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ABSTRACT

We consider the problem of estimating the topology of multiple net-

works from nodal observations, where these networks are assumed

to be drawn from the same (unknown) random graph model. We

adopt a graphon as our random graph model, which is a nonpara-

metric model from which graphs of potentially different sizes can

be drawn. The versatility of graphons allows us to tackle the joint

inference problem even for the cases where the graphs to be recov-

ered contain different number of nodes and lack precise alignment

across the graphs. Our solution is based on combining a maximum

likelihood penalty with graphon estimation schemes and can be used

to augment existing network inference methods. We validate our

proposed approach by comparing its performance against compet-

ing methods in synthetic and real-world datasets.

Index Terms— Network topology inference, graph learning,

joint inference, graphon.

1. INTRODUCTION

Networks (or graphs) are powerful representations of complex in-

formation due to their ability to represent structure via dyadic re-

lationships. Many fields of research utilize network structures for

representing and analyzing complex data, such as ecology for pre-

dicting animal behavior [1], neuroscience for modeling relationships

between neurons [2], and environmental science for discovering and

predicting outcomes of climate relationships [3].

While networks are convenient and interpretable tools for tasks

on complex data, knowledge of the underlying structure may be un-

available, as is the case for functional connectivity between brain

regions [2], or the underlying network may be expensive to obtain,

as with structural (anatomical) connectivity between neurons [4].

The inference of network connectivity from nodal observations is

a ubiquitous problem that has been well studied in fields such as

statistics [5] and signal processing [6]. Data-driven methods for

the inference of network structure include graphical models [7, 8],

structural equation models [9], and graph signal processing-based

approaches [6, 10, 11].

In many of the above mentioned applications, it is often more

important to infer the topology of multiple networks. For example,

brain functional connectivity is a valuable tool for diagnosis, and the

acquisition of multiple functional networks is necessary when con-

sidering multiple patients or scenarios [2]. Additionally, a promi-

nent scenario requiring knowledge of multiple networks is when net-

works vary over time. An ecological example includes the estima-

tion of evolving social networks for a species of interest [12].

In the case of inferring the topologies of multiple networks, sep-

arate estimation is a feasible methodology. However, in many sce-

narios a joint inference method may achieve better performance by
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leveraging common structures between the graphs to be inferred. For

instance, one would expect certain levels of similarities between the

brain networks of different healthy individuals or between the same

social network observed at different points in time. Prominent meth-

ods for multiple network inference include statistical approaches,

primarily consisting of the joint estimation of Gaussian graphical

models [13–17]. These methods typically involve modifications on

the graphical lasso formulation with additional encouragement of

structural similarity. Estimation of time-varying graphs is widely

popular, as the relationship between graphs is typically straightfor-

ward to implement by considering that graph variation is smooth

across time [18,19]. The above methods for estimating multiple net-

works typically enforce similar structure, such as promoting similar

sparsity patterns [20].

We consider the problem of estimating the topology of multiple

networks sampled from the same (unknown) random graph model,

where graphs have similar global structural characteristics inherited

from the model. As our (nonparametric) network model we adopt a

graphon [21], but we do not assume the specific graphon model to be

known a priori [22]. While estimation of multiple networks is well-

studied, to the best of our knowledge no previous method utilizes a

shared graphon relationship to jointly estimate graphs of potentially

different sizes.

Contributions. The contributions of our paper are threefold:

1) We present a methodology to infer multiple networks that poten-

tially lack node alignment and may have different sizes by leveraging

the assumption that graphs come from the same nonparametric net-

work model.

2) We detail how this methodology can be combined with existing

network inference methods, effectively providing a whole family of

methods to solve the problem of interest.

3) Through numerical experiments in synthetic and real-world data

we demonstrate the performance of our method in comparison with

separate inference and competing joint inference algorithms.

2. PRELIMINARIES

Graph signal processing. We consider undirected, unweighted

graphs of the form G = (V, E) with node (vertex) set V of cardi-

nality N and edge set E ⊆ V × V . The structure of a graph can be

represented by its graph shift operator (GSO) [23, 24] as the matrix

S ∈ {0, 1}N×N , where Sij 6= 0 if and only if the edge (i, j) exists

in the network, and Sij = 0 otherwise. We define graph signals

as real-valued observations at each of the N nodes, represented

by a vector x ∈ R
N . We may associate these nodal values with

the graph topology via graph signal models. Choices for graph

signal models include stationary signals that result from diffusion

processes over the graph [23, 25] or as multivariate random num-

bers, where the graph structure represents statistical dependencies

between variables [7, 8].
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estimate each edge probability Tij by the sample mean of the graph

edges. Thus, we estimate the probability matrix T as 1
K

∑K

k=1 S
(k).

Recalling the notation for X and S from Problem 1, consider a

generic optimization problem to estimate multiple networks that we

formalize as

min
S

f(S,X) + L(S), (2)

where the objective function f(S,X) estimates graph structures

from the observed datasets, and L(S) is an additional graph penalty

or regularizer; in Section 4.3 we provide common examples for these

functions. To solve our problem at hand, we propose to append the

generic formulation in (2) with a negative log-likelihood penalty to

obtain

min
S,T

f(S,X) + L(S)−

K
∑

k=1

log Pr
[

S
(k)|T

]

s.to S
(k) ∈ SA, T =

1

K

K
∑

k=1

S
(k), (3)

where we jointly estimate the graphs and their shared generative

probability matrix T. The estimation of the probability matrix en-

tries is included as the sample mean of the edges in the graphs. The

set SA enforces valid binary adjacency matrices, that is,

SA =
{

S : S = S
>, Sii = 0, Sij ∈ {0, 1}

}

,

where we consider undirected graphs without self-loops and edges

that are unweighted.

As mentioned in the problem statement, the assumption ζ(k) =
ζ for all k ∈ {1, 2, . . . ,K} is equivalent to node alignment for all

graphs. We relate (3) to the task of estimating functional networks

among the same brain regions of one subject under a set of discrete

stimuli, or observing climate variables among the same geographical

regions over several time instances.

4.2. Graphs and Graphon Estimation

We now consider the case where each graph is sampled from dif-

ferent latent point sets ζ(k), and graphs may possibly have different

sizes N (k); see Fig. 1b. Therefore, each graph is sampled from

a potentially different probability matrix T
(k), which is the value

of the graphon at the points (x, y) ∈ ζ(k) × ζ(k). The probability

matrices provide estimates of the graphon at the known latent point

pairs, and each graph provides information about the value of its re-

spective probability matrix. We present an optimization problem to

jointly estimate the graphs, the probability matrices, and the graphon

as

min
S,T,W

f(S,X) + L(S)−

K
∑

k=1

log Pr
[

S
(k)|T(k)

]

+ g(W )

s.to S
(k) ∈ SA,

T
(k) = h(S(k)), T

(k)
ij = W (ζ

(k)
i , ζ

(k)
j ),

W : [0, 1]2 → [0, 1], W (x, y) = W (y, x), (4)

where we include the same negative log-likelihood term as in (3), but

each graph is associated with a different probability matrix T
(k).

The function h(·) is a probability matrix estimation method that

takes an adjacency matrix as input, such as network histogram or

stochastic block model approximations [33,34]. The third constraint

fits the graphon W at the known latent point pairs to the values of

the probability matrices T
(k), and the regularization term g(·) in

the objective imposes a prior on the overall graphon structure. For

example, we may apply a thin-plate spline term [37] to estimate

a smooth graphon assuming that points ζ(k) are relatively evenly

spaced throughout the interval [0, 1].
The assumptions in (4) are weaker than those in (3), thus a wider

range of applications are available. In the example of estimating

brain functional networks, functional connectivity of the same sub-

ject may be inferred for different sets of brain regions. Additionally,

climate network inference is often based on correlation or mutual

inference measures, which decreases with geographic distance [3].

Thus, separating inference of climate networks into multiple net-

works of subregions and applying (4) may be more practical than

estimating a single climate network for a large region, as connectiv-

ity is expected to be very low for far apart geographical locations.

4.3. Examples for Network Inference Methods

Up to this point, we have been considering a generic network infer-

ence problem in (2). Both the formulations in (3) and (4) are applica-

ble to existing network inference methods through specific choices

of functions f(S,X) and L(S).
Consider examples for the function f(S,X) that relate observed

graph signals to the structure of the graphs. Graph signals may be as-

sumed to be smooth over their respective graphs [10], and we apply

the penalty

f(S,X) =
K
∑

k=1

‖S(k) ◦ Z(k)‖1, (5)

where Z
(k)
ij = ‖X

(k)
i − X

(k)
j ‖2 as in [10]. Alternatively, we may

have graph signals that are the diffusion of noise through a graph fil-

ter [6, 11]. In this case, we have stationary graph signals, where the

signal covariance C commutes with the adjacency matrix S. Defin-

ing sample covariance matrices as C
(k) = 1

R(k)X
(k)(X(k))>, we

can write

f(S,X) =
K
∑

k=1

‖S(k)
C

(k) −C
(k)

S
(k)‖2F . (6)

In many applications, the graphs of interest are sparse, so it is

common to apply a sparsity constraint for each graph [7, 11]. We

may apply this with the penalty function L(S) as

L(S) =

K
∑

k=1

‖vec(S(k))‖1. (7)

If, instead of separately inferring each graph, we wish to promote

similar sparsity patterns, we may encourage edge similarity between

graphs [17, 20] as

L(S) =
∑

k<k′

‖vec(S(k) − S
(k′))‖1, (8)

which requires graphs that are not only the same size, but are also on

the same node set. Thus, the regularizer in (8) is applicable to our

formulation in (3) but not to the one in (4).

Combinations of the described examples for f(S,X) and L(S)
are common in existing works. For instance, graph signal station-

arity in (6) and sparsity penalties for each graph via (7) are applied

in [11]. Moreover, joint inference is performed in [20] by combining

(6) and (8).
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Fig. 2: (a) Recovery error for K = 3 graphs sampled from the same latent point sets in the same graphon as a function of the number of

observed signals. Incorporating the joint estimation of the probability matrix or the graphon both improve estimation performance. (b) Re-

covery error for K = 3 graphs sampled from latent point sets of different sizes in the same graphon as a function of the number of observed

signals. Separate inference of graphs is outperformed by including joint estimation of the underlying graphon. (c) Recovery error of induced

subgraphs of three senate networks of sizes N = 15, 30, 45 as a function of the number of observed signals. Joint network and graphon

inference outperforms separate network inference for all sets of observed signals.

5. NUMERICAL EXPERIMENTS

We compare the performance of network topology inference meth-

ods with and without the augmentations in (3) and (4), denoted by

”Mod. 1” and ”Mod. 2”, respectively. For all experiments, we apply

the same signal model assumption f(S,X) as (6), and we compare

separate network inference via sparsity penalties (7) and joint net-

work inference via pairwise difference penalties (8). For synthetic

experiments, we sample from the graphon W (x, y) = 1
2
(x2 + y2).

The error of estimator Ŝ is calculated as ‖S − Ŝ‖F /‖S‖F , where

the true GSO is given by S. Optimization problems are solved via

the alternating direction method of multipliers (ADMM) [38].1

Same node sets. We consider the case where all graphs are sampled

from the same points within the graphon space, ζ(k) = ζ. We esti-

mate K = 3 graphs with N = 30 nodes as we observe an increasing

number of signals for sample covariance computation. We present

in Fig. 2a the comparison of separate and joint network inference

methods with the augmentations in (3) and (4), and without either.

In both methods, the augmented formulations improve estimation

performance significantly. The pairwise joint penalty (8) enjoys the

greatest improvement, as graphs not only possess node alignment

required by (8), but they also follow our graph model assumption.

Node sets of different sizes. We consider the challenging case

where the graphs have different latent point sets of different sizes

N (k) 6= N (k′). Unlike the previous experiment, we cannot apply

(3) or (8), so we consider only (6) and (7) with and without the joint

graphon estimation from (4). We consider K = 3 graphs for node

sets of N = 10, 30, 50 and N = 15, 30, 45. For both cases, appli-

cation of joint graphon inference results in consistent improvement,

with increasing performance gap for larger number of observed sig-

nals.

Senate networks. Finally, we performed different-sized graph esti-

mation with real-world data of U.S. congress roll-call votes [39], and

we set up senate vote signals as in [20]. We observe the 724, 919,

and 612 votes of congresses 103, 104, and 105, respectively, and

1Implementations of our method are available at https://github.com/
mn51/jointinf graphs graphon.

we let the underlying true networks be obtained by separate estima-

tion of each network using all available votes. The number of nodes

N = 101 corresponds to the number of voters (100 senators and 1

President). We estimate induced subgraphs of size N = 15, 30, 45,

where we only observe votes of senators corresponding to these sub-

sets of nodes. In Fig. 2c we observe that joint network and graphon

estimation consistently outperforms separate inference, even though

the true networks were estimated separately. This demonstrates that

the versatile nonparametric nature of graphons can aid the recovery

of real-world graphs, which have not been explicitly drawn from a

graphon model in the first place.

6. CONCLUSION AND FUTURE WORK

We demonstrated a method to jointly estimate multiple networks

under the assumption that they are sampled from the same graphon.

To the best of our knowledge, this is the first method that lever-

ages graphons to solve the challenging problem of inferring graphs

of different sizes. We demonstrated that our proposed maximum-

likelihood-based method improves network estimation in synthetic

and real-world experiments. In terms of future directions, we plan to

consider: i) The more challenging case where only noisy or partial

information about the latent variables ζ(k) is available, and ii) Other

random graph models (beyond graphons) that can also generate

graphs of different size while promoting different graph structural

characteristics.

7. REFERENCES

[1] D. R. Farine and H. Whitehead, “Constructing, conducting and

interpreting animal social network analysis,” Journal of Animal

Ecology, vol. 84, no. 5, pp. 1144–1163, 2015.

[2] M. Narayan and G. I. Allen, “Mixed effects models for resam-

pled network statistics improves statistical power to find dif-

ferences in multi-subject functional connectivity,” Frontiers in

Neuroscience, vol. 10, p. 108, 2016.

[3] J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “Complex

networks in climate dynamics,” The European Physical Jour-

nal Special Topics, vol. 174, no. 1, pp. 157–179, 2009.

5461

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on July 11,2022 at 12:34:18 UTC from IEEE Xplore.  Restrictions apply. 



[4] O. Sporns, “The human connectome: origins and challenges,”

NeuroImage, vol. 80, pp. 53–61, 2013.

[5] E. D. Kolaczyk, Statistical Analysis of Network Data: Methods

and Models. Springer, 2009.

[6] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Con-

necting the dots: Identifying network structure via graph signal

processing,” IEEE Signal Process. Mag., vol. 36, no. 3, pp. 16–

43, 2019.

[7] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse

covariance estimation with the graphical lasso,” Biostatistics,

vol. 9, no. 3, pp. 432–441, 2008.
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