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ABSTRACT

We consider the problem of estimating the topology of multiple net-
works from nodal observations, where these networks are assumed
to be drawn from the same (unknown) random graph model. We
adopt a graphon as our random graph model, which is a nonpara-
metric model from which graphs of potentially different sizes can
be drawn. The versatility of graphons allows us to tackle the joint
inference problem even for the cases where the graphs to be recov-
ered contain different number of nodes and lack precise alignment
across the graphs. Our solution is based on combining a maximum
likelihood penalty with graphon estimation schemes and can be used
to augment existing network inference methods. We validate our
proposed approach by comparing its performance against compet-
ing methods in synthetic and real-world datasets.

Index Terms— Network topology inference, graph learning,
joint inference, graphon.

1. INTRODUCTION

Networks (or graphs) are powerful representations of complex in-
formation due to their ability to represent structure via dyadic re-
lationships. Many fields of research utilize network structures for
representing and analyzing complex data, such as ecology for pre-
dicting animal behavior [1], neuroscience for modeling relationships
between neurons [2], and environmental science for discovering and
predicting outcomes of climate relationships [3].

While networks are convenient and interpretable tools for tasks
on complex data, knowledge of the underlying structure may be un-
available, as is the case for functional connectivity between brain
regions [2], or the underlying network may be expensive to obtain,
as with structural (anatomical) connectivity between neurons [4].
The inference of network connectivity from nodal observations is
a ubiquitous problem that has been well studied in fields such as
statistics [5] and signal processing [6]. Data-driven methods for
the inference of network structure include graphical models [7, 8],
structural equation models [9], and graph signal processing-based
approaches [6,10,11].

In many of the above mentioned applications, it is often more
important to infer the topology of multiple networks. For example,
brain functional connectivity is a valuable tool for diagnosis, and the
acquisition of multiple functional networks is necessary when con-
sidering multiple patients or scenarios [2]. Additionally, a promi-
nent scenario requiring knowledge of multiple networks is when net-
works vary over time. An ecological example includes the estima-
tion of evolving social networks for a species of interest [12].

In the case of inferring the topologies of multiple networks, sep-
arate estimation is a feasible methodology. However, in many sce-
narios a joint inference method may achieve better performance by
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leveraging common structures between the graphs to be inferred. For
instance, one would expect certain levels of similarities between the
brain networks of different healthy individuals or between the same
social network observed at different points in time. Prominent meth-
ods for multiple network inference include statistical approaches,
primarily consisting of the joint estimation of Gaussian graphical
models [13-17]. These methods typically involve modifications on
the graphical lasso formulation with additional encouragement of
structural similarity. Estimation of time-varying graphs is widely
popular, as the relationship between graphs is typically straightfor-
ward to implement by considering that graph variation is smooth
across time [18,19]. The above methods for estimating multiple net-
works typically enforce similar structure, such as promoting similar
sparsity patterns [20].

We consider the problem of estimating the topology of multiple
networks sampled from the same (unknown) random graph model,
where graphs have similar global structural characteristics inherited
from the model. As our (nonparametric) network model we adopt a
graphon [21], but we do not assume the specific graphon model to be
known a priori [22]. While estimation of multiple networks is well-
studied, to the best of our knowledge no previous method utilizes a
shared graphon relationship to jointly estimate graphs of potentially
different sizes.

Contributions. The contributions of our paper are threefold:

1) We present a methodology to infer multiple networks that poten-
tially lack node alignment and may have different sizes by leveraging
the assumption that graphs come from the same nonparametric net-
work model.

2) We detail how this methodology can be combined with existing
network inference methods, effectively providing a whole family of
methods to solve the problem of interest.

3) Through numerical experiments in synthetic and real-world data
we demonstrate the performance of our method in comparison with
separate inference and competing joint inference algorithms.

2. PRELIMINARIES

Graph signal processing. We consider undirected, unweighted
graphs of the form G = (V, £) with node (vertex) set V of cardi-
nality N and edge set £ C V x V. The structure of a graph can be
represented by its graph shift operator (GSO) [23, 24] as the matrix
S € {0,1}N*N  where S;; # 0 if and only if the edge (4, 5) exists
in the network, and S;; = 0 otherwise. We define graph signals
as real-valued observations at each of the N nodes, represented
by a vector x € R™. We may associate these nodal values with
the graph topology via graph signal models. Choices for graph
signal models include stationary signals that result from diffusion
processes over the graph [23,25] or as multivariate random num-
bers, where the graph structure represents statistical dependencies
between variables [7, 8].
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Fig. 1: Schematic depiction of the two problem modalities considered. (a) Multiple graphs sampled from the same latent point sets in the
same graphon. Sampled graphs have not only the same size but also node alignment; see Section 4.1. (b) Multiple graphs sampled from
different latent point sets in the same graphon. Sampled graphs may have different sizes; see Section 4.2.

Graphons. A graphon is a bounded symmetric measurable function
W :[0,1]*> — [0,1] whose domain can be interpreted as edges in
an infinitely large adjacency matrix, while the range of W repre-
sents edge probabilities. By this definition, a graphon can be seen
as a random graph model from which graphs with similar structural
characteristics can be sampled [21,26,27]. Generating an undirected
graph G = (V, €) from a graphon W consists of two steps: (1) se-
lecting a random value between 0 and 1 for each node, and (2) as-
signing an edge between nodes with probability equal to the value
of the graphon at the their randomly sampled points. Formally, the
steps are as follows

¢i ~ Uniform([0, 1])
Sij = Sji ~ Bernoulli (W (i, (5))

VieV, (1a)
Y (i,j) €V XV, (Ib)

where the latent variables (; € [0,1] are independently drawn
for each node ¢. This notion of graphon encompasses many com-
monly used exchangeable distributions on networks. Indeed, Erds-
Rényi graph models are represented via constant graphons [28] and
stochastic block models via piecewise-constant graphons [29].

In our case, we assume that graphs are sampled from the same
graphon, which is also unknown. Therefore, we propose a method
to jointly estimate both the graphs and the underlying graphon. Esti-
mating a graphon from observed adjacency matrices is a well-studied
task [30,31], and methods to infer a graphon from binary graphs in-
clude estimating the graphon function as a continuous smooth ob-
ject [32,33] along with the coarser stochastic blockmodel estima-
tion [34, 35]. Other methods provide only the estimation of the
graphon points W ((;, (;) where it was sampled, which is equiva-
lent to estimating a probability matrix [36].

3. PROBLEM STATEMENT

Consider a set of K different graphs {G*)}_| where the k-th graph
has N nodes. The set of undirected, unweighted adjacency ma-
trices is represented by the set of GSOs S = {S(k> K .. Assume
also that there is a set of graph signals provided for each graph, rep-
resented by X*) .= [xﬁ’“) xy:)] € RN(k)X"k, where the 7
columns contain the graph signals corresponding to the k-th graph.
We further assume that all graphs are sampled from the same gener-
ative model, a graphon W. We present our problem as follows.

Problem 1 Given sets of observations X = {X"}E | for K
graphs, find the adjacency matrices S = {S™}E | under the
assumptions that (AS1) all graphs are sampled from the same (un-
known) graphon W and (AS2) the latent point sets ( ) in (1a) for
each graph are known.

The first assumption (AS1) creates a relationship among the
graphs, and with it we may improve estimation of graphs by jointly
inferring the graph structures given their shared relationship. The
second assumption (AS2) eliminates the identifiability problem for
graphon estimation, where multiple graphons can lead to the same
random graph distribution [26]. When all latent point sets are equiv-
alent, i.e., (¥ = Cforallk € {1,2,..., K}, (AS2)is equivalent to
the assumption in previous joint network inference methods, where
node alignment is present and known for all pairs of graphs. How-
ever, assuming possibly different known latent point sets is a weaker
assumption than that of previous methods, as we do not require node
alignment for the graphs.

The assumption (AS2) corresponds intuitively to situations of
known sensor placement, such as known locations of electrode
placement for neural response data collection or known climate re-
gions to be observed. For example, the brain functional networks of
multiple subjects may be measured by considering the same known
brain regions or neurons across subjects [2]. Inferred graphs may
also correspond to statistical interdependence between pairs of vari-
ables in a climate data set, where variables are measured at known
spatial regions of earth [3].

4. GRAPHON-AIDED JOINT NETWORK ESTIMATION

In Sections 4.1 and 4.2 we tackle two versions of Problem 1 of in-
creasing difficulty whereas in Section 4.3 we explain how these so-
lutions can be combined with existing network inference methods.

4.1. Graphs and Probability Matrix Estimation

First consider the case where all graphs are samg)led as in (la) from
the same points in the graphon space, that is, ¢ (%) — ¢ for all graphs
k € {1,2,...,K}; see Fig. la. In practice, this case arises, e.g.,
when using the same sensor placement under multiple trials or ex-
periments. Since we only consider edge probabilities in the graphon
at points (z,y) € ¢ x {, we need not consider the whole graphon
W but only the probability matrix T € [0, 1]V ¥ that contains the
edge probabilities at the sampled points. The graphs S®*) are then
sampled from the same probability matrix T, so the graphs all must
have the same size, thatis, N®) = N forall k € {1,2,...,K}.

Given T, the log-likelihood of a graph S is
log Pr [S(k)|T] = Z Si(f) log(T3;) + (1 — Sz(jk)) log(1 — T3;),
i<j

where we have leveraged the fact that, given T, edges are drawn
independently in our graph model [cf. (1b)]. Furthermore, we can
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estimate each edge probability 77; by the sample mean of the graph
edges. Thus, we estimate the probability matrix T as % Zszl sk,

Recalling the notation for X and S from Problem 1, consider a
generic optimization problem to estimate multiple networks that we
formalize as

min £(8,X) + L(S), o)

where the objective function f(S,X) estimates graph structures
from the observed datasets, and L(S) is an additional graph penalty
or regularizer; in Section 4.3 we provide common examples for these
functions. To solve our problem at hand, we propose to append the
generic formulation in (2) with a negative log-likelihood penalty to
obtain

K
1%1;1{1 f(S,X)+ L(S) — ZlogPr [S(k>|T]

’ k=1

K
sto S e, T= % > s®, 3)
k=1

where we jointly estimate the graphs and their shared generative
probability matrix T. The estimation of the probability matrix en-
tries is included as the sample mean of the edges in the graphs. The
set Sa enforces valid binary adjacency matrices, that is,

SA:{S:S:ST,Sii:(),Sij6{0»1}}v

where we consider undirected graphs without self-loops and edges
that are unweighted.

As mentioned in the problem statement, the assumption ¢ k) =
(forall k € {1,2,..., K} is equivalent to node alignment for all
graphs. We relate (3) to the task of estimating functional networks
among the same brain regions of one subject under a set of discrete
stimuli, or observing climate variables among the same geographical
regions over several time instances.

4.2. Graphs and Graphon Estimation

We now consider the case where each graph is sampled from dif-
ferent latent point sets (®) | and graphs may possibly have different
sizes N®: see Fig. 1b. Therefore, each graph is sampled from
a potentially different probability matrix T, which is the value
of the graphon at the points (z,y) € ¢*) x ¢*). The probability
matrices provide estimates of the graphon at the known latent point
pairs, and each graph provides information about the value of its re-
spective probability matrix. We present an optimization problem to
jointly estimate the graphs, the probability matrices, and the graphon
as

K
. B (k) ()
min f(8,X)+ L(S) I;logPr [S T } +g(W)
sto S® e Sa,
(k) _ (k) (k) _ (k) ~(k)

W [0,1]° = [0,1], W(z,y) = W(y,2), @
where we include the same negative log-likelihood term as in (3), but
each graph is associated with a different probability matrix T®,

The function h(:) is a probability matrix estimation method that
takes an adjacency matrix as input, such as network histogram or

stochastic block model approximations [33,34]. The third constraint
fits the graphon W at the known latent point pairs to the values of
the probability matrices T(*), and the regularization term g(-) in
the objective imposes a prior on the overall graphon structure. For
example, we may apply a thin-plate spline term [37] to estimate
a smooth graphon assuming that points ¢ *) are relatively evenly
spaced throughout the interval [0, 1].

The assumptions in (4) are weaker than those in (3), thus a wider
range of applications are available. In the example of estimating
brain functional networks, functional connectivity of the same sub-
ject may be inferred for different sets of brain regions. Additionally,
climate network inference is often based on correlation or mutual
inference measures, which decreases with geographic distance [3].
Thus, separating inference of climate networks into multiple net-
works of subregions and applying (4) may be more practical than
estimating a single climate network for a large region, as connectiv-
ity is expected to be very low for far apart geographical locations.

4.3. Examples for Network Inference Methods

Up to this point, we have been considering a generic network infer-
ence problem in (2). Both the formulations in (3) and (4) are applica-
ble to existing network inference methods through specific choices
of functions f(S,X) and L(S).

Consider examples for the function f(S, X) that relate observed
graph signals to the structure of the graphs. Graph signals may be as-
sumed to be smooth over their respective graphs [10], and we apply
the penalty

K
£(8,X) =" I8® 0 z2®y, 5)
k=1

where Zl(-;c) = HXE’C) — X;k) | as in [10]. Alternatively, we may
have graph signals that are the diffusion of noise through a graph fil-
ter [6, 11]. In this case, we have stationary graph signals, where the
signal covariance C commutes with the adjacency matrix S. Defin-
ing sample covariance matrices as C*) = ﬁXU")(X(M)T, we
can write

K
£(8,X)=>"[s®Wc® — cMs®3. 6)

k=1

In many applications, the graphs of interest are sparse, so it is
common to apply a sparsity constraint for each graph [7, 11]. We
may apply this with the penalty function L(S) as

K
L(S) = Y vec(8™)]1. @)
k=1

If, instead of separately inferring each graph, we wish to promote
similar sparsity patterns, we may encourage edge similarity between
graphs [17,20] as

L(S) = > [vec(s™ — 8|, ®)

k<k’

which requires graphs that are not only the same size, but are also on
the same node set. Thus, the regularizer in (8) is applicable to our
formulation in (3) but not to the one in (4).

Combinations of the described examples for f(S,X) and L(S)
are common in existing works. For instance, graph signal station-
arity in (6) and sparsity penalties for each graph via (7) are applied
in [11]. Moreover, joint inference is performed in [20] by combining
(6) and (8).
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Fig. 2: (a) Recovery error for K = 3 graphs sampled from the same latent point sets in the same graphon as a function of the number of
observed signals. Incorporating the joint estimation of the probability matrix or the graphon both improve estimation performance. (b) Re-
covery error for K = 3 graphs sampled from latent point sets of different sizes in the same graphon as a function of the number of observed
signals. Separate inference of graphs is outperformed by including joint estimation of the underlying graphon. (c) Recovery error of induced
subgraphs of three senate networks of sizes N = 15, 30,45 as a function of the number of observed signals. Joint network and graphon
inference outperforms separate network inference for all sets of observed signals.

5. NUMERICAL EXPERIMENTS

We compare the performance of network topology inference meth-
ods with and without the augmentations in (3) and (4), denoted by
”Mod. 1” and "Mod. 27, respectively. For all experiments, we apply
the same signal model assumption f (S, X) as (6), and we compare
separate network inference via sparsity penalties (7) and joint net-
work inference via pairwise difference penalties (8). For synthetic
experiments, we sample from the graphon W (z,y) = % (z* + ¢°).
The error of estimator S is calculated as ||S — S||#/||S||+, where
the true GSO is given by S. Optimization problems are solved via
the alternating direction method of multipliers (ADMM) [38].]

Same node sets. We consider the case where all graphs are sampled
from the same points within the graphon space, ¢ (k) = ¢. We esti-
mate K = 3 graphs with N = 30 nodes as we observe an increasing
number of signals for sample covariance computation. We present
in Fig. 2a the comparison of separate and joint network inference
methods with the augmentations in (3) and (4), and without either.
In both methods, the augmented formulations improve estimation
performance significantly. The pairwise joint penalty (8) enjoys the
greatest improvement, as graphs not only possess node alignment
required by (8), but they also follow our graph model assumption.

Node sets of different sizes. We consider the challenging case
where the graphs have different latent point sets of different sizes
N® # N (). Unlike the previous experiment, we cannot apply
(3) or (8), so we consider only (6) and (7) with and without the joint
graphon estimation from (4). We consider K = 3 graphs for node
sets of N = 10, 30,50 and N = 15, 30, 45. For both cases, appli-
cation of joint graphon inference results in consistent improvement,
with increasing performance gap for larger number of observed sig-
nals.

Senate networks. Finally, we performed different-sized graph esti-
mation with real-world data of U.S. congress roll-call votes [39], and
we set up senate vote signals as in [20]. We observe the 724, 919,
and 612 votes of congresses 103, 104, and 105, respectively, and

'Implementations of our method are available at https:/github.com/
mnS5 1/jointinf_graphs_graphon.
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we let the underlying true networks be obtained by separate estima-
tion of each network using all available votes. The number of nodes
N = 101 corresponds to the number of voters (100 senators and 1
President). We estimate induced subgraphs of size N = 15, 30, 45,
where we only observe votes of senators corresponding to these sub-
sets of nodes. In Fig. 2c we observe that joint network and graphon
estimation consistently outperforms separate inference, even though
the true networks were estimated separately. This demonstrates that
the versatile nonparametric nature of graphons can aid the recovery
of real-world graphs, which have not been explicitly drawn from a
graphon model in the first place.

6. CONCLUSION AND FUTURE WORK

We demonstrated a method to jointly estimate multiple networks
under the assumption that they are sampled from the same graphon.
To the best of our knowledge, this is the first method that lever-
ages graphons to solve the challenging problem of inferring graphs
of different sizes. We demonstrated that our proposed maximum-
likelihood-based method improves network estimation in synthetic
and real-world experiments. In terms of future directions, we plan to
consider: i) The more challenging case where only noisy or partial
information about the latent variables ) is available, and ii) Other
random graph models (beyond graphons) that can also generate
graphs of different size while promoting different graph structural
characteristics.
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