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ISAE-SUPAERO

10, avenue Édouard-Belin
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Abstract—GNSS carrier phase observations are fundamental for
safety-critical applications where the requirements of accuracy
and availability are stringent. Upon the deployment of new
GNSS constellation and frequencies, the large number of ob-
servations can lead to a decreased probability of successfully
mapping the real-valued carrier phase ambiguities to integer
ones. Partial Ambiguity Resolution (PAR) relaxes the condi-
tion of fixing the complete set of ambiguities and finds instead
the subset which maximizes the success rate or grants a low
failure rate. This work introduces Precision-Driven (PD) PAR,
a technique for which a constraint on the formal precision of
the fixed solution is added, and the subset selection is realized
based on the projection of the ambiguities into the position
domain. The performance characterization is realized on a
synthetic scenario, where observations from a triple-frequency,
triple-constellation are employed and the estimation is realized
on a snapshot (memoryless) manner.
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1. INTRODUCTION
Global Navigation Satellite Systems (GNSS) has established
as backbone for the provision of navigation and timing in-
formation for multiple applications. GNSS reliant services
include power grid distribution or emergency response [1],
as well as prospective autonomous vehicles [2], [3], [4].
Especially for the latter, the availability of precise and reliable
positioning has become an imperative [5], [6]. The most
stringent precision requirements can only be satisfied by
the use of real-time kinematic (RTK), a relative positioning
procedure which uses code and carrier phase observations to
reach centimeter accuracy [7].

Unlike code observations, carrier phase pseudoranges may
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provide higher precision but are ambiguous, since only their
fractional part is measured by the receiver [8]. The unknown
number of integer cycles, commonly denoted as ambiguities,
is to be determined jointly to the dynamical parameters
of the tracked vehicle. The ambiguities are resolved in a
four-step procedure known as Integer Ambiguity Resolution
(IAR). In the first step, the integer nature of the ambiguity
is disregarded and a standard least-squares adjustment is
performed the so-called float solution. Secondly, the integer
constraints on the float ambiguities are re-incorporated and
these are mapped to an integer solution. Third, one is to
decide whether the estimated integer ambiguities are accepted
or not. A variety of tests have been proposed, with the
ratio- and the fixed-failure rate tests probably being the most
popular [9]. Finally, once the integer solution is found and
accepted, solution fixing consists on correcting the remaining
dynamical parameters by virtue of their correlation with the
ambiguities [10].

The successful resolution of the complete set of ambiguities
can be a challenging task, since a single bias or inaccuracy
in a phase observation can completely spoil the estimation.
Moreover, the probability of finding the correct set of am-
biguities tends to decrease as the number of observations
increases. Especially with the deployment of the new GNSS
frequencies and constellations, one might be concerned about
the IAR dimensional curse. The framework of Partial Am-
biguity Resolution (PAR), introduced in [11], [12], allows
to circumvent the IAR dimensional curse problem: instead
of resolving the full set of observations, PAR identifies the
subset of ambiguities which maximizes the probability of
success rate or grants that a constraint on the failure rate
is not violated [13], [14]. In his series of work, Brack
set the keystone for PAR with the generalized IAR and
proposed IA estimators for PAR [15], [16], [17], [18]. On a
different note, the evaluation of all possible subsets constitute
a NP-hard problem, most PAR approaches explore different
heuristics for sorting the decorrelated ambiguities and avoid
dealing with the large volume of subsets. Thus, one can
aim at the largest possible upper bound on success rate [19],
[20], highest signal-to-noise ratio [13], highest ADOP [21],
minimum bias [22], etc. The aforementioned methods solely
focus on the second and third step of IAR problem, i.e., PAR
is approached only from the perspective of mapping the real-
valued to the integer-valued ambiguities.

The projection of the estimated ambiguities into the position
domain during the solution fixing has not been yet exploited
to guide the PAR selection process. Provided that the en-
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tire purpose of using GNSS carrier phase observations is
obtaining precise position estimates, this work introduces
precision-driven PAR. The premise is straightforward: the
covariance matrix of the fixed position solution is used to
pose a constraint on the integer resolution minimization prob-
lem, based on a goal accuracy to achieve. Precision-guided
PAR allows to efficiently work with large number of sub-
sets, which makes the algorithm attractive for multi-GNSS
multi-frequency applications with stringent availability and
accuracy requirements. The experimental characterization
comprises a comparison of the performance of Full Ambi-
guity Resolution (FAR), classical PAR based on sequential
observation elimination and the proposed Precision-aided
PAR. The evaluation employs multi-GNSS (GPS, Galileo
and BeiDou) triple frequency observations in an snapshot
(non-recursive manner) [23]. The performance for short and
medium baselines is characterized, by simulating distances
between base and rover positions from one to 30 km.

The rest of the paper is as follows. Section II introduces
the basics of GNSS carrier phase positioning and the mixed
real and integer parameter estimation. Then, a brief overview
on Partial Ambiguity Resolution is presented in Section III.
Section IV constitutes the main contribution of the work and
introduces Precision-Driven PAR. Finally, Sections V and VI
are the experimentation and outlook respectively.

2. MIXED REAL AND INTEGER ESTIMATION
Let us call the estimation problem where unknown param-
eters combine an integer-valued vector a and a real-valued
vector b from a set of observations y. The available mea-
surements are described by

E(y) = Aa + Bb (1)
D(y) = Qy (2)

where E(·) is the expectation operator and D(·) the corre-
sponding dispersion (i.e., covariance). The estimation of such
parameters can be formulated as a regression problem with
mixed real and integer vectors

{a,b} = arg min
a∈Zn,b∈R3

‖y −Aa−Bb‖2Qy
(3)

for which a closed-form solution is not known. A rich
literature on statistical performances for various estimators
of the mixed model exist (see [24, Ch. 23] and therein).
Additionally, a closed-form Cramér-Rao bound expression
for the mixed estimation problem was recently presented
[25]. In order to solve (3), a three-step decomposition is
commonly applied

min
a∈Zn,b∈R3

‖y −Aa−Bb‖2Qy
= min

â∈Rn,b̂∈R3

‖ê‖2Qy
(4a)

+ min
a∈Zn

‖â− a‖2Qâ
(4b)

+ min
b∈R3

‖b̂|a− b‖2Qb̂|a

(4c)

with ê = y − Aâ − Bb̂, and (4a) describing a regular
least squares (LS) where the integer nature of the problem
is disregarded (i.e., notice that we look for â ∈ Rn). The
output of this solution is referred to as float solution with a
joint distribution given by[

â

b̂

]
∼ N

([
â

b̂

]
,

[
Qâ Qâb̂
Qb̂â Qb̂

])
. (5)

The minimization problem in (4b) constitutes an integer least
squares (ILS), for which the integer solution (i.e., estimation
of a with the integer constraint) is found based on the float
solution. A non-linear mapping S(·) : Rn 7→ Zn relates each
float ambiguity estimate to an integer value:

a = S(â). (6)

Integer estimators which include a validation step belong to
the Integer Aperture (IA) estimation framework [11], [26],
[27]. An IA estimator is characterized by its pull-in regions
Ωa, ∀a ∈ Zn, and it described by

S(â) =
∑
a∈Zn

wa(â)a +

(
1−

∑
a∈Zn

wa(â)

)
â (7)

with wa(â) being the binary indicator

wa(â) =

{
1 if â ∈ Ωa

0 otherwise. (8)

There are various alternatives to define the size or aperture of
the pull-in regions [28], [29], [27]. This work considers the
fixed-failure rate ratio test (FF-RT) [9], where the failure rate
Pf is used as a tuning parameter.

Finally, the last minimization problem (4c) improves the
positioning (i.e., real parameter vector b) estimate upon the
knowledge of the integer ambiguities a, driving to a high-
accurate position solution denoted as fixed solution. The
mean b and covariance Qb of the fixed estimate are based
on the projection of the estimated integer ambiguities into the
position domain as

b = b̂−Qb̂âQâ (â− a) , (9)

Qb = Qb̂ −Qb̂âQ−1â Qâb̂, (10)

where Qb = Qb̂|a refers to the covariance matrix of the
position solution conditional on the estimated integer ambi-
guities. Unfortunately, the successful resolution of all the
ambiguities might not always be possible. This would hap-
pen when the underlying observation model lacks sufficient
strength. Moreover, as the number of observations grows, the
multiplication of correctly integer mapping events leads to
a decreasing probability of successful IAR estimation [27],
[30]. Next, the framework of Partial Ambiguity Resolution is
discussed.

3. PARTIAL AMBIGUITY RESOLUTION
Classical full ambiguity resolution (FAR) regards the com-
plete set of ambiguities to be either fixed or not. The frame-
work of Partial Ambiguity Resolution (PAR) relaxes this
condition, allowing a subset of the ambiguities to be mapped
to integers, while the complementary subset of ambiguities
remain as real numbers.

Following the notation of [15], [14], let I be the index of the
ambiguities mapped to integer values

I ⊆ {1, . . . , n}, I ∈ J (11)

where J denotes the set of all possible index sets I —
i.e., there are two options per ambiguity, based on whether
they are fixed or not—, whose cardinality is |J| = 2n.

2
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The complementary set to I (the non-fixed ambiguities) is
denoted by Ī and defined by

I ∩ Ī = ∅, I ∪ Ī = {1, . . . , n}. (12)

Similarly to (13), now each set I relates to its pull-in region
ΩI,a and, as proposed in [15], the generalised IA estimator is
given by

S(â) =
∑
a∈Zn

diag
[
wi,a(â)

]
a

+

(
In −

∑
a∈Zn

diag
[
wi,a(â)

])
â

(13)

with i = 1, . . . , n. Thus, the binary indicator function
becomes a vector

wi,a(x) =

{
1 if x ∈ ΩI,a and i ∈ I
0 otherwise. (14)

In plain words, given â ∈ ΩI,a, ambiguities whose index
i ∈ I are fixed to integer numbers, while the remaining
(those belonging to Ī) are kept as real numbers. One can
distinguish among three cases for the PAR estimation: i)
success: whenever ambiguities with index i ∈ I are correctly
fixed; ii) failure: whenever a single ambiguity is wrongly
estimated; iii) undecided: when no ambiguity is fixed:

Success: â ∈ ΩI,a, I ∈ J\∅,a ∈ Zn|a = atrue

Failure: â ∈ ΩI,a, I ∈ J\∅,a ∈ Zn|a 6= atrue

Undecided: â ∈ Ω∅

(15)

PAR methods are generally classified in two categories:
model- and data-driven schemes. Model-driven methods base
the subset selection I only on Qâ, while data-driven ap-
proaches integrate also the float ambiguities â. Nonetheless,
the effect of projecting the resolved integer ambiguities into
the position domain has not yet been considered as criteria
for the subset selection. Next Section introduces the notion
of Precision-Aided PAR.

4. PRECISION-DRIVEN PAR
The successful ambiguity integer estimation serves to con-
strain and enhance the position estimates, as shown in (9)-
(10). Since Qb encodes the accuracy of the fixed solution,
we might consider a minimum precision α to be achieved:

tr (Qb) ≤ α2, (16)

where tr(·) denotes the trace operator. The geometry matrix
B is assumed to be projected into a local tangent plane
(such as North-East-Down or East-North-Up), without loss
of generality, so that the position deviation matches the hori-
zontal and vertical planes. Given the float solution as input
and adding the precision requirement (16), the following
minimization problem is obtained

min
a∈Zn

‖â− a‖2Qâ
+ min

b∈R3
‖b̂|a− b‖2Qb̂|a

,

s.t. tr (Qb) ≤ α2,
(17)

where the constraint function acts as condition to whether an
integer solution shall or not be estimated, in case the precision

does not comply with the minimum required accuracy. Such
case would occur solely on scenarios with limited satellite
visibility. Instead, the bottleneck of FAR relates to presenting
low success rates or not passing the required ambiguity ratio
test.

Precision-driven PAR relaxes the search for the complete
set of ambiguities while retaining the accuracy constraint
on the resulting positioning solution. Thus, the resulting
optimization leads to

min
aI∈Z|I|

‖âI − aI‖2QâI
+ min

b∈R3
‖b̂|aI − b‖2Qb̂|aI

,

s.t. tr
(
Qb̂âI

Q−1âI
QâI b̂

)
≥ tr

(
Qb̂

)
− α2,

(18)

where the precision requirement has been reformulated, since
the trace of the float solution covariance Qb̂ remains un-
changed during the ILS and solution fixing procedures. The
subscript I indicates the subset of ambiguities to be fixed and
their associated covariance matrices (e.g., subtracting from
the vector â elements belonging to Ī and similarly for the
rows and columns of matrices QâI and Qb̂âI

).

Notice that solving (18) implies a high computation burden,
since the subset I is not known a priori. The bootstrapped
upper bound on the success rate can be applied on the
Z−transformed ambiguities [31], so that subset selection cor-
responds to the maximum number of ambiguities satisfying
the failure rate constraint [14]. In that case, the precision
constraint would become an additional validation test. An
interesting procedure consists on evaluating first the formal
precision of a subset and, if passed, then performing the
Z−decorrelation solely with the I elements for the failure
rate test. Despite being computationally intensive, the above-
mentioned approach might lead to a better Z−decorrelation
(due to a lower dimensional problem [32]) and improved
ILS estimates. Whenever multi-constellation multi-frequency
is used and as the size of Ī increases, one might consider
alternative heuristics to avoid analyzing the rapidly growing
number of hypothesis (for instance, satellite selection via
convex geometry [33] or sorting Qâ based on the associated
Qy). Subset selection can also be formulated in analogy
with ILS search strategies [34]: i) initial minimum number of
observations and consequently add new ones when the failure
and precision criteria are respected (search with enumera-
tion); ii) from the complete set of observations, the subset can
be reduced by progressively eliminating observations until
the precision metric is achieved (search and shrink).

Notice that [35] discusses the use of the determinant of the
position covariance matrix to the power of 1/6 as represen-
tation of the positioning precision det(Qb)

1/6. Although this
metric allows accounting for the cross-correlated effects in
the covariance, the metric evaluation increases the compu-
tational needs. Given that covariance matrices are positive
semi-definite and based on the inequality of arithmetic and
geometric means [36], the trace and the determinant of a
generic positive semi-definite matrix M are related based on
the following inequality:

det(M)1/p ≤ tr(M)

p
. (19)

Thus, the trace of the covariance matrix Qb can be considered
a proper precision metric and an upper bound for the volume
of the position confidence ellipsoids proposed in [35].

3
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Figure 1. Sky plot for the GPS tracked satellites (left), Galileo (middle) and BeiDou (right).

Table 1. Wavelengths and code noise standard deviations
for GPS, Galileo and BeiDou.

Constellation Code Noise [cm] Wavelength [cm]
L1 37 19.03

GPS L2 27 24.42
L5 25 25.45
E1 25 19.03

Galileo E5a 20 25.48
E5b 20 24.83
B1 31 19.20

BeiDou B2 30 24.83
B3 25 25.63

5. NUMERICAL RESULTS
The performance characterization for FAR, PAR and
Precision-Aided PAR is realized on two hours of simulated
GNSS measurements collected at the DLR site in Neustrelitz,
Germany for the 6th January 2020 (DOY 06, 09:00-10:00
UTC) with a sampling time of 30 seconds. FAR performs an
ILS estimate and the acceptance is based on the FF-RT. For
DD-PAR, ILS is performed on the subset which maximizes
the number of ambiguities satisfying a success rate of 1−Pf
(based on the open source PAR [34]) plus an additional FF-
RT for the solution acceptance. It is considered a multi-GNSS
scenario, where GPS (L1, L2, L5), Galileo (E1, E5a, E5b)
and BeiDou (B1, B2, B3) observations are tracked over three
different frequencies with an elevation mask of 10◦. Fig.
1 depicts the skyplot for the three constellations, while Fig.
2 illustrates the number of satellites for every constellation
along the one hour duration of the experimentation. The
undifferenced (zenith-referenced standard deviation) code
noise are based on the least-squares variance component
estimation study in [37], [38]. In all cases, the undifferenced
phase noise is considered to be 0.2 centimeters. As in [14],
the differential ionospheric delays are modelled based on a
distance dependent function σL = 0.8 mm/km. Thus, the
covariance matrix of the observations Qy is composed by
the sum of the measurement noise and the uncertainty of the
ionospheric delay. Both the differential ionospheric delays
and undifferenced code and phase noises are scaled with the
elevation dependent function 1/ sin(el). The fixed failure rate
is set to Pf = 0.1% and the precision metric α = 5 cm. Each
experiment is composed by 1000 Monte Carlo runs.

Figure 2. Number of observations along time for GPS,
Galileo and BeiDou constellations over time.

Since the characterization of the precision-aided PAR per-
formance is of the most relevant for this contribution, the
analysis is realized in a snapshot (non-recursive) manner, to
avoid getting gains from a Kalman-filter styled algorithm.
Fig. 3 describes the three cases for an integer aperture es-
timator: success, failure and undecided rates. On the ordinate
axis, the baseline length in km is shown. It becomes clear
that, as the distance between stations grows, the differential
ionospheric delays play an essential role, and eventually
fixing the ambiguities becomes too complicated of a task.
Fig. 3 (top) depicts the integer ambiguity regions for FAR,
(middle) shows the conventional data-driven PAR (DD-PAR),
while (bottom) corresponds to the proposed PD-PAR. For
baselines longer than 20 km, both FAR and DD-PAR are
unable to perform any successful ambiguity fixing, while PD-
PAR manages to obtain a successful fix rate of over 80%.
On the other hand, the percentage of failure rate increases,
leading to think than conventional aperture test shall be re-
visited for PAR approaches. Somehow astonishing appears
the performance of conventional DD-PAR, which offers a
rather high failure rate for baselines of 20 km and it is unable
to successfully fix ambiguities over that baseline length.

Fig. 4 illustrates the positioning performance of the fix
position solution against the baseline length. Constant along
the baseline length, the dash-dot line represents the precision
criteria α = 5 cm for this work. Such value can be adapted
for the specifics of a particular application. The solid black

4
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Figure 3. Comparison of the success, failure and
undecided rates.

line corresponds to the trace of the covariance solution for
the FAR solution (reachable only when the complete set of
ambiguities solution are found). Similarly, the dash line
corresponds to the covariance of the fixed position solution
of PD-PAR. One can barely observe any difference between
PAR and PD-PAR for short baselines, since the removal of
satellites is barely necessary. On the contrary, for baseline
lengths over 20 km, the elimination of a higher number of
satellites make evident the difference between FAR and PD-
PAR. Notice that, the actual root mean squared error (RMSE)
of an estimator attains the covariance for the fixed position
solution only when all the ambiguities are successfully esti-
mated. Hence, due to the failure rate of PD-PAR for a 30
km baseline, the wrongly fixed ambiguities lead to a worsen
positioning solution. This corresponds to the worse case
scenario, for which an integer solution is considered valid
although it does not correspond to the true one.

Figure 4. Comparison of the estimated precision metric
α against the root mean positioning error for PD-PAR, as
well as the trace of the covariance matrices associated to

the FAR and PD-PAR fixed solutions.

6. OUTLOOK AND FUTURE WORK
GNSS carrier phase observations are fundamental for safety-
critical applications where the requirements of accuracy and
availability are stringent. Upon the deployment of new GNSS
constellation and frequencies, the large number of obser-
vations can lead to a decreased probability of successfully
mapping the real-valued carrier phase ambiguities to integer
ones. Partial Ambiguity Resolution (PAR) relaxes the condi-
tion of fixing the complete set of ambiguities and find instead
the subset which maximizes the success rate. Conventional
PAR solutions are designed to maximize the probability of
success at the ILS problem, which often leads to fixing an
extremely low number of satellites. Thus, the associated fixed
positioning solution lacks the required accuracy. This work
introduces Precision-Driven PAR (PD-PAR), a constrained
alternative on PAR for which a minimal precision criteria
is added to the mixed real and integer parameter estimation
problem. Then, the selection for the subset of ambiguities to
be fixed is based upon their projection on the position domain.
The performance characterization is realized on a synthetic
scenario, where observations from a triple-frequency, triple-
constellation are employed and the estimation is realized
on a snapshop manner. It is shown that the proposed PD-
PAR extensively overperform FAR and the conventional data-
driven PAR. While the later two are unable to find an integer
solution for baselines over 20 km on an instantaneous manner,
PD-PAR manages to obtain a high success rate for baselines
of even 30 km. The negative note relates to the appearance
of certain chance of failure rate, for the test of alternative
ILS tests shall be considered as future work. In summary,
PD-PAR represents an appealing alternative to conventional
RTK and PAR solutions, able to provide instantaneous precise
localization even for medium baseline lengths at a cost of a
slight degradation on the positioning performance.
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