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Merger rates of binary black holes, binary neutron stars, and neutron-star—black-hole binaries in the local
Universe (i.e., redshift z = 0), inferred from the Laser Interferometer Gravitational Wave Observatory and
Virgo, are 16 — 130 Gpc~ yr~!, 13 — 1900 Gpc~3 yr~!, and 7.4 — 320 Gpc =3 yr~!, respectively. These
rates suggest that there is a significant chance that two or more of these signals will overlap with each other
during their lifetime in the sensitivity band of future gravitational-wave detectors such as the Cosmic
Explorer and Einstein Telescope. The detection pipelines provide the coalescence time of each signal with
an accuracy O(10 ms). We show that by using a prior on the coalescence time from a detection pipeline, it
is possible to correctly infer the properties of these overlapping signals with the current data-analysis
infrastructure. We study different configurations of two overlapping signals created by nonspinning
binaries, varying their time and phase at coalescence, as well as their signal-to-noise ratios. We conclude
that, for the scenarios considered in this work, parameter inference is robust provided that their coalescence
times in the detector frame are more than ~1-2 s. Signals whose coalescence epochs lie within ~0.5 s of
each other suffer from significant biases in parameter inference, and new strategies and algorithms would

be required to overcome such biases.
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I. INTRODUCTION

The advent of the third-generation (3G) gravitational-
wave (GW) observatories, such as the Cosmic Explorer (CE)
[1-3] and the Einstein Telescope (ET) [4], will offer the
possibility to observe binary coalescence events from red-
shifts z ~ 10-50, thanks to an order-of-magnitude improved
strain and frequency sensitivity compared to the current
generation of detectors of Advanced LIGO [5], Advanced
Virgo [6], and KAGRA [7]. Indeed, 3G observatories will
have unprecedented sensitivity to detect coalescence events
from an epoch when the Universe was still in its infancy
assembling its first stars and will routinely detect mergers
with stupendously large signal-to-noise ratios of several
thousands [1,8—10]. An order-of-magnitude greater redshift
reach and access to extremely high-fidelity signals compared
to current interferometers promises many new discoveries,
while allowing completely independent, precision tests of
cosmological models, alternative gravity theories, and astro-
physical scenarios of compact binary formation and evolu-
tion [1,10]. With an expected rate of hundreds of thousands
of binary coalescence signals each year [1,10-12] on top of
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weak, but persistent, radiation from isolated neutron stars [8],
rare bursts from supernova and other transient sources and
stochastic backgrounds [13], 3G observatories demand
novel algorithms for signal detection and characterization.
Therefore, a proper understanding of systematics arising
from overlapping loud and quiet signals alike will answer a
range of scientific questions that are at the forefront of
fundamental physics and astronomy, as well as a realistic
estimation of the computational cost.

According to current estimates, 3G observatories are
expected to detect hundreds of thousands of binary black
hole (BBH) and binary neutron star (BNS) mergers each
year [1,10-12]. If we take account of the fact that signals
will last longer due to a lower starting frequency (3 Hz
for ET and 5 Hz for CE), then it is clear that 3G data will
be dominated by many overlapping signals [13—17]. The
problem of overlapping signals producing a confusion
background in future terrestrial detectors was identified
more than a decade ago [18]. The problem poses two
challenges: First, the detection of individual signals could,
in principle, be affected by the presence of multiple signals.
Second, the current Bayesian inference methods [19,20]
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may not guarantee unbiased estimation of source param-
eters, which is crucial to deliver the science promises of 3G
observatories.

A similar issue has been tackled, in a different context, by
the LISA (Laser Interferometer Space Antenna) community.
LISA is expected to produce a dataset containing many
overlapping astrophysical signals: Galactic white dwarf
binaries are persistent sources of gravitational waves and
they produce a “foreground” noise [21] that could masquer-
ade the detection and parameter estimation of other astro-
physical signals. Several authors have studied the problem of
both detection [22-24] and Bayesian inference [25,26] in this
context, while others have focused on searching for the
global solution to the full family of potential signals [27-29].
A parallel effort has been made by other studies [30-32] to
characterize the overlapping between GW signals and
glitches in the context of LIGO/Virgo data analysis. These
studies represent a useful reference that could guide the
development of new algorithms specifically suited to deal
with the parameter estimation of multiple signals in the
context of terrestrial detectors. However, no effort to study
the problem of inference in the case of 3G terrestrial detectors
has so far been made. Given the relevance of this specific
problem, an exploratory study of the capabilities of current
parameter estimation methods in the context of overlapping
signals in terrestrial detectors appears to be necessary. With
this consideration in mind, we aim to characterize the
conditions for which parameter estimation is possible with
the current algorithms for overlapping signals and to identify
regions in the signal parameter space that create significant
biases in the inference process, for which novel algorithms
would be required.

Detecting overlapping GW signals has been shown to be
possible by two ET mock data challenges [14,15]. These
studies were able to correctly identify and recover signals
even when they were overlapping with multiple others. Even
though the signal detection may provide unbiased results,
however, there is no guarantee that the parameter inference in
the case of overlapping signals is possible within the current
framework. This is because current methods heavily rely on
the efficiency of sampling algorithms, which are used to
explore the posterior distribution of parameters. If we analyze
overlapping signals with the current parameter estimation
(PE) procedures (i.e., the assumption that the parameter
space for multiple signals is the same as in the case of data
containing only one signal at a time), we expect Markov
chains and the posterior distribution to exhibit a nontrivial
behavior such as slowly or nonconvergence of chains,
multimodal and biased posterior distributions, etc.

To this end, we deploy the Fisher information matrix
formalism to gauge the limit between the region where
overlapping signals could lead to biases in parameter
inference and the region where they do not. The Fisher
study tells us that as long as the difference in the merger
time Af- of two overlapping signals is larger than the
accuracy ot with which their merger times can be measured

(i.e., Atc > ot), irrespective of how long the individual
signals are, parameter inference will not cause significant
biases. We exploit this result in the Bayesian analysis of
mock data by choosing the prior on the merger epoch as
determined by the signal detection pipelines, which is about
8te ~ O(10 ms) [33]. Indeed, most signals are recovered
by search pipelines with a bias of 7 < 20 ms. A con-
servative prior on the merger time could be a factor of 10 to
20 larger or at most 500 ms. Thus, two overlapping signals
with their merger times separated by larger than ~2 s are
not expected to suffer from any systematic biases. Hence, it
suffices to consider the extent to which overlapping signals
pose a problem for At <2 s.

The rest of the paper is organized as follows: In Sec. II,
we compute the number of chunks in a year’s worth of data
containing more than one merger. Section III is devoted to
studying the covariance between overlapping signals using
the Fisher information matrix with the emphasis on what
we might expect for parameter inference in case of over-
laps. Bayesian inference of overlapping signals is presented
in Sec. IV. Our main conclusions and a brief discussion of
the type of problems that should be addressed in future
studies is presented in Sec. V.

II. NUMBER OF OVERLAPPING SIGNALS

The number of overlapping signals depends on (a) the
typical duration of signals and (b) the rate at which they
arrive at the detector. At the leading order, the length £ of a
coalescing compact binary signal starting from a gravita-
tional-wave frequency f, until merger is given by
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where G is Newton’s constant, c¢ is the speed of light, and
the chirp mass M is related to the component masses 1,
and m, via M = (mm,)*> /(m, + m,)'/>. A BNS system
consisting of a pair of 1.4 Mg would last for £~ 10% s
starting from a frequency of f, =10 Hz (relevant for
Advanced LIGO and Advanced Virgo), 1.8 h for f, =
5 Hz (CE), and almost 7 h for f; = 3 Hz (ET). A source of
intrinsic chirp mass M at a cosmological redshift of z
would appear in the detector to have a chirp mass of
(1 4+z)M, and hence lives for a shorter duration in a
detector’s sensitivity band. Thus, BNSs (1 My < my,
my < 3 M) could last for tens of minutes to several hours
in band, while BBH signals (3 My < m,m; <50 M)
could last for tens of seconds to thousands of seconds.
The cosmic merger rate of compact binary coalescences
determined by the first two observing runs of LIGO and
Virgo [34,35] implies that in a network of 3G observatories
the detection rate r defined as the number of signals whose
matched filter signal-to-noise ratio is larger than 12, lies in
the range rggy € [5 x 10*,1.5 x 10°] yr~! for BBHs and
rens € [10°,10°] yr~! for BNSs [16,36,37]. Thus, given
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FIG. 1.

Contour diagram showing the number of times two or more signals have their epoch of coalescence occurring within an

interval At in a year’s worth of data as a function of the chunk size Ar and the Poisson rate r. Also shown are the detection rates of BBH
and BNS signals in 3G observatories of one ET and two CEs [16]. As an example, if the detection rate is § mHz, then we can expect in
one year of data 1000 one-second-long chunks in which two or more mergers would occur. For a pair of signals whose coalescence times
differ by an interval of A7 > 1 s, we do not expect to see any biases in their parameter estimation, although the signals themselves might
overlap. Biases begin to show up for Az < 1 s and become severe as At — 0.

that signals last for several hours, 3G data would contain
several loud overlapping signals at any one time. We shall
see below that for the purpose of parameter inference the
relevant quantity is not how many overlapping signals there
are at any one time but if two or more signals have their
merger times lie within a duration At. This is what we will
set out to compute next.

A. Overlapping signals of the same family

Let r denote the Poisson detection rate of a given signal
family (BBH or BNS). In an interval At, the expected
Poisson rate is v = rAt, and the probability of observing
exactly k mergers during Ar is given by

ke
k!

Pi(v) = 2)

Thus, the probability of observing two or more mergers
during At is

© _k,—v

szz = Zpk(l/) :Zyke'
k=2 2 :

—l-e*(1+1v). (3)

We have made use of the fact that the Poisson distribution
is normalized, namely, » 2, P.(v) = 1. To compute the

number of chunks N5, in which two or more mergers
will be observed, we must multiply the probability P>, by
the number of chunks n,, = T/At in an observational
period T

T
Nisy = Pysong, = [1 —e7(1 —H/)]A_t' (4)
Substituting A = v/r and noting that N = rT is the total
number of signals detected during the period T, we get

N =[1- (142 L. 5
It is easy to see that in the limit Ar — O (equivalently,
v —0), Ni>» ~vN7p/2. The factor of 1/2 assures that the
number of instances when two or more signals are found in
a chunk is never greater than half the total number of
observed signals, but it is also weighed down by the
Poisson rate v. In the other limit, when At — T (and
v> 1), Ni», ~ 1 but less than 1.

Figure 1 plots the number of chunks N, in which we
can expect to find two or more mergers in a year’s worth of
data (i.e., using T =1 yr and v = rAft). Also indicated in
the plot are the detection rates of BBH (BNS), which are
expected to be in the range rggy € [1.6,4.8] x 1073 s7!
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(rgns € [3.5,3.5] x 1073 s71), respectively [16], in a 3G
detector network comprising one ET and two CEs (one in
North America and the other in Australia). As we shall see
in Sec. III, parameter inference should not be a problem if
the difference in coalescence times of a pair of signals is
larger than ~1 s; this is indicated in Fig. 1 by the horizontal
line drawn at At = 1 s. Thus, in Sec. IV we will focus on
the Bayesian inference of signals whose merger times differ
by about one second. We see that at the higher end of the
BNS rate, we expect ~15,000 one-second-long chunks
with two or more mergers, while at the lower end of the
BNS rate, this number is ~200. Likewise, ~300 chunks
will contain two or more BBH mergers at the higher end of
the BBH detection rate, while this number is ~40 at the
lower end of the BBH rate. Although the vast majority of
events will have their merger times larger than 1 s from
their nearest neighbor, the number of events with their
merger times within a second is quite large.

The detection rate of BBH signals in the current detector
network of LIGO, Virgo, and KAGRA at their design
sensitivity is at best r ~ 2.3 x 107 s~! (or 730 yr™!) [35].
Thus, the probability of observing multiple mergers in a
chuck of size 1 s or less is negligibly small in the advanced
detector era. This will also be the case in the A + era [38]
where the detection rates are expected to be 3 times larger.

B. Overlapping signals from two different families

If the detection rate of signal families A and B are r,
and rp, then the probability that one or more mergers of
each of these signal families would occur during an interval
At is

—Atry
9

Prpzip =1—e N e A ()
Thus, the probability P,p that an interval Af contains
one or more from each of the two signal families is
simply the product P,p = P4 ;> Pp>1. If the rates are
small, this reduces to P45z = (At)?*r,rg and the number of
such chunks over a period T is Naz = (At)?ryrgT =
NyNg/na;, where Ny and Ny are the total number of
mergers during the period 7" of families A and B, respec-
tively, and n,, = T /At is the number of chunks of width At
during 7. Using the range of BNS and BBH rates quoted
before, we find that N,p would lie in the range 170-5100
for T=1yr and Ar=1s.

From the foregoing discussions, it is clear that a small
but significant fraction of signals would have their coa-
lescence time within an interval of 1 s. As we shall see in
the next section, due to their long duration, overlapping
BNS signals are far less correlated with each other than
overlapping BBH signals. For the same reason, a pair of
overlapping BNS and BBH signals are poorly correlated.
Hence, in the Bayesian inference problem (Sec. IV) we will
only consider overlapping BBH signals.

III. COVARIANCE AMONG
OVERLAPPING SIGNALS

If two signals are well separated, then the covariance
between their parameters is zero, and we do not expect one
signal to affect the parameter inference of the other. As we
bring the two signals closer together in time, at some point
the presence of one of the signals will begin to bias the
estimation of parameters of the other. In this section, we
estimate the covariance between the parameters of a pair of
overlapping signals using the Fisher matrix formalism.
Although the Fisher matrix is valid in the limit of large
signal-to-noise ratios, any inferences we can draw from the
correlation will guide us in choosing the parameter space of
compact binaries where systematic biases could be large.

To this end, we assume that the data contain a pair of
signals s, and sz buried in stationary, Gaussian noise #.
The detector output is the sum of the overlapping signals
buried in detector noise:

x(r) = n(t) + 52 (0.2) + 55028, (D)
where /I,(,A) R /IE,B) ,fora=1,..., p are the set of parameters

corresponding to signals s, and sp, respectively. Note that
since both s, and sp are assumed to belong to the same
signal family, they are specified by the same number of
parameters. Furthermore, we shall only consider a single
detector for this exercise. The relevant parameters for a
binary with nonspinning companions are the chirp mass
M, symmetric mass ratio #, the epoch ¢~ when the signal
amplitude reaches its peak, and the phase ¢ of the signal at
that epoch, and so /1{(;4) = (M(A),U(A>, tg‘),gb(CA)) and sim-
ilarly for signal sz. We assume the IMRPhenompv2 wave-
form model.

For the computation of the covariance matrix, it is more
convenient to consider that the data contain only one signal,
i.e., the sum of the two signals s = s, + sp, and it is
characterized by a double number of parameters: 8, = /I(aA>
fora=1,....pand@, =A%, fora=p+1,....2p.Fora
noise background that is stationary and Gaussian, the
covariance matrix C, which is the inverse of the Fisher
matrix I, is given by

Os Os
= F_l T = ( —,—— ).
Cuh ab’ ab <89a s 89h> (8)

Here the scalar product of two waveforms (or any pair of
functions of time for that matter) 4 and g is defined as

Foan B()G (f)

. s ®)

<h,g>E4§H/

where 0 stands for the real part of the integral, & and § are
the Fourier transforms of the signals /# and g, respectively,
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FIG. 2. The plot shows the correlation coefficients, i.e., normalized covariances as defined by Eq. (16) between the parameters of the
two overlapping signals as a function of the difference in merger times z = 2 — ¢/.. The left panel is for Advanced LIGO and right for
Cosmic Explorer. The top row is for BBHs and bottom row BNSs. We assume the parameter inference of overlapping signals to be
negligibly affected when (the absolute value of) the correlation coefficients are less than 10% (gray shaded regions).

g* denotes the complex conjugate of g, and S;,(f) is the
one-sided noise spectral density of the detector. In our
study, we will use either the noise spectral density of
Advanced LIGO [5] or that of the Cosmic Explorer [3].
The lower-frequency cutoff f,, is chosen to be 20 Hz
for Advanced LIGO and 5 Hz for Cosmic Explorer.
For BNSs, the upper frequency cutoff f;., is assumed
to be the larger of the innermost stable circular orbit
frequency of the two overlapping signals, i.e., fpiogn =
max[(6*2zM,)~", (63/2zM,)~"], where M| and M, are the
total mass of the two overlapping signals. For BBHs, the
upper frequency cutoff is chosen to be the Nyquist
frequency of 1024 Hz.

The Fisher matrix contains interference terms of the
following type:

N aSA aSB
Fa,ﬂ+p - <8/1((;4) ’8/1/(33)>' (10)

Covariances are of primary interest in this section, as they
can tell us the degree to which the presence of one signal
affects the parameter inference of the other. In order to
measure the extent of covariance, we consider two sets of
overlapping signals (masses are specified in the detec-
tor frame):

(1) overlapping BBHs with masses
(mM M) = 21 Mg, 15 M), (11)

(m®,mP) = (33 M, 29 My);  (12)
(2) overlapping BNSs with companion masses

(m®, m) = (1.45 Mg, 135 Mg),  (13)

m® m\P) = (150 Mg, 1.40 Mg). (14)

Furthermore, in all cases we choose

(1) = 0.0 (1.4 = (0. (15)
and vary 7 over the range [—3, 3] s.

The covariances between the chirp mass, symmetric
mass ratio, and epoch of coalescence are plotted in Fig. 2
as a function of the parameter 7 for overlapping BBHs
(top panels) and BNSs (bottom panels) for noise spec-
tral densities of Advanced LIGO (left panels) and Cosmic
Explorer (right panels). Other -cross-covariances are
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d(LA) =1 Gpc, d<LB) = 1 Gpc. Note that if we neglect the effects of cosmological redshift, then changing these distances just results in a

scaling of the signals’ amplitude.

negligibly small and not shown. What we plot are the
normalized covariances, i.e., a combination of the corre-
lation coefficients defined as

Cab
C) = ——,
@ Vv Cua Chb

This quantity is strictly bounded between —1 and +1. A
correlation coefficient of +1 implies that the parameters
are perfectly correlated, —1 implies they are perfectly
anticorrelated, and a value of 0 would imply they are
uncorrelated. We will take ,;, ~ 0.1 (gray shaded region in
the plot) to be small enough to indicate that the presence of
the second signal does not significantly bias the parameter
inference of the other signal. This threshold is inevitably
arbitrary, as a thorough analysis of the connection between
the values of the correlation coefficients and the presence of
biases in the parameter inference is beyond the scope of this
paper. However, as we show in Sec. IV D, the regions of the
parameter space where biases in PE arise are compatible
with the ones for which ¢, = 0.1.

The correlations displayed in Fig. 2 show a range of
different behaviors. In all cases, they have a peak for
|z| < 0.5 s. This is expected, as the interaction between the
signals is enhanced when the two signals coalesce very
close to each other. For |z| > 0.5 s, all the different con-
figurations always stay below the threshold ¢,,;, = 0.1, with
the significant exception of BBH in Advanced LIGO

a#b. (16)

detectors. In this latter case, correlations remain very high
in the range —1.5 s < 7 < 0 s, and become small only for
7 < —2 s. The fact that correlations are not symmetric in 7
can be easily explained by the different form of the two
signals considered (see also Fig. 3).

Finally, we note that in the case of BNS, the correlation
always remains below the threshold both in Advanced
LIGO and Cosmic Explorer, except when 7~0. This
implies that parameter inference of overlapping BNS
signals is likely to be less severe than that of overlapping
BBH signals. We will therefore consider only the latter
class of signals in the remainder of this paper, leaving
the parameter estimation of overlapping BNS signals for
future work.

The analysis presented in this section is limited by the
fact that we have explored only for a few particular sets of
source parameters. Therefore, we cannot conclude that
parameter estimation will never be a problem in the case of
overlapping BNSs. Indeed, very similar values of the chirp
masses (as well as other relevant parameters) will likely
increase the correlation between the two signals, especially
in the proximity of 7 =0 s.

In addition, we note that further work is necessary to
assess the validity of the correlation threshold we have
considered here, especially in light of the fact that sinus-
oidal features with amplitudes o¢,,;, &~ 0.05-0.1 are present in
the case of the Cosmic Explorer detector, even for large
values of |z|. Despite the fact that these correlations are very
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low, their effects on the results of parameter inference need
to be evaluated quantitatively.

IV. BAYESIAN INFERENCE
OF OVERLAPPING SIGNALS

In this section, we support the results we have derived
using the Fisher information matrix formalism (Sec. III)
with a full Bayesian inference procedure. With this PE
process, we are able to fully explore the posterior distri-
bution of the parameters that generated the signals. This is
important, because it allows us to confirm the presence
(expected from the Fisher study) of distinct maxima in the
posterior, one for each signal coalescing within the time
chunk considered. Moreover, thanks to this numerical
approach, we can explore more carefully the region where
biases are expected, assessing their significance and gaug-
ing the conditions for which they seem to happen.

Within the Bayesian framework, given a set of param-
eters A describing a compact binary coalescence (CBC)
waveform h(4,t), we can write the posterior distribution
for 1 as

7(A)L(x|A, h)
P(Alx,h) = Z0) , (17)
where x is the detector output. This posterior can be
explored by using a sampling algorithm [e.g., Markov
chain Monte Carlo (MCMC), nested sampling]. As in
Sec. III, assuming that the data x contain two overlapping
signals s, (signal A) and sp (signal B), it can be written as

X=n-+ sy + 53, (18)

where n is the noise of the interferometer. Note that, in
principle, to perform a Bayesian analysis of two or more
overlapping signals we should broaden the parameter
space, e.g., 6 = {44, A%}, in order to account for the
presence of multiple overlapping signals. However, since
running a sampling algorithm requires a significant amount
of computational resources, in most cases this is not
required. In fact, as argued in Sec. III, if the signals’
coalescence times are wide apart we do not expect the
presence of one signal to influence the posterior distribu-
tion of the parameters of the other. For this reason, in what
follows we consider the parameter space of a single CBC
signal. We will return to this point later on when discussing
possible biases arising because of this choice.

A. Choice of signal families

As already mentioned, in this analysis we focus only on
BBH signals. This choice is motivated by the fact that
(a) covariances among overlapping BNS signals are smaller
than the BBH ones (Sec. III), and therefore, biases in the
BNS case are expected to be less important; (b) BNS

signals last for several hours in 3G detectors and tens of
minutes in Advanced LIGO and Virgo, implying that
Bayesian inference takes a formidable amount of computa-
tional resources (although new algorithms are already
showing the promise of greatly reducing the computational
requirement [39-41]).

Furthermore, we also restrict our analysis using
Advanced LIGO sensitivity. As argued before, LIGO is
not affected by the problem of overlapping signals, because
the rate and the duration of the signals are far too small to
create any overlap. Nonetheless, in this work we are not
really interested in reproducing a realistic set of over-
lapping data; instead, we want to focus on the parameter
estimation process. To do so, there is no substantial
advantage in using 3G mock data: We expect that our
conclusions will be valid even if they are based on the
analysis of Advanced LIGO mock data.

The parameters of the overlapping BBH signals used in
Bayesian inferences is the same as what we used in Sec. I1I:
nonspinning BBHs with masses as given in Eq. (12) and
coalescence times and phases as given in Eq. (15). We
ignore the position of the sources in the sky and their
orientation relative to the detectors (setting all angles to
zero). We do, however, include in our analysis the lumi-
nosity distance d; of the source. The parameter space we
use in our analysis is thus,

A=A{my,my, e, tc.d}.

Note that our choice of sky position is the worst-case
scenario, because we are considering the two sources to
have the same location in the celestial sphere. In reality, if
overlapping signals arrive from different directions in the
sky, they will have different phase coherence among a
network of detectors and thus easier to discriminate. Thus,
since our choice of sky position is the worst-case scenario,
the parameter estimation problem can only be better when
sky position and orientation are taken into account.

To explore different configurations of the parameters, we
vary the time shift z [defined in Eq. (15) as the epoch
coalescence of signal B] in the range 7 € {-2.0 5,0.5 s}.
Along with the time shift, we also vary the two luminosity

distances of the sources d(LA) and d<LB), and their phases qb(CA )

and gb(CB). In the first set of runs, we fix qb(cm = (/)(CB) =0and
vary the two distances. We keep the distance of one of
the sources fixed to 1 Gpc and set the other at either
500 Mpc, 1 Gpe, or 2 Gpc. In the second set of runs, we

vary the phase of signal B ((,b(CB) € {0,7/3,2n/3}), keeping
g{)g‘ ) fixed to zero and the two luminosity distances to
d = d¥ =1 Gpe.

The resulting variations in the parameter sets are

7={-2.0s,-155,-1.0s,-0.55,0.0 5,05 s}, (19)
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TABLE 1. SNRs for the two signals we have chosen to focus on
in our analysis (considering the two LIGO interferometers
network), created with different values of the luminosity dis-
tances d; . Note that applying a time shift to the signals does not
change the value of the SNR.

SNR d; = 0.5 Gpe d; =1 Gpc d; =2 Gpc

Signal A 54.2 27.1 13.5

Signal B 82.8 41.5 20.7
d®.d¥™ = {500 Mpc, 1 Gpc,2 Gpe},  (20)

& ={0,7/3.22/3}. (21)

With these choices, there are 48 different configurations
possible, each of which is analyzed for Bayesian parameter
inference.

In the inference problem, we use a signal model that
accurately represents the BBH waveforms. As in Sec. 111,
we use the IMRPhenomPVv2 approximant to create wave-
forms in the frequency domain, fixing the low-frequency
cutoff to be 20 Hz, which is consistent with the minimum
frequency used in the LIGO/Virgo PE. In Fig. 3, we plot the
two waveforms in the time domain, for the different
configurations of the time shift z. The resulting overlapping
waveform is plotted as well. In Table I, we compute the
expected matched filter SNR for the different possible
configurations of the parameters, focusing on the distances,
since neither the coalescence time nor the phase affect the
SNR value.

B. Setting up Bayesian inference runs

Having created the mock data with overlapping signals,
we next focus on parameter inference. Our analysis uses
two LIGO interferometers, but our conclusions are not
significantly affected by this choice: Considering a differ-
ent detector network would simply result in different SNRs
for the signals, as we are not focusing on the sky position of
the source. Although this could in principle change the
heights of the peaks in the posterior distribution, we do
expect it to influence their relative ratios significantly, and
hence, the PE process we consider is expected to hold for
any network.

The dataset consists of 4 s of mock data from the two
LIGO interferometers; 4 s is large enough to span the full
length of the longer signal. We do not add any noise to the
data, i.e., we set n = 0 in Eq. (18), as we want to highlight
the presence of biases created by the overlap between the
signals, and these biases could be covered by the statistical
uncertainty created by the presence of noise.

We use the BILBY package to perform Bayesian param-
eter inference of the two signals, running the DYNESTY
sampler [42]. DYNESTY is a dynamic, nested sampling
algorithm [43,44], which is well suited for our purposes

because it quickly achieves convergence, but at the same
time it is able to handle nontrivial, multimodal distributions
better than MCMC-based algorithms [42]. We allow the
sampler to explore the likelihood surface with respect to all
the parameters except ¢., over which the likelihood is
analytically marginalized, and d;, over which the like-
lihood is numerically maximized. Marginalization over ¢
and d; correctly accounts for the effects of the parameters
¢c and d; on the resulting 3D posterior [19,45].

C. Bayesian priors

At the beginning of the analysis, we have to set the
priors on the various parameters. We consider a uniform
prior on the phase ¢, with periodic boundary conditions,
a power-law prior on the luminosity distance p(d;) « df
with @ = 2, and a uniform prior on the two masses m; and
m, over the range [10 M, 50 M. As for the coalescence
time, selecting the best possible prior turns out to be a
game-changing strategy. In fact, running a simulation with
a wide prior on the time ¢ that spans the merger times of
the two overlapping signals leads to significant problems:
While one of the two signals is always recovered cor-
rectly, the other is completely ignored by the sampling
algorithm. A wide prior on ¢, therefore would only allow
us to infer the parameters of the louder signal without
access to the weaker one.

However, as already pointed out, previous work suggests
that signals can always be detected, even if they are over-
lapping and their merger time correctly identified [14,15].
Although these studies dealt only with BNS signals, we do
expect that similar conclusions hold also in the case of
BBH. This is because (as we show in Sec. IV D, Fig. 5)
biases on the values of 7, recovered from our PE analysis
are minor (at the ms level), and the presence of the overlap
does not seem to hamper the time recovery of the signals.
However, future efforts will need to back up this
assumption and confirm that BBH overlapping signals
can be correctly recovered in the time domain. From
current pipelines, we know that the detection of a signal
allows us to know its epoch of coalescence with very low
uncertainty (at the order of 10 ms). We then assume to
know the time of coalescence of the two overlapping
signals with a good degree of accuracy, and constrain
our parameter space choosing a prior on the coalescence
time which is centered on the (fiducial) true value of the
time ¢, with a width of 100 ms. In this way, for each of the
signals we can isolate the region of the parameter space
where we expect to find the true values of the injection
parameters. This choice allows us to recover the correct
parameters for both signal A and signal B.

Therefore, for each of the 48 injections, we run the
Bayesian inference procedure two times: The first one (we
refer to it as run A) aims to recover the true values of the
parameters of signal A; to this end, since t(CA ) — 0.0 s, we
set the prior on the coalescence time centered on zero. Run
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FIG. 4. Corner plots for two runs A (left side) and two runs B (right side); all the overlapping signals are created with the following

choice of parameters: diA) = d,(_B) =1 Gpe, ¢<¢§)

= ¢(CB) = 0. The top row shows the case 7 = —1.0 s, while the bottom one shows

7 = 0.0 s. The three parameters considered here are the two masses m; and m,, and the coalescence time 7. The true values of these
parameters are highlighted with red dashed lines in the corner plots. The blue histograms refer to the actual runs, while the green ones are
shown for comparison, and they are obtained by injecting only one signal in the data. The dashed vertical lines represent the 1o error on
the parameters. On top of each panel, the median values (and the 1o errors) of the parameters are shown.

B, on the other hand, focuses on the signal B peak in the
parameter space; thus, the prior is chosen to be centered
in tc =T.

D. Results

In this section, we study the posterior distributions
obtained for the different runs described in Sec. IVA,
and we compare them with the same results obtained when
only a single signal is present in the data. This comparison
allows us to assess the presence of biases created by the

overlap of the signals. In this analysis, we focus on the
results for the two masses m; and m, (which we can rewrite
also as chirp mass M and mass ratio g), and for the
coalescence time .

We start by plotting four different corner plots for
specific values of the parameters (Fig. 4). In the top
row, we show the posterior distributions for run A (left
panel) and run B (right) for the following parameters:
d =d® =1 Gpe, p =p® =0, 1=-1.05s. The

L L » Pc c ’
blue contours represent the results obtained when the
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two signals are overlapping, while the green ones are the
results for a run where only signal A (B) is present in
the data. The agreement between these two posteriors
(upper panels) is remarkably good, and biases, if any,
are negligible. The recovered values of the parameters in
the case of run A (run B) are perfectly compatible with the
injected ones A = {m; =21 My, m, =15M,t-=0.0s}
(AW = {m, =33 My, m, =29 My, tc = 7}). This proves
that using the current parameter inference methods to deal
with overlapping signals is possible.

These results also imply that the posterior distribution for
a run with wider priors would be (at least) bimodal, as the
two peaks identified by the two runs (corresponding to the
true values of the parameters 1, and Ag) with narrower
priors would be preserved when the priors are extended
coherently to a larger parameter space. However, as already
mentioned in Sec. [V C, when we try to extend the prior on
the time shift z, we find that the sampling algorithm can
identify only one peak in the posterior. This behavior is due
to the fact that the heights of the two peaks differ by many
orders of magnitude, since the peak of log £ scales as the
SNR squared, and the SNRs for signal A and signal B are
SNR(®) =27.1 and SNR®) = 41.5, respectively (see also
Table I). Clearly, the sampling algorithm is not able to
sample such a subdominant peak in the posterior. Thus,
setting the appropriate prior on the coalescence time ¢, as
determined by the search pipeline, is critical in determining
the parameters of both signals.

We note that a different approach could consist of
imposing narrower priors on the two masses m; and ni,
(or, equivalently, on the chirp mass M) in order to isolate
one peak and exclude the other. This is also a viable
alternative, provided that the information on the masses
recovered from the detection pipeline is accurate enough to
give effective constraints for the priors. Ultimately, com-
bining the information on the coalescence time with the one
on the masses may be the best strategy in order to isolate
the two peaks even when the two signals are coalescing
very close to each other. It is, however, important to
ascertain the extent to which such constraints can imposed
by carrying out the detection problem on a large sample of
injections and the accuracy with which detection pipelines
are able to measure chirp mass.

In fact, our approach fails when the two signals are
overlapping within 100 ms. In the bottom row of Fig. 4, we
show exactly this case: We take the same distances and
phases as described above, but we impose a zero time shift
between the two signals. Therefore, in this case the two
runs, run A and run B, yield the same results (as both the
priors and the likelihood are the same). As expected, only
the louder signal (i.e., signal B) is correctly recovered, with
the posterior distribution resembling very closely (although
not perfectly matching) the one obtained in the single signal
case. We conclude that, once again, the bias is negligible
for run B. As for signal A, the peak corresponding to A4 is

completely neglected by our inference pipeline, and thus
there is no way we can reconstruct the parameters of signal
A correctly. This is an intrinsic limitation of our method:
Different inference prescriptions need to be devised in
order to deal with the case of closely coalescing signals.

1. Dependence on the luminosity distance

We now analyze the results of the other runs, where we
changed the time shift, luminosity distance, and phase of
coalescence of the two signals (as described in Sec. IV A).
The top row of Fig. 5 shows the posterior distributions for
the chirp mass M, the mass ratio ¢, and the coalescence
time ¢, for different combinations of luminosity distances

diA),d(LB> and coalescence times 7.; the phase at coales-

cence of the two signals is set to ¢<CA) = qﬁ(CB J=o.

Posteriors are shown in the form of violin plots, and the
results for a single injection are shown in light gray color
for reference on the right side of each panel. In order to
make the plots more accessible, we identify three different
regions highlighted by the shaded gray boxes. In the first
region (no shade), biases are negligible: posteriors for run
A (run B) closely resemble the ones obtained by injecting
only one signal with the same luminosity distance d*)
(d®). In this region, the presence of overlapping signal
does not create any biases to parameter inference, and both
signals can be recovered correctly. As expected from our
Fisher analysis (Sec. III), this happens when the two signals
are not coalescing too close to each other. In particular, we
find that parameter inference is robust in the regions 7 <
—0.75 s and t¢ 2 0.25 s. Note that the asymmetry of these
boundary values is expected, as the correlation between the
two signals is not symmetric in 7 (Fig. 2).

When t- = —0.5 s (light shaded region), we find that
small biases (at the 1 — 20 level) arise: This implies that the
presence of the overlap causes a shift of the posterior peak
in the parameter space, preventing the correct recovery of
the true parameters A) and A®) for the two signals. We
note, however, that these relatively small biases may not be
a problem in reality, because the presence of the noise may
create even larger biases, making these effects totally
irrelevant. This depends, of course, on the noise level in
the interferometer.

It is also interesting to note that the intensity of the biases
varies with the relative strengths of the two signals (which
are determined by the luminosity distances). In particular,
biases for run A (run B) are smaller whenever signal A
(signal B) is louder: This can be observed in the left (right)
panel of Fig. 5, top row, as the posteriors colored in yellow
and purple (red, blue, and green) are closer to the ones
obtained in the case of a single signal.

Finally, in the last region (darker shade, 7 = 0.0 s), two
relevant effects take place at the same time. First, as already
discussed, only the parameters of the louder signal can be
recovered correctly. Since the results for run A and run B
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FIG. 5. Summary of the results for the set of 48 runs, each one with a different configuration of the parameters , d(LA), and d(LB) (top

panels), ¢(CA ) and ¢(CB ) (bottom); for details about the parameters choice, see Sec. IVA. A runs are shown on the left panels, and B runs
are on the right panel. Posterior distributions for the chirp mass M, mass ratio ¢, and coalescence time 7 — 7 are shown in the form of
violin plots. Along with the results for overlapping signals, posteriors for the “single signal” case (i.e., only one signal is present in the
data) are shown in the rightmost side of each panel in gray. The true values of the masses and times for signal A and signal B are
highlighted with dashed horizontal lines. Note that the distributions in the plots referring to the same time shift z are slightly shifted with
respect to their exact value of 7 so that they do not overlap with each other. The 7 = 0.0 s runs are highlighted with a dark gray shadowed
band; other regions where non-negligible biases are present (see discussion in Sec. IV D) are highlighted in the same way with a lighter
shade of gray. Note that in the 7 = 0.0 s case, part of the recovered values for the chirp masses are out of the range and thus not shown.
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are perfectly identical (because they have identical set-
tings), this implies that the chirp masses are close to the one
of signal A for the yellow and purple cases (as seen in the
left panel), and close to the one of signal B in the red, blue,
and green cases (as seen in the right one). On top of that, we
note that even the louder signal seems to suffer from
significant bias in the 7 = 0.0 s case. This is again expected
from our Fisher analysis (Fig. 2), as the correlations
between the signals have a peak at zero time shift.

2. Dependence on the phase

In the bottom row of Fig. 5, we show the results for the
runs with varying ¢ .. As described in Sec. IV A, we fix the

(B)

luminosity distances to d<LA) =d; "’ =1 Gpc and the phase

at coalescence of signal A to ¢<CA) = 0, and vary qﬁng) in the

set ¢(CB) = {0,7/3,2x/3}. The results are presented in the
same form as the top row of Fig. 5 (Sec. IVD 1).

We find that the phase at coalescence plays an important
role in determining whether inference suffers from signifi-
cant biases or not. In particular, biases are greater for the

two configurations gb(CB) = /3 and qb(cm = 2x/3. On top of
that, they extend in a larger time span: The region where 26
biases are present extend outto r = —1.0 s; fort = —1.5 s
and 7 = —2.0 s, they progressively become less severe until
they become hardly detectable. Again, we find that biases
arise only for negative values of the time shift 7z, in
accordance with the asymmetric correlation amplitudes
found in Fig. 2.

Overall, our Bayesian inference analysis confirms the
results we found in Sec. III for BBH in Advanced LIGO
detectors (Fig. 2, upper left panel). If the two BBH signals
do not coalesce too close in the time domain (i.e., their
coalescence times are separated by more than 1.5 s), then
the inference results are robust: Two distinct peaks are
present in the posterior, and they can be well sampled if a
suitable prior on the coalescence time is chosen. This is an
interesting conclusion, as the vast majority of BBH signals
are expected to belong to this category: From Fig. 1, we can
estimate that only 0.01% of the signals are expected to
coalesce within 1 s.

When the BBH signals do coalesce very close to each
other (|z] <1 s), though, biases at the 2 — 3¢ level may
arise, as the correlation between the two signals increases.
These biases become even more dramatic as the time shift
approaches zero.

V. DISCUSSION AND OUTLOOK

We presented a Bayesian inference analysis in the case of
overlapping gravitational-wave signals. Our goal was to
assess the capabilities of current Bayesian inference infra-
structure to handle the nontrivial case of one or multiple
overlaps taking place within a data segment. This problem
is destined to play a major role in 3G detector planning,

since the dramatic increase in sensitivity will result in a
great number of signals coalescing within a few seconds.

We started from a study based on the Fisher matrix
formalism, in which we analyzed the correlation between
two overlapping signals. In this way, we were able to
determine whether in some regions of the parameter space
the overlapping signals were strongly correlated with each
other, thus preventing a distinct inference procedure for one
signal at a time. We found that BNS signals are less
strongly correlated, and that their inference will likely be a
problem only for coalescence times really close to each
other (at the 10 — 100 ms level). BBHs, instead, suffer
from the presence of a correlation starting from a much
greater time shift z (i.e., the difference between the two
coalescence times). In particular, in the Advanced LIGO
BBH scenario, correlations are significant up until |z 2 s.

We investigated these issues further with a full Bayesian
analysis of the two overlapping BBHs. The analysis used
the DYNESTY sampling algorithm to describe the posterior
distribution for the parameters considered. We showed that,
in order to sample a single peak without worrying for the
presence of the other one, a possible solution is to impose a
narrow prior around the fiducial value (provided by the
signal detection pipeline) of the coalescence time of the
signal of interest. This procedure allows one to isolate a
single peak at a time, and works well in the configurations
we explored. However, as the time shift approaches zero,
isolating a single peak at a time is not possible, and within
our framework we can recover only the parameters for the
louder signal (i.e., the highest peak in the posterior). In our
approach, we are implicitly assuming that signal detection
will return the coalescence times of the two signals with an
uncertainty lower than O(10 — 100) ms. This is a reason-
able assumption, which, however, needs to be tested by a
dedicated analysis dealing with BBH signals’ recovery in
the context of 3G detectors (see also [14,15] for the
BNS case).

We also studied the emergence of biases in the over-
lapping signals scenarios considered, by varying some key
parameters of the two signals such as their coalescence
time, coalescence phase, and luminosity distance. We
found that significant biases (at the 2 — 30 level) arise
in the range —1 s <7 <0s, and that these biases are
caused primarily by the relative phase of the two signals
and only marginally by the relative difference of the SNRs.
As suggested by our Fisher analysis (Fig. 2, upper left
panel), these biases tend to become minor for 7 < —1.5 s
and 7 > 0 s.

Dealing with these biases needs a different approach that
we did not attempt in this work. One possible solution is to
broaden the parameter space searching for multiple signals
in the same Bayesian inference run. This is the approach
that previous works have shown to be feasible in the
context of LISA data analysis (e.g., see [25,27]). Such an
approach could significantly increase the computational

104016-12



TOWARD INFERENCE OF OVERLAPPING GRAVITATIONAL-...

PHYS. REV. D 105, 104016 (2022)

costs of the Bayesian algorithms; however, this is compen-
sated by the fact that, as suggested here, novel algorithms
may be needed only for closely coalescing signals that are a
very small minority of the total number of signals expected
in 3G detectors. Using current estimates for the BBH rates
in future detectors, we found that signals coalescing within
1 s are expected to be at most hundreds per year.

Another possible solution to the biases would be to
create an iterative procedure where one hierarchically
determines the parameters of louder signals (as inferred
from search algorithms) and subtracts them from the data
before analyzing weaker ones [12,46]. Currently, it is
unclear which approach will perform better in the context
of 3G detectors, and further work is needed to gauge the
potential of both approaches.

In our exploratory study, we did not deal with the
consequences of varying the mass parameters of the two
signals, nor did we include in our analysis other source
parameters such as companion spins, the position of the
source in the sky, and the orientation of the binary relative
to the detector frame. The SNR range explored in our study
(20-100; see also Table 1) is also limited compared to the
range expected to be covered by 3G detectors [3,4,47]. In
particular, when overlapping signals arrive from different

positions in the sky, then they would, in general, have
different coalescence times in different detectors, which
might help to isolate one of the peaks better [48]. The
inclusion of spins, on the other hand, introduces new
physics in the formation of these overlapping signals such
as spin precession, and may introduce another layer of
complexity in the parameter inference problem [49]. These
and related problems will be explored in a future study.
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