2T
into the concatenation of all the symbols in W .7, and
W, ., n whose length is strictly larger than the length

of P(Wd“ﬁ W7, )» and encode WY, | W, .,

into the concatenation of all the symbols in Wd .1, and
W, .7 whose length is strictly larger than the length of

P (ngl% ,Wd,w?%), then it is equivalent to let each
user recover the two ibrary matrices of its desired matrix
product; thus the proposed row-partition scheme becomes
the multi-request baseline scheme for Theorem 2. Therefore,
the proposed row-partition scheme is strictly better than the
multi-request baseline scheme when M < N. O

Remark 7 (Application of Other Shared-Link Coded
Caching Schemes): Obviously, with the proposed row-
partition strategy, we can apply any coded caching scheme
with uncoded cache placement for the original MAN coded
caching problem for single file retrieval to the considered
cache-aided matrix multiplication retrieval problem. More pre-
cisely, for any existing scheme with uncoded cache placement
for the single file retrieval problem, each file W/ where i € [N]
is divided into non-overlapping subfiles, W/ = {W, T 2T C
[K]}. In the considered matrix multiplication retrieval problem,

we can partition each matrix W; into 2X sub-matrix by rows,

S\Wi,ﬂ
Wil

We then encode W§k,17Tde:2’T into P (ng,l,Tde,z,T
symbols. Finally, we use the delivery phase of this existing

each sub-matrix denoted by W, 7 of dimension X .

scheme to deliver P (ng 1,dek,27T) as delivering W},

in the original file retrieval problem, where dj, represents the
desired file of user k. (]

D. Column-Partition Scheme: Proof of Theorem 4

We continue Example 2 to introduce the column-partition
scheme in Theorem 4. Here we partition each matrix in the
library by columns and let each sub-matrix be cached by a set
of users.
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Example 3: Recall that we consider the (K,N,a) =
(4,20,1/2) shared-link cache-aided matrix multiplication
retrieval problem with cache size M = 10.

Placement phase: We use the MAN cache placement
in [2]. With tx = [5] = 2, we partition each matrix W;
where i € [20] into (tKK ) = 6 sub-matrices as follows, W; =
(Wi 120 Wi g1.31 Wi (1,43, Wi 231, Wi 2,43 Wi (3,43
where sub-matrix W; 7 of dimension s x g, for 7 C [4]
and |7| = 2, is cached by users in 7. Each user thus caches
20 x 3 x & = 10sr = Msr symbols, satisfying the cache size
constramt

Delivery phase: Assume that the users’ demands are
as in (24). The matrix product demanded by user 1 can be
expressed as

(WTWQ)rXr =

(42)

Each sub-matrix W7 . Wy 7, in (42) where 71,75 C [4]
and |7;| = |72| = 2, is then encoded into P(W}:Tl,WQ"TZ)
of f g_g,s, 8= flgss) = % symbols. Note that
P(W] 1., Wa 1,) can be directly re-constructed by each user
in 7;N7; from their cached content. Hence, during the delivery
phase user 1 needs to recover P(W7 ., Wy 7,) where 1 ¢
(T1N'T3). We divide the coded symbols desired by user 1 into
groups, such that Fy represents the set of coded symbols
desired by user 1 and uniquely known by users in V. More
precisely, we have

Fig = {P(WT,{I,Q}’WQ,{ISA})? P(WT (131, Wa (243);
P(WT (143 Wa (23)), P(W] (557, Wa (14)),
P(W] 1541, Wa (1)), P(W¥,{3,4}7W2,{1,2})};
Fi 9y = {P(WT,{1,2}7W2,{2,3}% P(WT {19y, Wa (2.4);
P(W] 1531, Wa12)), P(W] 1541, Wa (2.43),
P(W£{2,4}aw2,{1,2}), P(W£{274},W27{273})};
Pz = {P(W¥,{1,3}7W2,{2,3}), P(WT 13- Wa (3.4}),
P(W£{273}’W27{173})’ P(W¥,{2,3}7W2,{3,4}),
P(WT7{3’4},W2,{1,3}), P(WT,{3,4}7W27{2,3})}§

By = {P(WT,{1,4}7W2,{2,4}), P(WT (1 43, Wa (3.4);
P(WT7{2:4}’W21{174})’ P(WT,{2,4}7W2,{3,4})5

(43a)

(43b)

(43c)

P(WT 3.4y Wa (14}); P(WT,{3,4}7W2,{2,4})}; (43d)
Fi 23y = {P(WT,{2,3}5W2,{2,3})}; (43e)
F1,{2,4} = {P(WT,{2,4}aW2,{274})}; (43f)
Fy 34y = {P(W£{374};W2,{3,4})}~ (43g)
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From (43), and similarly for the other users, we have

2
s
|[Fap| = [F3 9| = [Fup| = o0 (44a)
[Py 13| = [Fo (33| = |, {4}| = |F5 13| = | F3, {2}|
= [Fs (a3 = [Fa (3| = [Fa o3| = [Fu 33| = o0 (44b)

|Fy 1,33 = [Fo (1,43 = [Fo 3,43 = |F3 41, 2}| = |F3 (1,43

s2
F =|F = |F = |F
= |Fs 0,00 = |Fa 1,20l = |Fu 133 = [Faqo,8y] = i
(44c¢)
Next we divide the transmission into three rounds. In the
first round, the server broadcasts
Fl,Q)a FQ,Q)v F3,(Da F4,Q)a (45)

2 2
for a total of 42%1 = % symbols. In the second round, the server

broadcasts

Fi oy + Fo 1y, Fusy +Fsqy, Fuy + Fapg,

Fo 3y + F3 12y, Foqay + Faqoy, Fzpay + Fuqzy, (46)

2 2 .
for a total of 62%1 = SZ symbols. In the third round, the server

broadcasts

Fy o3y +Fo 1,3y + F3 1,2y, Fhqea) + Foq14) + Fug2),
Fy 34y +F3 1,4y T Fu 13y, Foysa) + I3 q24) + Fuf2.3),
47)

2 . .
for a total of fz 1= ;—6 symbols. Hence, the achieved load is

2 2 2 2
SrEtE_SrTrm 16
frs,n) f(s/2,5,5/2) 97
which is less than all other schemes. (]

Remark 8 (Row-Partition With £ = K v.s. Column-Parti-
tion): We now compare the row-partition scheme with ¢ =
K = 4 and the column-partition scheme through the above
example. In both schemes, each sub-matrix in the library
matrices is cached by ¢4 = 2 users. The main advantage of
the row-partition scheme with ¢ = 4 is that each transmitted
packet is a sum of {4 + 1 = 3 coded symbols, while most
packets transmitted by the column-partition scheme are the
sums of ¢4 = 2 coded symbols. However, each element in
the desired matrix product by each user is a sum of some
products of the elements in the library matrices. Instead of
letting the user recover each individual product in the sum
as in the row-partition scheme (e.g., we let user 1 recover
each individual product in the sum (25)), the column-partition
scheme directly lets the user recover this sum (e.g., we let
user 1 recover each term in the product matrix (42)).

To conclude, as mentioned already in Section IV-B, the
main advantage of the row-partition scheme is to fully leverage
the multicast opportunities, while the main advantage of the
column-partition scheme is to let each user directly recover

each element in the product. (]
We then generalize the column-partition scheme in Exam-
ple 3.

1) a < I: Let us first consider the case where a < 1 (i.e.,
r <s).

4313

Placement phase: Let tx = L—J and ax =tk +1— 5+
Among all the r columns of each matrix in the library, there
akr columns cached by tk users, and (1 — ak)r columns
cached by tk + 1 users, such that the average number of
users caching each column is 55-. More precisely, the first akr
columns of W; where i € [N] are partitioned into (tK) sub-
matrices, each of which is denoted by W; 7, where 7; C [K]

and |77| = tk. W, 7, has dimension s x E‘KS The remaining
tk
K ,) sub-

(1 — ak)r columns of W, are partitioned into (t N
matrices, each of which is denoted by W 7, where 7, C K]
and | 73| =tk + 1. W, 7, has dimension s x (—our

Each user k € [K] caches W, 7 where i € [T\I] C [K],
|T| € {tx,tk + 1}, and k € 7. Hence, user k € [K] caches
K-1 K-1 1-—
tk—1 (tK) t (tK+1)
t t 1
= Nsr ( ; K + K; (1- aK)> (48a)
tk +1—
= Nsr% = Msr symbols, (48b)
thus satisfying the cache size constraint.
Delivery phase: Recall from (34) that Nk := {T C

K]+ |T| € {tx, tx + 1}}, where |Nk| = (;3}). Let Nk(j)

bert)

The matrix product desired by user k € [K], W} Wy, ,,
can be expressed in (49), shown at the bottom of the next
page.

For any pair (j1, j2) where j1,j2 € [(tKKfl)},

o if k € NK(]1) ﬂNK(jQ), ng,l,NK(jl)de,zvNK(j2) can

be reconstructed by user k from its cached content;

o otherwise, ~we encode Wj NK(jl)de,mNK(jz)

We then add

represents the j® set in N, where j € [(

into P (de L NK(]l)ade 2. Nk (j2)

P (W’Cl-l‘kyl,./\/k(jl)’ de,27NK(j2)) lnto FkaK(jl)nNK(j2)’
which represents the set of coded symbols desired
by user k that can be reconstructed by users in

Nk (j1) N Nk(j2)-
The following lemma is proved in Appendix C.
Lemma 1: For each i € [0: tx + 1] and k € [K], we have

= ((22) (52 (5
(4 ()

for all V C ([K]\ {k}) where |V| =i.

In other words, the length of Fjy only depends on |V|.
Hence, we define f;, as the RHS of (50), representing the
length of each F},y where |V| = i.

+2

(50)
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The transmission is divided into tkx + 2 rounds. In round
i €[0:tk+1], for each S C [K] where |S| = i+ 1, the server
broadcasts

Xs =Y Fus\(i} (51)
keS
such that each user k € S can recover Fj, s\ (1}
Considering all the ¢k + 2 rounds, the total load is
K K
EiE[O:tKJrl] (i+1)fi7a _ Zie[O:tKJrl] (i+1)fi,a (52)

where (52) follows from a < 1. From (52), we prove (16a)
for the case where a < 1.

2) a > 1: We then consider the case where a > 1 (i.e.,
r > s). In this case, each demanded matrix product is not full-
rank. So compared to the proposed column-partition scheme
for a < 1, we will use a novel coded cache placement and
some additional steps in the delivery phase to deal with the
rank deficiency. We first use the following example to illustrate
the key ideas.

Example 4: Consider the case of K = 2 users, N =
4 matrices of dimension s X r = 2 x 4 (i.e., a = 2), and that
each user can store up to 16 symbols (i.e., M = 2). Assume
that the four matrices are A, B, C, D. We express the matrix
A as follows

_|@1 a2 a3z a4f _ -1
A= Lm ag ay as} = A1 A A,

A - [al az] A, = {a:s aﬂ 7

as ag ar as
where we assumed that block A; is full rank (this is true
with high probability when the filed size is large); same for
the remaining matrices. Note that the general column-partition
scheme described later also works for the case where A is not
full rank; thus for arbitrary finite field, the proposed scheme
also works.

Placement phase: user 1 caches [al} and A;* [ag} 7
as ar

a 1 |a o
and user 2 caches a2 and A;? La4 ; similarly for the other
6 8

matrices. Hence, each user caches 4 symbols from each matrix;
thus each user caches 16 symbols in total.

Delivery phase: Assume that the users 1 and 2 demand
AlBi ATB, } D — [ CiD:, CiD; }
ATB, TATB, |’ CID, 'CID; |’
respectively, where each matrix product contains 4 blocks. The

delivery phase of the column-partition scheme contains three
steps:

A'B = {

o In the first step, we let user 1 recover ATBl and let
user 2 recover CTD;. The delivery is exactly the same

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

as the column-partition scheme in the previous example
for a < 1. Thus, we need to transmit 5 symbols.
o In the second step, we let user 1 and user 2 recover

bs] | b
AF{BQ = AF{ b3 : Ar{ b4 )
7] | 8

ds] | dy
oto: = | of [ ter[f] |

respectively. Since user 1 has recovered ATB; in

the first step and cached Bfl 23 , it can
7

recover ATB;B7! ba| - _ AT bs | Similarly,
b7 b7

user 2 can  recover C¥ 23 . In addition,

7

AT Y| = ATB,B;! (%], where FI ,, = B! [

Ulpg| = PP |0 WHETE Frgey = P

is requested by user 1 and cached by user 2. Similarly,

F2/,{1} = Dfl [gi is requested by user 2 and cached

by user 1. We let the server transmit F} ot F} (1 for
a total of 2 symbols.
o In the third step, we let user 1 recover
_ T
ATB; = (A7'A;) ATB;,
_ T
AlB, = (A7'A;) ATB,,
and let user 2 recover
_ T
CID; = (C{'C,) CIDy,
_ T
CID, = (C;'C,) CID..

Note that ATB; and ATB, have been recovered by
user 1; in addition, we have

A= [ o] ian o]

where A1_1 [23} is cached by user 1, and F{’{Q} =
- ;

Afl 24 is requested by user 1 and cached by user 2.
8

Similarly, user 2 only needs to recover F 1}

(o [23], which is cached by user 1. We let the server
7

transmit F’ o T Fy {1y for a total of 2 symbols.

Thus, the server transmits 5 + 2 + 2 = 9 symbols in total.

Had we directly used the column-partition scheme for the case

a < 1, the server would have sent 5 symbols for each block,

for a total of 20 symbols. 0
We are now ready to generalize Example 4.

ngJ,NK(l)de,Q,NK(l)

T
T de,l,NKu)W
(49)
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Placement phase: We partition each matrix W, where
i € [N] into two blocks

(Wi)sxr = [ (WiJ)SXS , (W@Q)SX('*S) ] :

Up to a column permutation, the rank of W ; is equal to the
rank of W;.6
The cache placement for W, ; is the same as the case where

a < 1. Recall that tx = | 5M | and ak = tx+1—EM. The first
aks columns of W ; are partitioned into ( tKK ) sub-matrices,

each of which is denoted by W; 1 7; and cached by users in
T1, where 7; C [K] and |77| = tk. The remaining (1 — ak)s
columns of W ; are partitioned into ( tK'frl) sub-matrices, each
of which is denoted by W, ; 7, and cached by users in 75,
where 75 C [K] and | 73] = tk + 1.
The cache placement for W, 5 is as follows.
o We partition the first ax(r —s) columns of W, 5 into
( tK) sub-matrices, each of which is denoted by W, 2 7,

where 71 C [K] and |71| = tk. W 2,7, has dimension s
aK((rT). We let each user in 77 cache Q(W,; 1, W, 7,),
whére

W,1Q(W;,1, W;o 1)

and the dimension of Q(W; 1, W, 5 7;) is the same as
‘W, o 7,. More precisely, since the rank of W ; is equal
to the rank of W, each column of W, 7, can be
expressed by a linear combination of the columns of
‘W, ;. For example, the 7™ column of W, 2 7, is equal
to

=Wiom,

W,1Q;(W;1,WiaT),

where Q;(W;1,W;27) represents the j™ column
of Q(Wi71, W7;727']'1). Note that if W@l is full-rank,
Q(W; 1, W, 2 7, ) becomes W;%Wi72"]’1.
o Similarly, the remaining (1 —ax)(r—s) columns of W 5
are partitioned into ( tKIfi-l) sub-matrices, each of which is
denoted by W 2 7,, where 75 C [K] and |73| = tx + 1.
‘W, 2 7, has dimension s x WaKiW We let each user

in 73 cache Q(W;1W, 2 17,).

Since the dimension of Q(W; 1, W, 2 7) is the same as
W, o7 for any 7 C [K] where |7| € {tk,tx + 1}, the total
number of symbols cached by each user is the same as for
the case where a < 1 (which is Msr). Hence the cache size
constraint is satisfied.

Delivery phase: The matrix product desired by user k €
[K] can be expressed as

(ng 1de 2)()(( =

(Wi, 1)
|: (Wg‘dil—jt—s:i):—s‘ [ (deyg,l)SXS . (de12,2)s>((r—s) }
k,1,2/(r

t+1

(54a)
[ (de 1, 1de 2, 1)S><S ; (W?;k 1, 1de 2,2 )s><(r s) :|

_____:_______________________

(ngyl,Qde 271)(r s)Xs (de 1,2de 2, 2)(r s) X (r—s)
(54b)

6 The information of permutation is also cached by each user, which is
negligible compared to the field size q and the cache size of each user.
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In the following, we divide the transmission into three steps.

First step: we deliver packets for WT 1Wa, 1, for all

k € [K]. The transmission for W de .1 is the same as

the proposed column-partition scheme with a = 1 as described

earlier in this subsection. Thus with the same derivation that

led to (52), the total number of symbols transmitted in the first
>

step is
( )fz 1= )
i€[0:tk+1] t1

where y is defined in (16b).
Second step: we then focus on ng L1 W, ,,2. We parti-

tion ng’hlwdmg into (tli) + (tKlil) = (tlf(ill) sub-matrices
as

(55)

de 1,1de,272 =

{Wd"vlvlwdk:%Q’NK(l) e ng,17lwdk 272,NK((thrll)):| '
1 ' o K
For each j € [(tKKfl)}, we have

T W
W di,1,1 VY di,2,2,Nk(5)
T ‘N? ‘A/
=W dp.1,1 YV dk,271Q ( di,2,1y VWdg 2,2,Nk(4) ) :

Note that WT 1Wa, 1 has been recovered by user k in
the first dellvery step. Hence, in this step user k needs to
recover Q(Wy, , 1 Wy, , 2 nr(j) )» Which is cached by users
in N (). We let

(56)

i) = QWa 1, Wa, 0 8i() s

K(}Z*S)
(tK)
s=2)(=s) gymbols if [Nk (j)| = tk + 1.

t+1
[K] where S§; =

For each set S; C
broadcasts

> Fisam-
JES1

which contains s symbols if [Nk (j)| = tk, and contains

tk + 1, the server
(57)

For each set So C [K] where S = tk+2, the server broadcasts

> Flsai-

JES2

(58)

Hence, the total number of symbols transmitted in the second

step is
ak(r—s) K (I—ak)(r—s)
si(K) + (tK +2)s—( R ) .

(1)
tK—’_l tk tk+1

Third step: we let each user k € [K] recover the remaining
parts of its desired matrix product, shown in (60b) shown at
the bottom of the next page. Note that ng 1 W, 1 and
nglwdmg have been recovered by user k in the first
and second steps, respectively. Now it only needs to recover
Q(Wy, ,1 Wy, , 2), which can be expressed as

(59)

Q(de,hl?de,l;Q) = [Q (de,hl?de,hQ,NK(l)) ’

Q (de)l,lvdeYhQ,NK((:::}l))) ] .
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For each j € {(tKKfl)}, we let

Filaey = Q@ Wae 1, Way  20i() ) s

ak(r—s)

(i)
s% symbols if [Nk (j)| =tk + 1.

ty+1

For each set &y C [K] where S;
broadcasts

which contains s

symbols if [Nk (j)| = tk, and contains

= tk + 1, the server

D Flsigy

JESI

(61)

For each set S C [K] where Sy = tk+2, the server broadcasts

> Flsan-

JES2

(62)

Hence, the total number of symbols transmitted in the third

step is
ak(r—s) K (I —ak)(r—s)
si(K) +<tK+2)S—( K ) .

(1)
tK +1 tk tk+1

Considering all the three steps, from (55), (59), and (63),
the total load is

(63)

(=ax)(r=s)

ys® +2(, 515255 +2(,5,)s

() (1o
frsn)
K « 1 11—« —1
Y+ 2(tK+1) K((ta) ) 4 2(tK+2)( (tKK)fla) )
= : : ; (64)
2a—1

where (64) follows from that a > 1. From (64), we prove (16a)
for the case where a > 1.

Remark 9 (Column-Partition Scheme v.s. Uncoded Caching
Baseline Scheme): When a < 1, for any pair (ji,7j2)

where ji,72 € [(fliill)] and k ¢ Nk(j1) N Nk(j2), if the

server directly broadcasts ng’ Nic(in) W2, Nic(jz) » then our
column-partition scheme reduces to the uncoded caching
baseline scheme for Theorem 2. Hence, in this case our
column-partition scheme is strictly better than the uncoded
caching baseline scheme if 0 < M < N. When a > 1,
besides the above improvement which also appears in the first
delivery step, in the second and third steps we further compress
the desired matrix products of the users by leveraging the
correlation among the elements in the product and the users’
caches. Hence, in this case our column-partition scheme is
strictly better than the uncoded caching baseline scheme if
M < N.

]
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VI. CONCLUSION

This paper introduced a novel coded caching problem for
matrix multiplication retrieval, where each cache-aided user
requests the product of two matrices in the library. We first pro-
posed a structure-agnostic scheme which treats each product as
an independent file. In order to leverage the structure of matrix
multiplication, we proposed two schemes (by row-partition
and column-partition, respectively) to attain coded caching
gain for the matrix multiplication retrieval problem, by lever-
aging the correlation among the elements in each product.
The proposed schemes outperform the baseline schemes. For
“fat” matrices, the proposed row-partition scheme is proved to
be order optimal within a factor of 2 under the constraint of
uncoded cache placement and N > 2K.

APPENDIX A
STRUCTURE-AGNOSTIC SCHEME: PROOF OF THEOREM 1

For each pair (i, ) where 1 <4 < j <N, we define

Wi =P (W], W) (65)

and treat W(; ;) as an independent file with B symbols, where
we can recover WI W, from W(; ;). We then use the MAN
coded caching scheme as follows.

Placement phase: We focus on each ¢t € [0 : K]. For
each pair (i,5) where 1 < i < j < N, we divide W j;
into (T) non-overlapping and equal-length subfiles, W; ;) =
Wipr T C [K],|T| = t}, where each subfile W, ;) 7
contains —2- symbols and is cached by users in 7. As there

are (';‘) +N = w pairs (i,7) where 1 < i < j <N, the

total number of symbols cached by each user is
N(N+1)Bt N(N+1)Bt

N(N+1) B(K 1) = = sr = Msr

2 ('f) 2K 2aKs2

satisfying the cache size constraint.
Delivery phase: Each user k € [K] demands Wy, . For
each set S C [K] where |S| =t + 1, the server transmits

Z Wa,..s\{k}>
kes

(66)

where each user k£ € S caches all subfiles except Wy, s\(x}
such that it can recover Wy, s\ (x}-

After considering all sets of users with cardinality ¢ + 1,
each user can recover its demanded file and thus recover its
demanded product. Hence, the total load is

(51) _ K-t
(’:) t+1’

which coincides with (12).

—

Qde 2,1 de 1,2de 2,2 ]

(Wi 1Q(Wa, 1. W, 2) W, }

Wi, .
[ (Wi 1 Q(Wa, 1, Wa,,2) W, i
[ ( : (Q(de,hlade,h?))TWrgk,l,lek,zﬂ } .

de 1717de 1 2)) deyl,lwdk,ml

(60a)

(60b)
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APPENDIX B
PROOF OF THEOREM 6

We consider the case where a > 1 and N > 2K.

A. Converse

We consider the worse-case demands, where [ds; ...
contains 2K different indices of matrices.

We use a genie-aided converse bound. We assume that
during the delivery phase there is a private link from the
server to each user k € [K] through which the server
transmits WTk1 to user k. In this case, the minimum
worst-case number of broadcasted symbols by the server under
uncoded cache placement is denoted by L Obviously,
we have

; d]

genie, u*

Ry f(r,s,r) > L

genie, u*

(67)

Recall that W] is of dimension r X s where r > s and
its elements are unlformly i.i.d. Hence, if user k can recover
ng Wy, ,, with the knowledge of WT this user can
also recover Wy, ,. On the other hand, if user & can recover
Wy, ., with the knowledge of WTk | this user can also recover
ngylwdkvz. Hence, when a > 1 we have

H(de,z)'

H(W’;‘kvlwdkj |WF([1‘;¢11) = H(de,2 |WF([1‘;¢11) =

Under the constraint of uncoded cache placement, it is
equivalent to the problem with the same network but
each user aims to retrieve a whole file (each file has sr
symbols).

In addition, since the cache placement is uncoded and
[d1;...;dk] contains 2K different indices of matrices, the
matrix transmitted through the private link cannot help each
user k € [K] to decode its desired file (i.e., Wy, ,). Thus we
can use the converse bound in [27], [31] for the original MAN
coded caching problem for single file retrieval to lower bound
Lk e o In other words, (M, L* ) is lower bounded by the

genie, u » Egenie, u
lower convex envelop of (3, It<+1 sr/B) for all ¢ € [0 : K].

In conclusion, from (67), (M,R}) is lower bounded by the
lower convex envelop of

(Nt K-t sr

Nt K-t a
—V— = —,————— ), Vt€[0:K].
K’t—i—lf(r,s,r)) (K’t—f—l?a—l)’ €l0:K]

(68)

B. Achievability

From (14), the multi-request baseline scheme can achieve
the lower convex envelop of (M,Ry) = (%, %) , for
all ¢ € [0 : K]. Compared with the converse bound in (68), the
multi-request baseline scheme is order optimal within a factor
of 2 under the constraint of uncoded cache placement and a >
1. In addition, from Corollary 1, the proposed row-partition
scheme outperforms the multi-request baseline scheme. Hence,
we prove Theorem 6.
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APPENDIX C
PROOF OF LEMMA 1

We fix one k € [K] and one i € [0 : tk + 1]. Now we want
to compute the length of Fjy where V C ([K]\ {k}) and

|V| = i. If one pair (j1,j2) where ji,j2 € [(t'iill)} satisfies
that, Nk(j1) N Nk(j2) = V, we have that Fj ) contains
T
P de,h/\/x(jl)’de,mNK(Jé) :
Now we divide all the pairs (j1, j2) where j1, j2 € {(KH)}

tk+1
and Nk (j1) N Nk(j2) =V into the following four cases.

Case 1: |Nk(j1| = [Nk(j2)| = tk: In this case, the length
of P (ng,lxNK(jl),de’Q’NK(j2) i

(ass)-o(f0.5e) oo

(&)~

(69b)
where (69b) comes from that a < 1 and thus ££& < 1. The

()
number of pairs (ji,72) where ji,j2 € [(f +1)T Nk(j1) N
Nk(j2) =V, and [Nk (j1)| = [Nk(j2)| = tk is

K—|V| K —tk _ K—1 K —tk
tk — V) \tk = [V|)  \tk—i)\tx —i )’
Case 2: |[Nk(jn)| = |Nk(jz)| = tk + I: In this case, the
length of P ng’hNK(jl),de,z’AfK(jQ) i

(1 —aK)r (1—aK)r
f b b
(@ﬁo ’ mm>>

(70)

=g (“ SULLNE _KaK)a> SN B
(tK-‘rl) (tK-‘rl)
2
= (%) s2. (71b)
(tK+1)

The number of pairs (ji1,j2) where ji,j2 {fliill ]
Nk(j1) N Nk (j2) = V, and [Nk (j1)| = [Nk (j2)| = tk + 1 is
( K-V )(K—tK—1>
tK+1—|V| tK+1—|V|
o K—i \[(K—t—1

_(tK+1—i>(tK+1—z’)' 72)

Case 3: |Nk(jn| = tk and |Nk(jz)| = tk + 1: In this
case, the length of P ng,l,NK(jl)’de,zvNK(h) i

_ | @ka (1-aka) 73
) g(@Y 5 )S( .

1— 2
= MSQ. (73b)

(5) G
c K+1 }

The number of pairs (ji1,j2) where ji,j2 tK+1

Nk(j1) N Nk(j2) = V, INk()| = tk, and [Nk(j2)| =

(1 — aK)r

f 0‘_”,77
(@)s 05
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tk + 1 1s
K—|V| K —tk _ K—1 K —tk
(tK—|V|> (tK+1—|V|) B (tK—i) (tK+1—z‘>'
(74)

Case 4: |Nk(j1)| = tk + 1 and |Nk(jz)| = tk: In this
T .
case, the length of P (de,l,/\fK(jl)’de,zNK(ﬁ)) is

(1 —ak)r o OKr _y
(i) () (o) 2 (5)

— MSQ. (75b)

() (50)
K+1) ,

The number of pairs (ji1,j2) where ji,jo € {(twl
Nk(j1) NNk (j2) =V, [Nk (j1)] = tk + 1, and [Nk (j2)| = ik

1S
K-V K—tk—1
(tK+1—|V|><tK—|V|>
K—i K—tk—1
<tK+1—i>< tk — 1 )
(K= K — tk
<tK—z’><tK+1—z’>'

Considering all the above four cases, we can prove
Lemma 1.

(1-ak)a aka)

f s* (75a)

(76a)

(76b)
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