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ABSTRACT

We develop wavelet representations for edge-flows on simplicial

complexes, using ideas rooted in combinatorial Hodge theory and

spectral graph wavelets. We first show that the Hodge Laplacian

can be used in lieu of the graph Laplacian to construct a fam-

ily of wavelets for higher-order signals on simplicial complexes.

Then, we refine this idea to construct wavelets that respect the

Hodge-Helmholtz decomposition. For these Hodgelets, familiar

notions of curl-free and divergence-free flows from vector calculus

are preserved. We characterize the representational quality of our

Hodgelets for edge flows in terms of frame bounds and demonstrate

the use of these spectral wavelets for sparse representation of edge

flows on real and synthetic data.

Index Terms— Graph signal processing, Hodge Laplacian,

Simplicial complex, Wavelet, Discrete calculus

1. INTRODUCTION

There has been substantial interest in graph-based techniques to un-

derstand data with a complex relational structure [1–3], with appli-

cations ranging from biology [4] to system robustness [5]. In this

context, graph signal processing (GSP) has proven to be a useful way

to understand the processing of signals defined on graphs, leveraging

ideas from both signal processing and graph theory [6]. The primary

focus of GSP has been on signals supported on the nodes of a graph.

For such signals, the graph Laplacian and adjacency matrix are natu-

ral shift operators, from which we can define notions of filtering and

Fourier transformations [6].

However, there has been a recent flurry of interest in study-

ing flows on the edges of graphs and simplicial complexes [7–12],

which can be used to model the motion of mass, energy, or infor-

mation. Since flows carry a natural orientation that does not arise

when studying signals on the nodes of a graph, recent works have

leveraged tools from algebraic topology [13] and discrete exterior

calculus [14] to form appropriate Laplace operators that respect the

orientation of edge flows. This approach has allowed for the study

of edge flows through the lens of the celebrated Hodge-Helmholtz

decomposition [7–10]. This viewpoint has even been leveraged to

define neural network architectures for edge flows [15–19].

In the literature thus far, the primary focus has been on under-

standing filtering and signal representation in the spatial and Fourier

domains, where we take the Fourier modes to be the eigenvectors

of a suitably defined Laplacian. However, just as in classical sig-

nal processing, the Fourier modes are highly delocalized. That is to
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say, the support of a Fourier mode is typically not restricted to one

small region of the graph. In GSP, this has motivated the develop-

ment of spectral graph wavelets [20, 21], which proposes to use a

dictionary of atoms for signal representation that is localized in both

the spatial and frequency domains. Here, we introduce a family of

wavelets for edge flows, seeking to balance localization in the spatial

and frequency domains, while also respecting the Hodge decompo-

sition [22].

Contributions and outline. We consider the design of spectral

wavelets for edge flows on simplicial complexes. In particular, we

discuss how the orthogonal decomposition of the space of edge flows

in terms of the Hodge Laplacian can be leveraged to design inter-

pretable wavelets that yield high-quality sparse and localized repre-

sentations of edge flows.

We begin by discussing preliminaries in graph signal processing

for edge flows in Section 2. Then, we propose a simple construction

for spectral graph wavelets based on previous literature in Section 3,

as well as a modification that respects the Hodge decomposition.

Theoretical properties of both models are considered in Section 4.

In particular, we state frame bounds for both models, in terms of

the family of spectral kernels used in their definition. Finally, we

demonstrate the utility of our constructions for sparse representation

and flow clustering on real and synthetic data in Section 5.

2. NOTATION AND BACKGROUND

For a positive integerN , we denote the set of integers {1, 2, . . . , N}
by [N ]. We use ∼= to denote isomorphism between vector spaces,

and ⊕ to denote the orthogonal direct sum of vector spaces. For a

linear operator A between two vector spaces, we denote the set of

eigenvalues of A by s(A).
Simplicial complexes and the Hodge Laplacian. We consider

data supported on (abstract) simplicial complexes, which generalize

graphs to allow for higher-order connectivity. An (abstract) simpli-

cial complexX is a finite collection of finite sets that is closed under

restriction: that is to say, for any σ in X , all nonempty subsets of σ
are also contained in X . We call the elements of X simplices and

denote by Xk the set of all simplices in X with cardinality k + 1,

also referred to as k-simplices. In particular, X0 is the set of all

singleton sets in X , X1 is the set of all simplices with cardinality 2,

and so on. Grounded in our intuition for graphs, we call X0 the set

of nodes inX , X1 the set of edges inX , andX2 the set of triangles.

We identify the set Xk with the integers [Nk], and denote the

cardinality of Xk by Nk. By convention, we label the nodes with

1, 2, . . . , N0. Further, we assign to each k-simplex an orientation1,

or a canonical ordering, following the ordering induced by the node

1The choice of orientation is arbitrary and distinct from the notion of
direction, e.g., in a directed graph. See [22, 23] for details.
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simplicial complexes by [11].

As before, let {ej}
N1

j=1 be the standard orthonormal basis for

C1(X), and let {gUm}MU

m=1, {g
L
m}ML

m=1 be sequences of continuous

functions on the real line. For each j ∈ [Nk],m ∈ [MU ],m
′ ∈

[ML], define

ψ
U
j,m = g

U
m(∆U

1 )ej

ψ
L
j,m′ = g

L
m′(∆L

1 )ej ,
(4)

where gUm(∆U
1 ), g

L
m(∆L

1 ) are defined via the functional calculus as

before. If the set of M kernels are polynomials of degree K, the

complexity of computing the wavelet atoms is O(MK(N0 +N2)).
The set {ψUj,m} forms what we call the upper atoms, and similarly

{ψLj,m} forms the set of lower atoms for C1(X). Since this con-

struction separates the upper and lower components of the Hodge

Laplacian, we refer to such atoms as separate Hodgelets.

By separately treating the upper and lower Hodge Laplacians,

we can construct atoms with greater interpretability than those de-

signed jointly. In particular, we can show the following result:

Proposition 1. Suppose gUm and gLm′ are kernels that take value 0 at

0. Then, for all j, j′ ∈ [N1],

ψ
U
j,m ∈ Im(∂2) and ψ

L
j′,m′ ∈ Im(∂>

1 ). (5)

Thus, the upper wavelets are dictated by the boundaries of 2-

simplices (triangles), and the lower wavelets are dictated by the

coboundaries of 0-simplices (nodes). We omit the proof for space

reasons.2 Indeed, Proposition 1 reflects the properties of [26, The-

orem 3], in which curl and divergence wavelets are constructed for

differential forms in Euclidean space.

We illustrate this in Fig. 1 (c1,c2), by plotting wavelet atoms

with the same kernels as the joint wavelet in Fig. 1 (b), except with

a separated construction. One can see that there is a clear distinction

between the upper wavelet (c1) which corresponds to a curl around

triangles, and the lower wavelet (c2) which corresponds to the gra-

dient of a node signal.

4. FRAME BOUNDS ON DICTIONARIES

In signal processing on graphs, the graph Fourier transform has the

appealing property of being an orthogonal transform, thus preserv-

ing the norm of the signal it acts upon. Since wavelet dictionaries

are typically overcomplete in their construction, we do not have or-

thogonality, but rather have frame bounds for the dictionary. For

a Hilbert space V , a dictionary of vectors D with at most countably

many elements is said to be an (A,B)-frame with 0 ≤ A ≤ B <∞
if for all v ∈ V , we have

A‖v‖2 ≤
∑

ψ∈D

|〈ψ,v〉|2 ≤ B‖v‖2. (6)

If A = B, we say that D forms a tight frame. We allow for the

case where A = 0, in which case D is a degenerate frame. The

frame bounds of a dictionary dictate its representational quality, as

well as the performance of reconstruction algorithms [24]. More-

over, if A = B = 1, the coefficients |〈ψ, v〉|2 are analogous to

the spectrogram representation of a signal [21]. Here, in the same

vein as [20,21], we characterize the frame bounds for both Hodgelet

constructions in terms of the spectral properties of the kernels gm.

Joint wavelets. Given that the jointly designed wavelets are a direct

adaptation of those proposed in [20,21], we can show a similar result

in our context:

2Proofs can be found at arxiv.org/abs/2109.08728.

Theorem 2. (based on [20, 21]) Let {ej}
N1

j=1 be the standard or-

thonormal basis of C1(X), and let {gm}Mm=1 be continuous non-

negative functions on the real line. Let D be the dictionary of atoms

defined by (3), and define

G(λ) =
M
∑

m=1

|gm(λ)|2. (7)

Then, D forms an (A,B)-frame for C1(X), where

A = min
λ∈s(∆1)

G(λ) B = max
λ∈s(∆1)

G(λ). (8)

We omit the proof, as it directly mirrors that of [21]. In particu-

lar, if G is constant on s(∆0), then D is a tight frame.

Separate wavelets. We now state frame bounds for the separate

Hodgelet construction, keeping the mutual orthogonality of the up-

per and lower Hodge Laplacians in mind.

Theorem 3. Let {ej}
N1

j=1 be the standard orthonormal basis for

C1(X), and let {gUm}MU

m=1, {g
L
m}ML

m=1 be collections of continuous

non-negative functions on the real line. Let D be the dictionary of

separate Hodgelets defined by (4), and define

G(µ, ν) =

MU
∑

m=1

|gUm(µ)|2 +

ML
∑

m=1

|gLm(ν)|2 (9)

Then, D forms an (A,B)-frame for C1(X), where

A = min

{

min
µ∈s(∆U

1
)
G(µ, 0), min

ν∈s(∆L
1
)
G(0, ν)

}

B = max

{

max
µ∈s(∆U

1
)
G(µ, 0), max

ν∈s(∆L
1
)
G(0, ν)

}

.

(10)

By Theorem 3, we see that the frame bounds are determined by

the quality of the kernels for the upper and lower parts of the spec-

trum independently. In particular, if G(·, 0) and G(0, ·) are constant

on s(∆U
1 ) and s(∆L

1 ), respectively, then the dictionary forms a tight

frame.

In the context of Proposition 1, Theorem 3 indicates that we can

construct norm-preserving representations of edge flows that are also

interpretable in terms of harmonic flows in ker(∆1), curl flows in

Im(∂2), and divergence flows in Im(∂>
1 ). This is aligned with the

development in [11], where edge flow filters were designed using

∆L
1 and ∆U

1 separately, rather than the total Hodge Laplacian ∆1.

5. EXPERIMENTS

We demonstrate the utility of applying spectral wavelets based on the

Hodge Laplacian for sparse, localized representations of flow data.

For all experiments,3 we take the spectral kernels {gm}Mm=1 to be

the log-scaled Hann kernels proposed by [21] with R = 3, where R
dictates the degree of overlap between each kernel, and M is chosen

based on the particular task.

Sparse representations. To illustrate the advantage of using

wavelets based on the upper and lower Hodge Laplacians sepa-

rately, we consider a vector field on [−2, 2]2, given by

F (x, y) =

{

[cos(x+ y), sin(x− y)] (x, y) ∈ B1 ∪B2,

[0, 0] otherwise,
(11)

3Code is available at git.roddenberry.xyz/hodgelets.
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