

Effects of hybridization on pelvic morphology: A macaque model

Laura T. Buck^{a,b,*}, David C. Katz^{b,c}, Rebecca Rogers Ackermann^{d,e}, Leslea J. Hlusko^{f,g}, Sree Kanthaswamy^h, Timothy D. Weaver^b

^a School of Biological and Environmental Sciences, Liverpool John Moores University, UK

^b Department of Anthropology, University of California Davis, USA

^c University of Calgary Cumming School of Medicine, Canada

^d Department of Archaeology, University of Cape Town, South Africa

^e Human Evolution Research Institute, University of Cape Town, South Africa

^f Department of Integrative Biology, University of California Berkeley, USA

^g Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain

^h School of Natural and Mathematical Sciences, Arizona State University, USA

Corresponding author.

Email address: l.buck@ljmu.ac.uk (L.T. Buck)

1 Effects of hybridization on pelvic morphology: A macaque model

2

3 **Abstract**

4 Ancient DNA analyses have shown that interbreeding between hominin taxa occurred multiple times.
5 Though admixture is often reflected in skeletal phenotype, the relationship between the two remains
6 poorly understood, hampering interpretation of the hominin fossil record. Direct study of this
7 relationship is often impossible due to the paucity of hominin fossils and difficulties retrieving ancient
8 genetic material. Here, we use a sample of known-ancestry hybrids between two closely related
9 nonhuman primate taxa (Indian and Chinese *Macaca mulatta*) to investigate the effect of admixture
10 on skeletal morphology. We focus on pelvic shape, which has potential fitness implications in hybrids,
11 as mismatches between maternal pelvic and fetal cranial morphology are often fatal to mother and
12 offspring. As the pelvis is also one of the skeletal regions that differs most between *Homo sapiens* and
13 Neanderthals, investigating the pelvic consequences of interbreeding could be informative regarding
14 the viability of their hybrids. We find the effect of admixture in *M. mulatta* is small and proportional
15 to the relatively small morphological difference between the parent taxa. Sexual dimorphism appears
16 to be the main determinant of pelvic shape in *M. mulatta*. The lack of difference in pelvic shape
17 between Chinese and Indian *M. mulatta* is in contrast to that between Neanderthals and *H. sapiens*,
18 despite a similar split time (in generations) between the hybridizing pairs. Greater phenotypic
19 divergence between hominins may relate to adaptations to disparate environments, but may also
20 highlight how the unique degree of cultural buffering in hominins allowed for greater neutral
21 divergence. In contrast to some previous work identifying extreme morphologies in first- and second-
22 generation hybrids, here the relationship between pelvic shape and admixture is linear. This linearity
23 may be because most sampled animals have a multi-generational admixture history or because of
24 relatively high constraints on the pelvis compared to other skeletal regions.

25

26

27 **Keywords:**

28 Hybridization; Human evolution; Primate; Skeletal morphology; Geometric morphometric methods;
29 *Macaca mulatta*

30

31

32

33

34

35 1. Introduction

36 Elucidating the effects of hybridization is critical for understanding the context of human
37 evolution and the processes driving it (Ackermann et al., 2016). The past few years have seen great
38 methodological advances in ancient DNA (aDNA) analyses, enabling the detection of interbreeding
39 events and resulting in an increased appreciation of their frequency and importance (for reviews see
40 Gopalan et al., 2021; Wolf and Akey, 2018). Despite these advances, we are still far from
41 understanding the importance of gene flow between hominin lineages in determining morphology
42 and from recognising hybrids in the fossil record (Warren et al., 2018). Claims of hybrid
43 Neanderthal/*Homo sapiens* fossils were made for decades before supporting genetic evidence was
44 available (Duarte et al., 1999; Trinkaus et al., 2003a, 2003b; Rougier et al., 2007). When the data are
45 limited to fossil material and its archaeological context, however, these assertions are almost
46 inevitably subject to counter-claims, such as those asserting that intermediate morphology is within
47 the boundaries of intraspecific variation in *H. sapiens* (e.g., Tattersall and Schwartz, 1999).

48 In many cases, even now, preservation issues mean there is limited potential for aDNA
49 evidence to resolve the question of which putative (morphological) hybrids are actual (genetic)
50 hybrids. There have nonetheless been some spectacular finds. One such was the aDNA analysis of the
51 Oase 1 mandible from Romania, which showed that this *H. sapiens* individual did indeed have a recent
52 Neanderthal ancestor (Fu et al., 2015), as had been suggested from its morphology (Trinkaus et al.,
53 2003a; 2003b; Rougier et al., 2007). Though the exact relationship between Oase 1's hybrid ancestry
54 and suggested Neanderthal traits is not clear, the fact that it was identified as a hybrid based on both
55 morphology and genetics supports a growing body of research indicating that signatures of
56 hybridization are detectable in skeletal morphology.

57 Here we build on existing research using nonhuman primates to inform our understanding of
58 hominin hybrids (e.g., Ackermann et al., 2006, 2014; Boel et al., 2019; Martinez et al., 2019). We use a
59 large sample of captive full-bred and admixed Chinese and Indian rhesus macaques (*Macaca mulatta*)
60 to elucidate the expected morphological consequences of admixture between closely related primate
61 species, including hominins. Of particular interest because Chinese and Indian *M. mulatta* have been
62 mixing in this captive colony for decades, the study also examines how admixture effects on
63 phenotype vary with ancestry contributions from the two subspecies lines.

64

65 1.1. The effects of hybridization on the pelvis

66 We focus on the effects of hybridization on pelvic morphology. In some primates, these
67 effects may be particularly acute due to interactions between the functional and physiological
68 constraints of locomotion and parturition (Trevathan, 2015; Kawada et al., 2020). The pelvis is also a

69 region of divergent shape in *H. sapiens* and *H. neanderthalensis* (Rak and Arensburg, 1987; Weaver
70 and Hublin, 2009). Combined with neonatal crania that, although less distinct than the adult crania of
71 these taxa, are also differently shaped (Ponce de León and Zollikofer, 2001; Gunz et al., 2012), this
72 could have had implications for the viability of hybrid offspring. A more Neanderthal-like fetal cranium
73 and a more *H. sapiens*-like birth canal could have led to increased likelihood of dystocia and the
74 potential death of both mother and child. These severe consequences would have constituted a
75 strong selective pressure likely to shape morphology, as has been suggested for the effect of
76 caesarean sections on fetopelvic disproportion in recent humans (Mitteroecker et al., 2016, 2017). To
77 the best of our knowledge, the relationship between pelvic morphology and admixture in the fossil
78 record has not yet been addressed, most likely due to the paucity of both suitable well-preserved
79 fossils and postcranial material from extant known hybrids. Thus, it is a skeletal region from which we
80 might learn a considerable amount, regarding the morphological impact of hybridization, by adopting
81 an approach based on nonhuman primate analogues.

82

83 1.1. *Macaca mulatta* taxonomy

84 The genus *Macaca* is divided into four species groups. The *fascicularis* group, which contains
85 *M. mulatta*, is the most widely distributed (Fooden, 1976, 2006). In 2000, Fooden reported that *M.*
86 *mulatta* inhabited Southeast and South Asia with a geographic range of ~15–36 N° and ~70–120 °E,
87 although this range was historically wider and has likely been further reduced in the last two decades.
88 Fossils show that *M. mulatta*, or a very similar precursor, was present in its current range by >40 ka,
89 notwithstanding the last glacial maximum, which likely caused local extinctions and subsequent post-
90 glacial in-migrations in some presently inhabited regions (Fooden, 2000).

91 There is substantial disagreement over the systematics of *M. mulatta*, which appears to be
92 polyphyletic: mitochondrial DNA (mtDNA) analyses cluster Chinese *M. mulatta* with *M. cyclopis* or *M.*
93 *fuscata*, rather with than their supposed conspecifics, including Indian *M. mulatta* (Melnick et al.,
94 1993; Hayasaka et al., 1996). MtDNA also suggests deep divergences between geographic groups of
95 *M. mulatta* to at least subspecific level, although there remains disagreement as to how many
96 subspecies should be recognised (Zhang and Shi, 1993; Smith and McDonough, 2005). Indeed, the
97 divergence between Indian and Chinese *M. mulatta* mtDNA is deeper than between some well-
98 accepted species pairs of macaques such as *M. assamensis* and *M. thibetana* (Hayasaka et al., 1996;
99 Smith and McDonough, 2005). Similar divisions between Chinese and Indian *M. mulatta* have also
100 been found in studies of protein polymorphisms, microsatellite single nucleotide polymorphisms
101 (SNPs), and MHC alleles (Smith and McDonough, 2005; Ferguson et al., 2007).

102 Here we refer to Chinese and Indian *M. mulatta* as different subspecies solely to avoid more
103 confusing terms, such as 'group' or 'population'. Our analyses are not intended to address the validity
104 or otherwise, of that taxonomic designation. The differences between extant Chinese and Indian *M.*
105 *mulatta* subspecies, particularly the molecular and physiological differences, have been studied
106 extensively due to the species' role as a biomedical model. Chinese-derived *M. mulatta* have greater
107 genetic heterozygosity (Smith and McDonough, 2005; Ferguson et al., 2007; Kanthaswamy et al.,
108 2009) and morphological diversity (Fooden, 2000) than Indian-derived animals. Indeed, Smith and
109 McDonough (2005) found pairwise differences between Indian *M. mulatta* populations to be half as
110 great as between comparable pairs of human populations, despite the extremely low levels of genetic
111 variation in *H. sapiens* (Smith and McDonough, 2005). These low levels of variation may be due to a
112 bottleneck experienced by Indian populations in their recent evolutionary past (Smith and
113 McDonough, 2005; Hernandez et al., 2007; Kanthaswamy et al., 2009). Because Neanderthals also
114 appear to have had small population sizes and low genetic diversity (Green et al., 2010; Bocquet-
115 Appel and Degioanni, 2013), this is another way in which this *M. mulatta* cross-sample is an
116 interesting analogue for hybridization during human evolution.

117 Relative to the known genetic differences, the extent of morphological variation within *M.*
118 *mulatta* and between Chinese and Indian groups is less clear. Fooden (e.g., 1976, 1982, 1995, 2000,
119 2006) argues that although there is substantial geographic variation in phenotype, the pattern of
120 variation within *M. mulatta* is insufficiently clear to warrant subspecific divisions (Fooden, 2000).
121 Fooden's (1995, 2000) taxonomy is based on a conservative designation requiring at least one trait
122 with discontinuous variation between groups. Many other researchers, however, have noted
123 substantial morphological differences between Indian- and Chinese-derived animals in particular (see
124 discussion in Fooden, 2000). For example, Chinese males are larger than Indian males, which may
125 reflect adaptation to a colder climate, following Bergmann's rule (Bergmann, 1847; Clarke and O'Neil,
126 1999). Indeed, across the species' natural range, stature and mass tend to increase gradually with
127 latitude, although there are regional exceptions to this trend (Fooden, 2000). Tail length decreases
128 with longitude, particularly east of 95 °E, and is, therefore, longer in Indian than in Chinese *M.*
129 *mulatta* (Fooden, 2000; Hamada et al., 2005). In captive-bred Chinese and Indian *M. mulatta* housed
130 in Louisiana, USA (Tulane National Primate Research Center), there are differences in patterns of
131 sexual dimorphism, with greater sexual dimorphism in Chinese than Indian monkeys (Clarke and
132 O'Neil, 1999). These studies suggest that size, allometric shape, and patterns of sexual dimorphism
133 may be variables that differ between the two *M. mulatta* taxa and which therefore may vary in
134 admixed individuals.

135 Chinese and Indian *M. mulatta* have been isolated from one another since at least the Late
136 Pleistocene (Zhang and Shi, 1993; Smith and McDonough, 2005), likely since ~162 ka, based on
137 genetic analyses of ~1,500 SNPs (Hernandez et al., 2007). Given a generation time of approximately
138 7.5 years (Wolfe, 1986) and the split time of ~162 ka (Hernandez et al., 2007), about 21,600
139 generations passed between the divergence of Indian and Chinese *M. mulatta* and their interbreeding
140 in the California National Primate Research Center (CNPRC) colony in the mid-1980s (see sub-section
141 2.1). The same calculation for *H. sapiens* and Neanderthals depends upon more assumptions and
142 disputed dates, but an approximate estimation of the same variables is possible. If we use a relatively
143 conservative split date of 550–765 ka (Meyer et al., 2016), a generation length of 26–30 years
144 (Moorjani et al., 2016), and a date for interbreeding of 47–65 ka (Sankararaman et al., 2012), the
145 middle point of each range results in a rough estimate of 21,482 generations between divergence and
146 interbreeding. The macaque and hominin taxa can thus be argued to have had similar degrees of
147 divergence between taxon pairs at the time of introgression, making the *M. mulatta* an interesting
148 model for examining Neanderthal/*H. sapiens* hybridization.

149

150 1.2. Hybridization in nonhuman primates

151 Hybridization appears to be commonplace in the primate order, occurring in all major
152 lineages (Cortés-Ortiz et al., 2019). Some well-established macaque species, such as *M. arctoides*, are
153 even thought to have hybrid origins (Tosi et al., 2000). Ackermann and colleagues (e.g., Ackermann et
154 al., 2006, 2014, 2019; Ackermann and Bishop, 2010) have used nonhuman primates as hominin
155 analogues to study the potential effects of hybridization during human evolution. The majority of this
156 work has been carried out on baboons, which are well studied, provide a good ecological analogue for
157 hominins (Jolly, 2001; for review see Fischer et al., 2019), and are housed in several major captive
158 colonies with known pedigree information. Ackermann et al. (2006, 2014) showed that first- and
159 second-generation olive x yellow baboon hybrids exhibit extreme size (heterosis) and size variation
160 outside the parental ranges. They also display high frequencies of unusual non-metric cranial traits,
161 dental and sutural anomalies. This body of work, supported by other research on nonhuman primate
162 hybridization (for reviews, see Ackermann et al., 2019; Cortés-Ortiz et al., 2019), provides some
163 important insights to underpin the current study. Notably, there is a skeletal signal of hybridization
164 and the effects of hybridization appear to be similar across primate taxa, albeit with an effect of
165 phylogenetic proximity, such that more extreme hybrids are more likely to result from interbreeding
166 between more divergent taxa. It also provides some expectations to test with our macaque data: that
167 hybrid primates generally show increased variation and heterosis compared to parent taxa.

168

169 2. Materials and methods

170

171 2.1. *Sample*

172 Our sample is composed of *M. mulatta* housed at the CNPRC, University of California Davis. 173 The CNPRC colony was initially composed entirely of Indian *M. mulatta*, but following a ban on 174 exporting primates from India in 1978, the colony's managers introduced a small number of Chinese 175 animals to maintain genetic variation within the population. The first interbreeding was recorded in 176 1983 (Kanthaswamy et al., 2009). Unlike many nonhuman hybrid studies, which focus on the first few 177 hybrid generations (e.g., Ackermann et al., 2006, 2014; Savriama et al., 2018; Warren et al., 2018), 178 interbreeding between Indian and Chinese *M. mulatta* has been occurring in this colony for at least 179 four to five generations (based on a generation time of ~7.5 years; Wolfe, 1986). The colony now 180 provides a sample with a distribution from full-bred Indian to full-bred Chinese animals, including 181 many individuals with low percentages of Chinese ancestry. This range of admixture is a better 182 representation of what we might expect in natural hybrid zones and in the hominin fossil record if 183 hybridization leads to viable offspring (Kelaita and Cortés-Ortiz, 2013; Fuzessy et al., 2014). In effect, 184 the Indian *M. mulatta* housed at the CNPRC are a population experiencing a relatively small amount 185 of genetic input from another taxon (Chinese *M. mulatta*); this can be seen as analogous to a 186 Pleistocene *H. sapiens* population undergoing a small number of time-limited interbreeding events 187 with Neanderthals.

188 Our sample data consisted of 138 full-body medical computed tomography (CT) scans from 189 adult (>6 years) *M. mulatta* housed at the CNPRC: 94 females and 44 males. Sex ratios in the CNPRC 190 colony are deliberately kept unbalanced to reduce intramale fighting, resulting in unequal numbers of 191 available males and females. To optimize the spread of admixture proportions (Chinese ancestry) in 192 our sample we included more females than males; however, we sought to maintain the same degree 193 of female bias in both Indian and Chinese *M. mulatta* samples to the extent possible. We included 19 194 full-bred Indian *M. mulatta*, 17 full-bred Chinese *M. mulatta*, and hybrid animals with a range of 195 admixture proportions (Table 1). Estimates of Chinese ancestry were obtained from the CNPRC and 196 are constructed from pedigree records. In our aim to obtain the best range of admixture in our 197 sample, we included individuals with some arthritis if the original morphology was sufficiently 198 unobscured as to allow confident landmark placement (see below); however, we removed six animals 199 with pathological pelvis from our initial sample after examination of their CT scans, leaving the final 200 sample of 138 (Table 1).

201 All animals were CT scanned at the CNPRC by appropriately trained staff. CT-scanning and all 202 other experimental procedures for this study were approved by the Institutional Animal Care and Use

203 Committee at the University of California, Davis (protocol #19057). In most cases, monkeys were
204 sedated and scanned in vivo. Although in a few cases monkeys were scanned as cadavers, no
205 monkeys were sacrificed for this study. As they become available, macerated skeletal remains from
206 cadavers of animals involved in this study are being curated in the Department of Anthropology,
207 University of California Davis. CT scans from the sample are also freely available on request via the
208 MorphoSource digital archive (Morphosource.org; project name: The Rhesus Macaque Admixture
209 Project).

210

211

[Table 1 placement]

213

214 2.2. *Data collection*

215 Using the CT scans, in Avizo v. 9.1 Lite (ThermoFisher Scientific, Waltham, MA, USA) we
216 virtually segmented the skeleton from the other tissue types and the pelvis from the rest of the
217 skeleton using a mixture of automatic and manual thresholding and segmentation tools. To collect
218 landmark coordinates for analyses using geometric morphometric methods (GMM), we digitized
219 landmarks and semilandmarks on virtual reconstructions using Avizo (shaded isosurfaces and
220 transparent volume renderings) and exported the coordinates for analysis in R v. 3.5.2–3.6.3 (R Core
221 Team, 2018). We collected 48 true landmarks plus semilandmarks describing seven curves by
222 digitizing many points along each curve (Fig. 1; Table 2). These curve semilandmarks then were
223 resampled in R using a custom script, so that each curve contained the same number of
224 semilandmarks for each individual, as follows: curve 1 (40 semilandmarks), curves 2 and 3 (18
225 semilandmarks each), curves 4 and 5 (30 landmarks each), and curves 6 and 7 (10 landmarks each).
226 After processing, our data set consisted of 204 total landmarks: 48 true landmarks and 156
227 semilandmarks. We selected landmarks and semilandmarks with the intent to optimally characterize
228 the size and shape of the pelvis. We examined intraobserver error by using ten repetitions each of
229 two individuals digitized repeatedly, with more than a day elapsing between each digitizing session.
230 We processed each landmark configuration as described below and compared the Procrustes
231 distances between iterations of the same individual vs. those between different individuals (see
232 Results).

233

234 [Figures 1 and 2 and Table 2 placement]

235

236 2.3. *Methods of analysis*

237 All analyses were carried out in R V. 3.5.2–3.6.3 (R Core Team, 2018) using the geomorph
238 (Collyer and Adams, 2018, 2020; Adams et al., 2020) and Morpho (Schlager, 2017) packages and base
239 R functions. To register the shape data we used the procSym function in Morpho (Schlager, 2017) to
240 perform a generalized Procrustes superimposition of the landmarks, to slide the semilandmarks along
241 their curves using a criterion of minimizing bending energy, and project the superimposed
242 configurations into a tangent space. We performed principal components analysis (PCA) in geomorph
243 (using the plotTangentSpace function) to summarize the high dimensional data into axes of greatest
244 explanatory power and to visualize variation within and between groups of interest on these axes. We
245 then used geomorph’s procD.lm function to perform Procrustes analysis of variance (ANOVA) to test
246 for relationships between predictor and response variables of interest and to compare model fits. To
247 test for the presence of different patterns of sexual dimorphism in different admixture groups, we
248 compared the fit of additive (shape ~ admixture + sex) and interactive (shape ~ admixture * sex)
249 models of shape, sex, and admixture. This was to determine whether there were different patterns of
250 sexual dimorphism in the different admixture groups. We also included a three-knot B spline model of
251 admixture and sex-adjusted shape in the comparison to investigate whether departures from a linear
252 relationship between sex and ancestry could result from genetic factors such as dominance or
253 epistasis. The B-spline model allows for the relationship between the response and predictor variables
254 to be described by a smooth curve.

255 Due to sexual dimorphism in our sample (described in more detail below), we used least
256 squares linear regression to account for the effects of sex on admixture and shape. Because sex ratios
257 varied with Chinese ancestry percentages, it was necessary to adjust both variables to control for the
258 effect of sex entirely. The sex-adjusted residuals were used in all subsequent analyses of the
259 relationship between shape and admixture.

260 To quantify and visualize the relationship between admixture and pelvic shape, we regressed
261 pelvic shape on admixture using least squares linear regression and then projected the sex-adjusted
262 shape observations onto the resulting regression vector to compute admixture scores (Drake and
263 Klingenberg, 2008; Ledevin and Koyabu, 2019; Sheratt et al., 2019; Moore, 2021). Displayed in a
264 bivariate plot, the results provide a straightforward way to compare the magnitude of shape
265 differences attributable to admixture (the regression trend) to the magnitude of shape differences
266 not explained by the model (residuals about the trend). To visualize the relative contributions of sex
267 and admixture variables to overall shape variation, we display distributions of pairwise Procrustes
268 distances between specimens using different filters of group and sex membership. To test for
269 differences in variance we used the function morphol.disparity in geomorph (Adams et al., 2020;
270 Collyer and Adams, 2020), which calculates the Procrustes variance for each group, the pairwise

271 distances between group variances and the *p*-values of tests of significant difference between pairs (*p*
272 < 0.05 throughout).

273

274 **3. Results**

275 In our intraobserver error analysis, the mean Procrustes distances between iterations of the
276 same individual were much smaller than those between different individuals and the 95% confidence
277 intervals (CIs) of their means did not overlap. The mean Procrustes distance between iterations of the
278 same individual were 0.026 (95% C.I.: 0.023–0.029) and 0.036 (95% C.I.: 0.024–0.048); between
279 different individuals the mean Procrustes distance was 0.105 (95% C.I.: 0.101–0.109). We judged this
280 to mean that levels of intraobserver error in our data were within acceptable limits.

281 As expected, given the known sexual dimorphism in macaque species (e.g., Plavcan, 2001)
282 and the obstetric function of the pelvis, our initial Procrustes ANOVAs showed a relatively high degree
283 of sexual dimorphism in the pelvic morphology of the complete sample: sex explains ~18% of the
284 variation in shape ($F [1, 136] = 30.13$, $r^2 = 0.18$, $p < 0.05$). To investigate the nature of sexual
285 dimorphism within the sample, we compared the fit of additive and interaction models of sex and
286 shape (Table 3). The interaction model of the relationship between sex, admixture (% Chinese
287 ancestry), and shape does not fit the data significantly better than a simple additive model, suggesting
288 that sexual dimorphism does not vary with degree of admixture. This being the case, we used additive
289 regression models with sex as the predictor and shape or admixture as the response, to produce
290 residuals that allowed us to adjust for sex in both shape and admixture variables, for use in further
291 analyses. These residuals are used in all subsequent analyses performed on the complete sample.

292

293 [Table 3 placement]

294

295 After adjusting for sex in both shape and admixture variables, the amount of Chinese ancestry
296 explains a very small, though significant, portion of remaining shape variation: approximately 2% ($F [1,$
297 $136] = 3.07$, $r^2 = 0.02$, $p < 0.05$). The weak effect of admixture on shape, in contrast to sexual
298 dimorphism, can be seen when pairwise Procrustes distances between the sexes in each Chinese
299 ancestry category are compared to within-sex variation between categories (Fig. 3). Also shown in
300 Figure 3 is variation between members of the same sex within the same admixture category. This can
301 be considered baseline interindividual variation resulting from a combination of many factors, likely
302 including age, weight, and lifetime experiences in the colony. Levels of variation between those with
303 different Chinese ancestry categories, whether adjacent or more distant, are indistinguishable from

304 that baseline variation, demonstrating the very weak effect of admixture compared to other sources
305 of interindividual variation.

306

307 [Figure 3 placement]

308

309 The effect of ancestry on pelvic shape (adjusting both for sex) is mostly evident in the shape
310 of the iliac blades (Fig. 4). In animals with more Chinese ancestry the cranial border of the iliac blades
311 is of relatively equal height, ventral to dorsal, whereas in animals with less Chinese ancestry, the iliac
312 blades extend further laterally and the cranial edges are more angled, extending further cranially at
313 their ventral extent. The dorsal part of the iliac blades, in the region of the vertebrae S2 and S3 (Fig.
314 1), also extends more caudally in animals with higher regression scores. There are further differences
315 in the ischium: in higher-scoring animals, the medial border of the ischial tuberosities is more laterally
316 placed, compared to animals with lower scores, and the superior border of the pubic symphysis is
317 more ventrally placed. Finally, the sacrum differs between individuals which vary in regression score:
318 higher-scoring individuals have a sacrum that is craniocaudally shorter and more ventrally orientated
319 in the region of S2/S3. All of these differences are very slight, however.

320

321 [Figure 4 placement]

322

323 The relationship between regression scores and admixture displayed in Figure 4 appears to
324 approach a linear or additive relationship, meaning that change in shape and increasing Chinese
325 ancestry is relatively proportional. This is supported by model comparison, which shows that a three-
326 knot B spline model does not fit the data significantly better than a simple linear model of shape and
327 Chinese ancestry % (adjusted for sex; Table 4).

328

329 [Table 4 placement]

330

331 In the complete sample, there is no significant difference in pelvic centroid size between any
332 pairwise group comparison of full-bred Indian, Chinese, or admixed groups (Table 5). Similarly, there
333 are no significant differences between group variances, showing that no one group is more variable in
334 pelvic shape than another (Table 6 and 7). This suggests there are no transgressive sizes and no
335 increase in shape variation in admixed individuals in this sample.

336

337 [Tables 5, 6 and 7 placement]

338

339 3.1. *Full-bred macaques*

340 In contrast to the full sample analysis (Table 3), analysis of solely the Indian and Chinese full-
341 breds indicates that an interaction model of the relationship between sex and shape is a significantly
342 better fit for the data than an additive model (Table 8). This suggests a difference in sexual
343 dimorphism between the two subspecies that is masked by the greater variation in the complete
344 sample (see also Clarke and O’Neil, 1999). Due to these apparent differences in sexual dimorphism, in
345 the full-bred sample we adjusted for differences in the effects of sex on shape separately for each
346 subspecies, by adding the difference between the subspecies-specific male and female means to the
347 female configurations for each subspecies. A PCA showing the separation between the subspecies on
348 the main axes of sex-adjusted shape can be seen in Figure 5. The sex-adjusted residual shapes were
349 used as response variables in a Procrustes ANOVA to quantify the effect of subspecies designation on
350 shape ($F [1, 34] = 1.47, r^2 = 0.07, p < 0.05$). After accounting for sexual dimorphism, there is a
351 significant but fairly weak relationship between the remaining shape variation and subspecies
352 designation (Fig. 6). Designation as Indian or Chinese subspecies accounts for approximately 7% of
353 pelvic shape variation in the full-bred sample.

354

355 [Tables 8 and Figures 5 and 6 placement]

356

357 Figure 6 shows the relationship between regression scores summarizing the proportion of
358 sex-adjusted shape associated with subspecies designation, and subspecies designation itself. As with
359 the full sample, there is a difference in pelvic shape associated with Chinese ancestry. Chinese
360 individuals generally have higher regression scores than Indian individuals, showing that they inhabit a
361 different region of the shape space. Compared to the Chinese mean shape, the Indian mean shape is
362 characterized by dorsoventrally and mediolaterally broader iliac blades, which are more angled across
363 the top, running from high ventrally to low dorsally, whereas the tops of the mean Chinese iliac blades
364 are more level. The mean Indian sacrum is more dorsocaudally placed between the ilia and the sacral
365 alae are shorter craniocaudally. The acetabulae of the mean Indian shape are placed more
366 ventrolaterally and the pubic symphysis of the mean Indian shape is more dorsally orientated. Finally,
367 the ischial tuberosities of the mean Indian shape extend more caudomedially than those of the mean
368 Chinese shape. These shape differences echo what are seen in Figure 4 and suggest that more
369 Chinese ancestry leads to a pelvis that more closely approaches the mean Chinese shape.

370

371

372 3.2. *Projecting admixed individuals onto a vector of full-bred shape*
373 The effect of admixture on sex-adjusted pelvic shape in the complete sample is small, as
374 emphasized by the comparison with baseline inter-individual variation within a sex and ancestry
375 category (Fig. 3). Our analyses show, however, that there is a significant relationship between Chinese
376 ancestry and shape and suggest that this is relationship is broadly additive. To examine this possibility
377 further, we created a vector of shape variation using only the sex-adjusted full-bred Indian and
378 Chinese individuals ($n = 36$) and projected the sex-adjusted admixed individuals ($n = 102$) onto this
379 vector (Fig. 7). This figure shows an idealized, linear relationship between Chinese ancestry and sex-
380 adjusted pelvic shape. Comparison of Figures 4 and 7 shows there is very little difference between the
381 modeled relationship and that obtained with the actual data, supporting the assertion that the
382 proportion of Chinese ancestry affects pelvic shape in a predictable, proportional manner.

383

384 [Figure 7 placement]

385

386 4. **Discussion**

387 The effect of admixture on pelvic shape variation in Indian and Chinese *M. mulatta* is very slight.
388 To put this into context, shape variation between individuals from different Chinese ancestry
389 categories is no greater than intra-category (within sex) variation (Fig. 3). The latter shape variation
390 probably results from multiple variables including age, weight, and stochastic variation. This is in clear
391 contrast to the strong effect of sex on pelvic shape, which cuts across all Chinese ancestry categories.

392

393 4.1. *The skeletal context*

394 The low levels of pelvic shape differentiation between members of different Chinese ancestry
395 categories are not surprising, given the relatively small differences we found between the full-bred
396 subspecies (Fig. 5). Given the research discussed above (see Introduction) suggesting there are
397 noticeable gross phenotypic differences between Indian and Chinese *M. mulatta* (Clarke and O’Neil,
398 1999; Fooden, 2000; Hamada et al., 2005), it is possible that the similarity we see in the pelvic data is
399 particular to that region. Skeletal regions display different degrees of canalization and variation (Buck
400 et al., 2010) and the strong selective pressures resulting from the requirements of parturition and
401 locomotion might be expected to lead to stabilizing selection acting on the pelvis. The macaque fit
402 between fetus and birth canal is relatively tight during birth, comparable with that seen in extant
403 humans, and there is evidence in *M. mulatta* of selection on the pelvis to reduce cephalopelvic
404 dystocia (Kawada et al., 2020). The current study is the first analysis of hybrid pelvic morphology. In
405 fact, to the best of our knowledge, it is the first study of any postcranial shape in known hybrids

406 where skeletal shape has been analyzed directly, rather than through the use of proxy measurements
407 taken by palpating bones through soft tissue in live animals (e.g., Kelaita and Cortés-Ortíz, 2013;
408 Fuzessy et al., 2014). Thus, the effects of admixture more widely in human and nonhuman primate
409 pelvic shape remain unknown, and the possibility of regional anatomical differences in admixture
410 signature will be examined in forthcoming work on the crania and other bones from the same sample.
411 If the phenotypic similarity between Chinese and Indian *M. mulatta* is replicated in other regions of
412 the skeleton, these taxa may be relatively phenotypically undifferentiated (skeletally), despite clear
413 genetic differences between them (Zhang and Shi, 1993; Smith and McDonough, 2005; Ferguson et
414 al., 2007; Hernandez et al., 2007; Kanthaswamy et al., 2009).

415

416 4.2. *The macaque context*

417 Morphological research on hybrids between Japanese (*M. fuscata*), and Taiwanese (*M.*
418 *cyclopis*) macaques shows results comparable to those presented here (Hamada et al., 2012; Ito et al.,
419 2015; Boel et al., 2019). In particular, hybridization between *M. fuscata* and *M. cyclopis* results in a
420 linear correspondence between relative tail length and degree of admixture, with no extreme
421 phenotypes recorded (Hamada et al., 2012), contrary to what is seen for many other nonhuman
422 primate hybrids (see below). *M. fuscata* and *M. cyclopis* are estimated to have a divergence time of
423 ~170 ka (Chu et al., 2007), close to the ~162 ka estimated for Indian and Chinese *M. mulatta*
424 (Hernandez et al., 2007). GMM-based cranial analyses of these hybrids show no greater levels of
425 variation in hybrids than in parent species and no clear effects of hybrid status on the frequency of
426 anomalous nonmetric traits (Boel et al., 2019). Qualitative comparison of PCAs of the morphospace
427 inhabited by the two full-bred samples, however, does seem to indicate a greater degree of
428 separation between *M. fuscata* and *M. cyclopis* than between the *M. mulatta* subspecies, and a
429 tendency of all hybrids towards *M. fuscata* shape, rather than the linear relationship with admixture
430 we describe for our sample (Boel et al., 2019; see also analysis of linear measurements in Ito et al.,
431 2015). The Japanese x Taiwanese hybrids were wild-caught in Japan (Ito et al., 2015; Boel et al., 2019),
432 at a higher latitude and in a more temperate climate than Taiwan. Therefore, there may be some
433 adaptive advantage in *M. fuscata* morphology leading to the dominance of *M. fuscata*-like
434 morphology in hybrids and also potentially selection for greater phenotypic divergence between the
435 parent taxa after their separation in the Pleistocene, if their habitats are less similar than those of
436 Indian and Chinese *M. mulatta*.

437

438 4.3. *The nonhuman primate context*

439 In contrast to much of the previous research on nonhuman primates (Ackermann et al., 2006,
440 2014; Kelaita and Cortés-Ortiz, 2013; Fuzessy et al., 2014) with the exception of other macaque
441 studies (see above), in this study we found no increased shape variation and no heterosis or
442 transgressive size in the hybrid sample. There are several possible factors that may contribute to this
443 difference from earlier work, including the methods used, the range of admixture of the hybrids
444 making up each sample, the skeletal regions studied, and the degree of similarity (phenotypic or
445 genetic) between the parent taxa in each study.

446 In the current study we used landmark-based GMM to compare overall pelvic shape, while by
447 contrast, most studies of hybrid morphology in nonhuman primates (e.g., Ackermann et al., 2006,
448 2014; Kelaita and Cortés-Ortiz, 2013; Fuzessy et al., 2014; Ito et al., 2015) have used traditional
449 morphometrics and nonmetric traits. This may, in part, account for differences in results between
450 studies, as analysis of individual nonmetric traits or measurements can emphasize greater difference
451 in specific regions that may be averaged out by GMM analyses of overall shape. Similar GMM used to
452 analyze shape in hybrid mouse crania show patterns of increased variation and extreme phenotypes
453 similar to those seen in baboons (Warren et al., 2018), however, suggesting that GMM are not
454 entirely responsible for the differences in results between studies.

455 Hybridization in the baboon colony studied by Ackermann and colleagues (2006, 2014) was
456 only a few generations deep and many transgressive or anomalous morphologies characterized as the
457 products of hybridization are most likely to occur in the F1 generation or in generations close to the
458 interbreeding event (Prentis et al., 2008). This likely contributes to our lack of such a signal in the
459 current sample, which contains fewer early generation hybrids and only one F1 individual. More
460 subtle manifestations of expected hybrid morphology, however, such as some individuals of
461 transgressive size/shape and greater variation within admixed samples, have also been documented
462 in naturally hybridizing populations of marmosets and howler monkeys, where far fewer individuals
463 are likely to be early generation hybrids (Kelaita and Cortés-Ortiz, 2013; Fuzessy et al., 2014). This
464 suggests that the admixture proportions sampled here may not completely explain the more linear
465 relationship between admixture and pelvic morphology in our results.

466 A final possible reason for the novelty of our results, in relation to the majority of nonhuman
467 hybrid research, may be relatively short divergence time between the *M. mulatta* parent taxa
468 compared to the parent taxa investigated in previous work. Baboon taxonomy is much debated, but a
469 recent paper by Rogers et al. (2019) suggests the lineages of the olive and yellow baboon allotaxa
470 studied by Ackermann and colleagues (Ackermann et al., 2006, 2014) diverged about 1.4 Ma. Black
471 (*Alouatta pigra*) and mantled (*A. palliata*) howler monkeys, as studied by Kelaita et al. (2013), are still
472 more phylogenetically divergent, with a split time of ~3 Ma (Kelaita and Cortés-Ortiz, 2003), whilst

473 *Callithrix* is a fairly young genus and the black-tufted and white-headed marmosets (*C. penicillata* and
474 *C. geoffroyi*, respectively), whose hybrids have been studied by Fuzessy and colleagues (2014), split
475 ~700 ka (Malukiewicz et al., 2017). Based on these dates, the genetic distance between Indian and
476 Chinese *M. mulatta*, estimated to have diverged ~162 ka (Hernandez et al., 2007), is considerably less
477 than between these other taxa. There also remains the possibility that the rhesus macaques are less
478 differentiated morphologically relative to their genetic distance, perhaps due to stabilizing selection
479 (see also sub-section 4.4 below). This is an interesting possibility, which has not yet been investigated
480 and which should be followed up by the comparison of further nonhuman primate taxa pairs with
481 similar phylogenetic divergence times.

482 The differences between results presented here and previous work on nonhuman primate
483 hybrids, as well as between previous studies, demonstrate the complex relationship between
484 taxonomic divergence and hybrid morphology, which is not yet fully understood. Likewise, these
485 differences indicate the need for further investigation to better understand which nonhuman primate
486 species make the best models for hominin hybridization. It has been shown that more genetically
487 divergent taxa lead to more transgressive hybrids, due to increasing fixation of different alleles in
488 each parent taxon over time (i.e., fixed differences in alleles as opposed to differences in allele
489 frequencies), which may lead to complementary gene action or epistasis in hybrid offspring (Stelkens
490 and Seehausen, 2009; Stelkens et al., 2009; Comeault and Matute, 2018; Allen et al., 2020). The
491 relationship between phenotypic divergence and transgressive phenotypes is less clear, however
492 (Stelkens and Seehausen, 2009; Stelkens et al., 2009), and relationships among divergence time,
493 genetic and phenotypic differentiation appear to differ between groups of organisms (Stelkens and
494 Seehausen, 2009; McGee et al., 2016). Most vertebrate research on these relationships to date has
495 been in fish (Stelkens and Seehausen, 2009; Stelkens et al., 2009; McGee et al., 2016). Thus, it is also
496 unclear how well these results translate to primates, making this area ripe for further investigation.
497

498 4.4. *The paleoanthropological context*

499 From a paleoanthropological point of view, it is relevant that there appears to be considerably
500 less variation in pelvic shape between Indian and Chinese *M. mulatta* than between Neanderthals and
501 *H. sapiens*, a hybridizing taxon pair with reasonably comparable levels of genetic relatedness (see
502 Introduction). Further examination of other aspects of the *M. mulatta* skeleton and other pairs of
503 nonhuman primate taxa will be required to determine whether, given their genetic distance, Indian
504 and Chinese rhesus macaques are relatively phenotypically similar or whether *H. sapiens* and
505 Neanderthals are more divergent than would be expected within the context of the Primate order. If
506 shown to be present throughout the skeleton, low levels of phenotypic differentiation between

507 Chinese and Indian *M. mulatta* might suggest stabilizing selection, whilst the mechanism leading to
508 relatively high differentiation between the hominin taxa could be either directional selection or
509 neutral evolution. If stabilizing selection has played a lesser role in the evolutionary history of the
510 hominin pelvis than that of macaques, this could reflect a wider trend. For example, Schroeder and
511 von Cramon Taubadel (2017) have shown that across all sampled extant hominoid taxa, hominoid
512 cranial evolution is characterized by stabilizing selection with very few exceptions, one of which is
513 marked directional selection in the hominin lineage after its split with the chimpanzee lineage. The
514 pelvic evidence from the current study may suggest that this pattern holds throughout the skeleton.
515 The presence of unusually high levels of phenotypic differentiation in hominins (Lynch, 1990) is
516 supported by comparison of rates of cranial evolution in the *Pan* clade versus the Neanderthal/*H.*
517 *sapiens* clade (Weaver, 2014) and by comparisons between Neanderthal/*H. sapiens* morphological
518 divergence and that between other catarrhine pairs (Harvati et al., 2004). It has been suggested that a
519 unique human ecological niche, typified by cultural adaptation, has allowed the build-up of
520 uncommonly great neutral variation in our lineage due to reduced selection (including stabilizing
521 selection) compared to other organisms (Ackermann and Cheverud, 2004; Wells and Stock, 2007;
522 Weaver and Stringer, 2015; Buck et al., 2019).

523 There is, however, also a strong argument for selection leading to greater pelvic variation
524 between *H. sapiens* and Neanderthals than between Indian and Chinese *M. mulatta*. Indian and
525 Chinese-derived *M. mulatta* are likely phenotypically similar, at least in part because they have
526 inhabited similar habitats since their divergence (Hamada et al., 2005). This is in contrast to *H. sapiens*
527 and Neanderthals, which adapted for hundreds of thousands of years to the disparate climates and
528 habitats of Africa and Western Eurasia, respectively (Holliday, 1997a, b). Climate has played a role in
529 extant human pelvic shape variation (Betti et al., 2014), and it is also thought to have affected pelvic
530 morphology in extinct hominins (Ruff, 1993; Weaver, 2009). In addition to, or as an alternative to the
531 effects of climate, directional selection leading to cranial vault expansion in the hominin lineage, as
532 reported by Schroeder and von Cramon Taubadel (2017), could play a role in pelvic change via the
533 requirement for congruence during parturition. If this is the case, the simultaneous cranial expansion
534 but divergent cranial shapes in the *H. sapiens* and Neanderthal lineages could have contributed to
535 their differences in pelvic morphology.

536 The seeds of relatively great divergence in pelvic shape between hominin species may lie still
537 deeper in hominin evolution. It has been suggested that integration has been relaxed in the human
538 pelvis relative to other hominids, allowing for greater evolvability and selection for bipedal
539 morphology (Grabowski et al., 2011). This possibility is borne out by the high levels of intraspecific
540 geographic variation in human pelvic morphology compared to other skeletal regions (Betti and

541 Manica, 2018). A breakdown in integration is likely governed by changes to the underlying genetic
542 architecture controlling pelvic development, and evidence that distinctive hominin pelvis shape
543 results from a unique growth trajectory emerging relatively early in development also suggests
544 modification of genetically determined pathways (Zirkle and Lovejoy, 2019). Different genetic
545 underpinning and levels of integration in macaques and hominins could mean that similar degrees of
546 genetic difference could affect phenotypic outcomes in different ways. This scenario could facilitate
547 the potential development of adaptive differences in one group (e.g., Neanderthals/*H. sapiens*), but
548 neutral divergence in the other (e.g., Indian/Chinese *M. mulatta*). We note that the possibilities of
549 directional selection and unusually high neutral variation are not mutually exclusive and could have
550 combined to produce particularly phenotypically divergent taxa in *H. sapiens* and Neanderthals.

551 One could argue that, due to their lower levels of phenotypic disparity relative to the time
552 depth of their divergence, Indian/Chinese *M. mulatta* pelvis are not a good model for the phenotypic
553 effects of hybridization in hominins. It may, however, be difficult to find a pair of primate taxa with a
554 similar divergence time to *H. sapiens*/Neanderthals and similar morphological disparity, highlighting
555 the peculiarity of these hominin sister taxa. Most of the taxon pairs in the nonhuman primate hybrid
556 literature have greater phylogenetic split times and, although there is no way of directly comparing
557 parent taxon phenotypic disparity between studies, the stronger admixture effects seen in previous
558 studies may in part be related to greater phenotypic differentiation between parent taxa (see sub-
559 section 4.3).

560 Although weak, the linear nature of the relationship between admixture and pelvic shape
561 we find here is nonetheless informative. Greater Chinese ancestry leads to a pelvic shape which is
562 closer to the mean shape for full-bred Chinese individuals, and the difference in Chinese ancestry is
563 proportional to the difference in pelvic shape. If further investigation bears out the suggestion of the
564 results we present here—that the morphology of hybrids between closely related primate taxa is
565 proportional to the input of each parent taxon—this information can be used to further investigate
566 the expected morphology of hominin hybrids. Models of expected hominin hybrid morphology can be
567 constructed with the known morphology of parent taxa; for example, Neanderthal and *H. sapiens*
568 crania as the endpoints of the hypothetical shape vector along which all admixed individuals would
569 fall. Thus, the magnitude of disparity between parental shapes would not affect the pattern of the
570 hybrids that fall between them, if the pattern of variation is a valid analogue.

571
572

573 **5. Conclusions**

574 From a large sample of multigenerational hybrids and full-bred Indian and Chinese *M.*
575 *mulatta*, we find the effects of admixture on pelvic shape to be very small, albeit significant,
576 comparable with interindividual differences between members of the same sex and admixture
577 category. The admixture signal we identify is linear, with greater Chinese ancestry resulting in a pelvic
578 shape that more closely approximates that of full-bred Chinese *M. mulatta*. We find no evidence for
579 an increase in size or shape variation, nor transgressive morphologies in hybrids. Taken in the context
580 of the existing nonhuman primate hybrid literature, the small effect and additive nature of the
581 admixture signal in *M. mulatta* pelvic shape is likely affected by a combination of factors, including the
582 phylogenetic closeness of the parent taxa relative to that between previously studied taxon pairs
583 (Ackermann et al., 2006, 2014; Kelaita and Cortés-Ortiz, 2013; Fuzessy et al., 2014), the similarity of
584 Indian and Chinese *M. mulatta* habitat and ecological niche since their divergence (Hamada et al.,
585 2005), and the low number of early generation hybrids in the current study. Despite the interesting
586 disparity in phenotypic divergence between the Indian and Chinese *M. mulatta* and Neanderthals/*H.*
587 *sapiens*, which deserves further investigation, the relative similarity in phylogenetic closeness (see
588 also Allen et al., 2020) and the multiple generations of hybridization in the current sample of *M.*
589 *mulatta*, have resulted in a useful analogue for hominin hybridization. Models of hypothetical
590 outcomes of hybridization between Neanderthals and *H. sapiens*, using the pattern revealed by these
591 *M. mulatta* results, can now be tested against the fossil record to increase our understanding of the
592 impacts of interbreeding on human evolution.

593

594 **Acknowledgments**

595 This research was funded by the National Science Foundation (BCS 1623366, 1720128) and
596 the Leakey Foundation. We thank the Editor, Associate Editor and three anonymous
597 reviewers for their constructive comments, which have much improved this article. We
598 thank Mark Grote for his substantial statistical assistance and CNPRC staff, including Alice
599 Tarantel for overseeing CT scanning, and Paul-Michael Sosa, Daniel Quiros Molina, Jennifer
600 Short, and Sarah Davis for their extensive help with data collection. We thank Irene Englis
601 and staff at the University of California Davis Museum of Fish and Wildlife Biology for
602 skeletonising remains involved in this study. LTB is grateful to Alex Cantó Pastor, Austin
603 Reynolds, Mark Grabowski, Aurélien Mounier and Florent Détroit for help with coding, and
604 we thank Amber Parks and Sara Jhanjar for all their help with segmenting CT scans.

605

606

607

608 **References**

609 Ackermann, R.R., Arnold, M.L., Baiz, M.D., Cahill, J.A., Cortés-Ortíz, L., Evans, B.J., Grant, B.R., Grant,
610 P.R., Hallgrímsson, B., Humphreys, R.A., Jolly, C.J., Malukiewicz, J., Percival, C.J., Ritzman, T.B.,
611 Roos, C., Roseman, C.C., Schroeder, L., Smith, F.H., Warren, K.A., Wayne, R.K., Zinner, D., 2019.
612 Hybridization in human evolution: Insights from other organisms. *Evol. Anthropol.* 28, 189–209.

613 Ackermann, R.R., Bishop, J.M., 2010. Morphological and molecular evidence reveals recent
614 hybridization between gorilla taxa. *Evolution* 64, 271–290.

615 Ackermann, R.R., Cheverud, J.M., 2004. Detecting genetic drift versus selection in human evolution.
616 *Proc. Natl. Acad. Sci. USA* 101, 17946–17951.

617 Ackermann, R.R., Mackay, A., Arnold, M.L., 2016. The hybrid origin of “Modern” Humans. *Evol. Biol.*
618 43, 1–11.

619 Ackermann, R.R., Rogers, J., Cheverud, J.M., 2006. Identifying the morphological signatures of
620 hybridization in primate and human evolution. *J. Hum. Evol.* 51, 632–645.

621 Ackermann, R.R., Schroeder, L., Rogers, J., Cheverud, J.M., 2014. Further evidence for phenotypic
622 signatures of hybridization in descendent baboon populations. *J. Hum. Evol.* 76, 54–62.

623 Adams, D.C., Collyer, M.L., Kaliontzopoulou, A., 2020. Geomorph: Software for geometric
624 morphometric analyses. Ver. 3.2.1. <https://cran.r-project.org/package=geomorph>

625 Allen, R., Ryan, H., Davis, B.W., King, C., Frantz, L., Irving-pease, E., Barnett, R., Linderholm, A., Loog, L.,
626 Haile, J., Lebrasseur, O., White, M., Kitchener, A.C., Murphy, W.J., Larson, G., Murphy, W.J.,
627 2020. A mitochondrial genetic divergence proxy predicts the reproductive compatibility of
628 mammalian hybrids. *Proc. Royal Soc. B. Biol. Sci.* 287, 20200690.

629 Bergmann, C.A., 1847. Über die verhältnisse der warmekonomie der thiere zu iher grosse. Gottingen
630 Studien 1, 595–708.

631 Betti, L., Manica, A., 2018. Human variation in the shape of the birth canal is significant and
632 geographically structured. *Proc. Royal Soc. B. Biol. Sci.* 285, 20181807.

633 Betti, L., von Cramon-Taubadel, N., Manica, A., Lycett, S.J., 2014. The interaction of neutral
634 evolutionary processes with climatically-driven adaptive changes in the 3D shape of the human
635 os coxae. *J. Hum. Evol.* 73, 64–74.

636 Bocquet-Appel, J.P., Degioanni, A., 2013. Neanderthal demographic estimates. *Curr. Anthropol.* 54,
637 S202–S213.

638 Boel, C., Curnoe, D., Hamada, Y., 2019. Craniofacial shape and nonmetric trait variation in hybrids of
639 the Japanese macaque (*Macaca fuscata*) and the Taiwanese macaque (*Macaca cyclopis*). *Int. J.
640 Primatol.* 40, 214–243.

641 Buck, L.T., De Groote, I., Hamada, Y., Hassett, B.R., Ito, T., Stock, J.T., 2019. Evidence of different
642 climatic adaptation strategies in humans and non-human primates. *Sci. Rep.* 9, 11025.

643 Buck, L.T., Stock, J.T., Foley, R. a., 2010. Levels of intraspecific variation within the catarrhine skeleton.
644 *Int. J. Primatol.* 31, 779–795.

645 Chu, J.H., Lin, Y.S., Wu, H.Y., 2007. Evolution and dispersal of three closely related macaque species,
646 *Macaca mulatta*, *M. cyclopis*, and *M. fuscata*, in the eastern Asia. *Molec. Phylogenetic. Evol.* 43,
647 418–429.

648 Clarke, M.R., O’Neil, J.A.S., 1999. Morphometric comparison of Chinese-origin and Indian-derived
649 rhesus monkeys (*Macaca mulatta*), *Am. J. Primatol.* 74, 335-346

650 Collyer, M.L., Adams, D.C., 2018. RRPP: An R package for fitting linear models to high-dimensional
651 data using residual randomization. *Methods Ecol. Evol.* 9, 1772–1779.

652 Collyer, M.L., Adams, D.C., 2020. RRPP: Linear model evaluation with randomized residuals in a
653 permutation procedure. Ver. 0.5.2, <https://cran.r-project.org/package=RRPP>.

654 Comeault, A.A., Matute, D.R., 2018. Genetic divergence and the number of hybridizing species affect
655 the path to homoploid hybrid speciation. *Proc. Natl. Acad. Sci. USA* 115, 9761–9766.

656 Core Team, R., 2018. R: A language and environment for statistical computing. Ver. 3.6.3.

657 Cortés-Ortiz, L., Bermingham, E., Rico, C., Rodríguez-Luna, E., Sampaio, I., Ruiz-García, M., 2003.
658 Molecular systematics and biogeography of the Neotropical monkey genus, *Alouatta*. *Molec.*
659 *Phylogenetic. Evol.* 26, 64–81.

660 Cortés-Ortiz, L., Roos, C., Zinner, D., 2019. Introduction to special issue on primate hybridization and
661 hybrid zones. *Int. J. Primatol.* 40, 1-8.

662 Drake, A.G., Klingenberg, C.P., 2008. The pace of morphological change: Historical transformation of
663 skull shape in St. Bernard dogs. *Proc. Royal Soc. B. Biol. Sci.* 275, 71–76.

664 Duarte, C., Maurício, J., Pettitt, P.B., Souto, P., Trinkaus, E., Van Plicht, H. Der, Zilhão, J., 1999. The
665 early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern
666 human emergence in Iberia. *Proc. Natl. Acad. Sci. USA* 96, 7604–7609.

667 Ferguson, B., Street, S.L., Wright, H., Pearson, C., Jia, Y., Thompson, S.L., Allibone, P., Dubay, C.J.,
668 Spindel, E., Norgren, R.B., 2007. Single nucleotide polymorphisms (SNPs) distinguish Indian-
669 origin and Chinese-origin rhesus macaques (*Macaca mulatta*). *BMC Genomics.* 8, 43.

670 Fischer, J., Higham, J.P., Alberts, S.C., Barrett, L., Beehner, J.C., Bergman, T.J., Carter, A.J., Collins, A.,
671 Elton, S., Fagot, J., Ferreira da Silva, M.J., Hammerschmidt, K., Henzi, P., Jolly, C.J., Knauf, S.,
672 Kopp, G.H., Rogers, J., Roos, C., Ross, C., Seyfarth, R.M., Silk, J., Snyder-Mackler, N., Staedele, V.,
673 Swedell, L., Wilson, M.L., Zinner, D., 2019. The natural history of model organisms: insights into
674 the evolution of social systems and species from baboon studies. *eLife.* 8, e50989.

675 Fooden, J., 1976. Provisional classification and key to living species of macaques (Primates: *Macaca*).
676 Folia Primatol. 25, 225–236.

677 Fooden, J., 1982. Ecogeographic segregation of macaque species. Primates 23, 574–579.

678 Fooden, J., 1995. Systematic review of Southeast Asian longtail macaques, *Macaca fascicularis*
679 (Raffles, 1821). Fieldiana Zool. 81, 2-3.

680 Fooden, J., 2000. Zoology systematic review of the rhesus macaque, *Macaca mulatta* (Zimmermann,
681 1780). Field Museum of Natural History, Chicago.

682 Fooden, J., 2006. Comparative review of fascicularis-group species of macaques (Primates: *Macaca*).
683 Fieldiana Zool. 107, 1-43.

684 Fu, Q., Hajdinjak, M., Moldovan, O.T., Constantin, S., Mallick, S., Skoglund, P., Patterson, N., Rohland,
685 N., Lazaridis, I., Nickel, B., Viola, B., Prüfer, K., Meyer, M., Kelso, J., Reich, D., Pääbo, S., 2015. An
686 early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219.

687 Fuzessy, L.F., Silva, I. de O., Malukiewicz, J., Silva, F.F.R., Pônzio, M. do C., Boere, V., Ackermann, R.R.,
688 2014. Morphological variation in wild marmosets (*Callithrix penicillata* and *C. geoffroyi*) and their
689 hybrids. Evol. Biol. 41, 480–493.

690 Gopalan, S., Atkinson, E.G., Buck, L.T., Weaver, T.D., Henn, B.M., 2021. Inferring archaic introgression
691 from hominin genetic data. Evol. Anthropol, 30, 199–220.

692 Grabowski, M.W., Polk, J.D., Roseman, C.C., 2011. Divergent patterns of integration and reduced
693 constraint in the human hip and the origins of bipedalism. Evolution 65, 1336–1356.

694 Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W.,
695 Fritz, M.H.-Y., Hansen, N.F., Durand, E.Y., Malaspinas, A.-S., Jensen, J.D., Marques-Bonet, T.,
696 Alkan, C., Prüfer, K., Meyer, M., Burbano, H.A., Good, J.M., Schultz, R., Aximu-Petri, A., Butthof,
697 A., Höber, B., Höffner, B., Siegemund, M., Weihmann, A., Nusbaum, C., Lander, E.S., Russ, C.,
698 Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic, D., Kucan, Z., Gusic, I.,
699 Doronichev, V.B., Golovanova, L. V, Lalueza-Fox, C., de la Rasilla, M., Fortea, J., Rosas, A.,
700 Schmitz, R.W., Johnson, P.L.F., Eichler, E.E., Falush, D., Birney, E., Mullikin, J.C., Slatkin, M.,
701 Nielsen, R., Kelso, J., Lachmann, M., Reich, D., Pääbo, S., 2010. A draft sequence of the
702 Neandertal genome. Science 328, 710–22.

703 Gunz, P., Neubauer, S., Golovanova, L., Doronichev, V., Maureille, B., Hublin, J.J., 2012. A uniquely
704 modern human pattern of endocranial development. Insights from a new cranial reconstruction
705 of the Neandertal newborn from Mezmaiskaya. J. Hum. Evol. 62, 300–313.

706 Hamada, Y., Watanabe, T., Chatani, K., Hayakawa, S., Iwamoto, M., 2005. Morphometrical comparison
707 between Indian- and Chinese-derived rhesus macaques (*Macaca mulatta*). Anthropol. Sci. 113,
708 183–188.

709 Hamada, Y., Yamamoto, A., Kunimatsu, Y., Tojima, S., Mouri, T., Kawamoto, Y., 2012. Variability of tail
710 length in hybrids of the Japanese macaque (*Macaca fuscata*) and the Taiwanese macaque
711 (*Macaca cyclopis*). *Primates* 53, 397–411.

712 Harvati, K., Frost, S.R., McNulty, K.P., 2004. Neanderthal taxonomy reconsidered: Implications of 3D
713 primate models of intra- and interspecific differences. *Proc. Natl. Acad. Sci. USA* 101, 1147–52.

714 Hayasaka, K., Fujii, K., Horai, S., 1996. Molecular phylogeny of macaques: Implications of nucleotide
715 sequences from an 896-base pair region of mitochondrial DNA. *Mol. Biol. Evol.* 13, 1044–1053.

716 Hernandez, R.D., Hubisz, M.J., Wheeler, D.A., Smith, D.G., Ferguson, B., Rogers, J., Nazareth, L., Indap,
717 A., Bourquin, T., McPherson, J., Muzny, D., Gibbs, R., Nielsen, R., Bustamante, C.D., 2007.
718 Demographic histories and patterns of linkage disequilibrium in Chinese and Indian rhesus
719 macaques. *Science* 316, 240–243.

720 Holliday, T.W., 1997a. Postcranial evidence of cold adaptation in European Neandertals. *Am. J. Phys.*
721 *Anthropol.* 104, 245–58.

722 Holliday, T.W., 1997b. Body proportions in Late Pleistocene Europe and modern human origins. *J.*
723 *Hum. Evol.* 32, 423–448.

724 Ito, T., Kawamoto, Y., Hamada, Y., Nishimura, T.D., 2015. Maxillary sinus variation in hybrid macaques:
725 implications for the genetic basis of craniofacial pneumatization. *Biol. J. Linn. Soc.* 115, 333–347.

726 Jolly, C.J., 2001. A proper study for mankind: Analogies from the papionin monkeys and their
727 implications for human evolution. *Am. J. Phys. Anthropol.* 116, 177–204.

728 Kanthaswamy, S., Gill, L., Satkoski, J., Goyal, V., Malladi, V., Kou, A., Basuta, K., Sarkisyan, L., George,
729 D., Smith, D.G., 2009. Development of a Chinese-Indian hybrid (Chindian) rhesus macaque
730 colony at the California National Primate Research Center by introgression. *J. Med. Primatol.* 38,
731 86–96.

732 Kawada, M., Nakatsukasa, M., Nishimura, T., Kaneko, A., Morimoto, N., 2020. Covariation of fetal skull
733 and maternal pelvis during the perinatal period in rhesus macaques and evolution of childbirth
734 in primates. *Proc. Natl. Acad. Sci. USA* 117, 202002112.

735 Kelaita, M.A., Cortés-Ortiz, L., 2013. Morphological variation of genetically confirmed *Alouatta pigra* ×
736 *A. palliata* hybrids from a natural hybrid zone in Tabasco, Mexico. *Am. J. Phys. Anthropol.* 150,
737 223–234.

738 Ledevin, R., Koyabu, D., 2019. Patterns and constraints of craniofacial variation in colobine monkeys:
739 Disentangling the effects of phylogeny, allometry and diet. *Evol. Biol.* 46, 14-34.

740 Lynch, M., 1990. The rate of morphological evolution in mammals from the standpoint of the neutral
741 expectation. *Am. Nat.* 136, 727–741.

742 Malukiewicz, J., Hepp, C.M., Guschanski, K., Stone, A.C., 2017. Phylogeny of the *jacchus* group of

743 *Callithrix* marmosets based on complete mitochondrial genomes. Am. J. Phys. Anthropol. 162,
744 157–169.

745 Martinez, F.I., Capelli, C., Ferreira da Silva, M.J., Aldeias, V., Alemseged, Z., Archer, W., Bamford, M.,
746 Biro, D., Bobe, R., Braun, D.R., Habermann, J.M., Lüdecke, T., Madiquida, H., Mathe, J., Negash,
747 E., Paulo, L.M., Pinto, M., Stalmans, M., Tátá, F., Carvalho, S., 2019. A missing piece of the *Papio*
748 puzzle: Gorongosa baboon phenostructure and intrageneric relationships. J. Hum. Evol. 130, 1–
749 20.

750 McGee, M.D., Neches, R.Y., Seehausen, O., 2016. Evaluating genomic divergence and parallelism in
751 replicate ecomorphs from young and old cichlid adaptive radiations. Mol. Ecol. 25, 260–268.

752 Melnick, D.J., Hoelzer, G. a, Absher, R., Ashley, M. V, 1993. mtDNA diversity in rhesus monkeys reveals
753 overestimates of divergence time and paraphyly with neighboring species. Mol. Biol. Evol. 10,
754 282–295.

755 Mitteroecker, P., Huttegger, S.M., Fischer, B., Pavlicev, M., 2016. Cliff-edge model of obstetric
756 selection in humans. Proc. Natl. Acad. Sci. USA 113, 14680–14685.

757 Mitteroecker, P., Windhager, S., Pavlicev, M., 2017. Cliff-edge model predicts intergenerational
758 predisposition to dystocia and Caesarean delivery. Proc. Natl. Acad. Sci. USA 114, 11669–11672.

759 Moore, A.J., 2021. Vertebral pneumaticity is correlated with serial variation in vertebral shape in
760 storks. J. Anat. 238, 615–625.

761 Plavcan, J.M., 2001. Sexual dimorphism in primate evolution. Yearb. Phys. Anthropol. 44, 25–53.

762 Ponce de León, M.S., Zollikofer, C.P.E., 2001. Neanderthal cranial ontogeny and its implications for
763 late hominid diversity. Nature 412, 534–538.

764 Prentis, P.J., Wilson, J.R.U., Dormontt, E.E., Richardson, D.M., Lowe, A.J., 2008. Adaptive evolution in
765 invasive species. Trends Plant Sci. 13, 288–294.

766 Rak, Y., Arensburg, B., 1987. Kebara 2 Neanderthal pelvis: First look at a complete inlet. Am. J. Phys.
767 Anthropol. 73, 227–231.

768 Rogers, J., Raveendran, M., Harris, R.A., Mailund, T., Leppälä, K., Athanasiadis, G., Schierup, M.H.,
769 Cheng, J., Munch, K., Walker, J.A., Konkel, M.K., Jordan, V.E., Steely, C.J., Beckstrom, T.O.,
770 Bergey, C., Burrell, A., Schrempf, D., Noll, A., Kothe, M., Kopp, G.H., Liu, Y., Murali, S., Billis, K.,
771 Martin, F.J., Muffato, M., Cox, L.A., Else, J., Disotell, T., Muzny, D.M., Phillips-Conroy, J., Aken, B.,
772 Eichler, E.E., Marques-Bonet, T., Kosiol, C., Batzer, M.A., Hahn, M.W., Tung, J., Zinner, D., Roos,
773 C., Jolly, C.J., Gibbs, R.A., Worley, K.C., Archidiacono, N., Capozzi, O., Catacchio, C.R., Dinh, H.H.,
774 Doddapaneni, H.V., Han, Y., Huddleston, J., Jhangiani, S.N., Karimpour-Fard, A., Korchina, V.,
775 Kovar, C.L., Kuderna, L., Lee, S.L., Liu, X., Marra-Campanale, A., Mason, C.E., Montero, M. de M.,
776 Pagel, K.A., Palazzo, A., Pecotte, J., Pejaver, V., Pipes, L., Quick, V.S., Radivojac, P., Raja, A., Raney,

777 B.J., Rice, K., Rocchi, M., Sikela, J.M., Stanyon, R., Thomas, G.W.C., Ventura, M., Vilgalys, T.P.,
778 Vinar, T., Walter, L., 2019. The comparative genomics and complex population history of *Papio*
779 baboons. *Sci. Adv.* 5, eaau6947.

780 Rougier, H., Milota, Š., Rodrigo, R., Gherase, M., Sarcină, L., Moldovan, O., Zilhão, J., Constantin, S.,
781 Franciscus, R.G., Zollikofer, C.P.E., De León, M.P., Trinkaus, E., 2007. Peștera cu Oase 2 and the
782 cranial morphology of early modern Europeans. *Proc. Natl. Acad. Sci. USA* 104, 1165–1170.

783 Ruff, C., 1993. Climatic adaptation and hominid evolution: The thermoregulatory imperative. *Evol.*
784 *Anthropol.* 2, 53-60.

785 Savriama, Y., Valtonen, M., Kammonen, J.I., Rastas, P., Smolander, O.P., Lyyski, A., Häkkinen, T.J.,
786 Corfe, I.J., Gerber, S., Salazar-Ciudad, I., Paulin, L., Holm, L., Löytynoja, A., Auvinen, P., Jernvall, J.,
787 2018. Bracketing phenogenotypic limits of mammalian hybridization. *Roy. Soc. Open Sci.* 5,
788 180903.

789 Schlager, S., 2017. Morpho and Rvcg - Shape analysis in R. In: Zheng, G., Li, S., Szekely, G. (Eds.),
790 Statistical Shape and Deformation Analysis. Academic Press, Cambridge, pp. 217–256.

791 Schroeder, L., von Cramon-Taubadel, N., 2017. The evolution of hominoid cranial diversity: A
792 quantitative genetic approach. *Evolution* 71, 2634–2649.

793 Sheratt, E., Sanders, K.L., Watson, A., Hutchinson, M.N., Lee, M.S. and Palci, A., 2019. Heterochronic
794 shifts mediate ecomorphological convergence in skull shape of microcephalic sea snakes. *Integr.*
795 *Comp. Biol.*, 59, 616-624.

796 Smith, D.G., McDonough, J., 2005. Mitochondrial DNA variation in Chinese and Indian Rhesus
797 macaques (*Macaca mulatta*). *Am. J. Primatol.* 65, 1–25.

798 Stelkens, R., Seehausen, O., 2009. Genetic distance between species predicts novel trait expression in
799 their hybrids. *Evolution* 63, 884–897.

800 Stelkens, R.B., Schmid, C., Selz, O., Seehausen, O., 2009. Phenotypic novelty in experimental hybrids is
801 predicted by the genetic distance between species of cichlid fish. *BMC Evol. Biol.* 9, 283.

802 Tattersall, I., Schwartz, J.H., 1999. Commentary hominids and hybrids: The place of Neanderthals in
803 human evolution. *Proc. Natl. Acad. Sci. USA* 96, 7117-7119.

804 Tosi, A.J., Morales, J.C., Melnick, D.J., 2000. Comparison of Y chromosome and mtDNA phylogenies
805 leads to unique inferences of macaque evolutionary history. *Molec. Phylogenetic. Evol.* 17, 133–
806 144.

807 Trevathan, W., 2015. Primate pelvic anatomy and implications for birth. *Philos. Trans. Roy. Soc. B.*
808 *Biol. Sci.* 370, 20140065.

809 Trinkaus, E., 2003. Neandertal faces were not long; modern human faces are short. *Proc. Natl. Acad.*
810 *Sci. USA* 100, 8142–8145.

811 Trinkaus, E., Milota, S., Rodrigo, R., Mircea, G., Moldovan, O., 2003a. Early modern human cranial
812 remains from the Peștera cu Oase, Romania. *J. Hum. Evol.* 45, 245–253.

813 Trinkaus, E., Moldovan, O., Milota, S., Bîlgăr, A., Sarcina, L., Athreya, S., Bailey, S.E., Rodrigo, R.,
814 Mircea, G., Higham, T., Bronk Ramsey, C., Van der Plicht, J., 2003b. An early modern human from
815 the Peștera cu Oase, Romania. *Proc. Natl. Acad. Sci. USA* 100, 11231–11236.

816 Warren, K.A., Ritzman, T.B., Humphreys, R.A., Percival, C.J., Hallgrímsson, B., Ackermann, R.R., 2018.
817 Craniomandibular form and body size variation of first generation mouse hybrids: A model for
818 hominin hybridization. *J. Hum. Evol.* 116, 57–74.

819 Weaver, T.D., 2009. The meaning of Neandertal skeletal morphology. *Proc. Natl. Acad. Sci. USA* 106,
820 16028-16033.

821 Weaver, T.D., 2014. Brief CoM. mulatta nication: Quantitative- and molecular-genetic differentiation
822 in humans and chimpanzees: Implications for the evolutionary processes underlying cranial
823 diversification. *Am. J. Phys. Anthropol.* 154, 615–620.

824 Weaver, T.D., Hublin, J., 2009. Neandertal birth canal shape and the evolution of human childbirth.
825 *Proc. Natl. Acad. Sci. USA* 106, 8151.

826 Weaver, T.D., Stringer, C.B., 2015. Unconstrained cranial evolution in Neandertals and modern
827 humans compared to common chimpanzees. *Proc. Royal Soc. B. Biol Sci.* 282, 20151519.

828 Wells, J.C.K., Stock, J.T., 2007. The biology of the colonizing ape. *Am. J. Phys. Anthropol.* 134, 191–
829 222.

830 Wolf, A.B., Akey, J.M., 2018. Outstanding questions in the study of archaic hominin admixture. *PLoS
831 Genet.* 14, e1007349.

832 Wolfe, L.D., 1986. Reproductive biology of rhesus and Japanese macaques. *Primates* 27, 95–101.

833 Zhang, Y.-P., Shi, L.-M., 1993. Phylogeny of rhesus monkeys (*Macaca mulatta*) as revealed by
834 mitochondrial DNA restriction enzyme analysis. *Int. J. Primatol.* 14, 587-605.

835 Zirkle, D., Lovejoy, C.O., 2019. The hominid ilium is shaped by a synapomorphic growth mechanism
836 that is unique within primates. *Proc. Natl. Acad. Sci. USA* 116, 13915–13920.

837

838 **Figure legends**

839

840 **Figure 1.** Landmarks and semilandmarks used in the analyses presented here viewed from (clockwise
841 from top left) ventral, cranial, caudal, dorsal, and right lateral views. Black spheres: true landmarks,
842 grey spheres: semilandmarks, lines: wireframe connecting landmarks and semilandmarks. For
843 landmarks that correspond to numbers, refer to Table 2. For ease of visualization, only true landmarks
844 are numbered, and they are numbered only in the view where they are most easily seen. In the
845 visualization of results throughout the remaining paper, only the wireframe is shown to better
846 visualize differences between shapes.

847

848 **Figure 2.** Semilandmark curves and wireframe used in the analyses presented here, viewed from (left
849 to right) anterior and posterior. 1: pelvic inlet (closed) curve, 2: right dorsal ischial curve, 3: left dorsal
850 ischial curve, 4: right iliac blade curve, 5: left iliac blade curve, 6: right pubic symphysis curve, 7: left
851 pubic symphysis curve.

852

853 **Figure 3.** Distributions of pairwise Procrustes distances generated directly from the data. Distributions
854 show distances between members of different sexes within a Chinese ancestry category (orange,
855 dashed line), between individuals of the same sex in the same Chinese ancestry category (grey, solid
856 line), in categories 12.5% apart/adjacent categories (turquoise, solid line), and in categories 50% apart
857 (purple, solid line). Variation between individuals in the same sex and ancestry category (grey, solid
858 line) may be considered baseline levels of variation against which to compare the effects of sex or
859 admixture.

860

861 **Figure 4.** Plot of regression scores showing the relationship between pelvic shape and admixture, both
862 adjusted for sex. Jitter is used to improve the visibility of separate points. Indian (0% Chinese
863 ancestry) in red, Chinese (100% Chinese ancestry) in dark blue, all other admixture percentages
864 shown as colour scale in between the two extremes, as shown to the right of the graph. Wireframes
865 below graph show minimum (in red) and maximum (in blue) scoring shapes on the regression score
866 axis with displacement magnified by two to aid visualization. Views shown (left to right) are ventral,
867 cranial, caudal, and right lateral.

868

869 **Figure 5.** PCA plot showing sex-adjusted shape differences between full-breds. PC1 accounts for
870 25.2% variance, PC2 accounts for 13.0% variance. Indian (0% Chinese ancestry) in red circles, Chinese

871 (100% Chinese ancestry) in dark blue squares. This PCA shows the large degree of overlap in pelvic
872 shape between the subspecies on the primary axes of variation.

873

874 **Figure 6.** Regression score plot showing the relationship between sex-adjusted shape associated with
875 subspecies designation and subspecies designation. Jitter is used to improve the visibility of separate
876 points. Indian (0% Chinese ancestry) in red, Chinese (100% Chinese ancestry) in dark blue. Wireframes
877 below graph show mean Indian shape (in red) and mean Chinese shape (in blue). Note that this differs
878 from Figure 4, where the wireframes model the extremes of regression scores. As in Figure 4,
879 displacement is magnified by two to aid visualization. Views shown (left to right) are ventral, cranial,
880 caudal, and right lateral.

881

882 **Figure 7.** Regression score plot showing the relationship between sex-adjusted shape associated with
883 Chinese ancestry and Chinese ancestry. Shapes of admixed individuals are projected on a vector
884 constructed using fullbred shape only. Jitter is used to improve the visibility of separate points. Indian
885 (0% Chinese ancestry) in red, Chinese (100% Chinese ancestry) in dark blue, all other admixture
886 percentages shown as scale in between the two extremes, as shown to the right of the graph.
887 Compare with Figure 4.

Figure 1

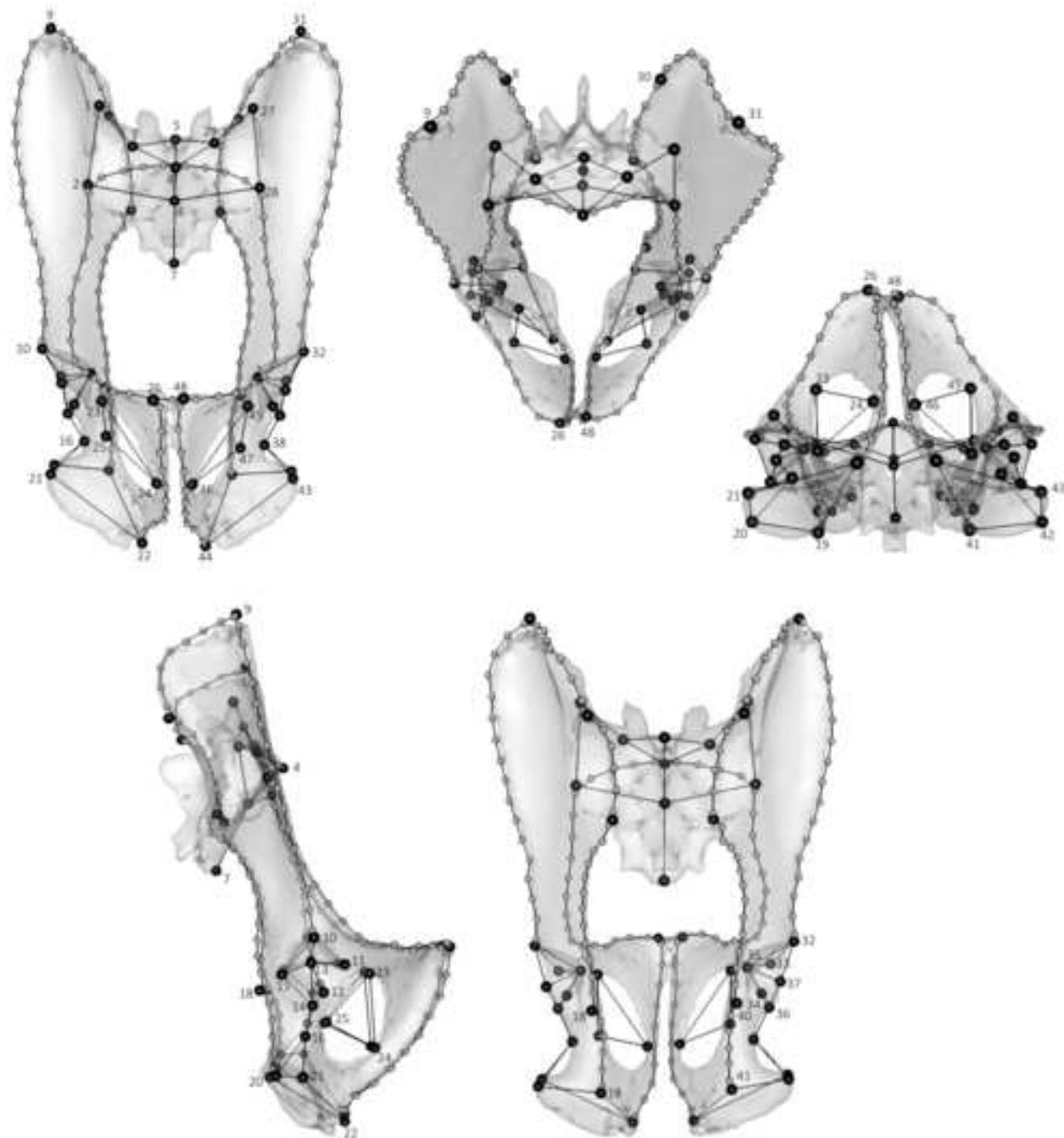


Figure 2

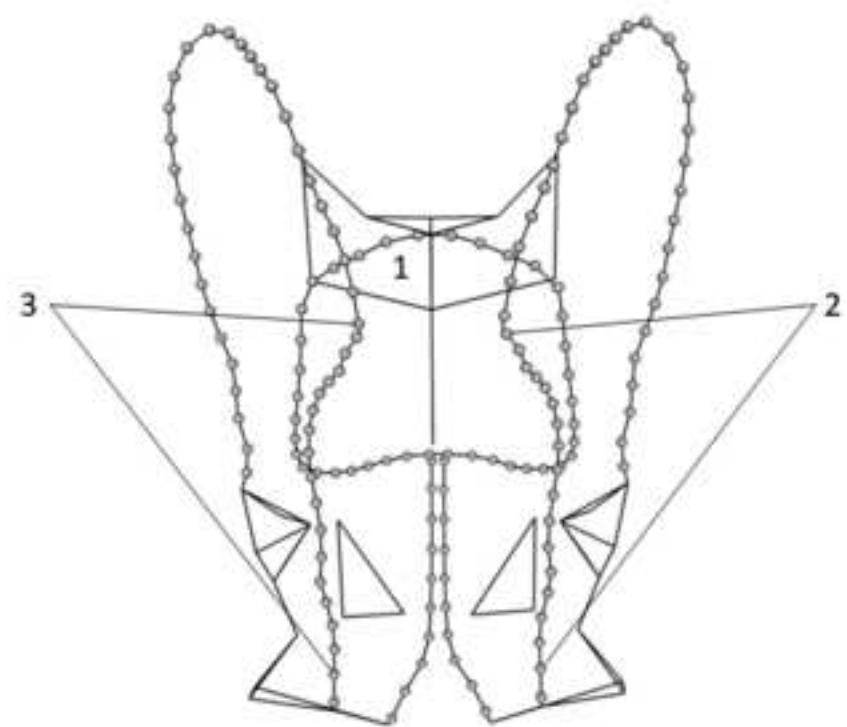
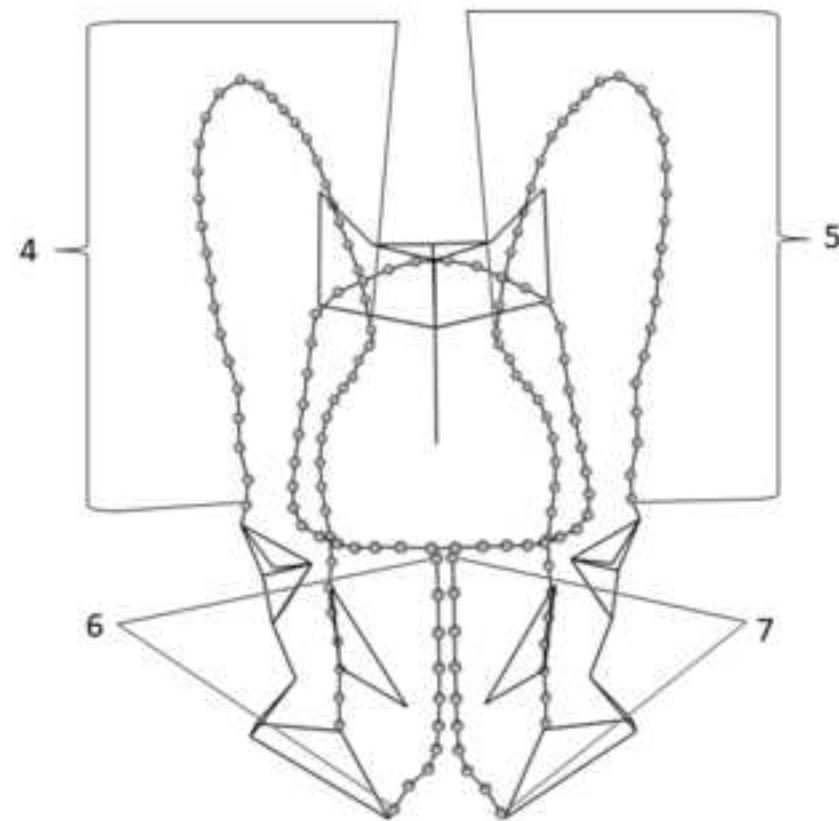



Figure 3

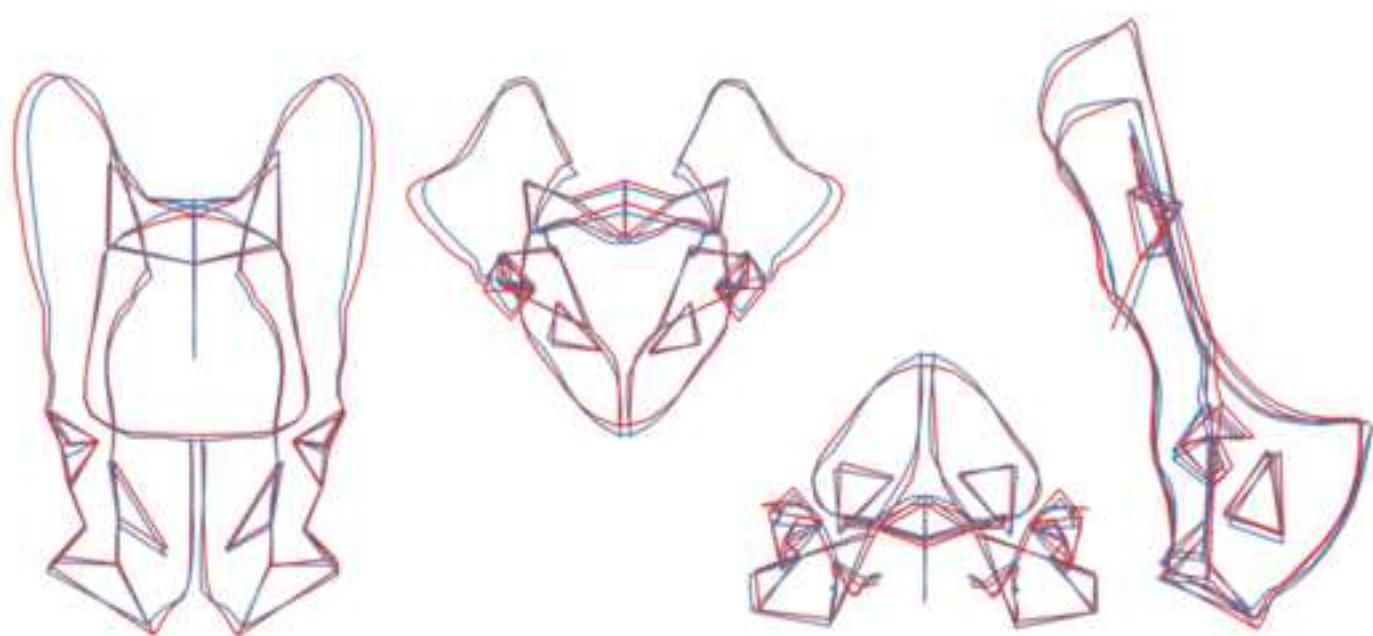
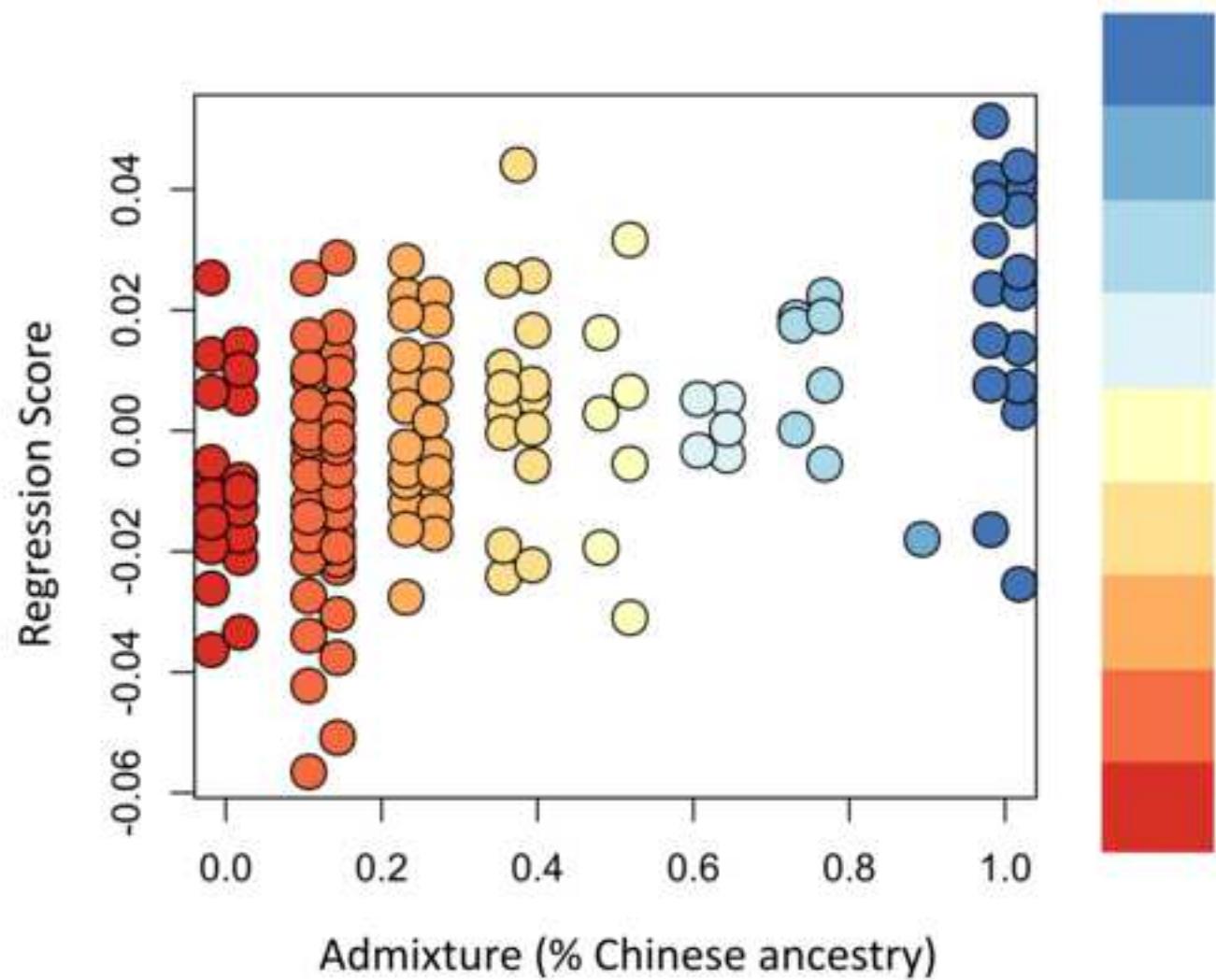



Figure 4

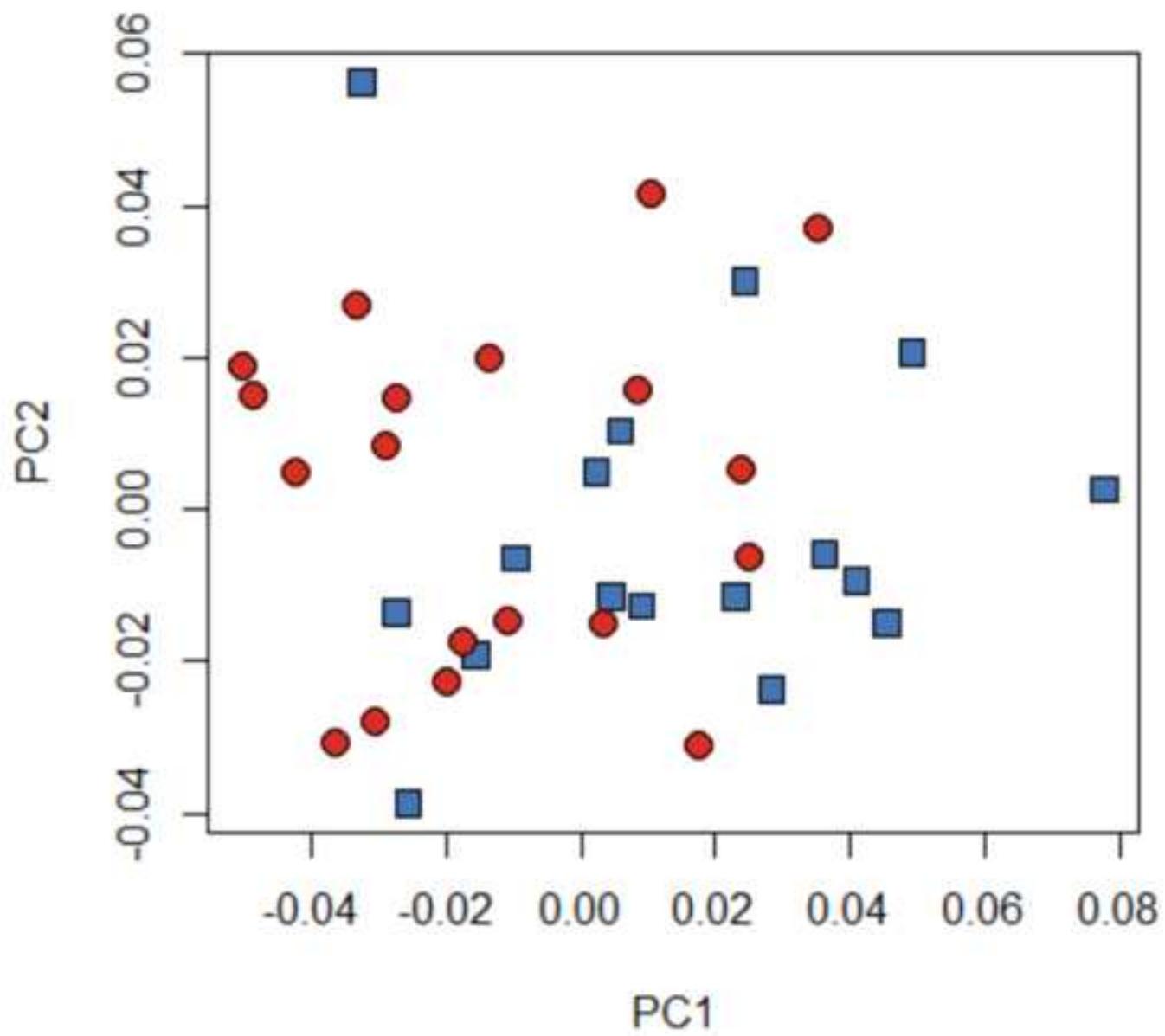


Figure 5

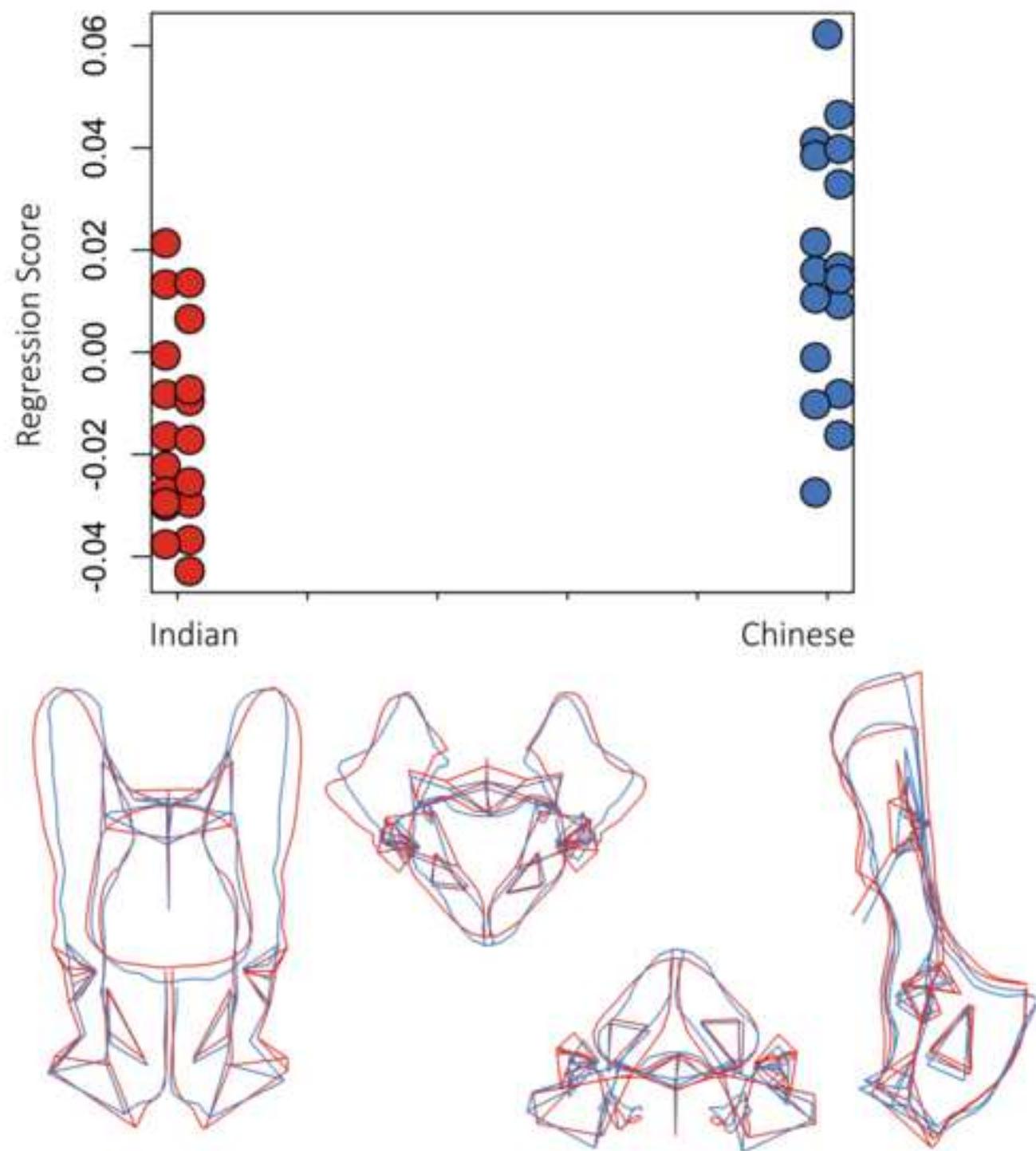


Figure 6

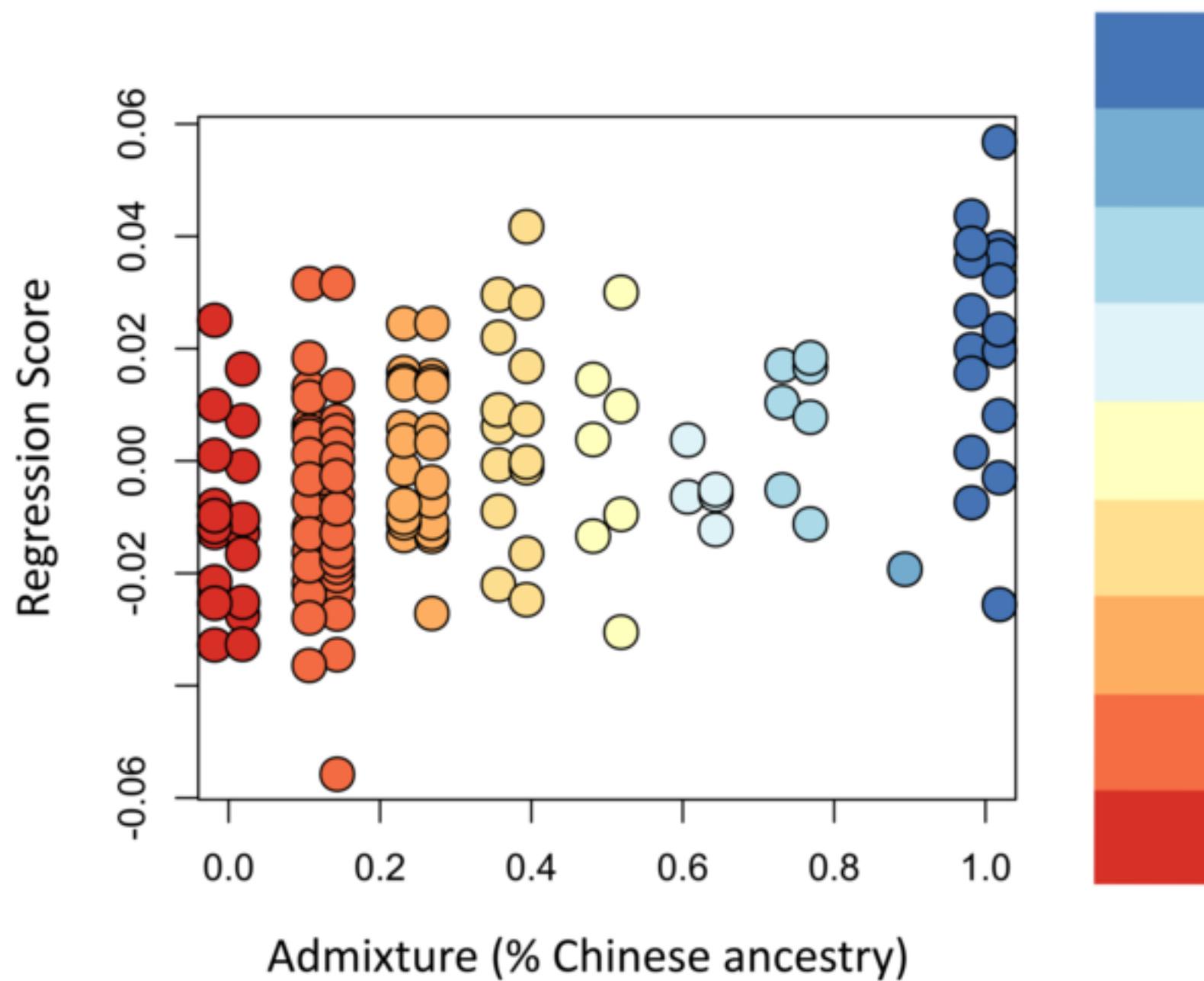
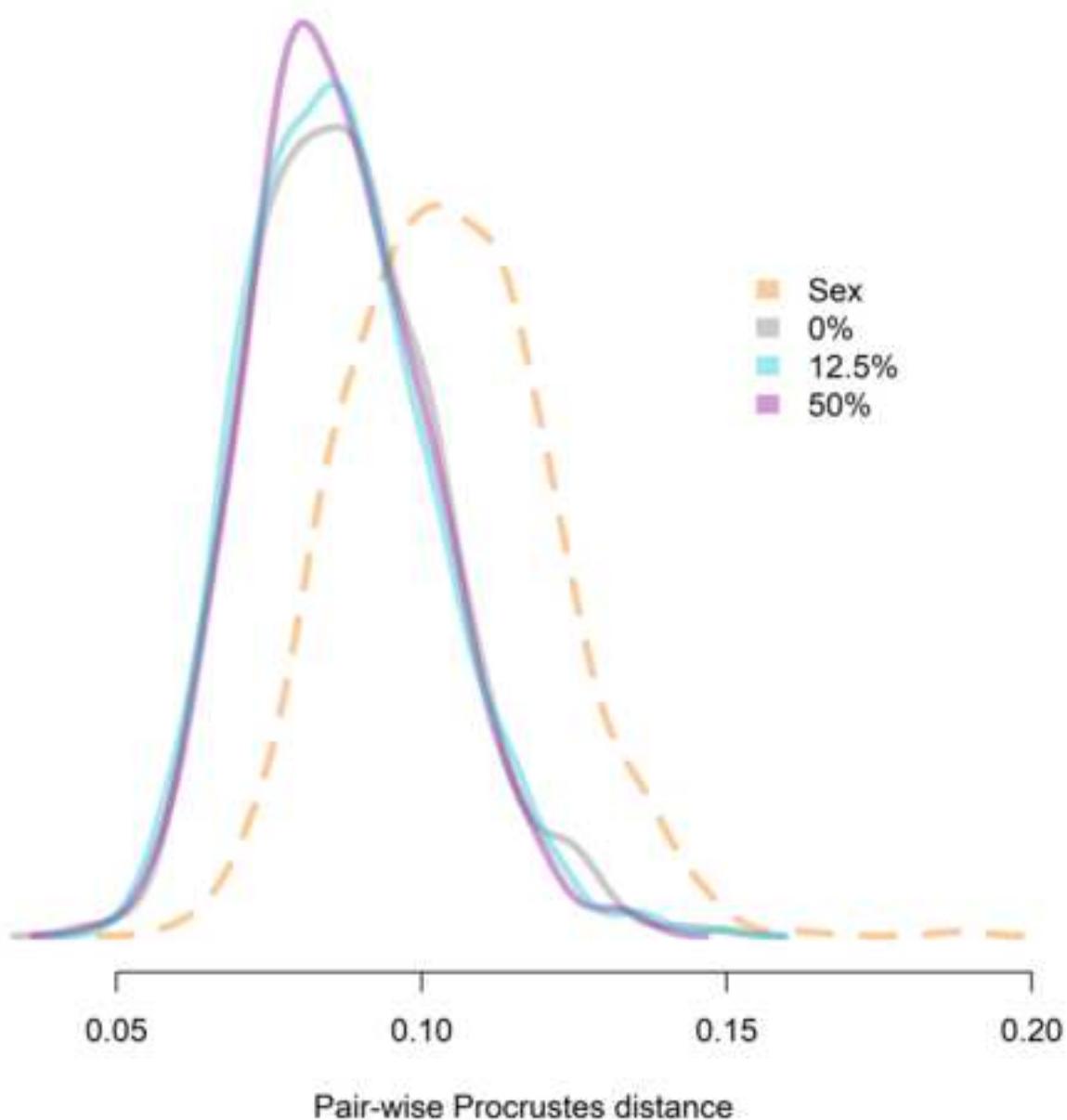



Figure 7

Table 1

Breakdown of sample ($n = 138$) by Chinese ancestry and sex. Ancestry category reflects the percentage of Chinese ancestry: 0% Chinese ancestry = full-bred Indian, 100% Chinese ancestry = full-bred Chinese. Full-bred sample $n = 36$.

Ancestry category	0%	12.5%	25%	37.5%	50%	62.5%	75%	87.5%	100%
Female	11	29	15	12	5	3	7	1	11
Male	8	15	8	3	2	2	0	0	6
Total	19	44	23	15	7	5	7	1	17

Table 2

Numbers and definitions of all landmarks (1 to 48) and semilandmarks (49 to 204).

Landmark number	Definition
1	Most cranial point on sacral wing—Right
2	Most caudoventral point on sacral wing, on linea terminali—Right
3	Most lateral point on cranial articular surface of S1—Right
4	Most ventral point on cranial articular surface of S1 body—Midline
5	Most ventral point on dorsal margin of articular cranial surface of S1 body—Midline
6	Most ventral point on cranial articular surface of S2 body—Midline
7	Most caudal point on sacrum—Midline
8	Dorsal caudal iliac spine—Right
9	Cranialmost point on iliac spine—Right
10	Cranialmost point on acetabular rim—Right
11	Medialmost point on cranial portion of lunate—Right
12	Medialmost point on caudal portion of lunate—Right
13	Centre of acetabulum—Right
14	Caudalmost point on acetabular rim—Right
15	Dorsalmost point on acetabular rim—Right
16	Ventrolateral point on lateral ischial crest at min. breadth—Right
17	Iliac blade medial (most medial intersection of iliac blade and sacrum)—Right
18	Dorsalmost point on ischial spine—Right
19	Intersection of dorsal ischial crest and ischial tuberosity—Right
20	Dorsalmost point on ischial tuberosity—Right
21	Most ventrolateral point on ischial tuberosity—Right
22	Most ventromedial point on ischial tuberosity—Right
23	Cranialmost point on obturator foramen—Right
24	Ventralmost point on obturator foramen—Right
25	Caudalmost point on obturator foramen—Right
26	Pubic symphysis cranial—Right
27	Most cranial point on sacral wing—Left
28	Most caudoventral point on sacral wing, on linea terminalis—Left
29	Most lateral point on cranial articular surface of S1—Left
30	Dorsal caudal iliac spine—Left
31	Cranialmost point on iliac spine—Left
32	Cranialmost point on acetabular rim—Left
33	Medialmost point on cranial portion of lunate—Left
34	Medialmost point on caudal portion of lunate—Left
35	Centre of acetabulum—Left
36	Caudalmost point on acetabular rim—Left
37	Dorsalmost point on acetabular rim—Left
38	Ventrolateral point on lateral ischial crest at min. breadth—Left
39	Iliac crest medial (most medial intersection of iliac crest and sacrum)—Left
40	Dorsalmost point on ischial spine—Left
41	Intersection of dorsal ischial crest and ischial tuberosity—Left
42	Dorsalmost point on ischial tuberosity—Left
43	Most ventrolateral point on ischial tuberosity—Left

Semilandmark number	Definition
44	Most ventromedial point on ischial tuberosity—Left
45	Cranialmost point on obturator foramen—Left
46	Ventralmost point on obturator foramen—Left
47	Most caudodorsal point on obturator foramen—Left
48	Pubic symphysis cranial—Left
Semilandmark number	Definition
49 to 88	Pelvic inlet curve
89 to 106	Dorsal ischial curve—Right
107 to 124	Dorsal ischial curve—Left
125 to 154	Iliac blade curve—Right
155 to 184	Iliac blade curve—Left
185 to 194	Pubic symphysis curve—Right
195 to 204	Pubic symphysis curve—Left

Table 3

Comparison (analysis of variance) of interactive and additive models for the relationship between sex, admixture (percent Chinese ancestry), and shape in the complete sample ($n = 138$). The larger interactive model is not a significantly better fit than the smaller additive model.

	Residual df	df	RSS	SS	r^2	F	p
Shape ~ sex + admix	135	1	0.508		0.000		
Shape ~ sex * admix	134	1	0.504	0.004	0.007	1.105	0.292
Total	137		0.635				

Table 4

Model comparison (analysis of variance) of three knot B spline and simple additive models for the relationship between shape and admixture in the complete sample (sex held constant for both variables). The B-spline model is not a significantly better fit than the smaller additive model.

	Residual df	df	RSS	SS	r^2	F	p
Additive	135	1	0.508		0.000		
B spline	130	5	0.489	0.120	0.307	1.038	0.388
Total	137		0.635				

Table 5

Analysis of variance of differences in centroid size between full-bred and admixed animals in the complete sample ($n = 138$).

	df	SS	MS	r^2	F	p
Admixture status ^a	2	11377	5688.70	0.04	2.58	0.07 ^b
Residuals	135	298013	2207.50	0.96		
Total	137	309391				

^aAdmixture status groups: full-bred Indian, full-bred Chinese, admixed.

^bThere is no significant difference ($p > 0.05$) in centroid size between groups with different admixture status.

Table 6

Procrustes variances for admixture categories in the complete sample ($n = 138$).

Admixture status	Procrustes variance
Ind	0.0043
Chi	0.0049
Ad	0.0046

Abbreviations: Ind = full-bred Indian; Chi = full-bred Chinese; Ad = admixed.

Table 7

Test for significant differences in variance (Table 6) between full-bred and admixed animals in the complete sample ($n = 138$). Above the trace: pairwise differences between Procrustes variances; below the trace: p -values of tests of significance of differences.

	Ind	Chi	Ad
Ind	–	0.00054	0.00026
Chi	0.34	–	0.00028
Ad	0.53	0.54	–

Abbreviations: Ind = full-bred Indian; Chi = full-bred Chinese; Ad = admixed.

Table 8

Comparison (analysis of variance) of additive and interactive models of the relationship between sex, subspecies designation (Indian or Chinese), and shape in the full-bred sample ($n = 36$). The interactive model is a significantly better fit than the smaller additive model, as denoted by the significant (< 0.05) p -value.

	Residual Df	RSS	SS	R ²	F	p
Shape ~ sex + subspecies	33	0.149		0.000		
Shape ~ sex * subspecies	32	0.140	0.010	0.059	2.187	0.03
Total	35	0.160				