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5Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry,
F-91127 Palaiseau, France

6ICREA—Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain

(Received 26 June 2020; revised 6 November 2020; accepted 18 December 2020; published 9 February 2021)

It is interesting to observe that all optical materials with a positive refractive index have a value of index
that is of order unity. Surprisingly, though, a deep understanding of the mechanisms that lead to this
universal behavior seems to be lacking. Moreover, this observation is difficult to reconcile with the fact that
a single isolated atom is known to have a giant optical response, as characterized by a resonant scattering
cross section that far exceeds its physical size. Here, we theoretically and numerically investigate the
evolution of the optical properties of an ensemble of ideal atoms as a function of density, starting from the
dilute gas limit, including the effects of multiple scattering and near-field interactions. Interestingly, despite
the giant response of an isolated atom, we find that the maximum index does not indefinitely grow with
increasing density but rather reaches a limiting value of n ≈ 1.7. This limit arises purely from
electrodynamics, as it occurs at densities far below those where chemical processes become important.
We propose an explanation based upon strong-disorder renormalization group theory, in which the near-
field interaction combined with random atomic positions results in an inhomogeneous broadening of
atomic resonance frequencies. This mechanism ensures that, regardless of the physical atomic density, light
at any given frequency only interacts with at most a few near-resonant atoms per cubic wavelength, thus
limiting the maximum index attainable. Our work is a promising first step to understand the limits
of the refractive index from a bottom-up, atomic physics perspective, and it also introduces the
renormalization group as a powerful tool to understand the generally complex problem of multiple
scattering of light overall.

DOI: 10.1103/PhysRevX.11.011026 Subject Areas: Atomic and Molecular Physics, Optics,
Quantum Physics

I. INTRODUCTION

One interesting observation is that all the optical materi-
als that we know of, with a positive index of refraction at
visible wavelengths, universally have an index of order
unity, n ∼Oð1Þ. While we typically utilize materials far
from their natural electronic resonances, this observation
even holds true close to resonance [1–8]. Yet, despite the
profound implications that an ultrahigh index material
would have for optical technologies, a deep understanding
of the origin of this apparently universal behavior seems to

be lacking. Furthermore, this property of real materials is
not readily reconciled with the fact that a single isolated
atom exhibits a giant scattering cross section σsc ∼ λ20 for
photons resonant with an atomic transition of wavelength
λ0 [Fig. 1(a)], which far exceeds both the physical size of
the atom and the typical lattice constant of a solid
(λ0 ∼ 1 μm for a typical optical transition, compared to
the Bohr radius a0 ∼ 0.1 nm).
In standard theories [9,10], the macroscopic index of an

atomic medium [Fig. 1(b)] is constructed from the product
of the single-atom polarizability and the atomic density,

and around resonance, its value n ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nλ30=V

q
extrapolates

to a maximum of about 105 at solid densities [Fig. 1(c)]. It
is well known that this argument neglects multiple scatter-
ing of light and photon-mediated dipole-dipole interactions
[11,12], and substantial work has been devoted to exploring
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their effects on various optical phenomena, such as col-
lective resonance shifts [13–18], cooperative scattering
properties [19–21], emergence of subradiance and super-
radiance [22–27], realization of atomic mirrors [28–30],
and Anderson localization of light [31,32]. In particular,
past work includes theoretical and experimental evidence
that the optical response of dense gases can be much
smaller than standard predictions [12,19,33–35] or even
reach limiting values [36–42]. However, an underlying
physical explanation is still missing, and our goal here is to

better understand the mechanisms that might limit the index
even when operating close to resonance.
Specifically, we investigate in detail the optical response

of an ideal ensemble of identical, stationary atoms as a
function of density starting from the dilute limit and well
within the regime where the atoms do not interact chemi-
cally. In large-scale numerics (involving up to around
23 000 atoms, about an order of magnitude larger than
comparable works [12,15,18–21,34,36–40]), we find that
the maximum index does not indefinitely grow with
density, and it saturates to a maximum value of n ≈ 1.7,
when the typical distance between atoms becomes smaller
than the length scale associated with the resonant cross
section, i.e., d < λ0. Furthermore, we introduce an under-
lying theory based upon the strong-disorder renormaliza-
tion group (RG), which has been a very successful
technique to deal with highly varying interaction strengths
in a wide variety of condensed matter systems [43–50]. In
the context of our particular problem, the combination of
strong near-field (∼1=r3) optical interactions and random
atomic positions enables one to characterize the optical
response of the system in terms of a hierarchy of strongly
interacting, nearby atomic pairs. The shifts of the resonance
frequencies arising from the near-field interactions then
effectively yield an inhomogeneously broadened optical
medium, where the amount of broadening linearly scales
with density. This process implies that light of any given
wavelength only interacts with at most around 1 near-
resonant atom per reduced cubic wavelength λ30=ð2πÞ3,
regardless of the physical atomic density, thus limiting the
optical response [Fig. 1(d)].
Our results are potentially significant on a number of

fronts. First, they provide a convincing picture of why
typical theories for optical response, based upon a smooth
density approximation, fail for dense, near-resonant atomic
media, due to the important role of granularity and strong
interactions of any given atom with a particularly close-by,
single neighbor. Furthermore, our results show the promise
of a bottom-up approach to understanding the physical
limits of the refractive index, starting from objects (isolated
atoms) whose optical responses are both huge and exqui-
sitely understood. Separately, the existence of a fundamen-
tal mechanism that results in inhomogeneous broadening
(i.e., dephasing) and saturation of optical properties at high
densities, which occurs even for perfect, stationary atoms,
should impose fundamental bounds on the maximum
densities and minimum sizes of atom-light interfaces
needed to realize high-fidelity quantum technologies.
Finally, while we focus here on the linear optical response
of a dense atomic medium, we believe that the validity of
the RG is quite general and can constitute a versatile new
tool for the generally challenging problem of multiple
scattering in near-resonant disordered media [12,20,31,
34–37,40,51–53], including in the nonlinear and quantum
regimes [54].

FIG. 1. Optical response of an atomic medium. (a) Illustration
of a single atom with a dipole-allowed optical transition
between ground and excited states, jgi and jei, characterized
by a transition wavelength λ0 and spontaneous emission rate Γ0.
Such an atom exhibits a scattering cross section (illustrated by
the shaded region) of σsc ∼ λ20 for a single resonant photon
(wavy green arrows). (b) In a dense ensemble with many atoms
per cubic wavelength λ30, the scattering of an incident photon
can involve multiple scattering and interference between atoms.
(c) In conventional theories of macroscopic optical response,
the atoms are approximated by a smooth medium, and the
index is derived from the product of single-atom polarizability
and density. The maximum index n near the atomic resonance
then scales with atomic density like n ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nλ30=V

p
. (d) In our

renormalization group theory, we retain multiple scattering and
granularity, showing that the optical properties of the ensemble
are determined by a hierarchy of nearby atomic pairs that
strongly interact via their near fields. These interactions
effectively produce an inhomogeneously broadened ensemble,
where the amount of broadening scales with density (with the
different colors of atoms representing the different resonance
frequencies in the figure). An incident photon of a given
frequency thus sees only about 1 near-resonant atom per
reduced cubic wavelength to interact with, regardless of atomic
density, resulting in a maximum index of n ≈ 1.7.
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This paper is structured as follows. First, we briefly
review the theoretical formulation of the multiple scattering
problem of atoms or other pointlike dipoles and the
standard atomic physics model of the refractive index,
when atomic granularity and multiple scattering are
ignored. We then formulate our large-scale numerical
simulations, describing a few implementation details that
allow the index to be efficiently calculated, and we show
that the index eventually saturates with increasing density
to a maximum value of n ≈ 1.7. We then introduce our RG
theory, which highlights the importance of granularity and
nearby atomic pairs on the macroscopic optical response,
before concluding with an expanded discussion of future
interesting directions to investigate.

II. FORMAL THEORY OF MULTIPLE
SCATTERING

We consider a minimal system consisting of N identical,
stationary two-level atoms. The atoms are assumed to have
electronic ground and excited states, jgi and jei—with a
frequency difference ω0 and an associated wavelength
λ0 ¼ 2πc=ω0—which have an electric-dipole transition
with a dipole matrix element along a fixed axis (say x̂),
as depicted in Fig. 1(a). The excited states of the atoms
decay purely radiatively, with a rate of Γ0 for a single
isolated atom. As we are specifically interested in the linear
refractive index, it is sufficient to treat atoms in the limit of
classical, polarizable, radiating dipoles. In order to inves-
tigate the frequency-dependent index nðωÞ, we consider
that the atoms are driven by a monochromatic, linearly
polarized, input beam Einðr;ωÞ ¼ Einðr;ωÞx̂, whose
polarization aligns with the polarizability axis of the atoms.
Each atom j acquires a dipole moment djðωÞ ¼ djðωÞx̂,
as a result of being driven by the total field, which
consists of the sum of the incident field and fields
rescattered from other atoms. Formally, the total field
can be expressed as [55]

Eðr;ωÞ ¼ Einðr;ωÞ þ μ0ω
2
XN
j¼1

¯̄Gðr; rj;ωÞ · djðωÞ: ð1Þ

Here, the dyadic Green’s tensor ¯̄Gðr; rj;ωÞ encodes the
field at position r, produced by an oscillating dipole at rj,
and in vacuum, it is given by [55]

¯̄Gðr; r0;ωÞ ¼ k
eiρ

4π

��
1

ρ
þ i
ρ2

−
1

ρ3

�
I

þ
�
−
1

ρ
−
3i
ρ2

þ 3

ρ3

�
ρ ⊗ ρ

ρ2

�
; ð2Þ

with the dimensionless distance defined as ρ≡ jρj≡
kjðr − r0Þj and k ¼ ω=c. Note that ¯̄Gðr; r0;ωÞ contains
both nonradiative, near-field (∼1=ρ3) and radiative,
far-field (∼1=ρ) terms. Then, the induced dipole moment
of atom i is given by

diðωÞ ¼ α0ðωÞϵ0
�
Einðri;ωÞ

þ μ0ω
2
XN−1

j≠i
x̂ · ¯̄Gðri; rj;ωÞ · x̂djðωÞ

�
; ð3Þ

where the parameter α0ðωÞ defines the polarizability of a
single dipole. Although Eqs. (1) and (3) can describe any
system of linearly polarizable, pointlike dipoles [55], e.g.,
dielectric nanoparticles [56], in our case we focus on the
response of nonabsorbing, purely radiative atoms, whose
resonant cross section σsc ¼ 3λ20=ð2πÞ is the maximum set
by the unitarity limit [57]. In this context, the atomic
polarizability reads α0ðωÞ ¼ −3π=½ðΔþ i=2Þk30�, where
k0 ¼ 2π=λ0 denotes the resonant wave vector, while
Δ≡ ðω − ω0Þ=Γ0 represents the dimensionless detuning
between the input beam frequency ω and the atomic
resonance ω0. To relate to other work, we note that an
equation identical to Eq. (3) can also be derived starting
from a quantum mechanical formulation of atom-light
interactions in the presence of multiple scattering, where
the light-mediated interactions between atoms are encoded
in a non-Hermitian Hamiltonian describing dipole-dipole
interactions [23]. More precisely, one can focus on the
regime where at most one atom is excited, which reflects
the low-intensity limit of linear optics in which we are
interested. Then, the steady-state wave-function amplitudes
for atom i to be excited obey the same coupled equations of
Eq. (3) [16,26,31,36,37].
While Eqs. (1) and (3) are formally exact, solving a

number of equations that explicitly scale with the number
of atoms and that depend on the details of atomic positions
is not a particularly convenient way to calculate the index or
other optical properties. Historically, this issue fostered the
development of simplified theories for the macroscopic
response, such as the Drude-Lorentz model [9] or, equiv-
alently, the Maxwell-Bloch (MB) equations [10], where the
discreteness of atoms is replaced by a smooth medium of
densityN=V [Fig. 1(c)]. The resulting index depends on the
product of density and single-atom polarizability,

nMBðΔÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N

V
α0ðωÞ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3πη

−Δ − i=2

s
; ð4Þ

where we defined the dimensionless density η≡ N=ðVk30Þ.
Notably, for an optimum detuning, the maximum real part
of the index scales like

ffiffiffi
η

p
.

While the MB equations ignore multiple scattering, the
Lorentz-Lorenz (LL) or the equivalent Clausius-Mossotti
model is one well-known approach to approximate its
effects, still within the smooth density approximation.
Given any atom located at r0, the model approximates
the neighboring atoms as a smooth dielectric medium with
a small spherical exclusion around r0 [9]. The resulting
local field correction produced by the other atoms gives an
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index that satisfies the equation ðn2LL − 1Þ=ðn2LL þ 2Þ ¼
ðN=VÞα0ðωÞ=3 [55]. Plugging in the atomic polarizability,
one readily finds that

nLLðΔÞ ¼ nMBðΔþ πηÞ: ð5Þ

Importantly, while the spectrum is shifted with respect to
the MB model, the LL model still produces a maximum
index that grows like

ffiffiffi
η

p
.

III. COUPLED-DIPOLE SIMULATIONS

Equations (1) and (3) are ubiquitously used to model
multiple scattering and interference effects involving a
moderate number of pointlike scatterers. Here, we briefly
introduce some key details of our implementation, which
allows us to perform simulations on very high atom
numbers and efficiently extract the index.
First, one conceptually straightforward way to extract

the complex refractive index of a material would be to take
a slab of thickness d and large transverse extent and
investigate the phase shift and attenuation of a quasi-
plane-wave incident field upon transmission. We approx-
imately realize such a situation by taking atoms with a fixed
density in a cylindrical volume centered around the origin,
illuminated by a weakly focused, near-resonant Gaussian
beam. Decomposing the position r ¼ fr⊥; zg in terms of
a transverse component r⊥ and axial component z, the
beam amplitude within the paraxial approximation is given
by Einðr;ω0Þ ¼ E0½w0=wðzÞ� expf−½r⊥=wðzÞ�2 þ i½k0zþ
ϕðr; w0Þ�g, where wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=zRÞ2

p
describes the

transverse extension of the beam while w0 ¼ wð0Þ is the
beam waist at the focal plane and ϕðr; w0Þ accounts for
the curvature of the wave front and for the Gouy phase [10]
[see Fig. 2(a) for an illustration of the system]. This
parameter is given by ϕðr; w0Þ ¼ − arctanðz=zRÞ þ k0r2⊥=
f2z½1þ ðzR=zÞ2�g, with zR ¼ k0w2

0=2. Given that the
intensity of the beam drops off rapidly for transverse
distances larger than wðzÞ, the parameters are chosen such
that wðzÞ is small compared to the radius of the cylinder;
thus, diffraction effects from the edges are negligible. Note
that the cylindrical geometry has the nice feature that the
furthest atoms are equidistant from the center of the beam,
thus avoiding “wasting” computational resources, such as
in a rectangular geometry, on atoms at the corners that
hardly contribute to the optical response. Finally, we avoid
very tight focusing, w0 ≲ λ0, where nonparaxial effects
could emerge.
We must also specify a practical definition of index for a

granular system such as ours. In particular, since our atoms
are purely scattering and have no absorption, it is well
known [20,51,52,58] that for a fixed random spatial
configuration, an input as in Fig. 2 produces a complex
“speckle” pattern in the outgoing intensity when the
system is optically dense, due to multiple scattering and

interference, as exemplified in Fig. 2(b). To isolate the part
of the field that possesses a well-defined phase relationship
with the incident field from realization to realization, we
project Eq. (1) back into the same Gaussian mode as the
input, as can be experimentally enforced by recollecting the
transmitted light through a single mode fiber. This process
results in a transmission coefficient tðΔÞ given by [36,59]

tðΔÞ ¼ 1þ 3i
ðw0k0Þ2

XN
j¼1

E�
inðrj;ω0Þ
E0

cjðΔÞ; ð6Þ

where E0 is the input field amplitude at the beam focus.
Here, for convenience, we have defined rescaled dipole

(a)

(b)

FIG. 2. Simulated physical system. (a) Cylindrical ensemble
of randomly distributed atoms (green points) illuminated by a
z-directed Gaussian beam, whose beam waist wðzÞ ≫ λ0 is
represented in orange. The transverse radius of the cylinder is
chosen to be much larger than the beam waist to avoid edge
diffraction. (b) Color-coded 3D representation of the forward
scattered intensity Iðr;ω0Þ ¼ jEðr;ω0Þj2=ð2μ0cÞ (with the value
indicated in the color bar) over a hemispherical surface far from
the ensemble (the radius of this hemisphere is 35λ0), given an
incident resonant Gaussian beam. The intensity is calculated for a
single random atomic configuration. The system parameters used
are as follows: beam waist w0 ¼ 3λ0, cylinder radius lcyl ¼ 7λ0,
and thickness d ¼ 2λ0.
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amplitudes cjðΔÞ ¼ djðωÞk30=ð3πϵ0E0Þ, which satisfy the
dimensionless coupled equations

−ΔciðΔÞ −
XN
j¼1

GijcjðΔÞ ¼
Einðri;ω0Þ

E0

: ð7Þ

In these equations, we defineGij≡ð3π=k0Þx̂ · ¯̄Gðri;rj;ω0Þ ·
x̂ and Gjj ¼ i=2, which coincides with the single-atom
decay rate in units of Γ0, while regularizing the divergent
self-energy associated with the real part of ¯̄G. Note that, for
simplicity, the Green’s function ¯̄Gðri; rj;ω0Þ is only evalu-
ated at the atomic resonance frequency, in order to ease the
computational cost as the detuning is varied. Ignoring the
dispersion of ¯̄G is an excellent approximation for near-
resonant atoms, as the optical dispersion and delay of such
a system is dominated by the atomic response itself rather
than from the vacuum [60]. Similarly, we approximate the
near-resonant input field as Einðri;ωÞ ≃ Einðri;ω0Þ.
The expression in Eq. (6) represents a useful closed-form

definition of the transmission coefficient tðΔÞ, which
avoids a numerically expensive point-by-point evaluation
of the scattered field Eðr;ωÞ, as nominally prescribed by
Eq. (1). We can extrapolate the complex index of refraction
nðΔÞ from the relation

htðΔÞi ¼ exp fi½nðΔÞ − 1�k0dg; ð8Þ

where the averages are performed over about 103–104 sets
of random positions, for each fixed density. Unlike in a
smooth medium, we have that jhtðΔÞij2 ≠ hjtðΔÞj2i.
Nevertheless, our definition of the index coincides with
that often used within atomic physics (e.g., in phase
contrast or absorption imaging of a Bose-Einstein con-
densate [61,62]). In the Appendix A, we demonstrate the

independence of the calculated index from the thickness d,
which is implicitly assumed in Eq. (8). Alternatively, one
might assume that the calculated htðΔÞi approximately
coincides with the finite-slab Fresnel coefficients for a
smooth material [63]. This assumption produces an alter-
native way to extrapolate the index, which we find yields
quantitatively similar results to what we present below.
In Fig. 3, we plot our numerical results for the real and

imaginary parts of nðΔÞ, as a function of the input field
detuning Δ, and for various densities. For comparison, we
also plot the index as predicted by the MB equations, which
starts to appreciably deviate from the full numerical results
for dimensionless densities η≳ 0.1. Interestingly, for suf-
ficiently high densities, we observe that the computed
spectra collapse onto the same curve when plotted as a
function of the rescaled detuning Δ=η, as shown in the
insets of Fig. 3, which include all plots in the range
2≲ η≲ 3. The invariance of nðΔ=ηÞ for η≳ 2 directly
indicates that both the maximum real index and the
attenuation per unit length acquire fixed values with
increasing density and that density only determines a linear
broadening in the spectra. Notably, the maximum real index
saturates to a “real-life” value of around 1.7, in contrast to
the indefinite growth predicted by both MB and LL.
We note that a number of experiments involving dense

cold atomic clouds have observed both a saturation of the
index [38,40,41] and the emergence of an anomalous
broadening of the linewidth [17,33,34,38,39], including a
linear scaling with density [40,41]. A maximum index of
n ≈ 1.26 has also been observed in experiments involving
dense, hot atomic vapors [42], which has been attributed to
atomic collisions. However, while complex collision dynam-
ics necessitate semiphenomenological models [64], here, our
mechanism for saturation is quite fundamental, and it occurs
even for perfectly identical, stationary atoms.
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FIG. 3. Frequency-dependent refractive index for different atomic densities. The solid lines portray the imaginary (a) and real (b) parts
of the refractive index versus dimensionless detuning Δ, obtained through Eq. (6), while the dotted lines show the MB predictions.
The colors denote different atomic densities (color bar on the right), with the specific values indicated by the dotted white lines. The
refractive index is inferred by averaging the complex transmission coefficient tðΔÞ over about 103–104 atomic configurations. Other
system parameters are as follows: thickness d ¼ 0.4λ0, transverse radius 5 ≤ lcyl=λ0 ≤ 7, and beam waist 2.5 ≤ w0=λ0 ≤ 3. The insets
show the curves at the three highest densities as a function of the rescaled detuning Δ=η.
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IV. INTRODUCTION OF RG SCHEME AND
REFRACTIVE INDEX ANALYSIS

Our RG theory is based upon the key intuition gained in
the collective scattering of just two atoms to build up an
understanding of the many-atom problem in a hierarchical
manner. To be specific, let us consider the problem of two
identical atoms, whose distance is much smaller than a
wavelength, ρ12 ≡ k0jr1 − r2j ≪ 1. Applying Eqs. (6)
and (8), we can calculate the imaginary part of the “index”
of the two-atom system, as illustrated in Fig. 4(a). One can
see that the characteristic two-atom spectrum (blue line) is
not twice the response of a single isolated atom (green
dashed curve) but instead consists of two well-separated
peaks with different linewidths and shifted resonances.
To understand this behavior, we consider the normal

modes of the two-atom system, as encoded in the eigen-
states of the dimensionless matrix G, whose elements Gij

were introduced in Eq. (7). When ρ12 ≪ 1, G is dominated
by its off-diagonal components G12 ¼ G21 and, in particu-
lar, by the purely real 1=ρ312 near-field term (which we
denote by Gnear

12 ). Specifically, in spherical coordinates
ρij ≡ ρijðcos θx̂þ sin θ cosϕŷ þ sin θ sinϕẑÞ, one obtains
Gnear

ij ¼ 3ð−1þ 3cos2θÞ=ð4ρ3ijÞ, which describes the
strong, coherent, near-field coupling between the two
dipoles. This process produces symmetric and antisym-
metric eigenstates whose dimensionless normal-mode
frequencies (real parts of the eigenvalues) are shifted as
ω�≈ ∓ Gnear

12 and align with the resonant peaks seen in
Fig. 4(a). Given that Im G is also a 2 × 2 matrix with equal
diagonal entries and equal off-diagonal entries, its eigen-
states are also the same symmetric and antisymmetric
modes. This case results in renormalized linewidths for
these modes (given by the eigenvalues of ImG) of Γþ ≈ 2

and Γ− ≈ ρ212, which is simply the two-atom limit of the
famous Dicke superradiance model [23]. The key insight is
that, because of the large splitting, the total response in
Fig. 4(a) is characterized by two well-separated resonances,
which, although arising from the strong interaction of
identical atoms, resemble the case of two inhomogeneous
and noninteracting atoms, which were assigned these
resonance frequencies and linewidths to start. This concept
is at the heart of the RG approach for the many-atom case.
We now discuss how strong, coherent, 1=ρ3ij near-field

interactions in a many-atom system can be treated by
successively replacing strongly interacting pairs with opti-
cally equivalent, noninteracting atoms. Here, we focus
on the main conceptual steps of our RG scheme, while
additional justification of this scheme can be found in
Sec. V. Given the discussion above, we anticipate that the
scheme generates an optically equivalent ensemble con-
taining atoms with different renormalized resonance
frequencies ωi. Contrary to the two-atom case, however,
the linewidths will not be renormalized within our RG
scheme (see Sec. V). At any step of the RG flow, each pair

of atoms can either interact, or not, through the
near-field coupling, depending on the previous RG steps.
The normal modes of such a system are given by the
eigenstates of the generalized N × N matrix M ¼
diagðωÞ − G̃, where the elements G̃ij are defined as
G̃ij ¼ LijGnear

ij þ ðGij −Gnear
ij Þ. Here, diagðωÞ is a diago-

nal matrix containing the individual resonance frequencies
ω ¼ ðω1;…;ωNÞ, while Lij ¼ 1 or 0 dictates whether the
pair i, j is allowed to interact via the near field. At the
beginning of the RG process, the optically equivalent
ensemble corresponds to the physical one, and thus, all
atoms are allowed to interact (Lij ¼ 1 for all pairs) and
ωi ¼ ω0. In three dimensions, the 1=ρ3 scaling of the near-
field interaction implies that if an atom has a particularly
close-by and near-resonant neighbor, this pair will interact
much more strongly with each other than with any other
nearby atoms [43]. Suppose that atoms i, j (with Lij ¼ 1)
are identified as the most strongly interacting pair by the
prescription given below. Then, we can rewrite M as
M ¼ Mpair þ ðM −MpairÞ, where the only nonzero
elements of Mpair involve atoms i, j. This effective
2 × 2 matrix reads

Mpair ¼ hωiijI þ
�

δωij −Gnear
ij

−Gnear
ij −δωij

�
; ð9Þ

where hωiij ¼ ðωi þ ωjÞ=2 and δωij ¼ ðωi − ωjÞ=2, and
where we have included the coherent near-field interaction
in Mpair. The remaining far-field interactions between
atoms i and j, as well as near- and far-field interactions
involving all other atoms, are included in ðM −MpairÞ.
The large near-field interaction motivates diagonalizing
Mpair first while treating ðM −MpairÞ as a perturbation.
From the structure of Mpair, we define the pairwise

interaction parameter Kij¼LijjGnear
ij j=ðjδωijjþ1Þ. A large

value of Kij (which requires Lij ¼ 1) implies that the
strong near-field interaction is able to strongly split the
original resonances, including overcoming any possible
differences in resonance frequencies δωij of the pair.
We thus identify the most strongly interacting pair as
that with the largest value of Kij, as pictorially depicted
in the first panel of Fig. 4(b). Diagonalization of Mpair

results in two, new, interacting resonance frequencies

ω� ¼ hωiij ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δω2

ij þ ðGnear
ij Þ2

q
. We can then obtain an

approximately equivalent system by replacing the two
original resonance frequencies ωi;j with the new values
ω� [second panel of Fig. 4(b)]. While the resulting normal
modes are, in principle, delocalized between atoms i, j, to
facilitate the RG, we randomly assign ωþ to either atom i
or j, while ω− is then assigned to the other atom (see
Appendix C on the issue of replacing atoms i, j with two
new atoms placed at the midpoint of the original locations).
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This new system is described by a renormalized interaction
matrix Meff ¼ diagðωeffÞ − G̃eff , where ωeff ¼ ðω1;…;
ωþ;…;ω−;…ωNÞ contains the two renormalized reso-
nance frequencies and where G̃eff includes the new set
of allowed near-field interactions Leff , which both forbid
the renormalized pair from interacting again (i.e., Leff

ij ¼ 0)
and prevent any backflow of the RG process (see
Appendix B for more details). The RG process can be

iteratively repeated by identifying, at each step, the most
strongly interacting pairs, and it ends once Kij≤Kcutoff∼1,
i.e., when all strong near-field interactions have been
removed. In the numerics presented here, we take a cutoff
parameter of Kcutoff ¼ 1. Other choices result in minor
quantitative corrections, while the overall conclusions
remain the same. The final result, as suggested in the third
panel of Fig. 4(b), is that the original, homogeneous system

(a) (b)

(c) (d)

FIG. 4. Renormalization group analysis. (a) Representative optical response of two identical atoms separated by a distance ρ12 ≪ 1.
Here, we plot the absorption spectrum (blue curve), which consists of two well-separated Lorentzians. The positions of the resonances
are given approximately by∓ Gnear

12 , where Gnear
12 ∝ 1=ρ312 is the near-field component of the Green’s function. To compare, we also plot

twice the response of a single isolated atom (green dashed line). (b) Pictorial representation of the RG scheme for a many-atom system.
At each step of the RG flow, the nearby pairs (identified by orange circles) that most strongly interact via their near fields are identified
and replaced with atoms with different resonance frequencies (indicated by different colors) in such a way as to produce an equivalent
optical response. At the end of the RG process (last panel), the overall system is equivalent to an inhomogeneously broadened ensemble
of weakly interacting atoms. (c) Comparison between the maximum real refractive index predicted by the full coupled-dipole
simulations of identical atoms (blue points), and the index of the equivalent, inhomogeneously broadened ensemble predicted by the RG
(green). For each value of density, the maximum index is obtained by optimizing over detuning. For comparison, the MB and LL models
both predict a maximum index given by the orange curve. The inset compares the rescaled spectra Re nðΔ=ηÞ of the RG (green) and full
coupled-dipole (blue) simulations, given the points at densities η≳ 2. (d) Rescaled probability distribution of effective, inhomoge-
neously broadened, resonance frequencies Pðωeff=ηÞ obtained from the application of the RG scheme. Given nine different values of the
density η (ranging from η ≈ 2.5 up to η ≈ 80), the distributions of effective resonance frequencies are plotted with different colors,
according to the bar on the right. The exact values chosen for the curves are emphasized by dotted white lines in the color bar. The curves
at η ≈ 2.5 and η ≈ 3 are calculated using the cylindrical system studied in Fig. 3 (with thickness d ¼ 0.4λ0 and transverse radius
lcyl ¼ 5λ0), while the distributions Pðωeff=ηÞ at densities η > 3 are evaluated using a spherical geometry of radius rsph ¼ 0.55λ0. Finally,
for the case of density η ≈ 3, we plot (black dashed curve) the many-atom distribution of the eigenvalues of the near-field matrix −Gnear
(also rescaled by a factor of 1=η for consistency), as discussed further in Sec. V. All distributions are obtained by accumulating results
from about 100 different configurations of atomic positions.
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can be mapped to an optically equivalent system that is
inhomogeneously broadened, with a smooth probability
distribution of resonance frequencies PðωeffÞ.
To validate the RG approach, we can use Eqs. (6) and (7)

(with the near-field interactions of renormalized atoms
suitably removed; see Appendix B) to calculate the
maximum real index (optimized over detunings) as a
function of density η of the ensemble with renormalized
resonance frequencies. This is plotted in Fig. 4(c) (green),
along with exact numerical simulations (blue) of Eq. (6) for
the original system of identical atoms. These curves show
good agreement for all densities and, in particular, reveal a
maximum index of n ≈ 1.7 at high densities. For compari-
son, the maximum indexes of the MB and LL equations
(orange) increase indefinitely with density.
Furthermore, motivated by our previous observation that

high-density spectra collapse onto the same curve when
the detuning is rescaled by density [insets of Fig. 3 and
Fig. 4(c)], in Fig. 4(d), we plot the rescaled probability
distribution of effective resonance frequencies Pðωeff=ηÞ
predicted by the RG. For all densities considered (2.5≲
η≲ 80), we see that a single universal curve results; i.e., the
amount of broadening grows directly with density. Based
on this curve, we find that the number of near-resonant
atoms per reduced cubic wavelength ðλ0=2πÞ3 ¼ k−30 ,
within a range �Γ0 of the original atomic resonance
frequency, is approximately 0.3. The limited number of
near-resonant atoms for light to interact with, regardless of
how high the physical density is, directly explains the
saturation of the maximum achievable index. We note that
obtaining PðωeffÞ by the RG does not require solving the
coupled equations of Eq. (7) but only the diagonalization of
2 × 2 pairwise matrices, and we can calculate this distri-
bution for much higher densities up to η ∼ 80. Furthermore,
as the RG only involves the “short-range” near-field
interaction [see Eq. (9)], we expect the rescaled distribution
to be unique in the bulk of the atomic medium. In other
words, it should not depend sensitively on the specific
geometry, provided that the system is sufficiently large that
boundary effects are negligible. In Fig. 4(d), the curves for
η ≤ 3 are obtained by a cylindrical geometry [the highest
densities that we can compare to full coupled-dipole
simulations, as in Fig. 4(c)]. For higher densities η > 3,
when comparing with coupled-dipole simulations is no
longer feasible, the extreme aspect ratio of the cylindrical
geometry makes it inefficient to explore significantly
higher densities using the RG. We then find it more
efficient to switch to atoms within a spherical geometry,
which has the smallest surface-area-to-volume ratio.
Within the language of the RG, the universal distribution

Pðωeff=ηÞ constitutes the (numerically obtained) fixed
point, as the interaction parameter of a system flows toward
Kij → 1. While it might be desirable to write down and
analytically solve the RG flow equation for PðωeffÞ, this is
quite challenging in our case because Kij not only depends

on the distance between atoms but also on their spatial
orientation (as the near field is anisotropic) and the differ-
ence in resonance frequencies.
As mentioned earlier, it is rather inconvenient to derive

key optical properties of a system, like the index, by
solving a set of equations [Eq. (7)] as large as the number of
particles. At the same time, the RG approach clearly shows
why conventional models (such as MB and LL) that
treat atoms as a smooth medium fail at high densities
[12,15,18] since the optical properties depend highly on
granularity and on the strong interaction between an atom
and a single, particularly close-by neighbor. Interestingly,
the RG also provides a basis to develop a more accurate,
smooth medium model. In particular, after the system is
mapped to an inhomogeneously broadened distribution,
PðωeffÞ, where near-field interactions and the influence
of single neighbors are seen to be strongly reduced, one
can finally apply a smooth medium approximation.
Specifically, the MB equation [i.e., Eq. (4)] for the index
can be readily generalized to an inhomogeneously broad-
ened ensemble

nðΔÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3πη

Z
PðωeffÞ

−Δþ ωeff − i=2
dωeff

s
: ð10Þ

Substituting the distribution found in Fig. 4(d), at high
densities η ≫ 1, this equation predicts a maximum index
of n ≈ 1.8, in good agreement with full results. We stress
that the emergence of a finite bound to the maximum
index predicted by Eq. (10) can be directly related to the
invariance of the distribution Pðωeff=ηÞ and thus to the
linear growth of broadening with density.

V. MICROSCOPIC JUSTIFICATION
OF THE RG SCHEME

In the previous section, we have established that our
RG procedure reproduces well the dependence of the
refractive index on density. We now present additional
numerical and physical arguments that justify this approach
and its approximations. Casual readers can consider skip-
ping this section and jumping to Sec. VI. In this section, we
specifically answer the following questions:
(1) Strictly speaking, the RG is an approximate diag-

onalization of the many-atom near-field interaction
matrix Gnear, in terms of pairwise blocks. Therefore,
how well does our RG prescription reproduce the
entire eigenvalue distribution of Gnear?

(2) In our RG prescription, the collective symmetric and
antisymmetric modes of two strongly interacting
atoms are replaced by two new effective atoms with
electric-dipole transitions and modified resonance
frequencies. However, this prescription seemingly
ignores the possibility that these modes (in particu-
lar, the antisymmetric one) could have a higher-order
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multipolar character. Then, why is such a replace-
ment valid?

(3) As a related point, these collective modes can be
renormalized again if they strongly interact with a
third nearby atom. As a higher-order multipolar
mode can have a different scaling of the near field
(∼1=ρ4 in the case of the antisymmetric mode),
why does our replacement scheme with an electric-
dipole transition and a 1=ρ3 near-field interac-
tion work?

(4) Our RG prescription focuses on the strong inter-
action between nearby pairs due to the near field, but
the 1=ρ far field associated with a radiating dipole
might suggest that the large number of atoms far
away from a given atom might have a dominant
effect in the interactions. What justifies treating the
near field first over the far field?

(5) As seen in the case of just two interacting atoms
[Fig. 4(a)], both the resonance frequencies and
linewidths of the collective modes are modified.
Thus, why is it incorrect to renormalize both
resonance frequencies and linewidths pairwise in
the many-atom problem?

A. Comparison of eigenvalue distributions

First, while we previously focused on the observable
quantity of the refractive index, we note that mathemati-
cally, the RG approach is an attempt to approximately
diagonalize the many-atom, near-field interaction matrix
Gnear

ij ¼3ð−1þ3cos2θÞ=ð4ρ3ijÞ, in terms of pairwise blocks.
We can thus test its accuracy by comparing the probability
distribution of effective resonance frequencies PðωeffÞ
obtained by the RG, with the probability distribution of
the eigenvalues of−Gnear obtained by exact diagonalization
of a many-atom, dense system. A remarkable agreement
can be observed in Fig. 4(d), where the rescaled distribution
of effective resonances Pðωeff=ηÞ is compared with the
eigenvalue distribution of −Gnear (also rescaled by the
density, black dashed curve), as calculated for the highest
feasible density η ≈ 3 of our cylindrical system. We
separately checked that different (higher) densities and
different geometries give similar results. Although subtle,
we point out, for future work, the presence of a slight
asymmetry in the exact eigenvalue spectrum around
ωeff ¼ 0, which does not appear in the RG-derived dis-
tribution PðωeffÞ. This asymmetry might arise from higher-
order corrections to the RG (e.g., rare triplets of nearly
equidistant atoms, where the pairwise picture fails).

B. Multipolar nature of collective modes

Even if the RG accurately predicts the resonance
frequencies of a strongly interacting pair [e.g., the positions
of the resonant peaks in Fig. 4(a)], one may wonder what
the justification is for associating these two collective

modes with two new individual atoms, which we implicitly
assumed, up to now, to be characterized by electric-dipole
transitions like the original atoms.
To frame the issue, we recall from Sec. IV that two,

strongly interacting, identical atoms are diagonalized by a
symmetric and an antisymmetric collective mode, where
the two atomic electric dipoles, respectively, oscillate in
phase or out of phase with one another. Clearly, the
symmetric mode retains an electric-dipole character, as
the two individual dipoles add to produce a dipole of
doubled amplitude. This result can be observed in Fig. 5,
where we compare the intensity pattern radiated by one
single dipole d ¼ d0x̂ of fixed amplitude and direction
[Fig. 5(a)] with that of two in-phase, close-by dipoles
d1 ¼ d2 ¼ d0x̂ [Fig. 5(b)]. However, the case of the
antisymmetric mode is visibly more complex [Fig. 5(c)].
Intuitively, the two out-of-phase dipoles produce a
vanishing electric-dipole response and are instead a
hybrid of magnetic dipole and electric quadrupole modes.
Interestingly, though, while the radiation pattern of
Fig. 5(c) depends sensitively on the relative orientation
of the two out-of-phase dipoles, if one averages over
orientations, the pattern again closely resembles that of a

FIG. 5. Radiation pattern of a single dipole, compared to that of
two in-phase or out-of-phase dipoles. (a) Given an isolated dipole
d of fixed dipole amplitude d0 and direction x̂, which is placed at
ρ ¼ 0 and radiates light at the frequency ω0, we plot the intensity

of the radiated field IscðrÞ ¼ jμ0ω2
0
¯̄Gðr;ω0Þ · dj2=ð2μ0cÞ in the

x̂ − ẑ plane, with the value indicated in the color bar. (b,c)

Radiation pattern IscðrÞ ¼ jμ0ω2
0

P
j¼1;2

¯̄Gðr − rj;ω0Þ · djj2=
ð2μ0cÞ for two near-positioned dipoles of fixed amplitude d0
and direction x̂, oscillating either in phase (b) or out of phase
(c) with one another (i.e., d1 ¼ �d2 ¼ d0x̂), and placed at
positions ρ1 ¼ −ρ2 ¼ 0.1ðx̂þ ẑÞ= ffiffiffi

2
p

. (d) Intensity radiated by
two out-of-phase dipoles averaged over all possible interatomic
orientations, keeping the mutual distance jρ1 − ρ2j ¼ 0.2 fixed.
This pattern closely resembles that of a single oscillating dipole.
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single electric dipole [see Fig. 5(d)]. More concretely, in
Appendix D, we show that the orientation-averaged,
resonant scattering cross section associated with the anti-
symmetric mode is hσ−sci ≈ 0.94σsc, where we recall that
σsc ¼ 3λ20=ð2πÞ is the resonant cross section of a single
atom with an electric dipolar response. To sum up, the
antisymmetric mode, on average, is seen to behave almost
identically to a single atom with an electric-dipole
response, justifying such a replacement in our RG pre-
scription. Furthermore, we show in Appendix D that this
agreement is even stronger when considering pairs of
strongly interacting atoms with different resonance
frequencies δωij ≠ 0, which is a situation typically encoun-
tered in an actual RG flow.

C. Near-field interaction involving renormalized atoms

Having argued that the antisymmetric mode has an
average optical response resembling that of a single electric
dipole, we now turn to a second, related issue. Namely,
since the antisymmetric mode is a hybrid of magnetic
dipole and electric quadrupole modes, it should have a
near-field scaling of 1=ρ4 at distances ρ much larger than
the separation between the two composing atoms and much
smaller than the optical wavelength. As the RG flow
proceeds, a third atom that interacts strongly with this
mode would then see such a scaling law at this distance [see
Fig. 6(a)]. However, our RG prescription assumes that any
new effective resonance has electric-dipole character and,
in particular, around a 1=ρ3 near-field interaction with the
third atom.We now argue that the RG prescription is a good
approximation because, as the RG flow continues, it is
likely that the third atom actually sits closer to one of the
atoms in the pair (say, atom 1) than the pair separation itself
[Fig. 6(b)]. In that case, the effective interaction strength
between the antisymmetric mode of the pair and the third
atom will scale as around 1=ρ313, exactly as if this mode was
replaced by an electric dipolar atom. Mathematically, this
case is possible because the interaction parameter Kij ¼
jGnear

ij j=ðjδωijj þ 1Þ that governs when atoms are renor-
malized does not depend only on the closest distance of
separation (via Gnear

ij ) but on the detunings δωij as well. To
quantify this picture, we have run around 300 RG flows
over random configurations of a dense medium (η ¼ 32)
within a spherical geometry of radius rsph ¼ 0.55λ0.
In Fig. 6(c), we plot several salient properties throughout
the RG flow, averaged over the various runs. The horizontal
axis denotes the relative position within the flow
(0 ≤ NRG=Nfinal

RG ≤ 1). In particular, Nfinal
RG is the total

number of pairs renormalized during the entire RG (starting
from a homogeneous atomic medium, until one reaches
Kij < Kcutoff ¼ 1 for all pairs), while NRG denotes the total
number of renormalized pairs at any point in between. We
recall that it is possible for an atom to be renormalized more
than once, so that, in general, Nfinal

RG > N=2 for a dense

medium. For reference, in green, we plot the fraction N0=N
of atoms that have never been renormalized up to that point.
Notably, the fact that N0=N reaches nearly zero when
NRG=Nfinal

RG ∼ 0.4 indicates that almost all renormalization
events beyond this stage involve previously renormalized
(and thus inhomogeneous) atoms. Separately, with blue
circles, we show the average value of the interatomic
distance between atoms comprising the renormalized pairs

(c)

(a) (b)

FIG. 6. Microscopic analysis of the renormalization of the
antisymmetric modes. (a) Pictorial representation of the near-field
interaction between the antisymmetric mode of a pair (repre-
sented by two out-of-phase dipoles, pink circles labeled 1 and 2)
and a third atom (green circle, with label 3), which may sit very
far from the pair (characterized by the distances ρ12 < ρ13 ∼ ρ23).
In this case, the interaction strength scales like 1=ρ413, reflecting
the higher-order multipole nature of the out-of-phase dipoles.
(b) Similar illustration for the case where the third atom sits closer
to one atom of the pair (say, atom 1) than the pair separation itself
(ρ13 < ρ12 ∼ ρ23). The interaction strength then scales like 1=ρ313.
(c) System properties during the RG flow. The horizontal axis
quantifies how many pairs NRG have been renormalized, from the
beginning (NRG ¼ 0) towards the end (NRG ¼ Nfinal

RG ) of the
algorithm. As one atom can be renormalized more than once,
typically Nfinal

RG > N=2. The blue circles represent the average
interatomic distance ρRG of those pairs that get renormalized,
while the orange squares show the average distance ρnearest
between the atoms of those pairs and their respective nearest
atom, chosen among those that are still allowed to interact (i.e.,
with Lij ¼ 1). The green triangles display the fraction of atoms
N0=N that have never been renormalized up to that moment of the
flow. The data represent the average over around 300 runs over
different random atomic positions, uniformly sampled inside a
sphere of radius rsph ¼ 0.55λ0 and density η ≈ 32. The bars show
1 standard deviation in the accumulated statistics.
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at that stage, and we compare it with the average distance
between each atom of these pairs and its own nearest
neighbor, as portrayed by the orange squares. As we are
interested in the interaction between atoms that will possibly
be renormalized in some subsequent RG step, we only count
the nearest neighbors where Lij ¼ 1. The figure shows that
we can roughly divide theRG flow into two parts. Before the
critical value of NRG=Nfinal

RG ∼ 0.4, many atoms are still
homogeneous, so the algorithm mostly renormalizes pairs
of identical, nearest-neighbor atoms (as confirmed by the
coincidence of the blue and orange curves). On the contrary,
when NRG=Nfinal

RG ≳ 0.4, almost all atoms have already been
renormalized at least once, and in particular, an effective
atom representing an antisymmetricmode can potentially be
renormalized again. In this regime, however, the nearest
interacting neighbor to the two original atoms forming this
mode is, on average, significantly closer than the distance
between these two atoms, as evidenced by the blue curve
being significantly higher than the orange one. This result
confirms that the intuitive picture of Fig. 6(b) constitutes a
typical case, which preserves the 1=ρ3 scaling of the near-
field interaction.

D. Near-field vs far-field interactions

We want to underline the importance of separating the
effects of near-field and far-field interactions, which occur
in an atomic medium. To this aim, we point out the historic
work of Ref. [43], which used RG to understand the
properties of permanent, static dipoles, which only expe-
rience a near-field 1=ρ3 interaction. Given only a near-field
interaction in three dimensions, the interaction of a dipole
with its nearest neighbor is then, indeed, dominant.
However, we have a qualitatively different system of driven
radiating dipoles. Naively, then, a similar argument consid-
ering the 1=ρ far field would suggest that atoms within a
shell of radius ρ and ρþ dρ of one atom at the origin would
contribute an interaction strength of about ρdρ, such that the
furthest atoms actually play the strong role. We argue that a
RG process based on the near field is still the correct
prescription, as the index should be a local property. Instead,
the apparent “dominance” of the far field simply reflects the
fact that the macroscopic geometry of an optical system
(e.g., if it is shaped as a lens or prism) can drastically alter the
overall optical response but not the index.

E. Linewidths in the RG prescription

Finally, we note that although the problem of just two
atoms [Fig. 4(b)] can be interpreted in terms of renormal-
ized resonance frequencies and linewidths, in the many-
atom case, we only renormalize the resonance frequencies.
As we discussed, the interaction between atoms is
described by the dimensionless matrix G [as defined in
Eq. (7)], whose real part ReG determines the coherent
part of the interaction (i.e., the collective resonance

frequencies), while its imaginary part ImG is associated
with the dissipative phenomena, thus dictating the collec-
tive linewidths. In the case of two identical atoms, ReG and
ImG are both naturally and exactly diagonalized by the
same symmetric and antisymmetric modes. However, in a
many-atom ensemble, the different mathematical structures
and physical origins of ReG and ImG become important.
In particular, we recall that the 1=ρ3ij near-field component
of the Green’s function, Gnear

ij , is purely real and strongly
divergent as two atoms approach each other, which
motivates our RG theory based on diagonalizing these
terms first. Physically, ImG does not contain a near-field
term (recall that ImGij → 1=2 as ρij → 0) since dissipation
is associated with the radiation of energy into the far field.
The absence of a near-field term implies that ImG does not
yield an especially strong interaction between close atomic
pairs and thus cannot be approximately diagonalized
pairwise. Again, this makes sense physically because the
emitted power by a collection of dipoles depends on the
global interference between all dipoles and generally does
not decompose into the sum of powers radiated by pairs.
Separately, we have checked that if our RG prescription
were modified to renormalize resonance frequencies and
linewidths pairwise, it would predict a nonphysical optical
response that tends to decrease (n → 1) in the limit of high
densities, in contrast to the full numerical simulations.

VI. CONCLUSIONS

To summarize, we have shown that despite the large
resonant scattering cross section of a single atom, a dense
atomic medium does not exhibit an anomalously large
optical response. Rather, strong near-field interactions
between atomic pairs, combined with spatial disorder,
result in an effective inhomogeneous broadening mecha-
nism, which occurs even if the atoms are otherwise perfect,
and yields a maximum index of n ≈ 1.7. The key role of
atomic granularity in this process also illustrates why
conventional smooth medium approximations fail to
describe the near-resonant response.
While we have focused on the linear refractive index, we

believe that our RG formalism is valid, in general, for
resonant disordered atomic media and that it constitutes a
versatile new tool to study multiple scattering. Within the
linear regime, the RG might be used to provide additional
insight into the question of whether an Anderson localization
transition exists in a 3D ensemble and, if so, under what
conditions [31,32,53,65–67]. Furthermore, it would be
interesting to explore the usage of RG toward the challeng-
ing problem of quantum, nonlinear scattering. As previously
mentioned, the multiple scattering problem is formally
encoded in a non-Hermitian Hamiltonian that describes
light-mediated dipole-dipole interactions between atoms.
In the limit of linear response, the resulting equations are
equivalent to our coupled-dipole equations of Eq. (3), but
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beyond that, one is faced with the challenge of dealing with
the exponentially large Hilbert space associated with N two-
level atoms. Perturbative diagrammatic approaches have
only recently been developed to treat the dilute atom limit
[54], but our understanding of the nonlinear physics beyond
this regime is very limited. To this end, we hypothesize that a
diagrammatic theory can also be developed in the dense,
strong scattering regime, where strong interactions between
nearby pairs are first nonperturbatively summed via the RG,
while remaining interactions can be treated perturbatively.
Our results could also have interesting implications for

quantum technologies based on atomic ensembles. In
particular, the total optical depth of a system, given by
the product of the imaginary part of the index and system
length, D ∼ ðIm nÞk0L, is a fundamental resource [68–70],
with its magnitude establishing fundamental error bounds
for most applications. As the imaginary part of the index
also saturates with increasing density, this could place
minimum size constraints on systems in order to achieve
a given fidelity. Likewise, constraints on the maximum
density could arise due to the induced inhomogeneous
broadening, which typically constitutes an undesirable
dephasing mechanism.
Finally, it would be interesting to understand more fully

how the optical properties of a dilute atomic medium
eventually transform into the low refractive index of actual
optical materials as the density is increased. Specifically,
for a disordered ensemble, we have seen that the maximum
index already saturates at densities that are approximately 6
orders of magnitude before the onset of chemical processes.
We hypothesize that the onset of chemistry, and the phase
transition toward a real material, does not qualitatively alter
the optical response, provided that the system remains
disordered and the electrons are tightly bound. Separately,
it would be interesting to explore the same questions and
transition for spatially ordered atomic systems, where the
RG breaks down and one expects very different qualitative
behavior, due to the possibility of strong constructive and
destructive interference in light scattering. We note that
there have been recent efforts to predict when a high index
might occur within solid-state materials [71,72], and it
would be interesting in future studies to develop a full
theory combining quantum chemistry and multiple scatter-
ing to explore the transition from dilute atomic media to
real materials.
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APPENDIX A: LINEAR BEHAVIOR OF THE
INDEX AS A FUNCTION OF THICKNESS

Our operative definition of the complex index of
refraction, as given by Eq. (7) of the main text, is

htðΔÞi ¼ exp fi½nðΔÞ − 1�k0dg: ðA1Þ

Since the refractive index is an intensive property by
definition, it must not depend upon the thickness d that
we choose in our numerics. Here, we show that our
operative definition satisfies this condition.
We consider the same physical system described in

Fig. 2(a) of the main text, with w0 ¼ 2.5λ0, lcyl ¼ 5λ0,
and different values of the thickness. By applying Eqs. (6)
and (7) of the main text, we compute the resonant (Δ ¼ 0)
refractive index for growing values of the density η, and we
plot its real or imaginary part in Figs. 7(a) and 7(b),
respectively. The simulated values of the thickness are as
follows: d ¼ 0.4λ0 (as in the main text, shown here in blue),
d ¼ 0.6λ0 (in green), and d ¼ 0.8λ0 (in orange). Moreover,
for the point at η ≃ 0.28, we evaluate the full spectra nðΔÞ,
as represented in the insets of the figure. All curves show
the same behavior, independently of d, both on resonance
and when varying the detuning.

APPENDIX B: FULL DESCRIPTION
OF RG ALGORITHM

Here, we provide a full description of the RG
algorithm. We assume that we have an ensemble of N
randomly positioned atoms. As shown in Eq. (7), each
pair of atoms interacts through the coupling Gij ¼
ð3π=k0Þx̂ · ¯̄Gðρij;ω0Þ · x̂, where ρij ≡ k0ðri − rjÞ. The
1=ρ3ij near-field component of Gij reads

Gnear
ij ¼ 3

4ρ3ij
ð−1þ 3cos2θÞ; ðB1Þ

where we have represented ρij ≡ ρijðcos θ; sin θ cosϕ;
sin θ sinϕÞ in spherical coordinates. Here, we define
Gnear

jj ¼ 0, in accordance with the definition Gjj ¼ i=2.
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This near-field interaction is purely real, and it describes a
coherent interaction between dipoles.
Let us now consider a generic step of the RG flow, where

the atomic ensemble is already composed of effective
atoms characterized by different atomic resonances and a
specific set of allowed near-field interactions. As discussed
in the main text, this system is described by the N × N
matrix M ¼ diagðωÞ − G̃, where the elements G̃ij read
G̃ij ¼ LijGnear

ij þ ðGij −Gnear
ij Þ. Numerically, this matrix is

initialized according to ωinit¼ð0;…;0Þ and Linit
ij ¼ 1 − δij,

stating that all atoms are resonant at the frequency ω0 and
cannot self-interact.
At each step of the RG flow, we evaluate the list

of couplings Kij ¼ LijjGnear
ij j=ðjδωijj þ 1Þ [where δωij ¼

ðωi − ωjÞ=2], ordering them from the largest to smallest in
amplitude. Nominally, we should select the most strongly
interacting pair and renormalize the pair properties, but the
computational cost of this approach would be unfeasible
for a large atom number. Therefore, we start from the most

strongly interacting pair (say, i, j), select it, and remove
from the list all other pairs containing one of those atoms
(e.g., i, k or j, k). We then proceed iteratively until we select
Nstep most strongly interacting pairs. We choose Nstep to be
a small fraction of the total atom number N (approximately
2.5%) since the maximum number of possible disjoint pairs
scales as N=2. Nevertheless, we check that the results are
insensitive to different choices.
Given each pair ði; jÞ of the selected set, we diagonalize

Mpair and define its eigenvalues as the new effective

resonances ω�¼hωiij∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δω2

ijþðGnear
ij Þ2

q
, where hωiij ¼

ðωi þ ωjÞ=2. We then substitute the initial frequencies (ωi,
ωj) with the two new effective resonances inω, the order of
the labels being chosen randomly.
We need to impose that the pair does not interact through

the near field anymore, meaning that we must replace
Lold
ij ¼ 1 with Lnew

ij ¼ 0. At the same time, at any given
stage of the RG flow, the resonance frequencies of any pair

(a) (b)

FIG. 7. Independence of the refractive index from the thickness of the ensemble. Given the physical system of Fig. 2(a) of the main
text (with w0 ¼ 2.5λ0, lcyl ¼ 5λ0), we compare the resonant (Δ ¼ 0) refractive index as a function of the density for various ensemble
thicknesses: d ¼ 0.4λ0 (as in the main text, shown here in blue), d ¼ 0.6λ0 (in green), and d ¼ 0.8λ0 (in orange). Panels (a) and
(b) illustrate the real and imaginary parts of the index, respectively. The insets show the full spectra nðΔÞ at a fixed density η ≃ 0.28. All
data are obtained by averaging htðΔÞi over more than 1000 configurations.
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of effective atoms i and j might have been derived from a
set of previous RG steps involving a set of atoms with
indices fI0g and fJ0g, respectively. If the sets fI0g and fJ0g
have some nonzero intersection, then atoms i and jmust be
omitted from a subsequent frequency renormalization step.
Not omitting these atoms would violate the principle of the
RG, that we are integrating or “freezing” out the degrees
of freedom with the strongest interactions. Numerically,
we efficiently enforce this constraint by replacing Lnew

ik ¼
Lnew
jk ¼ Lnew

ki ¼ Lnew
kj ¼ Lold

ik L
old
jk , ∀ k, anytime a pair ði; jÞ

is renormalized. Since L has (at any step) zero-valued
diagonal elements, this process directly ensures that
Lnew
ij ¼ 0.
After all atoms of the step have been renormalized, we

reevaluate the new set of K parameters and repeat the
scheme. When all pairs exhibit K ≤ Kcut-off ¼ 1, we stop
the RG flow, obtaining an ensemble of N inhomogeneously
broadened atoms. Given a fixed value of the density η, we
repeat this process for approximately 100 different spatial
configurations in order to build up the final distribu-
tion PðωeffÞ.
We extract the optical properties from the renormalized

ensemble by applying Eq. (7) of the main text, modified in
order to account for the new N × N matrix M emerging
from the RG scheme. Thus, we obtain

ð−Δþ ωiÞciðΔÞ −
XN
j¼1

½Gij − ð1 − LijÞGnear
ij �cjðΔÞ

¼ Einðri;ω0Þ
E0

: ðB2Þ

APPENDIX C: DEFINITION OF EFFECTIVE
POSITIONS IN THE RG SCHEME

In the main text [cf. Fig. 4(b)], we described how the
optical response of a pair of atoms separated by a distance
ρij ≪ 1 is characterized by two effective resonance
frequencies, corresponding to the real parts of the eigen-
values of the two-atom system. The two collective modes
are intrinsically delocalized in space (being formed by
atoms with two different positions ri;j). As this delocal-
ization is difficult to incorporate into the RG scheme, we
instead attribute each of these two resonance frequencies to
a new effective atom, with a well-defined position.
In the main text, it was stated that the new effective

atomic positions are assigned to those of the original pair,
ri;j (randomly between the two possible permutations). A
more natural choice, given that the two renormalized atoms
are noninteracting, might be to place them at the midpoint
ðri þ rjÞ=2 between the two original atoms, but here we
discuss the problem with that approach.
Specifically, for a finite-size sample, the atoms closest to

the perimeter of the sample will only renormalize with

atoms that are closer to the interior. As illustrated in Fig. 8,
this means that step by step, the shape of the cloud tends to
shrink. This effectively distorts the ensemble and results in
a higher density, as well as higher interaction strengths in
the next step of the RG.

APPENDIX D: SCATTERING CROSS SECTION
OF TWO NEAR-POSITIONED ATOMS

The optical response of an identical atomic pair is
characterized by a symmetric and an antisymmetric normal
mode. Here, we study the scattering cross sections of such
modes, in the limit of near-positioned atoms.
First of all, let us write the dimensionless positions (in

units of k−10 ) of the two atoms of the pair as

ρ1 ¼ −ρ2 ¼
ρ12
2

ðcos θx̂þ sin θ cosϕŷ þ sin θ sinϕẑÞ;
ðD1Þ

where ρ12 ≪ 1. The scattering cross section can be derived
by means of the so-called optical theorem [9,73–78], which
reads

σpairsc ðΔÞ ¼ σsc
2
Im

X2
j¼1

E�
inðρjÞ
E0

cjðΔÞ; ðD2Þ

where σsc ¼ 3λ20=ð2πÞ is the resonant cross section of a
single, isolated, electric dipolar atom, while the dimension-
less coefficients cjðΔÞ are defined as in Eq. (7) of the
main text.
By plugging the solutions of Eq. (7) into Eq. (D2), one

obtains a total cross section characterized by the two
resonances ω�, which are, respectively, associated with
the symmetric and antisymmetric modes; thus, the resonant
scattering cross sections of these two modes can be defined
as σ�sc ≡ σpairsc ðω�Þ. In the limit where ρ12 ≪ 1, the two
resonances ω� ¼∓ ReG12∼ ∓ 1=ρ312 are well separated
and can be efficiently resolved, leading to

FIG. 8. RG scheme based upon repositioning atoms. Because
of the finite size of the sample, if one defines the positions of the
new effective atoms as being at the midpoint between the original
pair, then, at each RG step, the cloud effectively shrinks, resulting
in a distortion of the ensemble.
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σ�sc
σsc

≃
ðE�

12 · v�ÞðE12 · v�Þ
Γ�

; ðD3Þ

where we defined E12 ≡ fEinðρ1Þ; Einðρ2Þg=E0, as well as
the eigenstates v� ¼ f1;�1g= ffiffiffi

2
p

and the decay rates
Γ� ¼ 1� 2ImG12.
Assuming that the input field is either a x̂-polarized,

ẑ-directed Gaussian beam with w0 ≫ λ0 and focal point at
r ¼ 0, or equivalently an x̂-polarized, ẑ-directed plane
wave, one can evaluate the cross sections in the limit of
ρ12 ≪ 1, obtaining

σþsc
σsc

≃ 1;
σ−scðθ;ϕÞ

σsc
≃
fðθ;ϕÞ
gðθÞ ; ðD4Þ

where fðθ;ϕÞ≡ ðsin θ sinϕÞ2 and gðθÞ≡ ½2 − cos2θ�=5.
As expected, the symmetric mode exhibits a perfect

electric dipolar behavior, characterized by the same scatter-
ing cross section of a single isolated atom. On the contrary,
the complex multipolar nature of the antisymmetric
mode leads to a more complicated scattering cross section,
which depends on the mutual orientation of the initial
pair. This result suggests considering the average resonant
cross section over all possible orientations of a pair,
obtaining

�
σ−sc
σsc

�
¼ 1

4π

Z
π

0

dθ
Z

2π

0

dϕ
σ−scðθ;ϕÞ

σsc
sin θ ≃ 0.94 ∼ 1;

ðD5Þ

which shows that, on average, the multipolar antisymmetric
mode will scatter light very similarly to a pointlike
dipolar atom.
During the RG flow, one can also encounter pairs of

effective atoms that have a detuning of δω12 ¼
ðω1 − ω2Þ=2 with respect to each other. In order for
these pairs to strongly interact and be renormalized, the
pairwise interaction parameter should satisfy K12 > 1,
which is roughly equivalent to jδω12=Gnear

12 j ≪ 1. In this
limit, one can readily extend the previous calculation
to the case of two different atoms. In particular, after
averaging the resonant cross section of the (nearly) anti-
symmetric, multipolar mode over all possible orientations,
one finds

�
σ−scðζÞ
σsc

�
¼ 5

2

2
641 − ð3ζ2 þ 1Þ

arctan h
	

1ffiffiffiffiffiffiffiffiffi
5ζ2þ2

p



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ζ2 þ 2

p
3
75; ðD6Þ

where ζ ≡ δω12=ðρ12Gnear
12 Þ, satisfying

0.94≲
�
σ−scðζÞ
σsc

�
≤ 1: ðD7Þ

Thus, we see that the multipolar mode of a pair of
inequivalent atoms can also be well approximated in its
optical response by a single electric dipolar atom.
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