ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 978-1-6654-0540-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICASSP43922.2022.9747524

JOINT INFERENCE OF MULTIPLE GRAPHS WITH HIDDEN VARIABLES FROM
STATIONARY GRAPH SIGNALS

Samuel Rey*, Andrei Buciulea*, Madeline Navarrof, Santiago Segarra*, and Antonio G. Marques™

*Dept. of Signal Theory and Communications, King Juan Carlos University, Madrid, Spain
"Dept. of Electrical and Computer Engineering, Rice University, Houston, USA

ABSTRACT

Learning graphs from sets of nodal observations represents a promi-
nent problem formally known as graph topology inference. How-
ever, current approaches are limited by typically focusing on infer-
ring single networks, and they assume that observations from all
nodes are available. First, many contemporary setups involve mul-
tiple related networks, and second, it is often the case that only a
subset of nodes is observed while the rest remain hidden. Motivated
by these facts, we introduce a joint graph topology inference method
that models the influence of the hidden variables. Under the assump-
tions that the observed signals are stationary on the sought graphs
and the graphs are closely related, the joint estimation of multiple
networks allows us to exploit such relationships to improve the qual-
ity of the learned graphs. Moreover, we confront the challenging
problem of modeling the influence of the hidden nodes to minimize
their detrimental effect. To obtain an amenable approach, we take
advantage of the particular structure of the setup at hand and lever-
age the similarity between the different graphs, which affects both
the observed and the hidden nodes. To test the proposed method,
numerical simulations over synthetic and real-world graphs are pro-
vided.

Index Terms— Network topology inference, graph learning,
graph stationarity, hidden nodes, multi-layer graphs

1. INTRODUCTION

Graphs have been successfully exploited to capture the irregular
(non-Euclidean) structure commonly inherent to contemporary data
for several years now. Increasingly often, several disciplines such
as statistics, machine learning, or signal processing (SP), among
others, rely on graphs to capture the underlying irregular domain
for solving a range of applications on, e.g., communications, ge-
netics, and brain networks [1-4]. However, despite the growing
popularity of graph-related methods, in many situations the graph
is unknown and we only have access to a set of nodal observa-
tions. Then, under the core assumption that the properties of the
nodal observations and the topology of the sought graph are closely
related, it is possible to learn the network based on the observed
signals. This constitutes a prominent problem commonly known as
graph topology inference [5,6]. Notable approaches include corre-
lation networks [1, Ch. 7.3.1], partial correlations and (Gaussian)
Markov random fields [1,7,8], sparse structural equation models [9],
graph-SP-based approaches [10-13], as well as their non-linear gen-
eralizations [14].
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The previous works share the following characteristics: (i) they
focus on identifying a single network; and (ii) they assume that ob-
servations (measurements) from all the nodes are available. It is
relevant to address the first item because many contemporary se-
tups involve multiple related networks, each of them with a subset
of available signals. This is the case, for example, in multi-hop
communication networks in dynamic environments, in social net-
works where the same set of users may present different types of
interactions, or in brain analytics where observations from different
patients are available and the goal is to estimate their brain func-
tional networks. When there exist several closely related networks,
we can boost the performance of network topology inference by ap-
proaching the problem in a joint fashion that allows us to capture
the relationship between the different graphs [15-19]. Regarding
the second point, assuming that observations from the whole graph
are available may not always be realistic. In fact, in many relevant
settings the observed signals may correspond only to a subset of the
nodes from the original graph while the rest of them remain hid-
den. If these hidden nodes are not properly accounted for, they can
drastically hinder the performance of the network topology inference
methods. Therefore, the presence of hidden variables entails a chal-
lenge for most of the existing algorithms, and they require important
adjustments. Some works that are starting to deal with this relevant
topic include Gaussian graphical model selection [20, 21], inference
of linear Bayesian networks [22], nonlinear regression [23], and our
previous work based on graph stationarity [24,25], to name a few.

Based on the previous discussion, the contribution of this pa-
per is to propose a topology inference method that simultaneously
performs joint estimation of multiple graphs and accounts for the
presence of hidden variables. To that end, we rely on results from
graph SP (GSP), an area in SP that emerged as a way to generalize
tools originally conceived to process signals with regular supports
and extend them to signals defined in heterogeneous domains rep-
resented by a graph [3,4,26]. We assume that the observed signals
constitute a random process that is stationary on the given graph.
As done in our previous work [25], to formalize the relationship be-
tween the unknown network and the nodal observations, the graph
stationarity assumption must be modified to model the influence of
the hidden nodes. Then, to fully benefit from the joint inference for-
mulation, a critical aspect is to capture the similarity among graphs
not only accounting for the observed nodes but also for the hidden
ones. This is achieved by carefully exploiting the structure inherent
to the presence of latent variables with a regularization inspired by
group Lasso [27]. The proposed method is evaluated using synthetic
and real-world graphs and compared with other related approaches.

The remainder of the paper is organized as follows. Section 2 in-
troduces some GSP concepts leveraged during the paper, Section 3
formally introduces the problem at hand and presents the proposed
method, and Section 4 offers a numerical evaluation. Finally, Sec-
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tion 5 provides some closing remarks.

2. PRELIMINARIES

We now introduce basic GSP concepts that will help in explaining
the relation between the unknown graph and the observed signals
while modeling the influence of the hidden variables.

Graph signal processing. Let G = (N, £) be an undirected graph
where N is the set of nodes with cardinality |AN'| = N, and & is the
set of edges such that (¢, ) € £ only if nodes 7 and j are connected.
For a given G, the adjacency matrix A € RY*¥ is a (sparse) matrix
with non-zero elements A;; if and only if (¢, j) € £. Related to A
is the graph-shift operator (GSO), a square matrix that captures the
topology of the graph. The GSO is defined as a matrix S € RV*¥
whose entry S;; can be non-zero only if ¢ = j or (¢, j) € &. Typical
choices for S are the adjacency matrix A and the graph Laplacian
L, which is defined as L := diag(A1l) — A [3,28]. We assume
that S is diagonalizable so it can be represented as S = VAVT,
where V is an N x N orthogonal matrix collecting the eigenvec-
tors and A is a diagonal matrix collecting the eigenvalues of S.
Then, signals defined on the nodes of G are called graph signals,
which are functions f : A — R, equivalently represented as vectors
x = [z1,...,xn5]T € RY, where x; denotes the signal value at node
1. A key assumption of GSP is that since graph signals are defined
on top of the graph, their statistical properties are closely related to
the topology of G. A fundamental tool when dealing with graph sig-
nals are graph filters, linear graph-signal operators that account for
the topology of the %raph and can be defined as polynomials of the
GSO S, ie., H:Zl:_olhlsl, where h = [ho, ..., hL]T is the vector
collecting the filter coefficients. When applied to an input graph sig-
nal x, the output of the graph filteris y = Hx = Zf;ol hi(S'%),
where S'x can be viewed as the diffusion of x across an I-hop neigh-
borhood, and h; are the coefficients of the linear combination [29].
Graph stationarity. A random graph signal x with zero mean and
covariance C = E[xx”] is said to be stationary in the underlying
graph G if its covariance matrix C is diagonalized by V, the eigen-
vectors of the GSO S [28]. Equivalently', a random graph process
is defined to be stationary in G if it can be represented as the output
of a graph filter H, which is a matrix polynomial in S, to a white
input. Specifically, under the stationarity assumption the process x
can be written as x = Hw, where w is a random vector of white
noise. When particularized to discrete time-varying signals, the two
aforementioned definitions boil down to the classical definition of
stationarity in time [30]. Also note that graph stationarity implies
that the covariance of x and the GSO commute, so we have that

CS =SC. ¢))]

3. JOINT INFERENCE IN THE PRESENCE OF HIDDEN
VARIABLES

To formally introduce the problem of joint graph topology inference
in the presence of hidden variables, let us assume that K undirected
graphs {g““)}f:l are defined over the same set of nodes N, and
denote as X*) = [x(lk)7 ,xg\lj[i} € RY*Mk the collection of

(zero-mean) My, signals defined on top of each unknown graph g®,
Furthermore, consider that for each graph only a subset of nodes
O C N with cardinality O < N is observed, while the remaining H

'A small technical condition must hold for these two statements to be
equivalent; see [30].

nodes in the subset H = A\ O stay hidden. Without loss of gener-
ality, let the signals associated with the observed nodes be collected
in the first O rows of X*) and denote them as Xg) € ROXMr,
Then, it can be seen that, for each graph, the unknown GSO S
and the sample covariance C*) = ﬁx“ﬂ) (X* )T are symmetric
matrices with the following block structure

gm  g®T am  am
sk — o on| ck | *o -0 )
(SSWT s (€cH)" c

The O x O matrices Sék ) denote the block of the GSOs capturing
the connections between the observed nodes while the rest of the
submatrices involve edges connected to hidden nodes. Similarly,
Cg’“) denotes the sample covariance of the observed signals ch ).
With these considerations in place, the problem of joint topology
inference in the presence of hidden variables is introduced next.

Problem 1 Given the O x M), matrices {Xg)}le collecting the
signal values at the observed nodes for each graph G\®, find the
sparsest matrices {SE? }szl encoding the structure of the K graphs
under the assumptions that:

(AS1) The number of hidden nodes is much smaller than the number
of observed nodes, i.e., H < O;

(AS2) The signals X® are realizations of a random process that is
stationary in S<k); and

(AS3) The distance between the K graphs is small according to a
particular metric d(S™ S(k')).

Accounting for the hidden variables implies modeling their in-
fluence over the observed nodes without any additional observation,
thus rendering the inference problem a challenge. To ensure the
tractability of the problem, (AS1) ensures that most of the nodes
are observed while (AS2) establishes a relation between the graph
signals and the whole unknown graph, including the hidden nodes.
Then, (AS3) guarantees that the K graphs are related so we can ben-
efit from inferring them in a joint setting.

In the following section, we exploit the aforementioned assump-
tions and the block structure resulting from the presence of hidden
variables to approach Problem 1 by solving a convex optimization
problem.

3.1. Modeling hidden variables in the joint inference problem

Fundamental to approach Problem 1 is modeling the impact of the
hidden nodes in the stationarity assumption (AS2), which implies
that the matrices C® and S*) are simultaneously diagonalized by
the eigenvectors of the kth graph V*). To that end, similar to the
previous work in [25], we avoid the challenging task of obtaining
the submatrix of eigenvectors corresponding to the observed nodes
by leveraging the commutativity of the matrices C® and ™™, and
the block structure introduced in (2). More specifically, upon /ifting
the O x O matrices P := Cg?{ (Sch)T, if we focus on the upper
left block at both sides of the equality in (1) we have that the graph
stationarity in the presence of hidden nodes is represented by

cWsB +P® =scl + (™). 3)
Furthermore, the matrices P*) are the product of two matrices of

sizes O x H and H x O. Then, due to (AS1) we have that H < O,
and hence we know that the rank of P is upper bounded by H.
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With the previous considerations in place, we approach the
sparse joint topology inference problem in the presence of hidden
nodes by means of the following non-convex optimization problem

min > a0+ Y Buwds(sE, 85 @

(s pUyK o Pry!
+ Z Uk,k’dP(P(k>,P<kl))
k<k’
s. t. rank(P™) < H,
CYSY PO -8 EY (P <
s es.

The first and second constraints capture assumptions (AS1) and
(AS2), with € being a small positive number capturing the fidelity
of the sample covariance. The set S encodes the properties of the
desired GSOs. In this paper we will focus on the case where the
GSO is given by the adjacency matrix of the underlying undirected
graph with non-negative weights and no self-loops. Thus, from now
onwards we set the feasibility set S to be given by

S=38x:={8]S5; >0, $=8", 5, =0, >, S1=1},

where the last condition fixes the scale of the admissible graphs by
setting the weighted degree of the first node to 1, which rules out the
trivial solution S = 0. Other GSOs such as the normalized Laplacian
can be accommodated via minor adaptations to S; see [12].

Similar to standard joint inference approaches [17], the objec-
tive function of (4) captures the similarity of the K graphs with the
function ds(-,-). Nevertheless, when accounting for the presence
of hidden variables, assumption (AS3) is also reflected in the unob-
served blocks of the GSOs. This important observation, captured
by the function dp (-, ), allows us to incorporate additional structure
reducing the degrees of freedom and rendering the problem more
manageable. More specifically, note that the matrix P® js given by
the product of CEQ’“L and (Sgi)‘)T with the latter being a submatrix
of a sparse GSO, so it can be seen that the matrices P® present a
column-sparse structure. Furthermore, since the K graphs are sim-
ilar, the submatrices sg’?{ are also similar, which implies that the
matrices P®) present a similar column-sparsity pattern. In other
words, the columns with non-zero entries are likely to be placed in
the same positions for the different matrices P, By designing a
distance function dp(-,-) that exploits this additional structure we
improve the estimation of the matrices P®), resulting in a better
estimation of the matrices sﬁf ),

The non-convexity of (4), which arises from the presence of the
rank constraint and the ¢o norm, renders the optimization problem
computationally hard to solve, leading us to implement some convex
relaxations that are detailed next.

3.2. Convex relaxations for the joint topology inference

The rank constraints are commonly avoided by augmenting the ob-
jective function with a nuclear norm penalty, which promotes low-
rank solutions by seeking matrices with sparse singular values. How-
ever, this penalty does not preserve the characteristic column sparsity
of the matrices P*). To circumvent this issue, in contrast to [25], we
employ the group Lasso regularization [27] and rely on the fact that,
in this particular setting, we can promote low rankness by reducing
the number of non-zero columns while still achieving a reliable es-
timate. Then, we replace the o norm by a reweighted ¢; minimiza-
tion [31], an iterative algorithm rooted on a logarithmic penalty that:

i) converges to a stationary point [32]; and ii) usually outperforms
the widely used ¢; norm.

By leveraging the aforementioned relaxations we address the
joint topology inference problem in the presence of hidden variables
by solving an iterative method. Under this approach, for each itera-
tion, we solve the following convex problem

min Zakvec(W(k))Tvec(Sg)) 5)
=R, G

+3 " Bew S8 =887

k<k/
+Z%HP(M| 2,1+ Z M,k
k K<k’

+3 e [CPsE +p® _sh el -
k

s. t. s e s.

To compute the weight matrices W), let ¢ = 1...T denote the
iteration index (omitted in the expression above to alleviate the no-
tation), and compute the kth weight matrix for the tth iteration as

Wi(f‘t) = (Sgi_’:fl) + )7 with Sgi,’?,t*l) being the solution ob-
tained during the ¢ — 1th iteration and ¢ a small positive constant.
Hence, for each iteration ¢ we first compute the weight matrices
WY and, then, employ those to estimate the matrices ng‘t) and
P, Coming back to the formulation in (5), note that the distance
ds(-,+) is set to the ¢; norm to promote similar edges on the K
graphs. The norm || - ||2,1 represents the group Lasso penalty by first
computing the £2 norm of the columns of the input matrix and then
the ¢1 norm of the resulting vector. To capture the similar column-
sparsity pattern of the matrices P®) resulting from the similarity of
the K graphs, we design the function dp (-, -) relying on the group
Lasso penalty. More specifically, we concatenate each pair of matri-
ces P and P*") (o create a tall matrix and then promote column
sparsity on the tall matrix with the £2; norm. Note that a column
of all zeros in the tall matrix implies that the same column in P®

and P will only contain zeros, thus promoting the desired struc-
ture. Finally, it is worth noting that we moved the commutativity
constraint to the objective function. Due to the iterative nature of the
proposed method, the estimation of the observed GSO during the
first iteration might be far from the true GSO, and hence, a more re-
strictive constraint as the one employed in (4) might be misleading.
Augmenting the objective function with the commutativity penalty
is more amenable to an iterative approach.

4. NUMERICAL EXPERIMENTS

We now introduce the simulations performed over synthetic and real-
world graphs to evaluate the proposed method. When graphs are
randomly generated, they are sampled from an Erd6s-Rényi (ER)
model with N = 20 nodes and edge probability p = 0.2. The
code for the following experiments is available on GitHub? and the
interested reader is referred there for specific implementation details.

Test case 1. In the first experiment, we evaluate the influence of
the hidden variables and its detrimental effect on the topology in-
ference task when the true covariance matrix is known. The results

2https ://github.com/reysam93/hidden_joint_inference/
tree/ICASSP2022
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Fig. 1: Numerical validation of the proposed algorithm. a) Mean error of 100 realizations as the number of hidden variables increases for
different models and values of K. b) Mean error of the recovered graphs for several algorithms as the number of samples increases. c) Mean
error of the recovered graphs for joint and separate approaches as the number of samples increases. The first two experiments use Erdés-Rényi
graphs with N = 20 and p = 0.2 and the third one employs real-world graphs.

are depicted in Figure 1a, where we report the error of the recov-
ered graphs, computed as Eszl ||s§;“> - ég“)HQF/KHSEf)H%, for
several models as the number of hidden variables increases on the x-
axis. The error is averaged over 64 realizations with ER graphs. The
considered models are: (i) “PGL”, which stands for the method in-
troduced in (5); (ii) “PNN”, which denotes the reweighed algorithm
proposed in [24] augmented with the joint penalty ds (-, ) to perform
the joint inference; and (iii) “No hidden”, which is a joint inference
method unaware of the presence of hidden variables similar to the
work in [17]. In addition, for each model we let K take the values
in {3,6}. Looking at the results, we can observe that “PGL” and
“PNN”, which take into account the presence of hidden variables,
outperform the method “No hidden”, showcasing the benefit of a
robust formulation. Also, the method proposed in (5) outperforms
“PNN”, the other alternative accounting for hidden variables. This
reflects the advantage of employing the group Lasso regularization
and incorporating the graph similarity through the careful design of
the function dp (-, ). Lastly, it is worth noting that the performance
improves for higher values of K, achieving better results when more
related graphs are available.

Test case 2. Next, we evaluate the influence of the number of ob-
served signals and compare the performance of the proposed ap-
proach with other related alternatives. In this experiment, only a
single hidden node is considered. To that end, in Figure 1b we show
the mean normalized error of the recovered graphs on the y-axis as
the number of samples increases on the x-axis. The error is com-
puted as in the previous experiment and the mean is considered over
30 realizations of K = 3 ER graphs with 10 realizations of ran-
dom covariance matrices for each, resulting in a total of 300 realiza-
tions. We compare the proposed model (“PGL”) with latent variable
graphical Lasso (“LVGL”) [20], and with group and fusion graphical
Lasso (“GGL” and “FGL”), both from [16]. For each model, sig-
nals are generated using two different types of covariance matrices:
(i) Crry = (oI + ¢S)™" where ¢ is a positive random number
and o is a positive number so that C,,' - is positive semi-definite;
and Cpo1y, = H? where the matrix H is a graph filter with ran-
dom coefficients h. By looking at the Figure 1b, it can be observed
that, when C,,,,s is employed, the graphical Lasso models slightly
outperform the proposed approach. This is expected since they are
tailored for this specific type of covariance matrices. However, we
can also see that the performance of the proposed algorithm is close
to that of the alternatives, illustrating the benefits of considering both
the joint optimization and the presence of hidden variables. On the
other hand, when we focus on the covariance matrices Cyo1y, it is
evident that the proposed method “PGL” clearly outperforms the al-

ternatives, demonstrating that the proposed method is based on more
general assumptions. Note that the results for “LVGL” for the poly-
nomial covariance are not included since the error was too high.

Test case 3. Finally, we test the proposed algorithm and the impact
of performing the topology inference in a joint fashion using real-
world graphs. We employ three graphs defined on a common set
of 32 nodes. Nodes represent students from the University of Ljubl-
jana and the different networks encode different types of interactions
among the students®. The error is computed as before and one hid-
den variable is considered. The results, illustrated in Figure 1c, show
the error of the recovered graphs as the number of samples increases.
The displayed error is the mean of 30 realizations of random station-
ary graph signals and only one hidden variable is considered. Also,
for each of the three graphs we include the performance of both the
joint and the separate estimation. It can be observed that the recov-
ery of the three graphs improves when a joint approach is followed,
showcasing the benefits of exploiting the existing relationship be-
tween the different networks. Furthermore, this experiment confirms
that the developed method is also suitable for real applications.

5. CONCLUSIONS

In this paper, we presented a new method for solving the challenging
problem of joint graph topology inference in the presence of hidden
nodes. To tackle this ill-posed inference problem, we assume that
(i) the number of hidden nodes H is much smaller than the num-
ber of observed nodes O; (ii) the observed signals are realizations
from a random process stationary in S*); and (iii) the K graphs are
closely related. Furthermore, we exploit the inherent block structure
of the matrices C*) and S® to solve the joint topology inference
problem by solving an optimization framework. A reweighted ¢
norm to promote sparse solutions is employed, and the stationarity
assumption is adapted to the presence of hidden nodes by defining
the (unknown) low-rank lifting matrices P® Instead of relying in
the nuclear norm, low-rank matrices P®) are achieved by promot-
ing column-sparsity with the group Lasso penalty. Moreover, the
similarity of the K graphs is leveraged in two ways. First, for each
pair of graphs, we look for matrices Sg,c ) with a similar edge pattern
by minimizing the ¢; penalty, and second, we look for matrices P(*)
with a similar column sparsity pattern. The proposed method is eval-
uated using synthetic and real world graphs, and a comparison with
other baseline methods based on graph stationarity and on graphical
Lasso is provided.

3The original data can be found at http://vladowiki.fmf.uni-17.
si/doku.php?id=pajek:data:pajek:students
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