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of taxa. To circumvent the need for axenic culturing of AM fungi we gathered and
combined genomic data from single nuclei to generate de novo genome assemblies
covering seven families of AM fungi. We successfully sequenced the genomes of 15
AM fungal species for which genome data was not previously available. Comparative
analysis of the previously published Rhizophagus irregularis DAOM197198 assembly
confirm that our novel workflow generates genome assemblies suitable for phylogenomic
analysis. Predicted genes of our assemblies, together with published protein sequences
of AM fungi and their sister clades, were used for phylogenomic analyses. We
evaluated the phylogenetic placement of Glomeromycota in relation to its sister phyla
(Mucoromycota and Mortierellomycota), and found no support to reject a polytomy.
Finally, we explored the phylogenetic relationships within Glomeromycota. Our results
support family level classification from previous phylogenetic studies, and the polyphyly
of the order Glomerales with Claroideoglomeraceae as the sister group to Glomeraceae
and Diversisporales.

Keywords: genomics, phylogenetic, single nuclei sequencing, topology, Glomeromycota

INTRODUCTION

Arbuscular mycorrhizal (AM) fungi are an ecologically important group of fungi that form
ubiquitous associations with plants, establishing symbiosis with up to 80% of land plant species
(Parniske, 2008; Smith and Read, 2010). Arbuscular mycorrhizal fungi play foundational roles in
terrestrial productivity, and there is accumulating evidence that AM fungal taxa are functionally
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distinct and that their community composition have functional
consequences for terrestrial ecosystems (Hoeksema et al., 2018;
Koziol et al., 2018). Therefore, progress in understanding the
ecologically distinct roles of AM fungi depends upon accurate
phylogenetic inference at all taxonomic levels.

Available literature identify that all AM fungi form a
monophyletic lineage within the fungal kingdom. This lineage
is taxonomically classified either as a phylum, Glomeromycota
(Schiipler et al,, 2001; Hibbett et al, 2007; Schiifller and
Walker, 2010; Tedersoo et al, 2018), or as the sub-phylum
Glomeromycotina, which together with Mortierellomycotina
and Mucoromycotina, make up the phylum Mucoromycota
(Spatafora et al., 2016; James et al., 2020; Li et al., 2021). The
current consensus classification of AM-fungal species into genera
and families was established by Redecker et al. in 2013, when
systematists with long experience in the biology and taxonomy
of AM fungi joined forces to integrate morphological and
molecular phylogenetic information to generate a meaningful
classification that reflects evolutionary relationships (Redecker
et al., 2013). Molecular data at the time was primarily based on
partial sequences of nuclear ribosomal DNA (rDNA). Around
300 species of AM fungi are currently described and classified
into 33 genera, twelve families and four orders (Redecker et al.,
2013; Wijayawardene et al., 2018).

Molecular identification of AM fungi to genera and family
is usually possible based on sequences of small subunit (SSU)
or large subunit (LSU) regions of rDNA genes (Redecker et al.,
2013; Opik et al., 2014). However, species level inference based
on rDNA genes is difficult due to high levels of intra species
variation (Stockinger et al., 2009; House et al., 2016). While
the rDNA operon is commonly found in a multi-copy tandem
repeat organization across fungi (Lofgren et al, 2019), in AM
fungi different rDNA variants can be scattered across the genome
(VanKuren et al., 2013; Maeda et al., 2018) and lack the usual
tandem organization (Maeda et al., 2018). The fact that rDNA
genes are present as paralogs in AM fungal genomes likely
explains the high levels of within strain and species diversity of
rDNA sequences.

Limitations of single-locus phylogenetic inference and
paralogous nature of rDNA genes in AM fungi calls for the need
to generate extensive ortholog datasets from taxa representing
different families, in order to accurately infer phylogenetic
relationships among AM fungal lineages. One approach in
this direction was achieved in a recent study using spore
transcriptomic data for phylogenomic analysis of nine taxa from
seven families (Beaudet et al., 2018). In this study, Glomerales
was recovered as polyphyletic, in contrast to earlier rDNA
phylogenies where Glomerales was found to be monophyletic
(Krtger et al., 2012). Other phylogenomic studies have not
adressed relations among families largely due to limited taxon
sampling (Morin et al., 2019; Sun et al., 2019; Venice et al., 2020;
Li et al, 2021). Due to difficulties in obtaining enough pure
DNA for whole genome sequencing, available genomic data still
represent only a fraction of the diversity of AM fungi.

Progress in AM fungal genomics has been limited by their
biology. Arbuscular mycorrhizal fungi complete their life cycle

underground, as obligate symbionts of plant roots, and reproduce
through multinuclear asexual spores (Bonfante and Genre, 2010).
The spores are the largest isolable structure produced, but large-
scale isolation of spores is needed in order to obtain enough
DNA for whole genome sequencing. Such large-scale harvest of
spores is only possible with AM fungi grown in axenic cultures
where the fungus produces spores in a compartment separate
from the transformed plant roots that it associates with (Tisserant
etal,, 2013), or for the rare taxa, such as Diversispora epigaea that
forms fruitbodies above ground and from which large amounts
of spores can be extracted (Sun et al., 2019). Axenic culturing
methods are time-consuming and have only been successful for
a handful of species (Kameoka et al., 2019). Due to the difficulty
of producing clean cultures and isolate high quality DNA extracts
for the majority of AM fungal species, it has been a slow path
toward genomic studies of AM fungi (Tisserant et al., 2013; Lin
et al., 2014; Beaudet et al., 2018; Kobayashi et al., 2018; Morin
etal., 2019; Sun et al., 2019; Venice et al., 2020).

AM fungal hyphae and their asexual spores are coenocytic,
and sequence analysis of individual nuclei have been used to
analyze intra organismal polymorphism mainly by mapping
reads of single nuclei to reference genomes of the model AM
fungus Rhizophagus irregularis (Lin et al., 2014; Ropars et al,,
2016; Chen et al.,, 2018). To circumvent the obstacle of pure
culturing, we recently presented a workflow that takes advantage
of automated nuclei sorting by extracting nuclei from un-
germinated spores, directly extracted from soil (Montoliu-Nerin
et al.,, 2020). Single nuclei of Claroideoglomus claroideum were
sorted, followed by whole genome amplification (WGA) and
sequencing. Finally, the data from several nuclei were combined
to build a de novo genome assembly. With this novel workflow
AM fungal genome assemblies can be obtained from as little
as one single spore, independently of the species ability to
grow in axenic cultures (Montoliu-Nerin et al., 2020). Similar
approaches have been successfully applied in other organisms
for which limited access to pure biological material suitable
for extraction of high-quality DNA has prevented genome
sequencing (Stepanauskas and Sieracki, 2007; Woyke et al., 2009;
Heywood et al., 2011; Yoon et al., 2011; Walker et al., 2014;
Wideman et al., 2019).

In this study, we sorted and sequenced nuclei from AM fungal
spores representing species across Glomeromycota, aiming to
obtain genomic information from two taxa for each genus. To
evaluate the quality of assemblies generated by our workflow,
we included Rh. irregularis DAOM197198, a strain for which a
reference genome generated from an axenic culture is available
(Chen et al.,, 2018), and compared this published assembly with
our newly generated assembly. A final count of 21 strains, from
12 genera, across seven families were successfully sequenced,
and de novo genome assemblies were constructed. Our dataset
includes 15 species for which genome data was not previously
available. This comprehensive taxon sampling allowed us to infer
evolutionary relationships among AM fungi. Furthermore, the
release of new whole genome assemblies provides a resource to
the research community, for those interested in further exploring
genetics and evolution of this important group of fungi.
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MATERIALS AND METHODS

Fungal Strains

Taxa were initially selected to represent 15 genera across
eight families in Glomeromycota (Schiiffler and Walker,
2010; Redecker et al., 2013), aiming for two species per
genus (Supplementary Table 1). The isolates were obtained as
whole inoculum from the International culture collection of
(vesicular) arbuscular mycorrhizal fungi (INVAM) at West
Virginia University, Morgantown, WV, USA, or James D.
Bever’s lab, University of Kansas, USA, with the exception
of Rh. irregularis DAOMI197198 which was obtained as a
tube of spores from Agriculture and Agri-food Canada,
Government of Canada. In addition to the AM fungi sampled
for this study, we included published annotated genome- and
transcriptome assemblies of AM fungi (Glomeromycota; 13 taxa,
Supplementary Table 2). Furthermore, we included all species
of the closest sister lineages with available genome assemblies
and annotations (December 2019) in the JGI (Joint Genome
Institute) database, i.e. Mortierellomycota (2 taxa, Mondo et al.,
2017a; Uehling et al, 2017) and Mucoromycota (12 taxa,
Ma et al, 2009; Wang et al, 2013; Schwartze et al, 2014;
Chibucos et al.,, 2016; Corrochano et al., 2016; Mondo et al.,
2017a,b; Chang et al., 2019) (Supplementary Table 2). Finally,
members of Dikarya were included as outgroup, with three
representatives of Ascomycota, one taxon each from the subphyla
Taphrinomycotina (Pomraning et al., 2018), Saccharomycotina
(Wood et al,, 2002), and Pezizomycotina (Martin et al., 2010);
and three representatives of Basidiomycota, one taxon each
from the subphyla Agaricomycotina (Martin et al., 2008),
Ustilaginomycotina (Kdmper et al., 2006), and Pucciniomycotina
(Schwessinger et al., 2018) (Supplementary Table 2).

Nuclear Sorting and Whole Genome
Amplification

Spores were extracted from whole inoculum cultures by sieving,
followed by a sucrose gradient centrifugation as described in
Montoliu-Nerin et al. (2020). A single spore or a pool of
spores (Supplementary Table 1) were then rinsed and stored
in 20 pl ddH,O in a 1.5ml tube. After adding 180 pl of
1x PBS spores were crushed with a sterile pestle and DNA
was stained by adding 1 pl of 200x SYBR Green I Nucleic
Acid stain (InvitrogenTM, Thermo Fisher Scientific, MA, USA).
Sorting of the nuclei proved to be more successful when the
crushed spore solution was transferred to the small 0.5 ml tube
for staining. This allowed the spore debris to settle while the
nuclei remained in solution. The sample was left staining for
30-60 min, and lower sorting performance was observed when
exceeding that time. The nuclear sorting was performed at
the SciLifeLab Microbial Single Cell Genomics Facility with a
MoFlo™ Astrios EQ sorter (Beckman Coulter, USA), as in
Montoliu-Nerin et al. (2020). Briefly, a 100 wm nozzle was used
and the sheath fluid, 0.1 wm filtered 1x PBS, was run at 25
psi. Nuclei populations were identified via nuclei acid staining
using the 488 nm laser and a 530/40 nm bandpass filter over
forward or side scatter. Individual nuclei were deposited into 96-
or 384-well plates using stringent single-cell sort settings (single

mode, drop envelope 1). These sort-settings abort target cells if
another particle of any type is in the same or the neighboring
drop, thereby increasing the number of aborts while ensuring
that only one particle gets sorted per well. Each day of sorting,
the sort precision was determined with beads sorted onto a
slide and counted manually under the microscope. A low event
rate was used to decrease the risk of sorting doublets, for most
samples below 500 events per second with a drop generation of
>40,000 per second corresponding to well-below 1% of nuclei
in the samples. Most of the remaining particles were low in
SYBR Green fluorescence. To each plate, 48 wells were used for
sorting single nuclei or up to four pools of five nuclei, leaving
the rest of the wells empty. Plates with sorted nuclei were stored
at —80°C.

DNA from the nuclei samples was amplified with the enzyme
Phi29 via multiple displacement amplification (MDA) under
clean (i.e,, amplicon and contaminant free) conditions using
the RepliPhi kit (Epicenter) in a 15 pl reaction volume in
96-well plates or with the Repli-g Single Cell kit (Qiagen) in
a 10 pl reaction volume in 384-well plates. The nucleic acid
stain SYTO 13 was added to the reaction to follow the DNA
amplification over time. Protocol including plate size and MDA
kit was changed over time (Supplementary Table 1).

Sequencing of Amplified Nuclei Samples
We screened MDA nuclei samples by PCR amplification of
rDNA markers using fungal and bacterial specific primers,
following the protocol in Montoliu-Nerin et al. (2020).
Multiple displacement amplification nuclei samples that
scored positive for fungi and negative for bacteria were
selected for sequencing. For samples with enough DNA
the TruSeq PCRfree DNA library preparation kit (Illumina
Inc.) was used. In total, 7-24 nuclei from each isolate
were independently sequenced with Illumina HiSeq-X,
at the SNPandSEQ Technology Platform in Uppsala at
the National Genomics Infrastructure (NGI) Sweden and
Science for Life Laboratory, as in Montoliu-Nerin et al.
(2020). Detailed information on sorting, MDA results, PCR
screening, and selection of nuclei samples is available in
Supplementary Data File 1.

Genome Assembly and Strain Verification

Whole genome assembly was performed according to assembly
workflow 3 as described in Montoliu-Nerin et al. (2020), in
which all sets of reads from individually sequenced nuclei
samples from each strain were combined and normalized
using bbnorm of BBMap v.38.08 (Bushnell, 2016), setting an
average depth of 100X, and then assembled using SPAdes
v.3.12.0 (Bankevich et al., 2012). We chose this workflow
for the current study as it gives a good representation
and accuracy of single copy genes, making it more suitable
for downstream phylogenomic analyses than the other two
workflows developed (Montoliu-Nerin et al., 2020). We used
Quast v.4.5.4 (Gurevich et al., 2013) to quantitatively assess the
assemblies (Supplementary Table 3) and ran BUSCO v.3.0.2b
(Simdo et al., 2015) to assess completeness of the genome,
using fungi odb9 as lineage setting, and rhizopus_oryzae
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as species set (Supplementary Tables 3,4). Raw reads and
de novo genome assemblies are deposited in ENA in the
project PRJEB45340.

To verify strain identity based on a reconstructed ribosomal
gene phylogeny, we extracted the ribosomal gene operon
from each newly assembled genome. For strains in the family
Claroideoglomeraceae only one of its highly diverging rDNA
sequences (VanKuren et al., 2013) was retrieved as a complete
operon. In earlier work, when the genome of C. claroideum
was assembled by combining single nuclei assemblies, we could
identified both rDNA variants, but not when the genome
assembly was generated from combined and normalized reads
(Montoliu-Nerin et al., 2020). The SSU region was combined
with the taxon rich SSU alignment from Kriiger et al. (2012). The
whole rDNA operons extracted from genome assemblies with
verified identity, were aligned and a phylogeny was reconstructed
with RAXML v.8.2.10 (Stamatakis, 2014), implementing the
GTR model and with IQ-TREE v.1.6.5 (Nguyen et al, 2015),
using ModelFinder (Kalyaanamoorthy et al., 2017) and searching
for the best partitioning scheme. We ran both analyses with
1,000 bootstrap replicates. Extracted rDNA operons for all de
novo genome assemblies available in the linked public OSF
repository.

Genome Annotation

Each genome assembly was annotated using a snakemake
workflow (Koster and Rahmann, 2012) v.2.0. The workflow
is  publicly available at https:/bitbucket.org/scilifelab-
Its/genemark_fungal_annotation/ (tag v.3.0, with minor
updates providing the same functionality). Briefly, repeats
and transposable elements were de novo predicted in each
of the assemblies using RepeatModeler v.1.0.8 (Smit and
Hubley, 2008) and the resulting repeat library was used to
mask each genome assembly using RepeatMasker v.4.0.7
(Smit et al, 2015). UniProt/Swiss-Prot (Consortium, 2018)
protein sequences (downloaded 8 May 2018) were aligned to
each of the repeat-masked genome assemblies with MAKER
v.3.01.1-beta (Cantarel et al., 2008). Protein coding genes were
de novo predicted from each of the repeat-masked genome
assemblies with GeneMark-ES v.4.33 (Ter-Hovhannisyan et al.,
2008), providing the genomic locations of Uniprot/Swiss-
Prot proteins aligned to the genome assembly to guide the
gene predictions. Minimum contig size to be included in
self-training of the GeneMark gene prediction algorithm was
calculated to include at least 10 Mb of training data, depending
on the level of fragmentation of the assembly, and was set
accordingly using the parameter “-min_contig” (Table of
specific parameter used for each assembly is available in the
linked public OSF). Protein and gene names were assigned
to the gene predictions using a BLASTp v.2.7.1 (Camacho
et al., 2009) search of predicted protein sequences against the
UniProt/Swiss-Prot database with default e-value parameters
(1 x 107°). InterProScan v.5.30-69.0 (Cock et al., 2013) was
used to collect predictive information about the predicted
proteins’ functions.

Assessing Assembly Quality Using
Rhizophagus irregularis DAOM197198

To confirm the accuracy of assemblies generated in our
workflow we included the reference strain Rh. irregularis
DAOM197198 (Supplementary Table 1) and compared our de
novo genome assembly to a published high-quality genome
assembly DAOM197198v.2.0 (Supplementary Table 2) (Chen
et al., 2018). Including this well-characterized strain allowed us
to assess the performance of our assembly workflow. To assess
efficiency and coverage of single nuclei MDA and sequencing,
we mapped reads from individual nuclei against the published
reference assembly and to our de novo assembly of Rh. irregularis
DAOM197198, using BWA 0.7.15 (Li and Durbin, 2009), and
measured both % of reads mapping and % of assembly covered
with mapped reads using Qualimap 2.2.1 (Okonechnikov et al,,
2016) and bamtools v.2.3.0 stats (Barnett et al, 2011). We
also tested for polymorphism introduced during MDA by pair-
wise alignment of the 271 BUSCO genes retrieved from both
assemblies using MAFFT v.7.407 (Katoh and Standley, 2013).
Percentage similarity for the alignments was calculated with esl-
alistat in HMMer v.3.2.1 (Hancock and Bishop, 2004). Finally,
to take advantage of the ready-made comparative analysis of
OrthoFinder v.2.4.0 (Emms and Kelly, 2018), we used this
software (with standard settings) to identify orthogroups in the
two genome assemblies.

Phylogenomic Analyses

Phylogenomic analyses were performed at different taxonomic
scales, using six datasets with different taxon sampling
(Supplementary Table 5). The first dataset was designed to
explore the relationship of Glomeromycota with its sister phyla
Mucoromycota and Mortierellomycota, and included genome
data from Dikarya as outgroup (Supplementary Tables 2, 3).
Two more datasets were designed to explore the relationships
within Glomeromycota, including as many AM fungal taxa as
possible, as well as members of its sister phyla. One of them
included assembled transcriptomic data for Glomeromycota
(Beaudet et al., 2018), while the other included only genomic
data. For each of these two latter datasets, single copy orthologs
(SCOs) were identified from the gene predictions using
OrthoMCL v.2.0.9 (Li et al, 2003) with default parameters,
requiring that SCOs were present in >50% of the taxa. Three
additional datasets were designed to further explore conflicting
topologies within Glomeromycota. Two of the three, were taxon-
rich, including all species in Glomeromycota with available
genome data (27 taxa), for one we retrieved SCOs present
in >50% of the taxa, while for the other we retrieved SCOs
present in all 27 taxa. The last of the three Glomeromycota
datasets was designed to evaluate whether the inclusion of
assemblies with low BUSCO completeness (<80%) impacts the
phylogenetic reconstruction. Thus, this dataset included at least
one species from each available genus with >90% estimated
BUSCO completeness, except for Ra. fulgida and Ac. colombiana,
for which BUSCO completeness was estimated to 82 and 87%,
respectively (Supplementary Tables 3, 4). Single copy orthologs
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that were present in all 15 taxa were included in this dataset
(Supplementary Table 5).

Amino acid sequences were aligned using MAFFT v.7.407
(Katoh and Standley, 2013). Poorly aligned regions were removed
using trimAl v.1.4.1 (Capella-Gutiérrez et al., 2009) with a gap
threshold of 0.1 (0.2 in the dataset with only 15 taxa selected,
Supplementary Table 4). Individual SCO alignments were
removed if shorter than 100 amino acids. Single copy ortholog
alignments were used either separately, to produce individual
gene trees, or concatenated, to produce best maximum likelihood
(ML) trees. Individual SCO alignments were concatenated into
a supermatrix using the script geneStitcher.py (Schluter, 2016),
which also produces a gene partition file. Lists of SCOs used
for phylogenomic inferences from each dataset and their
corresponding gene annotations are available in the linked public
OSEF repository.

Phylogenetic inferences based on the concatenated sets
of SCOs were performed using two ML methods. First, ML
phylogenies were inferred using RAXxML v.8.2.10 (Stamatakis,
2014), with 100 bootstrap replicates, and with a partitioned
model that treated each SCO as a separate partition and
implementing the PROTOGAMMAWAG model for all
partitions. Secondly, ModelFinder (Kalyaanamoorthy et al,
2017) was run for every partition, and a best ML tree was
generated with 100 bootstrap replicates in IQ-TREE v.1.6.5
(Nguyen et al., 2015). Topologies and support values from
both ML inference methods were highly comparable, therefore,
we only present the RAXML topologies but adding support
values from the IQ-TREE analysis. Phylogenetic inferences
were also performed with ASTRAL-III v.5.7.3 (Zhang et al,
2018), a method consistent with a multi-species coalescent
model. For this, we used individual gene trees inferred with
IQ-TREE using the automated detection for the best-fitting
model (-MFP) and 100 bootstrap replicates. The topological
robustness was evaluated with a multi-locus bootstrapping
(MLBS) and local posterior probabilities (LPP). For the dataset
including Glomeromycota and its sister phyla, a Bayesian
phylogeny was inferred using Phylobayes (Lartillot et al., 2009),
under the site-heterogeneous CAT+GTR+G4 model on a total
alignment of 144,177 amino acids. Two chains were run and
convergence was evaluated using the commands tracecomp and
bpcomp in Phylobayes, which was achieved after 120,000 and
200,000 generations.

We evaluated the phylogenetic placement of Glomeromycota
in relation to Mucoromycota and Mortierellomycota,
and the relationships within Glomeromycota, specifically
Claroideoglomeraceae, Glomeraceae and Diversisporales. For
this, we examined the support among individual gene trees for
alternative branching orders. We performed a polytomy test in
ASTRAL-III v.5.7.3 to identify evidence for hard polytomies.
The test uses quartet gene tree frequencies to evaluate whether a
polytomy could be rejected (Sayyari and Mirarab, 2018).

To further explore the relationships among lineages of
AM fungi, splits networks were produced for two datasets
(Supplementary Table 5) using IQ-TREE v.1.6.5 (Nguyen et al.,
2015) with the command igtree —net. Networks were visualized
in SplitsTree5 (Huson and Bryant, 2006) with a maximum

dimension of 2. For the dataset with 15 selected AM fungal taxa,
topologies branching over the tree landscape were also visualized
and the consensus topologies were analyzed using DensiTree
v.2.01 (Bouckaert and Heled, 2014) based on the previously
inferred individual gene trees from IQ-TREE.

RESULTS

Presenting 21 de novo Genome
Assemblies of AM Fungi

Using our novel workflow for de novo assembly of genomes
by combining single nuclei sequence data (Montoliu-Nerin
et al, 2020), we aimed to sequence 31 AM fungal isolates,
with at least two taxa from each 15 genera across eight
families (Supplementary Table 1). Spores from all 31 isolates
were extracted for nuclei sorting and DNA amplification. For two
of the taxa, Archaeospora trappei and Entrophospora infrequence,
we failed to sort nuclei, and these were thus omitted from
subsequent methods. After WGA with MDA on the sorted
nuclei, samples from the remaining 29 isolates were screened
by PCR amplification of the rDNA barcode region for presence
of DNA of fungal and bacterial origin. Presence of fungal DNA
was confirmed for 25 of the isolates, while samples from four
isolates did not amplify the fungal rDNA barcode region and
were thus excluded from sequencing (Supplementary Table 1).
Genome assemblies of the 25 isolates ranged from 50 to
493 Mb in size, with numbers of gene predictions ranging from
11,400 to 46,500 and BUSCO completeness between 55 and
95% (Supplementary Tables 3, 4). Four of these assemblies were
later removed due to misidentification of strains, see Isolate
Identification in rDNA-based Phylogeny below, resulting in
a final number of 21 genomes presented and used in the
phylogenomic analyses.

Based on the comparison of Rh. irregularis DAOM197198
genome assemblies, we found that single nuclei MDA and
sequencing were highly accurate and efficient in our workflow.
On average, around 99% of the reads mapped to both our de
novo genome assembly and the published reference genome
v.2.0 of Rh. irregularis DAOM197198 (Supplementary Table 6).
Reads from individual nuclei covered on average 50% of both
assemblies and when combined the reads covered close to
95% of the reference genome v.2.0 (Supplementary Table 6).
Together these results demonstrate that reads from single
amplified and sequenced nuclei fully match the published
reference and that the whole genome is represented among the
reads. Pair-wise alignment of the 271 BUSCO genes retrieved
in both assemblies of Rh. irregularis DAOM197198 demonstrate
high consistency with an average similarity of 99.7% across
nucleotide alignments. Of the 271 pairwise aligned BUSCO
genes, a total of 260 were identical between the two assemblies,
corresponding to 96% of the retrieved BUSCO genes. However,
only 60% similarity was detected in one of the 271 pairwise
alignments, and ten alignments ranged in similarity between
84 and 99% (Supplementary Data File 2). High similarity in
pairwise alignments of BUSCO genes retrieved from the two
assemblies demonstrates that random errors possibly introduced
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during MDA are not retained to a large extent in genes in the
assembled genome when reads from single nuclei are combined
and normalized before assembling with SPAdes. In our assembly
of Rh. irregularis DAOM197198, 23,258 genes were predicted
(Supplementary Table 3) compared to 26,183 genes predicted
in the published assembly of Rh. irregularis DAOM197198 v.2.0
(Chen et al,, 2018). We demonstrate that our de novo genome
assembly for Rh. irregularis DAOM197198 contained a largely
overlapping set of genes in orthogroups present in the published
Rh. irregularis DAOM197198 reference genome v.2.0. Across the
two genome assemblies of the same strain, a total of 13,908
orthogroups were identified including 88% of all predicted genes
across the two assemblies, of these, 94% were shared between the
two genome assemblies (Supplementary Table 7). Interestingly,
both genome assemblies contain orthogroups not recovered in
the other, 403 unique to v.2.0 and 380 unique to our de novo
assembly (Supplementary Table 7).

Isolate Identification in rDNA-based
Phylogeny

The complete rDNA operon, including SSU, ITS1, 5,8s, ITS2,
and LSU regions was extracted from the 25 newly generated
genome assemblies. To confirm genus level identity of the
25 isolates for which we generated genome assemblies in this
study, the SSU rDNA region was extracted and placed into
the taxon-rich Glomeromycota phylogeny of Kriiger et al.
(2012) (Supplementary Figure 1). For five isolates, the species
name did not correspond with the phylogenetic placement,
revealing that these isolates were originally misidentified.
Four of these were removed. First, the isolate Rhizophagus
intraradices FL208A clustered within the genus Funneliformis
(Supplementary Figure 1), more specifically, together with
samples of Funneliformis mosseae. Morphological examination of
this strain was consistent with its original identification as Rh.
intraradices. We could not verify that spores with the correct
morphology had been extracted for nuclei sorting. Therefore, this
genome assembly was excluded from further analyses. The isolate
Funneliformis caledonius UK204 also clustered with samples
representing F. mosseae (Supplementary Figure 1), but since
the genus placement was correct the strain was kept as F.
caledonius for further analysis. The isolate Di. epigaea AZ150B
was phylogenetically misplaced based on its rDNA SSU sequence
(Supplementary Figure 1), and the assembly had the highest
GC content among our assemblies (Supplementary Table 3),
probably due to bacterial contamination. The MDA success for
this strain was low and this was the only strain for which we
included two nuclei samples, out of seven sequenced, where
PCR had indicated the presence of bacterial DNA. We thus
decided to discard this assembly since a genome of Di. epigaea
is publicly available (Sun et al, 2019) and was included in
the analyses. Finally, the isolates Archaeospora scheckii CL383
and Septoglomus viscosum MD215 were placed in the family
Paraglomeraceae (Supplementary Figure 1), and subsequently
eliminated from further analyses, as two Paraglomus isolates
were already included. After this confirmation step, de novo
genome assemblies representing 21 isolates were kept for the

phylogenomic analyses. A phylogenetic analysis of the entire
extracted rDNA operon from the 21 genome assemblies, as
well as that of C. claroideum previously generated in our
group, showed that, in line with earlier phylogenetic results
based on rDNA genes (Redecker et al,, 2013), Glomerales is
monophyletic, albeit with bootstrap support (BS) of just over 80%
(Supplementary Figure 2).

Phylogenomic Analysis of Glomeromycota
To place Glomeromycota in relation to its sister phyla,
phylogenetic  trees built from a dataset that
included members of Glomeromycota, Mucoromycota and
Mortierellomycota, and Dikarya as outgroup, with 178 SCOs
that were shared among >50% of the taxa. The concatenated
alignment had a length of 76,737 amino acids. In the RAxXML
phylogeny, Glomeromycota and Mortierellomycota form a
monophyletic clade (80% BS), with Mucoromycota as their sister
group (100% BS) (Supplementary Figures 3, 4A). However, in
the IQ-TREE phylogeny, Mortierellomycota and Mucoromycota
form a monophyletic clade (43% BS), sister to Glomeromycota
(100% BS) (Supplementary Figure 4B). The ASTRAL analysis
recovered the same topology as the RAxML analysis, but
with low support (LPP = 0.53) (Supplementary Figure 4C).
The quartet gene tree frequencies were very similar for the
three alternative topologies (q1 = 0.37, q2 = 0.29, q3 = 0.34),
suggesting that a polytomy cannot be rejected (p-value =
0.71) (Supplementary Figure 5). The relationships among the
three sister phyla remain unresolved in our analysis, likely
because of the incomplete taxon sampling, in particular for
Mortierellomycota that was only represented by two species.
Two more datasets were designed to explore the relationships
within Glomeromycota. One of them included published
transcriptomic data from nine genera of AM fungi (Beaudet
et al,, 2018). However, only 17 SCOs shared among >50%
of the taxa were retrieved (Supplementary Table 5). This low
number is likely resulting from the fact that the transcriptomic
dataset is less complete, ranging from 22 to 87% BUSCO
completeness with an average of 57% across nine species
(Beaudet et al., 2018), compared to the genomic data generated
in our study which ranged from 44 to 95%, averaging at
83% across 21 strains included in the phylogenomic analysis.
The phylogenetic placement of the strains with transcriptomic
data is consistent with the placement of our newly sequenced
strains (Supplementary Figure 6), but due to their low BUSCO
values and little overlap of SCOs, the trancriptomic data was
excluded from further analysis without decreasing the taxonomic
breadth, while allowing us to work with a more comprehensive
set of SCOs. The other dataset included published genome
data and 21 newly sequenced strains of AM fungi, as well as
representatives from Mortierellomycota and Mucoromycota. A
concatenated alignment of 371 SCOs shared among >50% of
the taxa produced a total alignment of 144,177 amino acids.
All represented Glomeromycota families form well-supported
monophyletic lineages in both ML and ASTRAL analyses
(Figure 1; Supplementary Figure 7). This supports available
phylogenetic inferences based on a combination of morphology
and rDNA data (Redecker et al.,, 2013). We found, however,
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FIGURE 1 | Best maximum likelihood tree inferred with RAXML from a concatenated alignment of 371 single copy orthologs shared among >50% of the taxa. The
same topology was recovered using IQ-TREE and Bayesian inference. All nodes have a bootstrap support value of 100 in both analyses, and posterior probabilities of
1. Mucoromycota was used as outgroup. Stars following the taxon name mark newly sequenced strains from this study. Current taxonomic assignment based on
Redecker et al. (2013) is color coded, at the levels of family and order. Strain identifers are included in the taxa label when more than one node has the same species
name. See expanded tree in Supplementary Figure 7.
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that the order Glomerales is polyphyletic, with Glomeraceae
recovered as sister to the order Diversisporales (100% BS),
while the family Claroideoglomeraceae forms a sister clade
to the two (Figure 1; Supplementary Figure 7). The ASTRAL
analysis recovered these same relationships but with low support
(95% MLBS; 0.73 LPP) (Supplementary Figure 7). The ASTRAL
analysis showed that the quartet gene tree frequencies of the three
possible topologies were very similar (q1 = 0.37, q2 = 0.33, q3
= 0.30), and a polytomy could not be rejected with this dataset
(p-value = 0.31) (Supplementary Figure 8).

Exploring Conflicting Topologies

To further study contentious relationships  within
Glomeromycota (Claroideoglomeraceae, Glomeraceae, and
Diversisporales), three datasets including only members

of Glomeromycota, but with different taxon and/or gene
sampling were produced (Supplementary Table5). The first
included 27 taxa with 1,737 SCOs present in >50% of the
taxa (Supplementary Tables 2,3). This dataset produced a
concatenated alignment of 702,801 amino acids. The second
included the same taxa, but only the 31 SCOs present in all
taxa and produced a concatenated alignment of 15,443 amino
acids. The third dataset included a selection of 15 de novo
assembled Glomeromycota genomes with the highest quality
(Supplementary Tables 3, 4) that represent all families with at
least one species per genus. This last dataset was used to obtain a
greater number of SCOs shared among all taxa. It included 799
SCOs, which resulted in a concatenated alignment of 476,329
amino acids.

Claroideoglomeraceae was well-supported as sister to
Glomeraceae and Diversisporales in both the ML (100%
BS) and ASTRAL (100% MLBS; 1.0 LPP) phylogenies,
with the datasets that included 1,727 and 799 SCOs
(Supplementary Figures 9,10). The quartet-based analyses
supported this branching (q1 = 0.4; q2 = 0.33; q3 = 0.27),
for both datasets (Figures 2A,C), and a polytomy was rejected
(p-value = 0). The same topology was weakly recovered in the
ASTRAL analysis of the dataset with 31 SCOs (36% MLBS;
0.54 LPP) (Supplementary Figure 11), but the ML analysis
inferred Claroideoglomeraceae as sister to Diversisporales with
weak support (59% BS) (Supplementary Figure 11A). The
quartet gene tree frequencies favored Glomeraceae as sister
to Diversisporales (q1 = 0.39, g2 = 0.26, q3 = 0.34), but
a polytomy could not be rejected with this dataset (p-value
= 0.66) (Figure2B). One of the alternative topologies that
is recovered by rDNA genes (Supplementary Figures 1,2),
where Claroideoglomeraceae is sister to Glomeraceae in a
monophyletic Glomerales, is frequently recovered but never
statistically supported in any of the three datasets (Figure 2).

In addition to the three possible topologies discussed above,
there is a multitude of rare topologies among all 15 taxa,
across the 799 single gene trees for SCOs shared among all
taxa. These topologies are visualized using DensiTree (Bouckaert
and Heled, 2014), in which the single gene trees are stacked
on top of each other (Supplementary Figure 12). DensiTree
shows that most genes support the topology, in which we
recovered Glomeraceae as a sister group of Diversisporales,

followed by the topology in which Glomerales is recovered
as a monophyletic clade (Supplementary Figure 12), which is
consistent with the quartet-based analysis (Figure 2). Across
all analyses described above, we found consistent support for
the polyphyly of Glomerales and a new hypothesis for the
evolutionary relationships among families of Glomeromycota
(Figures 1, 2). However, a phylogenomic network of the datasets
with 1,737 and 799 SCOs revealed a clear reticulation at
the base of the tree, indicating that the early evolutionary
relationships cannot be resolved with the available data (Figure 3;
Supplementary Figures 13, 14). Future studies may shed light
on the processes behind these relationships.

DISCUSSION

Glomeromycota encompass all known AM fungi with their
characteristic life cycle involving an obligate association with
plants (Bonfante and Venice, 2020) as well as the exceptional
fungal taxa Geosiphon pyriformis which forms a mutualistic
symbiosis with the cyanobacteria Nostoc punctiforme (Malar
et al., 2021). In the current study we present a four-fold increase
in the number of AM fungal genomes available, which was
achieved thanks to the development of a workflow for genome
assembly from multiple individually amplified and sequenced
nuclei (Montoliu-Nerin et al., 2020).

The current workflow for generating de novo reference
genomes of AM fungi was developed by our team to
circumvent the need for culturing AM fungi for genomic
studies (Montoliu-Nerin et al,, 2020). Read mapping of data
from 24 individually amplified and sequenced Rh. irregularis
DAOMI197198 nuclei demonstrates near complete coverage
of the published Rh. irregularis DAOM197198v.2.0 reference
genome (Supplementary Table 6), suggesting that separate
amplification of multiple nuclei compensates for uneven
amplification of individual nuclei. Consistent recovery of
orthogroups in our de novo genome assembly of Rh. irregularis
DAOM197198 (Supplementary Table 7) and evidence that
mostly identical BUSCO genes are recovered from both
assemblies provides further support that the presented workflow
generates gene sequence data suitable for phylogenomic analysis.
We anticipate that the release of these novel genome assemblies
will become an important resource for the future study of
AM fungi, supplementing already available AM fungal genomes
(Tisserant et al., 2013; Lin et al., 2014; Chen et al., 2018; Kobayashi
et al., 2018; Morin et al., 2019; Sun et al., 2019; Montoliu-Nerin
et al., 2020).

Our phylogenomic analysis revealed a well-supported species
tree for AM fungi. The relation of Glomeromycota to its two
closest sister lineages, Mucoromycota and Mortierellomycota,
had not yet been resolved with strong support, and based
on previously available data the relation was best described
as a polytomy (Li et al, 2021). Interestingly, with the
addition of a considerable number of AM fungal genomes
presented in this study we can still not reject a polytomy
(Supplementary Figure 8). This further highlights the
need for increased taxon sampling in the sister lineages of
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Glomeromycota, particularly in Mortierellomycota. Within
Glomeromycota, we find that the seven family level lineages
included in the analysis represent well-supported monophyletic
lineages. Furthermore, while the order Diversisporales, including
three families, was recovered as monophyletic we found that
the order Glomerales with the two families Glomeraceae and
Claroideoglomeraceae was not. Comprehensive phylogenetic
studies with wide taxon sampling representing AM fungi
have thus far mostly used rDNA sequences (Redecker et al,
2013) and recover Glomerales as monophyletic based on
these markers. Similarly, our phylogenetic reconstructions
using only the extracted rDNA operon from the de novo
assembled genomes support Glomerales as monophyletic
(Supplementary Figure 2). Glomerales was previously found
to be polyphyletic in phylogenomic analyses using spore
transcriptomic data from nine AM fungal species, where
Claroideoglomus was recovered as sister to Ambispora and
Paraglomus (Beaudet et al, 2018). In contrast to Beaudet
et al. (2018), we recovered Claroideoglomeraceae as a sister
to Glomeraceae and Diversisporales (Figures 1, 2). Previous
phylogenomic studies using whole genomic data had not yet
observed this topology due to limited taxon sampling (Morin
et al., 2019).

The placement of Glomeraceae as a sister group of
Diversisporales is well-supported in the phylogenies inferred
using a concatenated dataset (Figurel), as well as using
a  coalescence-based method (Supplementary Figure 7).
Our analysis based on 27 Glomeromycota taxa and 1,737
SCOs that are present in >50% of the taxa strongly
supported Claroideoglomeraceae as sister to Glomeraceae
and Diversisporales. The dataset that included only 31 SCOs that
are present in all taxa, showed low support for this relationship
and a polytomy could not be rejected. These inconclusive results
are most likely due to the small number of genes included in
this dataset. It has been shown that phylogenetic inference can
be robust to missing data (Wiens, 2003; Wiens and Morrill,
2011), therefore we expect that a more comprehensive set of

SCOs, even when not present in all taxa, will provide a more
accurate phylogenetic reconstruction than a complete dataset
representing few genes. However, by analyzing a dataset with
the 15 best assemblies, including a representative of each
genus, we demonstrated that the use of assemblies with low
completeness (based on BUSCO values) does not impact the
phylogenetic inference.

It is possible that the topological discordances are due to
incomplete lineage sorting (Maddison and Knowles, 2006),
caused by long coalescence times which complicates the
assessment of an accurate evolutionary history. Different
topologies could also result from gene flow among AM
fungal lineages. Documented gene family expansions correlated
with genome size in AM fungi (Tang et al, 2016), could
distort phylogenetic histories since gene expansions and
contractions can cause misidentification of SCOs, resulting in
alignments between paralogs present as single copy with different
evolutionary origins and histories. A better understanding on
how variation in gene content and copy number variation
influenced the different topologies could be achieved with a
deeper phylogenetic study into the whole repertoire of paralogs,
moving one step further from SCOs, which would also allow us
to look more closely into the possible correlation between gene
function and different evolutionary histories.

CONCLUSIONS

In the current study we present a considerable increase in
the number of AM fungal genome assemblies available, thanks
to the development of single nuclei sequencing and de novo
assembling in AM fungi that we recently developed. As
demonstrated for Rh. irregularis, variation in sequencing depth
and coverage of single nuclei due to MDA, was accounted for
in our de novo genome assemblies that provide a satisfactory
representation of the genome content even when the assemblies
generated are fragmented. Not all targeted species could be
sorted, amplify or assemble equally well and species-specific
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method development may be required for a more complete
dataset. Nevertheless, we present a phylogenomic analysis of
AM fungi based on the most comprehensive taxon sampling
across Glomeromycota to date. Our results support current
family-level classification and concur in one strongly supported
topology. In this topology, the order Glomerales is polyphyletic,
with the family Glomeraceae being recovered as a sister
group to the order Diversisporales, with Claroideoglomeraceae
as their sister group. The new genome data presented
cover seven families of the phylum Glomeromycota and are
expected to be a valuable contribution to the AM fungal
research community.
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