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ABSTRACT

Learning graphs from sets of nodal observations represents a promi-

nent problem formally known as graph topology inference. How-

ever, current approaches are limited by typically focusing on infer-

ring single networks, and they assume that observations from all

nodes are available. First, many contemporary setups involve mul-

tiple related networks, and second, it is often the case that only a

subset of nodes is observed while the rest remain hidden. Motivated

by these facts, we introduce a joint graph topology inference method

that models the influence of the hidden variables. Under the assump-

tions that the observed signals are stationary on the sought graphs

and the graphs are closely related, the joint estimation of multiple

networks allows us to exploit such relationships to improve the qual-

ity of the learned graphs. Moreover, we confront the challenging

problem of modeling the influence of the hidden nodes to minimize

their detrimental effect. To obtain an amenable approach, we take

advantage of the particular structure of the setup at hand and lever-

age the similarity between the different graphs, which affects both

the observed and the hidden nodes. To test the proposed method,

numerical simulations over synthetic and real-world graphs are pro-

vided.

Index Terms— Network topology inference, graph learning,

graph stationarity, hidden nodes, multi-layer graphs

1. INTRODUCTION

Graphs have been successfully exploited to capture the irregular

(non-Euclidean) structure commonly inherent to contemporary data

for several years now. Increasingly often, several disciplines such

as statistics, machine learning, or signal processing (SP), among

others, rely on graphs to capture the underlying irregular domain

for solving a range of applications on, e.g., communications, ge-

netics, and brain networks [1–4]. However, despite the growing

popularity of graph-related methods, in many situations the graph

is unknown and we only have access to a set of nodal observa-

tions. Then, under the core assumption that the properties of the

nodal observations and the topology of the sought graph are closely

related, it is possible to learn the network based on the observed

signals. This constitutes a prominent problem commonly known as

graph topology inference [5, 6]. Notable approaches include corre-

lation networks [1, Ch. 7.3.1], partial correlations and (Gaussian)

Markov random fields [1,7,8], sparse structural equation models [9],

graph-SP-based approaches [10–13], as well as their non-linear gen-

eralizations [14].

Work supported by the Spanish Fed. Grants FPU17-04520, EST21/
00420, and SPGraph PID2019-105032GB-I00; URJC grants F730 and
PREDOC20-003; and by the US NSF under award CCF-2008555.

The previous works share the following characteristics: (i) they

focus on identifying a single network; and (ii) they assume that ob-

servations (measurements) from all the nodes are available. It is

relevant to address the first item because many contemporary se-

tups involve multiple related networks, each of them with a subset

of available signals. This is the case, for example, in multi-hop

communication networks in dynamic environments, in social net-

works where the same set of users may present different types of

interactions, or in brain analytics where observations from different

patients are available and the goal is to estimate their brain func-

tional networks. When there exist several closely related networks,

we can boost the performance of network topology inference by ap-

proaching the problem in a joint fashion that allows us to capture

the relationship between the different graphs [15–19]. Regarding

the second point, assuming that observations from the whole graph

are available may not always be realistic. In fact, in many relevant

settings the observed signals may correspond only to a subset of the

nodes from the original graph while the rest of them remain hid-

den. If these hidden nodes are not properly accounted for, they can

drastically hinder the performance of the network topology inference

methods. Therefore, the presence of hidden variables entails a chal-

lenge for most of the existing algorithms, and they require important

adjustments. Some works that are starting to deal with this relevant

topic include Gaussian graphical model selection [20, 21], inference

of linear Bayesian networks [22], nonlinear regression [23], and our

previous work based on graph stationarity [24, 25], to name a few.

Based on the previous discussion, the contribution of this pa-

per is to propose a topology inference method that simultaneously

performs joint estimation of multiple graphs and accounts for the

presence of hidden variables. To that end, we rely on results from

graph SP (GSP), an area in SP that emerged as a way to generalize

tools originally conceived to process signals with regular supports

and extend them to signals defined in heterogeneous domains rep-

resented by a graph [3, 4, 26]. We assume that the observed signals

constitute a random process that is stationary on the given graph.

As done in our previous work [25], to formalize the relationship be-

tween the unknown network and the nodal observations, the graph

stationarity assumption must be modified to model the influence of

the hidden nodes. Then, to fully benefit from the joint inference for-

mulation, a critical aspect is to capture the similarity among graphs

not only accounting for the observed nodes but also for the hidden

ones. This is achieved by carefully exploiting the structure inherent

to the presence of latent variables with a regularization inspired by

group Lasso [27]. The proposed method is evaluated using synthetic

and real-world graphs and compared with other related approaches.

The remainder of the paper is organized as follows. Section 2 in-

troduces some GSP concepts leveraged during the paper, Section 3

formally introduces the problem at hand and presents the proposed

method, and Section 4 offers a numerical evaluation. Finally, Sec-
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tion 5 provides some closing remarks.

2. PRELIMINARIES

We now introduce basic GSP concepts that will help in explaining

the relation between the unknown graph and the observed signals

while modeling the influence of the hidden variables.

Graph signal processing. Let G = (N , E) be an undirected graph

where N is the set of nodes with cardinality |N | = N , and E is the

set of edges such that (i, j) ∈ E only if nodes i and j are connected.

For a given G, the adjacency matrix A ∈ R
N×N is a (sparse) matrix

with non-zero elements Aij if and only if (i, j) ∈ E . Related to A

is the graph-shift operator (GSO), a square matrix that captures the

topology of the graph. The GSO is defined as a matrix S ∈ R
N×N

whose entry Sij can be non-zero only if i = j or (i, j) ∈ E . Typical

choices for S are the adjacency matrix A and the graph Laplacian

L, which is defined as L := diag(A1) − A [3, 28]. We assume

that S is diagonalizable so it can be represented as S = VΛVT ,

where V is an N × N orthogonal matrix collecting the eigenvec-

tors and Λ is a diagonal matrix collecting the eigenvalues of S.

Then, signals defined on the nodes of G are called graph signals,

which are functions f : N 7→ R, equivalently represented as vectors

x = [x1, ..., xN ]T ∈ R
N , where xi denotes the signal value at node

i. A key assumption of GSP is that since graph signals are defined

on top of the graph, their statistical properties are closely related to

the topology of G. A fundamental tool when dealing with graph sig-

nals are graph filters, linear graph-signal operators that account for

the topology of the graph and can be defined as polynomials of the

GSO S, i.e., H=
∑L−1

l=0 hlS
l, where h = [h0, ..., hL]

T is the vector

collecting the filter coefficients. When applied to an input graph sig-

nal x, the output of the graph filter is y = Hx =
∑L−1

l=0 hl(S
lx),

where Slx can be viewed as the diffusion of x across an l-hop neigh-

borhood, and hl are the coefficients of the linear combination [29].

Graph stationarity. A random graph signal x with zero mean and

covariance C = E[xxT ] is said to be stationary in the underlying

graph G if its covariance matrix C is diagonalized by V, the eigen-

vectors of the GSO S [28]. Equivalently1, a random graph process

is defined to be stationary in G if it can be represented as the output

of a graph filter H, which is a matrix polynomial in S, to a white

input. Specifically, under the stationarity assumption the process x

can be written as x = Hw, where w is a random vector of white

noise. When particularized to discrete time-varying signals, the two

aforementioned definitions boil down to the classical definition of

stationarity in time [30]. Also note that graph stationarity implies

that the covariance of x and the GSO commute, so we have that

CS = SC. (1)

3. JOINT INFERENCE IN THE PRESENCE OF HIDDEN

VARIABLES

To formally introduce the problem of joint graph topology inference

in the presence of hidden variables, let us assume that K undirected

graphs {G(k)}Kk=1 are defined over the same set of nodes N , and

denote as X(k) = [x
(k)
1 , ...,x

(k)
Mk

] ∈ R
N×Mk the collection of

(zero-mean) Mk signals defined on top of each unknown graph G(k).

Furthermore, consider that for each graph only a subset of nodes

O ⊂ N with cardinality O < N is observed, while the remaining H

1A small technical condition must hold for these two statements to be
equivalent; see [30].

nodes in the subset H = N \ O stay hidden. Without loss of gener-

ality, let the signals associated with the observed nodes be collected

in the first O rows of X(k) and denote them as X
(k)
O ∈ R

O×Mk .

Then, it can be seen that, for each graph, the unknown GSO S(k)

and the sample covariance Ĉ(k) = 1
Mk

X(k)(X(k))T are symmetric

matrices with the following block structure

S
(k) =

[

S
(k)
O S

(k)
OH

(S
(k)
OH)T S

(k)
H

]

, Ĉ(k) =

[

Ĉ
(k)
O Ĉ

(k)
OH

(Ĉ
(k)
OH)T Ĉ

(k)
H

]

. (2)

The O × O matrices S
(k)
O denote the block of the GSOs capturing

the connections between the observed nodes while the rest of the

submatrices involve edges connected to hidden nodes. Similarly,

Ĉ
(k)
O denotes the sample covariance of the observed signals X

(k)
O .

With these considerations in place, the problem of joint topology

inference in the presence of hidden variables is introduced next.

Problem 1 Given the O × Mk matrices {X(k)
O }Kk=1 collecting the

signal values at the observed nodes for each graph G(k), find the

sparsest matrices {S(k)
O }Kk=1 encoding the structure of the K graphs

under the assumptions that:

(AS1) The number of hidden nodes is much smaller than the number

of observed nodes, i.e., H � O;

(AS2) The signals X(k) are realizations of a random process that is

stationary in S(k); and

(AS3) The distance between the K graphs is small according to a

particular metric d(S(k),S(k′)).

Accounting for the hidden variables implies modeling their in-

fluence over the observed nodes without any additional observation,

thus rendering the inference problem a challenge. To ensure the

tractability of the problem, (AS1) ensures that most of the nodes

are observed while (AS2) establishes a relation between the graph

signals and the whole unknown graph, including the hidden nodes.

Then, (AS3) guarantees that the K graphs are related so we can ben-

efit from inferring them in a joint setting.

In the following section, we exploit the aforementioned assump-

tions and the block structure resulting from the presence of hidden

variables to approach Problem 1 by solving a convex optimization

problem.

3.1. Modeling hidden variables in the joint inference problem

Fundamental to approach Problem 1 is modeling the impact of the

hidden nodes in the stationarity assumption (AS2), which implies

that the matrices C(k) and S(k) are simultaneously diagonalized by

the eigenvectors of the kth graph V(k). To that end, similar to the

previous work in [25], we avoid the challenging task of obtaining

the submatrix of eigenvectors corresponding to the observed nodes

by leveraging the commutativity of the matrices C(k) and S(k), and

the block structure introduced in (2). More specifically, upon lifting

the O×O matrices P(k) := C
(k)
OH(S

(k)
OH)T , if we focus on the upper

left block at both sides of the equality in (1) we have that the graph

stationarity in the presence of hidden nodes is represented by

C
(k)
O S

(k)
O +P

(k) = S
(k)
O C

(k)
O + (P(k))T . (3)

Furthermore, the matrices P(k) are the product of two matrices of

sizes O×H and H ×O. Then, due to (AS1) we have that H � O,

and hence we know that the rank of P(k) is upper bounded by H .
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With the previous considerations in place, we approach the

sparse joint topology inference problem in the presence of hidden

nodes by means of the following non-convex optimization problem

min
{S

(k)
O

,P(k)}K
k=1

∑

k

αk‖S
(k)
O ‖0 +

∑

k<k′

βk,k′dS(S
(k)
O ,S

(k′)
O ) (4)

+
∑

k<k′

ηk,k′dP (P
(k),P(k′))

s. t. rank(P(k)) ≤ H,

‖Ĉ(k)
O S

(k)
O +P

(k)−S
(k)
O Ĉ

(k)
O −(P(k))T ‖2F ≤ ε,

S
(k)
O ∈ S.

The first and second constraints capture assumptions (AS1) and

(AS2), with ε being a small positive number capturing the fidelity

of the sample covariance. The set S encodes the properties of the

desired GSOs. In this paper we will focus on the case where the

GSO is given by the adjacency matrix of the underlying undirected

graph with non-negative weights and no self-loops. Thus, from now

onwards we set the feasibility set S to be given by

S = SA :={S |Sij ≥ 0, S = S
T , Sii = 0,

∑

j
Sj1=1},

where the last condition fixes the scale of the admissible graphs by

setting the weighted degree of the first node to 1, which rules out the

trivial solution S=0. Other GSOs such as the normalized Laplacian

can be accommodated via minor adaptations to S; see [12].

Similar to standard joint inference approaches [17], the objec-

tive function of (4) captures the similarity of the K graphs with the

function dS(·, ·). Nevertheless, when accounting for the presence

of hidden variables, assumption (AS3) is also reflected in the unob-

served blocks of the GSOs. This important observation, captured

by the function dP (·, ·), allows us to incorporate additional structure

reducing the degrees of freedom and rendering the problem more

manageable. More specifically, note that the matrix P(k) is given by

the product of C
(k)
OH and (S

(k)
OH)T with the latter being a submatrix

of a sparse GSO, so it can be seen that the matrices P(k) present a

column-sparse structure. Furthermore, since the K graphs are sim-

ilar, the submatrices S
(k)
OH are also similar, which implies that the

matrices P(k) present a similar column-sparsity pattern. In other

words, the columns with non-zero entries are likely to be placed in

the same positions for the different matrices P(k). By designing a

distance function dP (·, ·) that exploits this additional structure we

improve the estimation of the matrices P(k), resulting in a better

estimation of the matrices S
(k)
O .

The non-convexity of (4), which arises from the presence of the

rank constraint and the `0 norm, renders the optimization problem

computationally hard to solve, leading us to implement some convex

relaxations that are detailed next.

3.2. Convex relaxations for the joint topology inference

The rank constraints are commonly avoided by augmenting the ob-

jective function with a nuclear norm penalty, which promotes low-

rank solutions by seeking matrices with sparse singular values. How-

ever, this penalty does not preserve the characteristic column sparsity

of the matrices P(k). To circumvent this issue, in contrast to [25], we

employ the group Lasso regularization [27] and rely on the fact that,

in this particular setting, we can promote low rankness by reducing

the number of non-zero columns while still achieving a reliable es-

timate. Then, we replace the `0 norm by a reweighted `1 minimiza-

tion [31], an iterative algorithm rooted on a logarithmic penalty that:

i) converges to a stationary point [32]; and ii) usually outperforms

the widely used `1 norm.

By leveraging the aforementioned relaxations we address the

joint topology inference problem in the presence of hidden variables

by solving an iterative method. Under this approach, for each itera-

tion, we solve the following convex problem

min
{S

(k)
O

,P(k)}K
k=1

∑

k

αkvec(W
(k))Tvec(S

(k)
O ) (5)

+
∑

k<k′

βk,k′‖S(k)
O − S

(k′)
O ‖1

+
∑

k

γk‖P
(k)‖2,1 +

∑

k<k′

ηk,k′

∥

∥

∥

∥

[

P(k)

P(k′)

]
∥

∥

∥

∥

2,1

+
∑

k

µk‖Ĉ
(k)
O S

(k)
O +P

(k)−S
(k)
O Ĉ

(k)
O −(P(k))T‖2F

s. t. S
(k)
O ∈ S.

To compute the weight matrices W(k), let t = 1...T denote the

iteration index (omitted in the expression above to alleviate the no-

tation), and compute the kth weight matrix for the tth iteration as

W
(k,t)
ij = (S

(k,t−1)
Oij

+ δ)−1 with S
(k,t−1)
Oij

being the solution ob-

tained during the t − 1th iteration and δ a small positive constant.

Hence, for each iteration t we first compute the weight matrices

W(k,t) and, then, employ those to estimate the matrices S
(k,t)
O and

P(k,t). Coming back to the formulation in (5), note that the distance

dS(·, ·) is set to the `1 norm to promote similar edges on the K
graphs. The norm ‖ · ‖2,1 represents the group Lasso penalty by first

computing the `2 norm of the columns of the input matrix and then

the `1 norm of the resulting vector. To capture the similar column-

sparsity pattern of the matrices P(k) resulting from the similarity of

the K graphs, we design the function dP (·, ·) relying on the group

Lasso penalty. More specifically, we concatenate each pair of matri-

ces P(k) and P(k′) to create a tall matrix and then promote column

sparsity on the tall matrix with the `2,1 norm. Note that a column

of all zeros in the tall matrix implies that the same column in P(k)

and P(k′) will only contain zeros, thus promoting the desired struc-

ture. Finally, it is worth noting that we moved the commutativity

constraint to the objective function. Due to the iterative nature of the

proposed method, the estimation of the observed GSO during the

first iteration might be far from the true GSO, and hence, a more re-

strictive constraint as the one employed in (4) might be misleading.

Augmenting the objective function with the commutativity penalty

is more amenable to an iterative approach.

4. NUMERICAL EXPERIMENTS

We now introduce the simulations performed over synthetic and real-

world graphs to evaluate the proposed method. When graphs are

randomly generated, they are sampled from an Erdős-Rényi (ER)

model with N = 20 nodes and edge probability p = 0.2. The

code for the following experiments is available on GitHub2 and the

interested reader is referred there for specific implementation details.

Test case 1. In the first experiment, we evaluate the influence of

the hidden variables and its detrimental effect on the topology in-

ference task when the true covariance matrix is known. The results

2https://github.com/reysam93/hidden_joint_inference/

tree/ICASSP2022
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Fig. 1: Numerical validation of the proposed algorithm. a) Mean error of 100 realizations as the number of hidden variables increases for

different models and values of K. b) Mean error of the recovered graphs for several algorithms as the number of samples increases. c) Mean

error of the recovered graphs for joint and separate approaches as the number of samples increases. The first two experiments use Erdős-Rényi

graphs with N = 20 and p = 0.2 and the third one employs real-world graphs.

are depicted in Figure 1a, where we report the error of the recov-

ered graphs, computed as
∑K

k=1 ‖S
(k)
O − Ŝ

(k)
O ‖2F /K‖S(k)

O ‖2F , for

several models as the number of hidden variables increases on the x-

axis. The error is averaged over 64 realizations with ER graphs. The

considered models are: (i) “PGL”, which stands for the method in-

troduced in (5); (ii) “PNN”, which denotes the reweighed algorithm

proposed in [24] augmented with the joint penalty dS(·, ·) to perform

the joint inference; and (iii) “No hidden”, which is a joint inference

method unaware of the presence of hidden variables similar to the

work in [17]. In addition, for each model we let K take the values

in {3, 6}. Looking at the results, we can observe that “PGL” and

“PNN”, which take into account the presence of hidden variables,

outperform the method “No hidden”, showcasing the benefit of a

robust formulation. Also, the method proposed in (5) outperforms

“PNN”, the other alternative accounting for hidden variables. This

reflects the advantage of employing the group Lasso regularization

and incorporating the graph similarity through the careful design of

the function dP (·, ·). Lastly, it is worth noting that the performance

improves for higher values of K, achieving better results when more

related graphs are available.

Test case 2. Next, we evaluate the influence of the number of ob-

served signals and compare the performance of the proposed ap-

proach with other related alternatives. In this experiment, only a

single hidden node is considered. To that end, in Figure 1b we show

the mean normalized error of the recovered graphs on the y-axis as

the number of samples increases on the x-axis. The error is com-

puted as in the previous experiment and the mean is considered over

30 realizations of K = 3 ER graphs with 10 realizations of ran-

dom covariance matrices for each, resulting in a total of 300 realiza-

tions. We compare the proposed model (“PGL”) with latent variable

graphical Lasso (“LVGL”) [20], and with group and fusion graphical

Lasso (“GGL” and “FGL”), both from [16]. For each model, sig-

nals are generated using two different types of covariance matrices:

(i) Cmrf = (σI + φS)−1 where φ is a positive random number

and σ is a positive number so that C−1
MRF is positive semi-definite;

and Cpoly = H2 where the matrix H is a graph filter with ran-

dom coefficients h. By looking at the Figure 1b, it can be observed

that, when Cmrf is employed, the graphical Lasso models slightly

outperform the proposed approach. This is expected since they are

tailored for this specific type of covariance matrices. However, we

can also see that the performance of the proposed algorithm is close

to that of the alternatives, illustrating the benefits of considering both

the joint optimization and the presence of hidden variables. On the

other hand, when we focus on the covariance matrices Cpoly , it is

evident that the proposed method “PGL” clearly outperforms the al-

ternatives, demonstrating that the proposed method is based on more

general assumptions. Note that the results for “LVGL” for the poly-

nomial covariance are not included since the error was too high.

Test case 3. Finally, we test the proposed algorithm and the impact

of performing the topology inference in a joint fashion using real-

world graphs. We employ three graphs defined on a common set

of 32 nodes. Nodes represent students from the University of Ljubl-

jana and the different networks encode different types of interactions

among the students3. The error is computed as before and one hid-

den variable is considered. The results, illustrated in Figure 1c, show

the error of the recovered graphs as the number of samples increases.

The displayed error is the mean of 30 realizations of random station-

ary graph signals and only one hidden variable is considered. Also,

for each of the three graphs we include the performance of both the

joint and the separate estimation. It can be observed that the recov-

ery of the three graphs improves when a joint approach is followed,

showcasing the benefits of exploiting the existing relationship be-

tween the different networks. Furthermore, this experiment confirms

that the developed method is also suitable for real applications.

5. CONCLUSIONS

In this paper, we presented a new method for solving the challenging

problem of joint graph topology inference in the presence of hidden

nodes. To tackle this ill-posed inference problem, we assume that

(i) the number of hidden nodes H is much smaller than the num-

ber of observed nodes O; (ii) the observed signals are realizations

from a random process stationary in S(k); and (iii) the K graphs are

closely related. Furthermore, we exploit the inherent block structure

of the matrices C(k) and S(k) to solve the joint topology inference

problem by solving an optimization framework. A reweighted `1
norm to promote sparse solutions is employed, and the stationarity

assumption is adapted to the presence of hidden nodes by defining

the (unknown) low-rank lifting matrices P(k). Instead of relying in

the nuclear norm, low-rank matrices P(k) are achieved by promot-

ing column-sparsity with the group Lasso penalty. Moreover, the

similarity of the K graphs is leveraged in two ways. First, for each

pair of graphs, we look for matrices S
(k)
O with a similar edge pattern

by minimizing the `1 penalty, and second, we look for matrices P(k)

with a similar column sparsity pattern. The proposed method is eval-

uated using synthetic and real world graphs, and a comparison with

other baseline methods based on graph stationarity and on graphical

Lasso is provided.

3The original data can be found at http://vladowiki.fmf.uni-lj.
si/doku.php?id=pajek:data:pajek:students
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