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Bacterial cells navigate around their environment by directing their movement along chemical
gradients. This process, known as chemotaxis, can promote the rapid expansion of bacterial
populations into previously unoccupied territories. However, despite numerous experimental
and theoretical studies on this classical topic, chemotaxis-driven population expansion is not
understood in quantitative terms. Building on recent experimental progress, we here present
a detailed analytical study that provides a quantitative understanding of how chemotaxis and
cell growth lead to rapid and stable expansion of bacterial populations. We provide analytical
relations that accurately describe the dependence of the expansion speed and density profile
of the expanding population on important molecular, cellular, and environmental parameters.
In particular, expansion speeds can be boosted by orders of magnitude when the environ-
mental availability of chemicals relative to the cellular limits of chemical sensing is high. As
analytical understanding of such complex spatiotemporal dynamic processes is rare, the re-
sults derived here provide a mathematical framework for further investigations of the different
roles chemotaxis plays in diverse ecological contexts.

Bacterial Chemotaxis | Range Expansion | Keller-Segel Model | Fisher wave | Front Propagation

Many species of bacteria are motile and respond to environmental changes by directing their movement
along gradients of certain chemicals (1). This process, known as chemotaxis, is among the most extensively-
investigated topics in molecular biology (2, 3). Beyond driving striking cell movements, chemotaxis also
drives the collective movement of cells leading to emergent patterns and behaviors at the population level.
For example, when encountering preferred chemicals referred to as attractants, cells consume the attractants
and collectively move up self-generated attractant gradients (4).

A characteristic population-level behavior is the emergence of clear migrating bands when the bacteria
encounter a region of uniform attractant concentration (5—7). The migrating bands typically comprise of
one or two peaks in population density, which stand in contrast to the predictions of canonical models of
front propagation and population expansion (8—10). The first attempt to understand these migrating bands
mathematically was made by Keller and Segel who recovered a traveling wave solution using a pair of
reaction-diffusion-convection equations to describe the bacterial population and the concentration of the
attractant they consume (11). While being highly influential, the Keller-Segel (KS) Model neglected cell
growth, a substantial factor in the expansion process. It further required unrealistic assumptions without

which the migrating bands would lose stability (12). Subsequent modeling efforts including cell growth
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managed to recover the stability of the bands, but their predictions did not match with major experimental
observations such as the sharply peaked density profiles and their rapid migration speeds (13—17).

Recent experimental work by Cremer and Honda et al. (18) demonstrated that the major features of
the migrating bands can be accurately captured by including bacterial growth that is independent of the
attractant. They were able to quantitatively predict the observed expansion dynamics of E. coli in soft agar
for a wide range of experimental conditions through numerical solutions to their Growth-Expansion (GE)
model (18). Their results established the role of attractants as environmental cues which bacteria exploit
independent of their possible nutritional values to promote rapid expansion.

To gain an analytical understanding on how, and in what conditions, growth, diffusion, and chemotaxis
interact to generate rapid stable traveling waves, we here perform a heuristic traveling-wave analysis of the
GE model. We derive analytic relations that describe the dependence of the expansion speed and density
profile on important molecular, cellular, and environmental parameters, including the rate of cell growth,
the diffusivity and availability of the attractants, the motility and sensitivity of the bacteria, and the limit
of attractant sensing. These relations provide the necessary mathematical framework to investigate the

consequences of population-level chemotaxis in a wide range of ecological contexts.

Growth-Expansion Model

In the GE model the evolution of the bacterial density, p, in space and time () is given by:

a —

a—’;ZDpVZP—V-(varp (L=p/pc)- [1]
The growth of the population is given by the logistic equation where r is the growth rate and p. is the
carrying capacity of the system. The non-directed run-and-tumble movement of bacteria is described by
a diffusion-like term with the motility coefficient Dp, while directed movement along the gradient of the

attractant concentration a is described by a convection term with the drift velocity v(a, Va), where
V= xoVa/(a+an). [2]

Xo is the chemotactic coefficient which describes how cells translate the sensing of the local attractant
gradients into directed movement. The value of ), depends on the strain, the internal cell state, the medium
cells move through (e.g., liquid medium or soft agar), and the type of attractant being used (19). a,,
describes the finite sensitivity of the attractant-sensing receptors (20, 21) and ensures that ¥V — 0 as a — 0.
Finally, the dynamics of the attractant are determined by its diffusion and consumption by the bacteria:
da
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where D, is the molecular diffusion coefficient of the attractant, u is the rate of uptake of the attractant by
the bacteria, and a; is the Michaelis-Menten constant describing attractant uptake. We note that the GE
model defined by Egs. 1-3 is a slight simplification of the one studied numerically in (18). However, the
simplifications do not significantly impact our results, even at the quantitative level. (see Supplemental

Figure S2 for comparison with the generalised GE model used in (18)).

Without growth (r = 0), the GE model resembles the original KS model which additionally also assumed
negligible attractant diffusion, i.e., D, = 0, and infinitesimal sensitivity in sensing, i.e., a,, = 0. The latter
assumption of the KS model is necessary for stable traveling waves (11, 12) as otherwise the portion of
the band with a < a,, is not able to migrate as fast as the rest of the band and falls behind, leading to
a gradually-diminishing and slowing band. Many models have attempted to “replenish” the bands by
including cell growth (13, 22-26) and while they are able to recover stability, they fail to reproduce the fast-
moving expansion dynamics as they take growth to depend on the same substrate that the bacteria deplete
to generate a gradient and migrate. Thus, fast expansion is only obtained when growth and chemotaxis do

not depend on the same substrate.

In the absence of chemotaxis (o = 0), the GE model reduces to the Fisher-Kolmogorov—Petrovsky—Piskunov
(F-KPP) equation which describes expansion by growth and non-directed motion alone (8, 9, 27). The
F-KPP equation has been used canonically to describe range expansion into unoccupied habitats (28-30),
including the expansion dynamics of non-motile bacteria in colony growth and long-range dispersal (31-33).
While growth and non-directed motion movement result in a traveling-wave solution with a stable expansion
speed given by cp = ZW (known as the Fisher speed) (8—10, 34), it is not sufficient to explain the high
expansion speeds of the bacterial front observed in populations of chemotactic bacteria (18). Indeed, as we
will see below, the expansion speed for the GE model can lead to expansion speeds orders of magnitude
higher than the Fisher speed.

Remarkably, while the two different reaction-diffusion models (KS and F-KPP) fail to even qualitatively
describe the experimental observation of fast-moving stable migrating bands by themselves, when combined
together they are able to to quantitatively explain the prominent features of bacterial chemotaxis for a broad

range of physiological and environmental conditions (18).

The GE model describes a system of nonlinear coupled partial differential equations (Eqs. 1-3) which
has a degree of 4 and is accompanied by appropriate initial values and boundary conditions. For our system,
we specify the initial values to be a localized profile for p (any localized profile converges to the same
steady state solution) and a uniform attractant concentration denoted by ag. In 1D and with x denoting the

spatial coordinate, we look for a stable traveling-wave solution of the form
p(x,1) =p(2), alx,t) = a(z); withz=x—ct

where ¢ > 0 is the expansion speed. This converts the system of coupled partial differential equations to
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two one-dimensional ordinary differential equations as follows:

dp d? d p da p
e =D,y & -2 4
“dz PaP ~Xg; (a+am dz) -l-rp( pe)’ 4]
2
—cd—a:Dad a—u a p. [5]

dz dz2 a+apy

In Egs. 4-5, we have taken an additional simplifying assumption that a,, = a;. For the well-characterized
model organism E. coli, the uptake and sensitivity of the major attractant aspartate are both ~ 1 uM (18, 35—

38). Relaxation of this assumption affects the results only weakly as will be discussed below.

Egs. 4-5 are supplemented by boundary conditions that describe limiting values for the bacterial density
and attractant concentration far from the front:
Zli}rgqp — Pes Zl_i}l}looa — 0; Zlg{)lop — 0, ;Lngoa — ag. [6]
Fig. 1 shows the numerically obtained steady state profiles emerging from Eqs. 4-5 using experimentally
established model parameters (18). All numerical solutions were obtained using Finite-Element simula-
tions (39, 40) (see Materials and Methods). The density profile (orange line) has a distinct peak at the
front which defines the appearance of the “migrating band” observed in experiments (5, 6, 18). and can be
divided into three distinct regimes: the Growth regime (left of the density trough), the Chemotaxis Regime
(the rising part of the density profile), and the Diffusion Regime (right of the density peak), as indicated in

Fig. 2B. Such a distinction reflects the fact that, as we will show below, in each of these regimes, either the

Growth, Chemotaxis, or Diffusion term dominates in Eq. 4 respectively.

Chemotaxis Regime

Heuristic derivation of the expansion speed. We first analyze the most striking feature of the traveling
wave, the density bulge. Initially, we consider Eqgs. 4-5 in the limit that p. — oo (this assumption will be

relaxed later). We start with the following ansatz:

p(z) =B -(a(z) +an) [7]

with 3 being a proportionality constant. This reduces Eq. 5 to a homogeneous linear differential equation in
a(z) with constant coefficients. The solution to such an equation is an exponential function, a(z) o< exp(1z),
with A satisfying

—cA =D A*—up. (8]

The ansatz Eq. 7 also simplifies Eq. 4 considerably, with the penultimate term on the right hand side now

proportional to d?a/dz*. Another consequence of the ansatz is that d% p(z)=p diza(z), a relation that will
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be used often in our calculations. With the ansatz, Eq. 4 simplifies to

—cA = (D, — /12+r(1+a—m). 9
To proceed further, we consider the case that growth is much smaller than chemotactic drift so that the term
proportional to r on the RHS of Eq. 9 may be neglected. This requires that both of the following conditions

be true: The first is a condition on the parameters such that
r<Ac, [10]

which is equivalent to assuming that the timescale of growth is much larger than the timescale of chemotactic
drift and thus the two timescales may be separated. As we will show later, this assumption corresponds to a
broad, biologically relevant parameter regime and is independent of the growth rate itself (because Ac turns

out to be proportional to r). The second is a condition on the values of attractant concentration a(z),

L [11]

a(z) > e

As we will show below, the quantity on the RHS of 11 is approximately the value of the attractant
concentration at the trough of the density profile (i.e, the left boundary of the Chemotaxis Regime).Thus,
for growth small compared to chemotactic drift (i.e., the condition 10), Eq. 9 becomes independent of a(z)
in the Chemotaxis Regime. This means Eq. 4 is a linear equation involving p(z), a(z), and their derivatives,
and it (self-consistently) admits the ansatz Eq. 7 as a solution. With the last term in Eq. 9 neglected, the

solution to A is readily obtained, i.e.,
c

B QCO_Dp7

where the solution A = 0 is rejected as it does not solve Eq. 8. In this regime, the solution to the attractant

[12]

concentration can be explicitly written as
a(z) = am exp[A - (2= zm)] [13]
where z,, is defined by a(z,,) = apn.

To obtain a relation for the expansion speed ¢ and its dependence on the model parameters, we note that
Egs. 8 and 12 are by themselves insufficient, since there are three unknown quantities: ¢, A and . To
obtain a defined solution, we thus invoke the boundary conditions at z = 4o well outside the Chemotaxis
Regime (Eq. 6) . This is done by integrating Eq. 4 and Eq. 5 from a position z = z' in the Chemotaxis
Regime to z = +oo. For Eq. 4 with p. — o0, we obtain

dp

5 i a
ep(z) = —Dpd_Z(ZT) +an(p(Z ) _d

_ P T i
D rande &) TNED, [14]

Narla etal.| 5



where N(z") = [7 p(z)dz is the total bacterial population to the right of z'. Note that Eq. 14 is exact and
independent of our ansatz. For z' located in the Chemotaxis Regime, we plug in our ansatz Eq. 7 and
Eq. 13 to Eq. 14, yielding

cB(a(zh) +am) = —(Dp — x0)BAa(z") + rN(zh). [15]

Note that while the term with growth rate r was negligible in Eq. 9, it cannot be neglected in the integral
form as it involves contributions by p(z) outside of the Chemotaxis Regime. Using Eq. 12, Eq. 15 simplifies
to

cBam =rBla(z’) +an)/A+rN(Z"). [16]

Now, while Eq. 16 provides us another equation for ¢, 8 and A, we have a new unknown, N(z"). But,

another relation for N(z") is obtained by integrating both sides of Eq. 5 from z to 4o, yielding
—c(ag—a(z")) = —Dara(z") — u[N(z") — AN(2")], [17]

where AN(z") = [T amp(2)/(a(z) + am) dz. We show in Supplemental Text S5 that AN(z7) ~ O (auB /1) <
N(z") for r < Ac. Neglecting AN(z") in Eq. 17 and using Eq. 8, we obtain

cao ~ puBa(z") /A +uN(z"). [18]

Egs. 16 and 18 allow us to eliminate N(z") + Ba(z") /A and explicitly obtain the proportionality constant

of the ansatz Eq. 7,
rag 1 _ rao

P = an 0= 1) ™ an

[19]

The explicit value of B now allows us to solve for A and ¢ using Egs. 8 and 12:

2{% I’a()/am 7 [20]
%O_Dp+Da
¢~ (o —Dp), | 10/ [21]
~ (X0 P XO_Dp_’_Da'

From Egs. 20-21, we find that the condition r < A¢ amounts to the following condition of the parameters:

D
D 5142 122]
am XO_DP

Thus, the requirement for our ansatz to hold translates to an equivalent condition on the chemotactic model
parameters that is independent of the growth rate r. As detailed below, this parameter regime is typical for

the study of migrating bands, with (o — D)) a few fold below D, for bacteria in soft agar, and comparable
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to D, in liquid medium, while a,, is several orders of magnitude smaller than ay.

Parameter dependences of the expansion speed. To validate our heuristic approach we compared the
derived relation for the expansion speed, Eq. 21, with numerical simulations, obtaining an excellent match
for a broad range of model parameters. We show the dependences on growth rate, uptake rate, background
attractant concentration and the attractant diffusion coefficient in Fig. 2.

Firstly, there is a square root dependence on the growth rate r, as validated by numerical results in
Fig. 2A. This demonstrates that the well-known square-root dependence of cr, the Fisher speed, on growth
rate is preserved in the GE model. The expansion speed is further increased by the square root of the
relative background attractant concentration, \/m (Fig. 2B). However, the expansion speed ¢ does not
depend on the specific rate of attractant uptake u (Fig. 2C) nor the inoculum population size (as the steady
state bulge size is an emergent property, independent of the initial population size). The independence on u
is particularly counter-intuitive since it is the uptake of attractant that establishes the attractant gradient
which in turn drives the chemotactic movement. The independence on u is in contrast to the KS model,
which predicts that ¢ = UNkg/ag (Where Nk is the inoculum population size), but is in agreement with
experimental results (5, 18). We will show below that our solution for ¢ can be similarly expressed in terms
of u and Ny, the size of the density bulge. But unlike the KS solution, Ny is here an emergent quantity that
turns out to be inversely proportional to (. Thus, the dependence on i ‘cancels’ out, making the expansion
speed independent of L.

The most nontrivial aspect of Eq. 21 is perhaps the predicted dependence of the expansion speed ¢ on the
attractant diffusion coefficient D, (Fig. 2D) which was not considered in most previous models (11, 12, 41,
42). Although this dependence itself is not so strong, it significantly affects the dependence of ¢ on the
cellular motility characteristics as we discuss next.

To see how the expansion speed depends on the cellular motility parameters Dy and o we first note that
Dy and Y result from the run-and-tumble dynamics and are thus both proportional to vgr, where v is the
run velocity, and 7 is the average duration of runs. The ratio ¥ /D, results from the properties of the flagella
motor, the ligand/chemotactic receptor interaction, and the chemotactic signaling network (19). To better
describe the differences, we here define the chemotactic sensitivity, ¢ = (o — Dp) / D,, a dimensionless
parameter such that a large value of ¢ represents a strong chemotactic response to a ligand. Notably, D,
can vary across a broad range depending on the environment, with Dy ~ 50 um? /s for E. coli swimming
in soft agar (18), and D, ~ 1000 um? /s in liquid media (43). In contrast, ¢ is not expected to be affected
by environmental obstacles but by the chemotactic properties of the cell and the type of attractant, and is

found to vary from from 1 to 5 (19). We can thus keep ¢ and D, as independent parameters and write the

N rap/am
cND,,m/D—pngrDa. 23]

The predicted comparison with numerical solutions confirms the dependence on the cellular parameters:
Notably, for high cellular motility, Dp ¢ > D,, Eq. 23 gives ¢ = \/Dp@rag/an, as seen in Fig. 3A-B (the

expansion speed, Eq. 21, as
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solid dark blue lines show the analytical prediction for ¢ = 5). The thick cyan lines show a square root fit.
On the other hand, in the range Dp¢ < Dy, ¢ o< Dp ¢ \/m and thus, has a linear dependence on the
motility parameter and the chemotactic sensitivity (thick yellow lines).

The dependence of the expansion speed on the value of D, (Fig. 2D) and its relation to D, (Fig. 3) reveals
a crucial role of the molecular diffusion of the attractant, which has historically been assumed to be of a
much smaller scale than the motility-induced bacterial diffusion and chemotaxis (11, 12, 14, 41, 42, 44, 45).
Large D, can be understood to result in a “smoothening” of the attractant gradient, thereby slowing down
chemotaxis. In fact, for extremely large values of D,, we note that the bacterial population is unable
to establish a gradient in the attractant concentration and our analysis fails to hold as seen in the self-
consistency condition Eq. 11. Quantitatively, the molecular diffusivity (D, ~ 800 um? /s) well exceeds
the chemotactic coefficient and the effective cell diffusivity of E. coli in soft agar (D, ~ 50 umz /s) (18).
Hence, the condition Eq. 11 is satisfied for ay > 4a,, ~ 4 uM; thus explaining the deviation seen at small
ao/ap for Dy =50 um? /s (see red circles in Fig. 2B).

We also verified the dependence of the expansion speed on ¢ itself for ¢ > 1 (Fig. 3B). For ¢ < 1, the
numerical values do not match the analytical values as they are beyond the regime of self-consistency
discussed above. In this case, the traveling-wave solutions transition to the pulled wave dynamics of the
F-KPP equation, with a lower bound on the expansion speed given by the Fisher Speed (cr = 2@); see
Supplemental Figure S3.

Effect of carrying capacity. Next, we consider the effect of a finite carrying capacity p. and the corre-
sponding effect on expansion. To do so, we follow a similar approach as above; see Supplemental Text S6

for details of the calculations performed. Incorporating the effect of p. lead us to the following form for the

D
c=co/ 140 DoV a0 [24]
HPc (Dp¢ +Da> am

where c.. is the expansion speed for infinitely large carrying capacities, p. — oo as given by Eq. 21, and vy is

expansion speed,

a dimensionless function determined by the shape of the density bulge. While we are unable to determine
the exact functional form of 7, we find an excellent agreement between the numerical results and analytical
solution for the best-fit value of ¥ (found to be y = 0.26 for D, = 50 um?/s and y = 0.36 for 1000 pm?/s)
as seen in Fig. 4A.

An intriguing prediction of Eq. 24 is a peak in the relation between ¢ and ap whose existence is
numerically confirmed (Fig. 4A). Thus, too much attractant actually reduces the expansion speed, i.e.,
the expansion speed of the population cannot be arbitrarily increased merely by increasing the ambient
attractant concentration, but is limited ultimately by the physiological and molecular parameters.

To understand this non-monotonic dependence, we note that in Eq. 24, the effect of p. is insignificant
for p. > ra% /(Han) = B -ap, i.e., if p. is large compared to the highest density expected from the ansatz
Eq. 7 when a(z) — ag. For sufficiently large ag such that p, < Bag, the quantity up./r (which describes

the amount of attractant taken up by bacteria at the peak density, where p(z) ~ p., in one doubling time)
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becomes small, and the population is unable to take up the attractant fast enough to generate a substantial
gradient in a(z). The lack of a substantial gradient in turn leads to mitigated expansion speeds. We note that
the existence of a peak in expansion speed for varying background attractant concentrations was observed
experimentally and reported already over 30 years ago (18, 46), but was believed to be due to receptor
saturation. Our analytical solution in Eq. 24, validated by simulation (Fig. 4A), provides an excellent
quantitative explanation of this phenomenon even in the absence of receptor saturation. We note that
for small p.,Eq. 24 simplifies to ¢ o< \/m. Thus, for small carrying capacity, ¢ increases with y and

decreases with ag, qualitatively similar to the relation found by Keller and Segel (c o< 1 /ag).

The attractant concentration for the maximum expansion speed is found to be

agnax B upc Da
=14 5)

and is validated numerically in Fig. 4B. The corresponding maximum expansion speed is ¢max = Coo(do =

ag™)/ /2, and the corresponding carrying capacity is proportional to (aglax)z. Thus, for the population to
maximize its expansion speed at high attractant concentrations, a very high carrying capacity is required.
As the carrying capacity is typically no more than a few OD for aerobically grown cells, the attractant
concentration for the maximum expansion speed, ay®*, is not expected to be above ~ 0.1 mM; see Eq. 25
and Fig. 4A. This result provides a further explanation for the origin of slow expansion speeds typically
obtained for populations growing on substrates that serve as both the attractant and the nutrient (18): To
support substantial cell growth, the nutrient concentration needs to be substantial, i.e., 5 ~ 10 mM. But if
the nutrient is also the attractant, then the expansion speed for such high attractant concentrations would be
substantially less than the maximal expansion speed (see Fig. 4A). This effect likely underscores why it is
so advantageous for the nutrient and the attractant to be decoupled as shown experimentally by Cremer and
Honda et al.

Case of a; # a,,: If we relax the assumption that a; = a,, and take as our ansatz p(z) = B(a(z) + ax), we

note an additional term in Eq. 9 that is of the order

(am - ak)‘lma(Z)
(a(z) +ax)(a(z) +am)?

[26]

relative to the dominant chemotactic drift term. It is due to this term that our ansatz Eq. 7 fails to hold
if ay # ap. A similar term is found in Eq. 17. While trivially negligible if a; = a,,, the terms are also
negligible for a(z) > ay,a,, and as a(z) — 0. Thus, we expect our analysis of the Chemotaxis Regime (and
the Growth Regime which we perform below) to also be applicable for the case that a; # a,, as long as
a(z) > ag,an,. However, when a(z) ~ a,, ~ (a, — ax), our ansatz won’t hold and the value of a(z) where
p(z) switches from being relatively constant as in the Growth Regime to rising exponentially as in the

Chemotaxis Regime is undetermined by our current analysis. We expect the transition to be at na,,, between
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ai and a,,, as both of these values are crucial in determining the transition in p(z). The coupled nature of
p(z) and a(z) make it difficult to determine 71 exactly. Such an assumption leads to a similar expression
for expansion speed, but where na,, replaces a,, in the final form. We find an excellent agreement with
numerical results for a; # a,, for just one fitting parameter, 71, which we find to be approximately 2/3 for
a, =0.1 uM = 10a,,, and n =~ 3 for a; = 10 uM = 0.1a,,. The range of exponential speeds for different
values of a; while keeping a,, fixed at 1uM is shown in Fig. SA, 5B. Notably, c is seen to decrease only
two-fold for a 2000-fold increase in ay, from 50 nM to 100 uM for standard parameters (Fig. 5B), while if
both a; and a,, increase 2000-fold, ¢ would decrease 45-fold (see Fig. 2B).

Diffusion Regime and the Density Peak

Next, we describe the dynamics of the propagating density profile at its asymptotic front. This is the
Diffusion Regime which lies to the right of the density peak (Fig. 1), where the exponential increase of
the concentration of the attractant observed in the Chemotaxis Regime is curtailed by the right boundary
condition, i.e., a(z — o) — ag. Here, the drift velocity becomes v o< d%a(z) /ap — 0, and thus negligible as
7 — oo. The equation for p(z) is no longer affected by the attractant, and the dynamics are thus described

by the F-KPP equation. The solution is
cDi—\/c2 —4rDp
D [27]

2D, ’

p(z) = poexp(—Apz) with Ay =

where py 1s a proportionality constant (see below) and cp is the speed of propagation of the asymptotic

front.

For the front to be a part of the stationary solution that propagates at the same speed as the Chemotaxis
Regime, ¢ (Eq. 21), we must have cp = ¢, which well exceeds the F-KPP speed, cp =2, /rD,. Itis well
known for the F-KPP equation that if the dynamical system admits a uniformly translating front solution
with cp > cF, then the front solution corresponding to the traveling speed cp is the stable solution (10). And
for the case that the front is asymptotic, the initial conditions are compact, and the right boundary condition
is the unstable state, p(z — o0) = 0), the steeper front solution is selected for (10) (see Supplemental Text

S7A for a brief description). Thus, our dynamical system selects for a solution with the leading asymptotic

cp+/c? —4rDp
Ap =25 D ~cp/Dp [28]

2D,

behavior given by

for the Diffusion Regime.

We then turn to the form of a(z) in the Diffusion Regime. As a(z) — ap > ay, in this Regime, Eq. 5

becomes 2
da d“a
0 g, = Daga ~HPoexp(=An2) 2
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This is a non-homogeneous linear differential equation in a(z) with the solution

a() = a pexp(—Apz)

0— R P —ayexp(—cpz/Dy) [30]

where a; is an undetermined constant of integration. The leading behavior is determined by whichever

exponential term decaying more slowly: For Ap > ¢p/D, (or Dy < D),

ap —a(z) o< exp(—cpz/Dy), [31]

while for Ap < ¢p/Dy (or Dp > D),

ap — a(z) «< exp(—Apz). [32]

Growth Regime and the Density Trough

Next, we turn to the Growth Regime which is the region with exponential density profile trailing the density
bulge (Fig. 1B). In this Regime, the increase in p(z) as z — —oo drives the attractant concentration to zero

according to Eq. 5, i.e., a(z) — 0, da(z)/dz — 0 as z — —eo. Consequently v(z) — 0 and

d

d <v<z>p<z>>\ <. |

dz 53]

dz

in the Growth Regime, sufficiently to the left of the density trough. In the next section, we will quantitatively
define the condition where the v term is negligible compared to c¢. Here we briefly describe characteristics
of the solution when this condition holds.

Eliminating the term associated with chemotactic drift removes the dependence of p(z) on a(z) in Eq. 4,
with the only remaining processes determining p(z) being growth and diffusion. Thus, we recover the

F-KPP equation, with the solution p(z) e exp[—AZ z], where

2 —4Dpr
AE=-6 4 VO : [34]

2D, 2D,

¢ being the traveling velocity of the Growth Regime. As in the Diffusion Regime, here ¢ must be the
same as c, the speed of the Chemotaxis Regime, in order for Eq. 4 to admit a stationary solution. Since
¢ > cp =2,/rDp, the two solutions are lér ~r/c < Ar and A; =~ c/Dp > Ar for yo > Dp. Itis well
established for the F-KPP equation that for a solution to move stably at a speed exceeding cF, its front must
be shallower than Ag; see (47) and Supplemental Text STB. Hence /ICJ{ is selected. Thus, the form of density
sufficiently to the left in the Growth Regime must be given by

pG(z) = prexp[—Ag-2], withAg=AZS ~r/c, [35]
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p1 being a proportionality constant that sets the z-scale as will be specified below.

To understand how the front of the Growth Regime is “set”, we focus on the transition region between the
Growth and Chemotaxis Regimes (located close to the density trough). A magnified view of this transition

region is shown in Fig. SA, with the location of the density minimum defined to be at zyjp.

Previously, we have shown that for z > z,, (defined by a(z,,) = @, Fig. 5A) in the Chemotaxis Regime,
cell density is given by the ansatz Eq. 7, with the attractant concentration a(z) given by Eq. 13. We showed
that the validity of this ansatz required a(z) > (r/Ac)an, i.e., Eq. 9. However, even with r < Ac, this
condition will eventually breakdown for a(z) < ay, for z < z,,, including possibly the vicinity of zy;,; see
Fig. SA. Thus, in order to address the density profile in the transition region, we cannot rely on the ansatz

Eq. 7 anymore.

Here we extend our ansatz to a new form which we will show to be valid for both the Chemotaxis and

Growth Regimes, including all of the transition region:

p(z) = Bla(z) +am] - exp[—Ac - (z—2zm)]. [36]

Clearly for a(z) < an,, Eq. 36 recovers the form of density established for the Growth Regime, i.e., Eq. 35,
with p; = Baye’e™. For a(z) > a,, where a(z) is given by Eq. 13 in the Chemotaxis Regime, Eq. 36
becomes

p(2) ~ Pa(z)-e 2o ) = Ba,, - e* Pl ) 2 Ba(2),

where the last approximation results from Ag < A for our parameter regime r < Ac. Furthermore, we
can verify that the new ansarz Eq. 36 satisfies Eq. 4 for intermediate range of a(z), leaving behind a linear
equation for a(z) that is the same as that obtained in the Chemotaxis Regime, with the same solution Eq. 13;

see Supplemental Text 7TB. Our new ansatz thus leads to the following form for the cell density
p(2) = Bay 1+ M| ~alean), [37]

which we claim to be valid for the entire regime — < z < z,, (for r < Ac), including the vicinity of the

density trough located at zpyjp.

We can now use the expression given by Eq. 37 to work out characteristics of the solution in the transition

region. By setting diz p {Z:Z ~ =0, we obtain (for r < Ac):
A
@mz%—xlm(f), [38]
.= ) — r _(Zmin_zm)’r/c ~
Pmin —P(me) —ﬁam' 1+E e NBarm [39]
r
Amin = a(zmin) =dam 'eXPM : (Zmin - Zm)] = Eam- [40]

These results are validated numerically for a range of parameters; see Fig. 5B-5D.
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We can determine the left boundary of the transition region, z,,, by finding the range of z < z), where
Eq. 37 is described by the simple exponential form Eq. 35 (dashed green line, Fig. SA). This can be

estimated by setting the asymptotic form

pc(z) = lim p(z) = ﬁame—lo(z—zm) (41]

z——o0

to PG(z),) = Pmin- Using Eq. 39 for pyin, we find

r

2 =Zmin—A 'ln (E) . [42]

In other words, Eq. 41 can be written as pg(z) = pmine’lG(Z’Z;"). Note that because Ag(zmin —2,,,) < 1
according to Eq. 42 for r < Ac, p;(2) & Pmin for 2, < z < Zmin, 1.€., the density function on the left side of
Zmin 1S constant with relative variation of the order of r/Ac. [We can verify the self-consistency of the new
ansatz Eq. 37 by using it to compute the drift velocity dv(z)/dz and hence evaluate the spatial domain where
the condition 33 is satisfied. We find that 33 is satisfied for e*(@in=2) > 1 or z < zmin — A ' In(Ae/r),
which is the same as the condition 42.]

To summarize, the transition region between the Chemotaxis and Growth Regimes range from z,,, < z < z
where the distance from zy,;, to z, and z), are given by Eq. 38 and Eq. 42, respectively. The total width of
the transition zone is

W= — 2y = %ln(lc/r). [43]

Note that the time it takes for the wave-front to migrate across the transition region is 7 = w/c. Thus,
the key condition for our results, r < A¢ corresponds simply to r7 < 1, i.e., a separation of time scale
between expansion and population growth. This is a condition which we expect to hold for most expanding

populations.

The Growth-Leakage Balance

We can finally use the explicit solution for p(z) to connect the dynamics in the Chemotaxis and Growth

Regimes. We consider the total bacterial population to the right of a position x = z+ ¢t, which is co-moving

with the population: N(z;¢) = [.1%,dx'p(x’,t). The change in N(z;) over time is given formally by
dN N -
E:—J(z;t)—krN(z;t), [44]
where
dp

J(z;t) = (c—v(z+ct,1))p(z+ct,t)+ D, =

z+ct
obtained from taking time derivative of N using Eq. 1, is the “leakage flux” which includes the loss of cells

across the position x = z-+ ct in the lab frame due to chemotaxis and diffusion, and the last term in Eq. 44
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describes the growth of the cells in the region x > z 4 ct.

In the absence of growth r = 0, Novick-Cohen and Segel (12) showed that incorporating the lower Weber
cut-off to the KS Model led to the loss of cells from the front, and subsequently the slowdown of the
migrating wave-front. We see from Eq. 44 that the incorporation of growth, even at very low rates, allows

the migrating wave-front to “replenish” itself and thereby maintain stability.

In the stationary state (%N = 0), quantities in the moving frame have no time dependence, i.e., N(z;¢) =

N(z). Therefore,
dp
rN(z) =J(z) = (c—v(z)p(2) + Dp_—
which is just Eq. 14 with v(z) given by p(z) and a(z) that solve the stationary equations, Eq. 4 and Eq. 5.
Earlier, we solved Eq. 14 using the ansatz Eq. 7 that holds only in the Chemotaxis Regime with z > z,,. We
can repeat the calculation using Eq. 37 and Eq. 13 derived from our new ansatz Eq. 36. We find the leakage

flux to be very weakly z-dependent in the vicinity of the density trough, i.e.,
J(2) =Jo-[1+O(r (zmin —2)/c)]  forz, <z<zm.

where
X

Jo= J(Zmin) = CPmin ° |:1 :| ~ CPmin- [45]

Since |z — zmin| < A~ 'In(A¢/r) according to Eq. 38 and Eq. 42, we conclude that J(z) is within the order
r/(Ac)In(Ac/r) < 1 around Jy. Consequently, N(z) is nearly z-independent also, reflecting the sharply-
peaked structure of the density front. For convenience, we define Nog = N(zmin) as the size of the population

in the density bulge. The above results then lead to an important biological relation
rNo = Jo, [46]

with the bulge size given by
No =Jo/r = cPmin/T. [47]

Eq. 46 describes a balance of the growth of the cells in the front and their leakage behind the front, as
depicted in Fig. 6. At a given instance (time fg), the wave-front is shown as the dashed red line in the
lab frame. The front region, comprised of Ny cells, grow at a rate rNy. This growth is balanced by cells
leaving the front (i.e., across the black dashed line indicating xo = z,, + ctp), with flux Jy = —cpPmin- At
some time Ot later, the front has traversed a distance dx = c- 6¢. The total amount of cells leaving the
front during this time is 8N = Jydt. The corresponding density of the cells left behind the propagating
front is SN /Ox & Ppmin (shown as the purple region in Fig. 6A). The cells left behind will grow at the rate r.
For 6t much smaller than the doubling time, the density behind the front will not have grown much and
thus remain at ~ pp,i, (Fig. 6A). We have shown that this is the case for the time it takes for the front to

traverse the width of the trough region (Eq. 43). After a time Az large compared to the doubling time, the
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population size at the back will become p(xo,t) = p(x0,t9) €™ = p(xo,t0) e (t=10) (Fig. 6B). Given that
to = (X0 — zZmin)/c, we have
r
p(0,1) ~ Prinexp [~ (x0—er)]. (48]

Thus, the trailing exponential density profile Eq. 48, while looking like a moving front, is merely a result of
the exponential growth of a stationary population, which is seeded by the traveling wave-front at density
Pmin and speed c.

Finally, we note that the picture depicted in Fig. 6A can be used directly to predict the value or ppi,
without going through detailed calculation: Since the bacteria are concentrated in the density bulge, the
removal of the attractant is almost entirely due to uptake by cells in the density bulge. This gives us the
mass-conservation condition™

UNy = cay. [49]

The growth-leakage balance rNy = Jy then gives Jy = caopr/ . The consideration described in Fig. 6A then
immediately gives the result that the density left behind the front bulge, which would be ppy,, is given by
Jo/c = apr/u. Thus, we obtain a surprisingly simple result,

Pmin ~ aol’/,u [50]

independent of the other details of the system.
We can also use the expression for pp,;, thus obtained to calculate the consumption of attractant around

the density trough. Using p(z) = Pmin and a(z) from Eq. 13, Eq. 5 becomes

— A =DA% HPmin _p a2 40 [51]

am am
This relation together with the proportionality between A and ¢, Eq. 12, immediately gives the central
result on the expansion speed, Eq. 21. This simple line of consideration reveals the underlying origin
of the dependence of the expansion speed on ag/a,,: The growth-leakage balance relates the ambient
concentration ag to the trough density pnin (Eq. 50), and the balance between attractant uptake uppi, and

drift/diffusion at the trough relates ¢ and A to ppi, and ay,.

Discussion

To reveal the underlying dynamics governing chemotaxis-driven population expansion, we analyzed the
experimentally verified GE model mathematically (18). Following an extensive traveling-wave analysis, we
were able to describe the density and attractant profiles throughout the Chemotaxis and Growth Regimes
(Fig. 6, Eq. 36 and Eq. 13). We determined the expansion speed (Eq. 21), and through it, the value of
*This relation can also be obtained systematically from our solution by using pmin =~ Ba,, (from Eqg. 39) and the expression

for B from Eqg. 19 in Eq. 47. Since the result for B was invoked, it involves the approximation made following Eq. 17. This
reflects the fact that in arriving at Eq. 49, we assumed that attractant uptake is always saturating.
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the slope A which specifies the width of the migrating band (Eq. 20). Our results, which are in excellent
agreement with numerical simulations for a broad range of model parameters tested (Figs. 2-6), recover
many key experimentally-observed relations of the expansion speed to biological and environmental
parameters (18) that previous models based on the KS model had failed to capture (14, 15). Notably, while
our model agrees with the KS model near the density bulge, with the same relation between expansion
speed and the size of the peak (¢ = uNp/ap, Eq. 49), the size of the peak itself is not a constant as in
the KS model, but an emergent quantity. Consequently, expansion speed depends on many of the model

parameters.

Firstly, the expansion speed depends on the ratio of the initial attractant concentration to the lower limit of
attractant sensitivity (i.e., ¢ o< \/ao/—am) for large carrying capacity. For finite carrying capacity our analysis
predicts the non-monotonic dependence of expansion speed with initial attractant concentration, providing
an explanation for this long-known experimental observation (46): For lower attractant concentrations,
increasing concentration increases the size of the bulge hence promotes faster expansion. But for higher
concentrations, the carrying capacity limits the size of the bulge and expansion speed decreases with
increasing attractant concentration as it takes longer for the bulge to consume the attractant and establish
a gradient (Eq. 24 and Fig. 4A). The same effect is likely responsible for the slow expansion speeds
observed when the nutrient and the attractant are the same substance (18), since to provide sufficient boost
to cell density, a high concentration of nutrient is desired, while if the nutrient is also the attractant, a high
concentration of the latter is detrimental to expansion. Thus, this provides a population-level justification
for the physiological observation of the separation of the role of a substrate as a nutrient from its role as an
attractant (18).

Secondly, our results reveal a dependence of the expansion speed on the diffusion of the attractant (D,,
Fig. 2D). The effect of multiple diffusion coefficient-like parameters (D, Xo, and D,) is one of the reasons
the GE model is difficult to analyze. In Cremer and Honda et al., a scaling theory was developed to describe
the dependence of the expansion speed on the chemotaxis coefficient yo (18). Assuming that ¥y was the
main relevant factor, the scaling theory predicted that ¢ o< ). Our analysis here reveal that ¢ o< (o — D))

holds for large D, but ¢ o< /o — Dp for small D,; see Fig. 3.

The analytical understanding attained in this work quantitatively supports the role of chemotaxis in range
expansion found by Cremer and Honda et al. (18). Particularly, bacterial chemotaxis does not necessarily
occur to fulfill an immediate nutritional need, nor does it necessarily reflect an attempt to avoid starvation.
For example, cells move chemotactically towards attractants they cannot metabolize and also swim in
nutrient-replete conditions (5, 7, 18). Instead, chemotaxis could be hard-wired to promote the expansion of
bacterial populations into unoccupied territories well before nutrients run out in the existing environment;
low levels of attractants thus act as aroma-like cues that establish the direction of expansion and enhance
the speed of population movement (18). Subsequently, cells left behind by the migrating band fully occupy
the region behind the front by growing at the rate determined by nutrient availability. This allows the

population to expand rapidly into unoccupied territories while still colonizing the territories it has traversed,
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without one compromising the other.

Our results also expand upon the general theory of front propagation into unstable states and reveal a
novel mechanism for speed selection. While many studies of front propagation involve modification of
the non-linear growth/reaction term in the original F-KPP equation (10, 48, 49), our model considers a
drift term which is a functional of an environmental variable, the attractant concentration. Though the
canonical results pertaining to the F-KPP equation are not expected to hold in such a two-variable system,
the dynamics in the Growth and Diffusion Regimes in our system are effectively described by the F-KPP
equation. While the expansion of an F-KPP wave-front “pushed” by the bulk (as in the Diffusion Regime)
at rates much higher than the stable Fisher speed has long been known (10, 27), our results demonstrate
how F-KPP wave-fronts can also be “seeded” by a transition regime at the front (as in the Growth Regime)
to attain large expansion speeds. Alternatively put, we can think of chemotaxis in the leading density bulge
as a “trick” the population uses to propagate faster than predicted by F-KPP equation based on growth and
diffusion alone.

Our analysis assumes a separation of time scales between growth (slow) and chemotactic migration
(fast), i.e, 1 /r > 1/Ac, indicating that cell growth is negligible over the time scale the population migrates
across the width of the density bulge given by 1/A. This condition is fulfilled for a broad parameter regime
(22) and particularly holds for chemotactic bacteria. However, we note that relaxing this assumption in
future work would be helpful to understand the regime where the chemotactic bias is small, i.e., when
Xo — Dp where 22 breaks down. Numerically, we find that as ) is reduced to the order of D, or smaller,
the expansion speed approaches the stable Fisher speed cr (Supplemental Figure S3), which is the expected
speed for a “pulled” wave solution determined by the asymptotic front (10). A solution to the GE model that
includes the small- ) regime would provide an analytical connection to the F-KPP equation and thereby
provide insight on the transition from the “pushed” and “seeded” dynamics observed when r < Ac to the
well-established “pulled wave” dynamics (10, 31, 50, 51).

Finally, we note that the biological features underlying chemotaxis-driven population expansion, in-
cluding sensing, directed movement, and the modification of environmental conditions, should be generic
to many motile organisms. The traveling-wave solutions of the GE model presented here may thus be
employed to understand the growth-expansion dynamics of different organisms in diverse ecological

contexts.

Materials and Methods

To generate all of the numerical results, finite element simulations of the system of equations were performed using
FeniCs, a computing platform for solving partial differential equations (PDEs). A 1D mesh of resolution 15-50 um
was used to simulate a moving window of 30 mm (or 120mm for very fast fronts). Finite elements of Z23A° type
were used.

The initial bacterial density was specified with p(x,¢) = (tanh((1 —x?)) + 1) x 0.029/2 in order to initiate a

sufficiently localized initial population with a differentiable functional form. The initial attractant concentration
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was specified to be constant everywhere. Neumann boundary conditions of zero flux were specified on both ends
of the simulation domain. A difference equation was then solved to approximate the differential equation in time
using a small time step (typically between 2 and 25 seconds) The resulting solutions were recorded and used for the
subsequent iteration of the difference equation.

In order to obtain high spatial and temporal resolutions simultaneously, a moving window technique was utilized.
In the moving window technique, only a 30mm (or 120mm for very fast fronts) interval was simulated at a time. But
when the front of the wave had gone beyond a certain threshold in the simulation domain, the simulation domain was
was translated to the right and the attractant concentrations and bacterial densities were extrapolated for the sections
of the new simulation domain for which the values weren’t previously known. This technique holds very well as long
as a threshold sufficiently far from the right end of the domain is chosen (this is also desirable to ignore edge effects)

such that the linear extrapolation is correct within numerical resolution.

To analyze the simulations and extract the expansion speeds, the position of the maximum drift velocity was
recorded for each timestep. A linear fit over time was then employed for the position to obtain the expansion speed.
The fit was also curated manually to ensure that the expansion speed was calculated using a period of steady and

constant expansion.
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Fig. 1. Profiles of bacterial density (solid red line, in ODg), drift velocity (dashed green line, in mm/hr)
and attractant concentration (dotted blue line, in mM) for a steadily expanding population 14.5 hours
after the inoculation. Arrows indicate the different regimes used in the analytical consideration. Model

parameters used are adapted from those determined in Ref. (18) and are provided in Supplemental
Table S1 (this simulation used the low motility parameters).
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Fig. 2. Dependence on growth-rate r (A), uptake-rate u (B), relative attractant levels ay/a,, (C), and
attractant diffusion D, (D). Analytical relation for the expansion speed Eq. 23 is shown by solid lines
(Dp = 50,1000 um? /s in red and blue, respectively). The corresponding Fisher speeds, cr = /7 Dp,
are denoted by corresponding dashed lines. Numerical solutions of the GE model (Egs. 4-5) are
shown by corresponding symbols. Unless specified, all parameter values are the default values given
in Supplemental Table S1.
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Numerical solutions for ¢ =1 and ¢ =5 are shown by red circles and dark blue circles, respectively.
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dashed line represents the stable Fisher speed, cr = 2,/D,r, the minimum expansion speed of our
system. B. Dependence on the chemotactic sensitivity, ¢. Numerical solutions for D, = 50 um? /s
and D, = 1000 um? /s are shown by red and dark blue circles, respectively. Analytic solution following
Eq. 23 are shown by the corresponding solid lines. Thick yellow and cyan dashed lines are best fits for
the respective values of ¢ and D, to demonstrate that ¢ < D, ¢ for D¢ < D, and that c < /D, ¢ if
D, ¢ is large compared to D,. Unless specified, all parameter values are the default values given in
Supplemental Table S1.
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Fig. 4. Effect of Carrying Capacity. A. Dependence of expansion speed on the ambient attractant
concentration when the carrying capacity is finite ( p. = 10 ODg¢og). Markers (red circles and blue
triangles) indicate numerical values, solid lines indicate analytical predictions as per Eq. 24, and

dashed lines indicate analytical predictions with p. — 0. All results in red are for D, = 50 um?/s
and all results in blue are for D, = 1000 um?/s. B. The ambient attractant concentration resulting in
maximum expansion speed g'®* is shown depending on the dimensionless parameter up./(ra,). The
analytical solution, Eq. 24, is shown as corresponding solid lines. Dashed lines show the solutions
(ce) Without a limiting carrying capacity (p. — o; as shown in Fig. 3). Different symbols in (B) denote
which model parameter was varied from its default value (square if u, circle if p., triangle if r, and
diamond if a,,) for D, = 50 um? /s (red) and Dp = 1000 um? /s respectively. For details please refer to
Supplemental Methods and to Supplemental Table S2 for range of values used for each parameter.
Parameters have the default values from Supplemental Table S1 unless specified.
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Fig. 5. Effect of varying Michaelis Constant, a;. A. Dependence of expansion speed on the chemotactic
sensitivity, ¢, for different values of a, and D, = 50 um?/s. Solid lines indicate analytical solutions
for corresponding best fit values of 1, and markers denote the numerical solutions. Results for
ar=0.1 uM, 1 uMand10 uM are shown in yellow, red and blue respectively. B. Dependence of the

expansion speed on model parameter a;. The numerical solutions obtained for D, = 50 um?/s, ¢ =5

are represented by yellow triangles, and the analytic solution found in Eq. 21 for a; = a,, = 107> mM
is shown by the red line. Parameters have the default values from Supplemental Table S1 unless
specified.
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Fig. 6. Transition from the Chemotaxis to the Growth Regime. A. steady expansion profiles of
p(z) (solid red line) and a(z) (solid blue line) for the standard parameters (Supplemental Table S1;
Dp =50 um?/s, xo = 300um?/s). The profile of p(z) as predicted by the ansatz Eq. 7 is shown using
the dashed green line. Dashed horizontal lines indicate distinct values of a and p as indicated. B-D.
Numerically obtained values of a(zmin), P (zmin), @and z,, — zmin for a broad variation of parameters;
seven model parameters in Egs. 4-5 (other than the carrying capacity, which was > 1000 for all results
here) were varied across many decades (see Supplemental Methods for details of what was done and
Supplemental Table S3 for the range of values investigated). Blue lines show y = x to demonstrate
agreement with the predicted values of a(zmin), P (zmin), and Zy, — Zmin-
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Fig. 7. Schematic of the dynamics of the transition between Chemotaxis and Growth Regimes. A. In
a short time &¢, the density bulge shown near x, (dotted red line) moves forward to be near xo + ¢t
(solid red line). In that time, the density bulge grows by an amount rNyét and is diminished by “leakage”
given by an amount Jyo¢. During steady expansion, these values match as stated in our ansatz (Eq. 7
and Eq. 36). The “leaked” cells are deposited behind the density bulge where the bacterial density
is roughly constant for a distance dx (thus, p(xo,% + 0t) ~ pmin, and the total deposition over time
ot, given by 8N, is also equal to Jyoz. B. After a long time Az, the density bulge moves to be near a
position xo + cAt (dashed red line). Cells behind the density bulge grow at a rate r and the density thus
accumulates as p(xq,7) = Pminexp(rAt)
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Supplemental Methods

All of the numerical results shown in the main text were generated using the finite element method (FEM).
Numerical simulations of the time evolution of the system of partial differential equations (PDEs) were
performed using FeniCs, a computing platform for solving PDEs (1-28). A 1D mesh of resolution 15 um
was used to simulate a moving window of 30 mm (explained below). Finite elements of Z3A° type were
used. The shape function space for 223A° consists of all differential 0—forms with polynomial coefficients
of degree at most 3, and has dimension 4. The degrees of freedom are given on line segments by moments

of the trace weighted by a full polynomial space:
u— /(trfu) Nq, q € ﬁzl\l(f).
f

The initial bacterial density was specified with p(x,#) = (tanh((1 —x?)) 4 1) x 0.029/2 in order to initiate
a sufficiently localized initial population with a differentiable functional form to avoid singularities. The
initial attractant concentration was specified to be constant everywhere (with a value of ag that was an
important model parameter). Neumann boundary conditions of zero flux were specified on both ends of the
simulation domain. A difference equation was then solved to approximate the differential equation in time
using a small time step (typically between 2 and 25 seconds) The resulting solutions were recorded and
used for the subsequent iteration of the difference equation.

As expected, more accurate solutions (with a smaller error in the goal functional) were obtained for
higher-resolution simulations, for both spatial and temporal resolution. In particular, lowering the saturation
constants for the different reaction and convection terms (i.e., increasing the sensitivity) required substantial
increases in the spatial and temporal resolutions. In order to obtain high spatial and temporal resolutions
simultaneously, a moving window technique was utilized.

In the moving window technique, only a 30mm window was simulated at a time. When the front of the
wave had gone beyond a certain threshold (chosen to be 60-75% for our system) in the simulation domain,
the simulation domain for the subsequent iteration was then translated to the right by the distance that the
front had moved in the last timestep. The attractant concentrations and bacterial densities were extrapolated
for the sections of the new simulation domain for which the values weren’t previously known (which are
just the boundary values and are near constant at steady state for our model formulation). This technique
holds very well as long as a threshold sufficiently far from the right end of the domain is chosen (this is also
desirable to ignore edge effects) such that the linear extrapolation is correct within numerical resolution.
Further, this method requires a smaller time interval (especially for fast-expanding solutions) to ensure that
the simulation window isn’t translated too much in each timestep.

To analyze the simulations and extract the expansion speeds, the position of the maximum drift velocity
was recorded for each timestep. A linear fit over time was then employed for the position to obtain the
expansion speed. The fit was also curated manually to ensure that the expansion speed was calculated using
a period of steady and constant expansion speed.
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Variation of parameters for Fig. 4B: For Fig. 4B, the value of ag that maximizes c for different values
of r, ay, pe, and u was sought. To do so, the values of r, a,,,, p., and pt were varied over the ranges given in
Table S2 and while the other values were fixed as given in Table S1 (with the exception of p. that was set
at 10 OD unless it was being varied.) Once all the data was generated, we found the value of ag between
1073 — 10 mM that led to the greatest value of ¢ and plotted the corresponding value of ag/a,, against the
corresponding value of pp./(ray,) while denoting the parameter varied with a marker as specified in the
legend of Fig. 4B.

Variation of parameters for Fig. 6B-D: For Figs. 6B-D, all of the data generated for this work was
collated and the empirically determined values of amin, Pmin, and Z; — Zmin Was plotted. This involved over
200 data points in which the following 7 model parameters were varied: Dp, X0, @m, 1, Dg, U, and ag. The
ranges of values over which these parameters were varied is given in Table S3. Only results with p, > 1000,

O0>1,a,=a,=1uM,and D, > 10/.Lm2/s were considered.
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Supplemental Figures

A Decrease in expansion speed over time B
as determined by Novick-Cohen and Segel

Schematic of the Growth-Expansion Model

Earlier\/\

(o)}

N

Growth

N

0 10 20

Time (in hours) Expansion

Expansion speed (in mm/hr)

Fig. S1. The crucial role of growth for traveling-wave solutions. A. Decrease in expansion speed over
time upon inclusion of a lower bound in the sensitivity to attractant concentration in the KS model.
This is based on the result obtained by Novick-Cohen and Segel (29) for D, = 50 um? /s and other
parameter values specified in Table S1. B. A schematic of the GE model as introduced by Cremer
and Honda et al. The wave front is shown at two different times. First, it is shown at an earlier time
in the top half of the panel where the front is propagating to the right with a given expansion speed.
The solid green line is a plot of the bacterial density for different distances from the inoculation site.
The front of the wave is shaded cyan. Then, the same front is shown with the solid green line after a
doubling time in the bottom half of the panel (the earlier front is represented by a dashed green line). A
hypothetical wave front that would result with growth and convection but without diffusion is shown
in the orange line. Due to diffusion, the increased proportion of bacteria in the front are left behind
to give the resulting wave. Thus, diffusion, growth and chemotaxis act together to result in a stable
traveling-wave solution in the GE Model. All parameter values are the default values specified in Table
Si.
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Fig. S2. Comparison of density profiles obtained numerically for the simplified GE model (A) analyzed
in this study (using parameters specified in Table S1 for low motility, and p. = 0.64) with the general
GE model formulated by Cremer and Honda et al. (B) using the experimentally-determined model
parameters found in (30). We note that p. = 0.64 is the carrying capacity corresponding to the initial
nutrient concentration (10 mM) used in (30). Both simulations were performed using the Finite Element
Method as detailed in Supplemental Methods. The corresponding expansion speeds are 2.79 mm/h for
the version of the GE model analyzed in this study and 3.45 mm/h for the general GE model formulated
by Cremer and Honda et al.
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Fig. S3. Dependence on the chemotactic sensitivity, ¢. Numerical solutions for D, = 50um? /s and

Dp = 1000um? /s are shown by red and dark blue circles, respectively. Analytic solution following
Eq. 23 are shown by the corresponding solid lines. Parameter values not specified in the legend are
provided in Table S1.
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Supplemental Table

Parameter Description Value Used for low motility | Value Used for high motility
D, Bacterial Motility Parameter 50 um?/s 1000 um?/s
D, Attractant Molecular Diffusion Coefficient 800 um?/s 800 um? /s

¢ Chemotactic Sensitivity Parameter 5 5

20 Chemotactic Motility Parameter 300 um?/s 6000 um?/s
an Lower Weber Cut-off 1073 mM 1073 mM

ag Michaelis Constant for Attractant Uptake by Bacteria 1073 mM 1073 mM

aop Background Attractant Concentration 0.1 mM 0.1 mM

u Rate of Attractant Uptake by Bacteria 0.77 mM/OD/h 0.77 mM/OD/h
r Rate of growth of bacteria 0.69/h 0.69/h

Pe Carrying Capacity 10° OD 10° OD

Table S1. Standard parameters used for nhumerical simulations. These parameters were always used
unless otherwise explicitly specified.

Parameter varied | Range of Values Used
r 0.03-7.7 /h
m 1074 -3x102mM
De 0.9-100 OD
u 0.25-2.3 mM/OD/h

Table S2. The range over which individual parameters were varied to determine the optimal value of g
for each set of parameters for Fig. 4B. Unless varied, the values were the default values given in Table
S1 (except for p. for which the default value was 10 OD)

Parameter varied | Range of Values Used
D, 10~3 — 1000 pm? /s
D, 110 — 800 um? /s
%0 100 — 11000 um? /s
r 0.44-11.1 /h
Pe 0.9-100 OD
I 0.01 —1.91 mM/OD/h
aop 0.004 — 10 MM

Table S3. The range over which individual parameters were varied to determine the numerical values of
Amin, Pmin, @and z,, — zmin for Fig. 6B-D. Unless varied, the values were the default values given in Table
S1.
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Supporting Information Text

S1. Historical Population Models for Chemotaxis

Chemotaxis, defined as the biased movement of sensitive organisms along gradients of sensible chemicals
(known as chemoattractants or chemorepellants in the case of movement up the gradient and down the
gradient respectively), can be described mathematically by stochastic models for the position and direction-
dependent velocity of each individual (31). The mathematical models consider the movement of individuals,

independent of each other, that have the following characteristics:
1. The movement of each individual is piece-wise linear (each piece is often called a ‘run’),
2. Each linear ‘run’ stops probabilistically,
3. After stopping, the individual chooses a new direction randomly by a ‘tumble’ process.

This is called the run-and-tumble mechanism of chemotaxis. In the stochastic models, the speed of a
linear ‘run’, the probability of stopping, and the probability of a direction being chosen after tumbling can
depend on the time, the position, and the direction of the individual (32). These assumptions reflect the
observed flagellar motion of many bacteria in liquids and gels (33), but can also be appropriate to describe
the movement of other cells migrating on surfaces (32).

The stochastic mathematical models used to describe the motion of individual cells are based on quantita-
tive experimental observations of the statistics for the turning frequency and the turn angle distributions (33).
If these distributions are biased in the direction of the chemical gradient, it leads to a biased random walk
for each individual. From these stochastic models and reasonable biological assumptions, an effective
coarse-grained theory of population-level behavior can be obtained. The ontological components of the
population-level theory are the local cell density and the concentration of the relevant chemical species.

A set of deterministic partial differential evolution equations to approximate the density and the mean
direction of the population of moving individuals can be obtained rigorously mathematically (32). This
was first done by Patlak (34) for a general persistent random walk using Taylor expansions, and then
rediscovered by Keller and Segel in the context of chemotaxis through multiple derivations (35, 36). For
movements with uniform mean run speed affected by a single attractant, the equation takes the form of a

reaction-diffusion equation as follows

Ip c c S (03
—_ = V.(D \% — V. S1
o V- (D(a) Vp)) (pld) . S1]

Rate of change of cell density ~ Non-chemotactic “Diffusion”

Chemotactic “Convection”

where p is the local cell density, a is the concentration of the attractant, D, (a) is the effective “diffusion”
coefficient of cell motion (also known as the motility coefficient), and v[a] is the drift velocity due to

chemotactic cell motion. Further, Keller & Segel were able to show that analogous to Fourier’s law of
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cooling, the drift velocity must be proportional to the chemical gradient (for sufficiently weak gradients,

and ignoring threshold effects) (35). Thus, the drift velocity can be written as
vla] = x(a)-Va [S2]

where ¥ (a) is known as the chemotactic coefficient function. These phenomenological parameters can
be related to microscopic parameters such as the mean run time and the receptor kinetics. It must be
reiterated that the above-defined “diffusion” and “convection” processes are not actual molecular diffusion
and convection, but rather effective processes resulting from biased random individual movements that are
analogous to their molecular counterparts. For a systematic derivation of the above-presented reaction-
diffusion equation (along with an extensive review of the assumptions made in the derivation) in an arbitrary

number of dimensions, the reader is directed to extensive existing literature reviews (32, 37, 38)).

Eq. S1 can be coupled with reaction-diffusion equations for the attractant, to give rise to several
experimentally observed spatial and temporal patterns in the cell density (39). Keller and Segel attempted
to employ Eq. S1 to investigate one such pattern: the formation of traveling bands of chemotactic bacteria
when placed in a stationary rich medium with a uniform attractant, the first extensive and modern treatment
of which was performed by Julius Adler in 1966 (40, 41). This pattern has subsequently been observed
in capillary tubes (40, 41), agar plates (42), and microfluidic chambers (43—-45). The traveling band
observed in these experiments indicates a region of locally maximal bacterial density which appear to
be formed by an “accumulation” of fast-moving bacteria. The existence of such a local maximum is in
contrast to the resulting fronts from other models of front propagation into unstable states, such as the
Fisher-Kolmogorov—Petrovsky—Piskunov Equation (F-KPP Equation), which feature a monotonic front

with no local maxima, or periodic front (46).

In their analysis, Keller and Segel assumed that D, is constant, and that the drift velocity due to
chemotactic bacterial motion is determined by logarithmic sensing, i.e., v[a(z)] = %ﬁa(z) where o is a
phenomenological proportionality constant known as the “chemotactic coefficient” and is a function of
the bacterial strain and its internal state, the medium in which the experiment is conducted, and of the
attractant being used (47). Such a form for the velocity is inspired by the Weber-Fechner law, which states
that the sensitivity to a stimulus is inversely proportional to the background intensity of the stimulus. The
Weber-Fechner law was first formulated in 1860 to describe human perception of physical magnitudes in
the newly-created field of psychophysics (48, 49), but it has been replicated in hundreds of studies across
all sensory modalities and many animal species over the last two centuries (50, 51). In particular, it has
been shown that E. coli cells sense the spatial gradient of the logarithmic ligand concentration for a range

of concentrations (52-54).

The dynamics of the attractant field in chemotactic bacteria, are determined by molecular diffusion and
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uptake and secretion by the bacteria.

Molecular Diffusion  Uptake  Secretion
In their analysis, Keller and Segel assumed that the molecular diffusion of the attractant is negligible
compared to the motility coefficient and the chemotactic coefficient of bacteria, and that the rate of uptake
by bacteria is linear in bacterial concentration (which is the case when attractant availability is saturated).
Keller and Segel also only considered chemotactic systems in which there is little secretion of the attractant
(secretion of attractant can lead to much more complex behaviors (39, 55) and is not considered in this
work). Thus, the one-dimensional form of the dynamical system analyzed by Keller and Segel is given by

(where x is the single spatial coordinate):

dIp _, °plx) 9 ( x dalx)
E_Dp dx? _Ec<a(x) dx ) [54]
)

They also assumed an initially localized population in a uniform attractant background with no finite
size boundaries. Keller and Segel were able to solve the system exactly in one dimension and found that

Eqgs. S4-S5 admit the following travelling wave solutions (where z = x — ct is the coordinate in the moving

frame)
a(z) = ao [1 +exp (—%ﬂ S [S6]
p(z) = XN_OCD [l +exp (—%)} Eo exp(—cz/D) [S7]

where N is the total number of cells in the inoculum. It must be noted that in this case, the total number of
cells remains constant, and thus equal to Ny, as the net growth/death rate is assumed to be 0. The expansion

speed (also referred to in literature as the traveling-wave velocity or the linear spreading speed), c, is given

by UNy/ag = cks.

The KS model was extremely influential, but its results are highly sensitive to some of the assumptions
made, many of which are biologically unrealistic. In particular, Keller and Segel identified that in order
to generate traveling-wave solutions under their other assumptions, v(a, Va) must be singular or constant
as a — 0 (56). This is unrealistic as cells cannot perform chemotaxis when concentrations fall below
detectable values, which are determined by the kinetics of the enzymatic chemical reactions of the attractant.
Novick-Cohen and Segel thus later analyzed a model in which v — 0 for a — 0, by including a lower Weber
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cutoff in the form of the drift velocity (29):

Va
V(a,Va) = yo———. S8
( )=Xo (atan) [S&]
In line with the original mathematical analysis, unstable wave-like solutions were obtained, with propagation
slowing down noticeably during the time scale of the experiment (29) (see Fig. S1) and the front gradually

vanishing over time.

Besides being unable to describe the observed stable migration under biological realistic conditions,
the KS model also fails to account for a number of important experimental observations such as the
independence of the expansion speed on the initial inoculum size (30, 41, 57). Since the original formulation
of the KS model, many additional aspects have been considered to explain a stable migrating population (38,
58-60). Soon after the introduction of the KS model, bacterial growth was considered (61-69) to recover the
stability of the migrating population. However, the introduced models failed to account for key experimental
observations such as the distinct migrating band or the rapid expansion speed (30). A common feature
of these models was that they took the attractant to be the same as the substrate for growth. However, by
imposing a single substrate which plays both roles, these models unduly constrain the population dynamics
and limit the expansion speed as recently pointed out (30). Further, models often preserved the unrealistic
form of the drift velocity without a Weber cutoff assumed in the original KS-model (61-64, 68, 70). More
recently introduced models consider more complex attractant uptake and excretion dynamics observed
for certain environmental conditions (37-39, 71). While these models describe fast and stable expansion,
they are not able to describe population migration over several generations since growth is not explicitly

included.

S2. The Crucial Role of Growth

The logarithmic sensitivity to attractant concentration results in a constant drift velocity even as Va(z) — 0
as long as a(z) — 0 in the same limit. However, this is unreasonable as in the case of a vanishing attractant,
the drift velocity would be expected to also vanish. In their analysis, Keller and Segel demonstrated that for
constant per capita uptake of attractant by bacteria, traveling wave solutions to the system of equations
require a singularity in the chemotactic coefficient function, ) (a) of order one or greater at a = 0 (72).
However, relaxation of the constraint on the uptake by bacteria does not guarantee that the resulting solution
would be stable. In fact, without the introduction of any new terms, a vanishing drift velocity would
necessarily lead to a “leakage” of cells from the front of the wave. To demonstrate this, we operate in one
dimension and assume that a travelling wave solution exists for the system defined by Eq. S1 and Eq. S3.

We define the population of the front, N, to be the total bacteria in a region right of a point, x*, in the
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laboratory frame.

dN d [~
& = i e PO >
= —cp(x*,1)+ T dx 8p§tc,t) [S10]
x*—ct

As the boundary conditions, dyp,p — 0 as x — oo, by performing integration by parts and plugging in
Eq. S1, we obtain

ap(x*,t
= (e v )l ) - Dpla(2) 220 s11]
Going back to the moving frame with 7' = x* — ct
AN e o) — Ip (")
TR (c=v(z"))p(z") —Dpla(z)] ox [S12]

As we require that v(z) — 0 as z — —oo, for a position sufficiently to the left, (¢ —v(z"))p(z") > 0 and
‘%’ must be negative if dyp(z") > 0. But we must have that d,p(z") > 0 for the boundary condition that
p(z) — 0 as z — —oo. Thus, we immediately note that for a stable travelling wave solution with a vanishing
velocity as d;a(z) — 0 (without assuming anything of the velocity or the chemotactic coefficient function
other than continuity), dN/dt < 0. Thus, for a stable propagating wave, additional terms may be needed.
In particular, the “leakage” due to the vanishing drift velocity must be counteracted by an additive term,

such as growth.
S3. The Growth-Expansion Model: General Form and Simplification

Cremer and Honda et al. (30) demonstrated experimentally and numerically that the inclusion of the growth
of the bacteria is sufficient to counteract the effect of the leakage due to the lower Weber cutoff and obtain
stable migratory bands. They further demonstrated that such an expansion affords a novel physiological
benefit to bacteria: guided range expansion which takes place well before the consumption of the nutrient at
the inoculation site by the bacteria, and thus allows for rapid colonization. They introduced the generalised

Growth Expansion (GE) model given by the following set of equations:

d
% = r(ma)p — V(ip) +DpAp, [S13]

. - l+a/a_

— yoVlog |- 474=

= Viog | T S14]
on _ r(n,a)
o= T D, [S15]
20— —u(ra)p+ Dt [S16]
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where p is the bacterial density, a is the concentration of the attractant, v is the drift velocity of the bacterial
population and 7 is the concentration of the nutrient. All other symbols denote functions and parameters,

both environmental and physiological as described below.

1. r(n,a) is the rate of growth of the bacteria. It is assumed to depend on only the local nutrient
and attractant concentrations. For bacteria, the Monod equation provides an adequate relation to
the nutrient concentrations (73). To simplify the system by eliminating the nutrient, the logistic
growth equation may be used to approximate the decrease in growth rate due to the consumption of
nutrient (74, 75). A further analysis of the effect of this simplification is explored below. The relation
between growth rate and the attractant concentrations depends on the physiological effect of the
attractant on the species of bacteria being considered, and the attractant may even hinder growth (39).
However, the effect of the attractant on growth is typically much smaller than the other limiting

nutrients (30) and may be ignored.

2. Dy is the motility-induced diffusion of the bacteria. Bacteria are too large for Brownian motion to be
significant in comparison to their size, however they engage in run-and-tumble motion which leads to
a mean run length which is similar to the mean free path of a particle experiencing Brownian motion.
Even when chemotaxis is biased in one direction, the movement of the bacteria can be viewed as a
diffusion-convection process as described in Section S1. For bacteria such as E. coli in a 0.25% agar
gel, it is typically of the order of 50 um?/s (30).

3. a4 is the upper Weber cut-off. It has been found empirically that the bacterial sensitivity saturates at
high attractant concentration because at high attractant concentrations, the bacteria is chemoreceptor-
limited in its ability to sense attractant concentrations. For bacteria such as E. coli and a attractant

such as aspartate, it is typically of the order of 30 mM (30).

4. a_ is the lower Weber cut-off. Since the bacteria cannot be infinitely sensitive to attractant concen-
tration, the lower Weber cut-off ensures that at very low attractant concentrations, the chemotaxis
induced drift-velocity goes to 0. For bacteria such as E. coli and a attractant such as aspartate, it is
typically of the order of 1 mM (30).

It must be noted that an equivalent form for the drift velocity in one dimension is

This form, with appropriate substitution of constants, is more commonly found in literature. The
case without a_ can be studied by taking a_ — 0, and the case without a.; can be studied by taking
a4 — oo. In subsequent analysis, for visual clarity, we shall be using the symbol a,, instead of a_

which was used by Cremer and Honda et al. (30).
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5. Y is the biomass yield of the nutrient. It reflects a mass conversion factor from the nutrient to the
bacterial density. For bacteria such as E. coli and a nutrient such as glucose, it is typically of the
order of 0.1 OD/mM (30).

6. D, is the diffusion constant for the nutrient. For a nutrient such as glucose in a 0.25% agar gel, it is
typically of the order of 800 um? /s (30).

7. u(n,a) is rate of uptake of the attractant by the bacteria per unit bacteria. The nutrient dependence is
to allow for a growth-dependent rate of uptake of the attractant. For the case of nutrient saturation,
the rate of uptake of the attractant may be taken to be growth-rate independent. The dependence on

the attractant is typically of the Michaelis-Menten form:

a(z)
a(z)) = lp————
p(a(z)) oo o
This is contrasted to the constant form assumed by Keller and Segel, and others. The Michaelis-
Menten form is crucial if growth is to be included as for low attractant concentrations the bacterial
density may not be small as is the case without growth. Thus, pt(a) is required to be vanishing for
low attractant concentrations and is roughly linear in attractant concentration. For relatively higher

attractant concentrations, the constant form of attractant consumption is recovered.

8. D, is the diffusion constant of the attractant. D, was typically taken to be negligible in the literature,
as it was presumed that it is of a much smaller magnitude than the motility-induced diffusive and
chemotactic movements of the bacteria. However, for small molecule attractants such as aspartate,
serine and glucose, Dy, is typically larger than D, and . Moreover, in porous media such as agar, D,
can be significantly larger than D, (76) as bacteria are not able to complete their full run-and-tumble
motions due to collisions with the polymer gel in agar. In their experiments, Cremer et al. found that
in agar gels with 0.25% final agar concentration, D, was 50.2 um?/s. In contrast, the diffusivity

constant for a typical attractant is around 800 um?/s (77).

9. Xo 1s the phenomenological parameter known as the chemotactic sensitivity parameter. It is shown to
be strain-dependent and is evolutionary selected by the location of the bacterium relative to other
bacteria (78), and for bacteria such as E. coli in a 0.25% agar gel, it is typically of the order of 300
um?/s (30).

While providing excellent numerical agreement to the experimental results, the generalised model of
Eqgs. S13-S16 is analytically intractable. The system can effectively be understood by making the non-

crucial assumptions mentioned above, to recover a system of equations which is much closer to the
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simplified Keller-Segel equations:

dp(z)

5 = VP)+DpAp(z) +rp(z)(1—p(z)/pe), [S17]

V= 750610%[1 +a(z)/am), [S18]
da(z) a(z)

o —“ml)(z) + DgAa(z), [S19]

where p, is the carrying capacity of the system. Most notably, we have eliminated the nutrient field since in
the GE model the effects of the nutrient and the attractant on the bacterial concentration are decoupled. The
effect of limited availability of nutrient can be mimicked by limiting p.. Thus, we reduce the equation to
a system of two coupled partial differential equations. The system of equations has a degree of 4 and is
accompanied by appropriate initial value and boundary conditions. In our analysis, we specify the initial
conditions to be a localized profile of p(z) (any localized profile leads to the same steady state solution; see
Fig. S3) and a constant profile of a(z) at a value of ag. With some reordering and working in one dimension,

we obtain the following equations:

op . 9? ) p da
E—Dﬁp—loa (ma)‘i‘rp(l—P/Pc) [S20]
da 92 a(z)

=D

or a&xza_'ua(z)-l—ak [521]

We seek traveling-wave solutions of the forms
p(x,1) =p(z), alx,t) = a(z); withz =x—ct

where ¢ > 0 is the traveling wave speed (also referred to in previous literature as the expansion speed or the
linear spreading speed). This converts the system from a system of partial differential equations to a system

of ordinary differential equations as follows:
op 92 0 p da
—c—=— =D=— 1—p)—xo=—| ———= S22
“oz 8Z2p+rp( 2 205, <a(Z)+am 3Z) 15221

[S23]

The boundary conditions of the system are specified such that the concentration of the attractant far to
the left of the front is 0, and far to the right of the front is ag, the initial concentration of the attractant; and

the bacteria density is the carrying capacity of the system, p, far to the left of the front, and O far to the
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right of the front. The boundary conditions can be represented as follows:

p(e0) = 0, a(e) — ag, p(—) = p¢, a(—e) =0 [S24]
dxp(0) = 0, dva(e0) = 0, dyp(—0) — 0, dya(—) — 0. [S25]

We compared the variation of the expansion speed with xo for both the full version of the GE model,
and our simplified version, and found that the expansion speed remains roughly the same as can be seen in
Fig. S2.

S4. The exponential ansatz

In the case of no growth and a,,,a; — 0 as in the simplified Keller-Segel model (Eqgs. S4-S5), away from

the right boundary such that ag — oo, the solution to the system of differential equations is straightforward:

c

[S26]
Xo—Dp

a(z) o< p(z) o< exp(Agsz) where Ags = 0 or Ags =

The non-trivial solution is asymptotically the solution obtained by Keller and Segel (Eqgs. S6-S7) away
from the right boundary (i.e., z — —o<). Since the inclusion of growth seeks to stabilize the dynamics of
the front by counteracting the leakage due to a reduced drift velocity, we expect the results of the model
including small growth to be qualitatively similar, and this expectation was confirmed using numerical
simulations (see Fig. 1).

Assuming that a(z) ~ a; exp(Az), from Eq. S21, we obtain

o _ 2 a(z)
cAa=D,A"a N—a(z) n akp, [S27]
2
— p= M(a(z) +ay). [S28]
—

Subsequently from Eq. S20, in the case that p. — oo, we have that

0 0
—cha=DpA’a— ’COﬁ% (;l((zz))—i;l’:a—za) +r(a(z) +ax) [S29]
—cAa= (Dp — xo)lch— ra+ray —|—XO/12ﬁ (%) [S30]
_ _ . 2 ﬂ 2 (am _ak)ama
cA = (Dp — xo)A~+r+ p + x0l ((a(z) +ak>(a(z>+am)2) [S31]

In the regime that a;/a(z) — 0 and for the case that a; = a,,, we obtain a quadratic equation in A, and thus
our ansatz approximately holds. The case a; = a,, is biologically motivated since the pathways (such as the

periplasmic binding proteins) that are relevant to sensing of the attractant in bacteria are similar to those
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that are relevant to the consumption of the attractant in the bacteria. This assumption also eliminates the

final term. Thus, for a > a; we can solve for A and we obtain

. \/02 +4r(x0 — Dp)

AL =
- 2(x0—Dp) 2(xo—Dp)

[S32]

Thus, we require that o > D, for a solution where an exponentially increasing profile of p is observed.
Since we assume a finite (and large) D,, we will later assume that x> D,. Otherwise, we find that the
Chemotaxis Regime is very narrow and thus the expansion speed is often set by the transitionary regimes
between the different regimes. As we are only interested in the exponentially increasing solution, for
r < Ac, we have that

C
Xo—Dp

~
~

[S33]

S5. Calculation of Expansion Speed

To find ¢, we must use another boundary condition. However, the exponential increase in p does not
continue do to the right boundary condition for p. Instead, p — 0 fast enough for the p(z) to be integrable
in the interval [z, o0) such that a; < a(z") and d,p(z) ~ Ap(z). Thus, we integrate Eq. S20 and Eq. S21

and employ suitable approximations:

oo da|™™ e a(z)

+

. —p, 22 - Y 5y S34
ca‘ZT 9z . ,LL/ZT a(Z)+amP z [S34]
— c(ap—a(z") = Dara(z") + p +wpa’z—,uam/ ; &dz [S35]

Z+ ZT a(Z) +am
N— N - /
=N ~O (% ayplog(ag/a(z)))

To obtain the order of the last term, we note that p(z) = f8(a(z) +a,,) from z' to a point, z, where a(z) ~ ao.
For z > z,, as shown in the calculation for the Diffusion Regime in the main text, p(z) ~ poexp(—cz/D))
and p(z)/(a(z) +am) = g—g exp(—cz/Dp) where py is the value of p(z) at the interface of the Chemotaxis

and Diffusion Regimes. Thus,

te [ op(z) e p(z)

[ pdz= / et / s [S36]
(o iy PoDp B ag BDp
~B(za—z")+ we S (a(z*)) +— [S37]
~0 (SanBlog(ao/a(z"))). [S38]

where the last equality is because A = ¢/(xo — Dp). We note that since 2—31 < 1, the correction term is of a

sub-leading order. We will, however, carry it forward to determine the order of the sub-leading term in the
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final calculation.

—alzT)) = i
_, v S zale) ZDaAalE) |, (Mlo 0 ) [S39]
u A a(zh)
Now, from the integral of Eq. S20
oo o | o da\|™ ra, 3 a
Tt _p. 2 — _r °= mP e 20
Pl =D 92" . X0 (a(z)-l—am 3z) 4 +rN—|—0( A loga(z7)> [540]
ap da re(ag—a(z")) — rDgAa(z) ramf agp
N _p 27 g
= cp(z") D, FE (z") + x0B BZ(Z )+ m +0 7 loga(zT)
[S41]
—a(-")) — D A T -
— cBla(z") +am) = —DpABa(z") + xoABa(z") + retao — atz )L rData) +0 (%log %)
[S42]
Collecting the coefficients of a(z"), we obtain the following two equations:
r(c+DgA) r
c:(lo—Dp)?L—W:(XO—Dp)A—I [S43]

This is the same relationship between ¢ and A that we had obtained earlier by assuming that p(z) =

B (a(z) + a,;). But from comparing the constant terms, we obtain

B (1+0(ilog%)) = W (HO(ibg%)) = an

We assume that r/(Ac) < 1 and the lower order term can be ignored.

As ap/ag < 1, we ignore the the second order term on the RHS. Thus, as a final solution, we obtain that:

o | rtao/an)
X0 _Dp + D,

r(ao/am) r(%o —Dp +Da) r(ao/am)
~xo—D - ~(to—Dp)y | =—— 45
= c~(x0 ”)\/xo—Dp+Da \/ @o/an) (%0 —Dp) %o—Dy + D, [S45]

[S44]

For xo > D, and a,, < ao, the second term can be ignored. This is self-consistent with the assumption
that r < Ac. The error in these calculations is of the order of a,,/ag. Further, this result does not hold

for xo ~ D, (equivalent to the case that ¢ — 0 shown in Fig. S4) and in that regime the exponentially
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increasing profile for p disappears and our approximations fail.

S6. Form of expansion speed for finite carrying capacity

For p. - oo, we can use the same techniques as earlier, but we have an additional term corresponding to the
effect of the carrying capacity. The integral equation now reads:
ap da ro[e ram ag )
Ty — i t 2 m
cp(z')=—-Dp—=—(z")+ —(z")+rN—— 2)dz+ 0| ——log —
P =D S + B 4 = [z (" og
To progress, we must make some assumptions regarding the form of p? (or equivalently, of p). Based on

the numerical results, we assume a piece-wise exponential form for p:

Pmax €Xp(Az), 2 <0
p(Z): Pmax, 0 <z < K'Da/c
Pmaxexp(—cz/Dp)exp(kDy/Dp), z> KDy /c

where Ppax is the highest value of p(z) obtained. The region 0 < z < kD, /c is intended to reflect that that
there is a transition region between the Chemotaxis Regime and the Diffusion regime where p(z) does not
behave exponentially is only slowly varying, as was observed in numerical simulations. The width of this
region has been observed numerically to be set by D, and ¢, with an unknown proportionality constant K.
As the only relevant variables for k are Dy, Dy, o, we suspect that it is a function of these variables. Thus,

we find that

[} 2 2Da
/ pz(Z)dZ _ Pmax (X()z'ci‘ K)

But we also have that N = w. Thus,

0 N2c(yo0+2D,x)
2 dz = a
/oop @) 2(x0 +Dgx)?

Going back to our previous calculations, we now have that

e p  da\|™ rN?c(y0+2D.x)
o A (a(z)+am8_z> o  2p(%0 + Dak)?
re(ag —a(z")) —rD4Aa(z")
u
re(xo+2Duk) (c(ap—a(z")) — Dara(z") ?
~ 2pc(%0 + Dak)? ( i )

oo d
—cp]z; ~ Dpa—zp

ap, + da, .
— ep(") ~ D 5 () + 0BG () +
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We ignore terms of O(a?(z")/a3) as ap > a(z")

— cBla(e) +aw) = ~DpABa(s") + zoABafzh) + "N _“@L— rDAa(z)

B re(Xo+2D4K) (c2a2_2c apa(z’ ) 2capDgAa(z ))
ZPC(XO +DaK)2 ,le

Collecting the coefficients of a(z"), we obtain the following equation:

r(c+DgA)  r(xo+2DK) <cza0+ca0Dal)
= (%0 —Dp)A —
=0 =Dp) cup Pe(X0+Dak)? \ (DaA?+cA)u
r(xo+2Dyx) (Cdo)
== Do) = l pe(%0+Dak)> \ ALt

From comparing the constant terms, we obtain

r ag (DA +cA) ( (mm ao )> rag re ao(x0+2D K)
1+0( —log—— = “*114+0 log ——— = —
P < * (AC o8 a(zT)>) H " 2t a(z") Ham  2ampt*pe(Xo + Dak)?

However, for small 7 and xo > D), ¢ = (¥o — Dp)A and thus, r/(Ac) < 1 and the lower order term can be

ignored.

2 27(%0 — Dp)*ag(x0 +2Dak)
— —D Da - A
= A (00— Dp+Dd) ¢ 2anppe (%0 + Dak)?

2
ragy

=A% b (Xo—Dp)Y

where 7y is a dimensionless function of Dy, Dy, ¥ and K. As K itself is suspected to be a function of the
three variables, 7y replaces k as an equivalent constant. As a,,/ag < 1, we ignore the the second order term

on the RHS. Thus, as a final solution, we obtain that:

A~ r(ao/am) _ r (461
%0—Dp+Du+ 25y \ G (00 =Dp+Du) + (20 —=Dp)¥
r rag XO_DP)Y ao
= c~(Yo—D =
o p>\/%(X0—DP+Da)+%(%O—Dp /\/ mpe ((xo—Dp) +Da)
[S47]

The attractant concentration for the maximum expansion speed is found to be

aglax B upc Da
()
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The dimensionless function Y is expected to be a non-trivial function of )y, D, and D,. It is related to
the width of the assumed plateau for the top of the peak, and is expected to decrease with higher D, as
the “smoothening” of the attractant gradient due to D, results in a broadening of the density bulge and
reduces the effect of the carrying capacity. However, as o, D, and D, have the same dimensions, ¥ may be
a non-trivial combination of X, D, and D, which themselves may be raised to powers of combinations of
X0,Dq and Dp.

S7. F-KPP Dynamics in the Growth and Diffusion Regimes

A. Diffusion Regime. To understand the selection of the asymptotic steepness of the front of the wave as
7 — 4o, we operate in the static frame and assume that the initial population is described by a Dirac delta

function, i.e., p(x,0) = 6(x). Then, the solution to the F-KPP equation is

ap(x,1)
ot

= Dpd?p(x,1) +rp(x,1) [S49]

Since it is a second order PDE, we need two boundary/initial conditions, one spatial and one temporal.
Our initial condition is given by the Dirac delta function, and we take the boundary condition as a zero
population at infinity (p(x —,7) = 0). The solution is obtained by using the Fourier transform. In our

convention, we define the Fourier transform as
p(k,1) = / drp (x,1)exp(—ix-k) [S50]

and the inverse 1s

p(x,1) = @ / dkp (k, 1) exp(ix- k) (511

where k is the Fourier space dual of the position, and can be understood as a form of spatial frequency.

Going back to our equations, by plugging in the equation for the inverse Fourier transform into the

diffusion equation.

P (g’;’t) oo / dkp (k,1) explix- k) — / dkap ) exp(ix- k) (S52]
Dpd2p(x,1) = Dpd? / dkp (k,1) explix- k) — 7‘;) / dkp (k,1)9% exp(ix- k)

[S53]
- %/ 2P (k1) explic- k)
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Thus, plugging everything into the F-KPP equation, we get that

3p (k1)

o= (—Dpk? +1)p (k1) [S54]
= P(k,t) = p(k,t = 0)exp(—Dpk*t +rt) [S55]
where p(k, = / d"rp(x,t = 0) exp(—ix-k) (S56]

Consider the initial condition where you start with Ny at an infinitesimal volume, which can be taken as a
delta function, i.e., p(x,t = 0) = Nyp6"(x) Then,

pk,t=0)= /drNOS(x) exp(—ix-k) =Ny

— P(k,t) = Noexp(—Dpk*t +rt) [S57]
Now, we can get the inverse transform:

2

No
€X
2,/7tDpt P (4Dpt

p(x,t) = ﬁ /dkexp(—Dpk2t+ix-k+rt) = ) exp(rt) [S58]

For the long-term behavior, we take x = z + cf,

(z,1) No ex (& + 2zer) exp(rt) No ex 7 exp | rt et exp [ —=
5 = —m—mm r = r _—— —_—
Pl =7 Jany &P 4Dt P =5 Jabyi P\ apy: ) P\ " ap, ) P\ 2p,

The first term just signals the transition from ¢ = 0 to later time, and can be ignored for long times. The

second term demonstrates that the speed of the front should be at least 2, /Dpr = cg otherwise the solution
doesn’t satisfy the boundary conditions. If the speed were actually lower than cr, a new front with speed
cr would emerge and “pull” the front, thus creating a “pulled wave-front”. Any front traveling faster would

die over time, unless it is supported by the bulk of the wave.

And the final term indicates that the steepness of the front must be at least ¢/2D,, which would
correspond to A = \/m for the case of pulled waves. However, for speeds propagated by the bulk at
speeds faster than cf, the front is effectively pushed by the bulk. In such a case, the steepness must be at
least Ar as otherwise the asymptotic steepness would be less than the steepness for the Fisher speed, and

since a solution with the Fisher speed is always permitted, it would emerge and dominate the front before

c+ 4er
2Dp

the observed steepness. This is the case of a “pushed wave-front” and occurs in the Diffusion Regime of

being overtaken by the bulk. The only stable solution is for the steepness to be A} = , which is

our system.

B. Growth regime. The analysis of the Chemotaxis Regime results in relations for expansion speed as

discussed above. To understand the entire traveling wave, we next consider the growth regime, which is
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defined being left of the density trough and characterized by a < a,, (Fig. 2). As the drift velocity vanishes
with falling attractant concentrations (as d%a /am — 0 in this regime), convection does not counteract the
effects of back-diffusion and cells leave the moving frame. This “leakage” is explored further in Sec. S2
of the Supplemental Text. While the total number of bacteria in the moving front is conserved as growth
counteracts this “loss”, cells in the trailing region cannot catch up the fast chemotactic migration and thus
“stay behind”. However, cells still grow as long as p < p. and move diffusively. In the growth regime the
governing equation for the population is thus given as:
dp 2

d
—c - =Dpzptrp(l—p/pe). [S60]

This is the well-known F-KPP equation. However, in contrast to the standard scenario canonically used to
describe range expansion, the right boundary condition is specified by the traveling-wave dynamics of the
Chemotaxis Regime. The expansion speed of the population can be obtained in this case by analyzing the
“growth front” (the boundary of Growth and Chemotaxis Regime in this case), for which p < p. and the

nonlinear term in Eq. S60 can be neglected. The remaining linear equation yields the solution

cty/c?—4rD,
[S61]

2D,

p < exp(—Aiz), with AZ =

which relates the expansion speed of the growth front, ¢, in term of the decay parameter A of the density
profile. For each value of the allowed expansion speed ¢ > ¢ = ZW , the solution is degenerate with
two possible values of Ag, except when ¢ = cf.

A seminal result in the theory of the F-KPP equation is that the marginally stable density profile, with
Ar =cr/(2Dp) = \/m is selected among all the allowed solutions, for sufficiently compact initial
conditions (79, 80). However, as we found for the Chemotaxis Regime the population moves with an
expansion speed given by Eq. S45, with ¢ > cr as long as ¢ is not too close to 0. Traveling speeds with
¢ > c are permitted as solutions of the F-KPP equation, but they correspond to Ag # Ar and are not
marginally stable, thus typically not selected (46). Thus, we may ask, how do the bacteria in this case beat
“marginal stability”? Or in other words, how is the propagation speed ¢ “passed on” from the Chemotaxis
Regime to the trailing growth regime which is governed by the F-KPP equation?

This may be understood through another well-known result in the theory of the F-KPP equation that,
independent of the precise non-linearities, if the front of the wave is maintained to be shallower than A,
then the front travels with a speed given by ¢ > cr (46). In our case, the shallower slope is A; ~ r/c.
This shallower slope is maintained by the “leakage” of cells from the Chemotaxis Regime into the front
of the growth regime which are deposited behind the Chemotaxis Regime along a boundary moving at
an expansion speed c¢. This can be understood through our ansatz (p(z) = B(a+ ay)) as for a(z) — 0,
p(z) — Bay, and the resulting constant boundary condition for p(z) at the tail of the migrating band. Thus,

in this way, the propagation speed c is “passed on” from the Chemotaxis Regime to the trailing growth
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regime.

The dynamics of the growth regime reveal how the migrating band may leave behind a small number
of “settling” cells, that can then grow exponentially. By continually leaving behind the small number of
cells, the back formed by the “settling” cells also keeps up with the migrating band. However, if migrating
bands are composed of cells with different motilities starting at the same inoculum spot, fewer cells will be
deposited by the faster-moving than by the slower-moving cells. Thus, the slower-moving cells will quickly
increase to a higher density and out-compete the cells left behind by the faster-moving band. This leads to
the ecological principle that more motile cells have a higher fitness in regions far from the inoculating site,
and the less motile cells have a higher fitness in regions close to the inoculating site. This was validated
experimentally by Liu et al., who repeatedly selected cells at different distances from the inoculating site,
finding that over time the cells close to the starting point formed populations with lower expansion speeds

and the cells far from the starting point formed populations with higher expansion speeds (78).

Analytical Solutions to the Growth Regime, D, — 0

Beyond the results obtained for the Growth Regime using the modified ansatz, exact mathematical state-
ments can be made regarding the Growth Regime in the case that D, = 0. We note that the solutions
should not qualitatively change for Dy > 0 as it can only smoothen the density profile (and subsequently
the attractant profile). Numerical simulations performed with D, = 0 confirm that all results hold in the
limit D, — 0 and all qualitative features are preserved. For simplicity, we will take the limit of large p.
since at the front, p(z)/p. — 0.

A magnified view of the transition region between the Chemotaxis and Growth Regimes is shown in
Fig. 5A, with the location of the density minimum being at zp,;,. Applying the ansatz to z = z,, (Where
ansatz Eq. 7 holds as per the condition 11, a(z) > (r/Ac)an), we find the flux of cells due to chemotaxis
and diffusion, J(z,,) = —v(z)p(z), to be given by

Iew) = 2082 = —epan, s621

Z Z=Zm

where we used v(z)p(z) = YoBda/dz based on our ansatz Eq. 7, and a(z) «< exp(Az) with A given by
Eq. S33. Here, a negative value indicates a net flux to the left at z,,, i.e., out of the Chemotaxis Regime.
For the wave-front to be at steady state, the loss of cells at z;,, due to chemotaxis and diffusion must be
replenished by growth. Recall that in the solution by Novick-Cohen and Segel (29) that also incorporated
the lower Weber cut-off but maintained a constant total population size, the population “left behind” the
front was the reason that the migrating wave-front slowed down. Incorporating growth, even at very low
rates, allows the migrating wave-front to “replenish” itself and maintain stability. This is discussed in more

detail in Supplemental Text S2.
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Eq. 19 and Eq. S45 also allow us to use Eq. 18 to find N(z7):

T _
alz]) %0 —Dp +D") , [S63]

= [ ~ Noang - (1 —
V&) = [ pla)d - (1 - 120

with
Npand ~ Cao/ll- [S64]

Thus, if 7' is sufficiently to the left (such that a(z") < a,,/ (r/Ac), a regime with a significant overlap with
the Chemotaxis Regime), the total population to the right of the position z' approaches a constant Npand,
which is interpreted as the population size of the migratory band. Thus, from the expression for 8, Eq. 19,
and the result Eq. S63 and Eq. S64, we can rewrite Eq. S62 as

J(zm) = —=rN(zm), [S65]
where N(z,,) is the population size of the wave-front integrated over the range z,, < z < 0. Thus, Eq. S65

explicitly relates the “leakage” of cells out of the front at z = z,, to the growth of cells in the front.

To connect the Growth Regime to the Chemotaxis Regime, we integrate the ODE describing the density
p(z) in the moving frame, i.e., Eq. S20 (with p. — o), from a position z < z,, in the Growth Regime, to the

position z = z,, in the Chemotaxis Regime. This results in the exact relation

~ e [p(an) ~ PR =I(aw) ~J@) 47 [ p()de (5661
Thus, using EQ. 7,
d “m NN,
p(z) :Bam—i_%a(zp)(j—)a Z(ZZ) +£/Z p(7)dz (567

We note that as a(z) — 0, da(z) /dz — 0 as 7 — —oo. Now, as a(+o0) = ag > 0 and a(z) > 0, for a(z) € C?,
da(z)/dz > 0 for at least part of the domain (—co,+oc0). Suppose da(z)/dz < 0 in the domain (z,,z, + €).
Then, by continuity as a(z) € C?

<0 [S68]

<0. [S69]

However, from Eq. S21, dfl(;) ‘Z >0as u a(g)(fa p(z) > 0 Vz, which contradicts our supposition. Thus,
94 m
da(z)/dz > 0in the domain (—eo, +e0) and a(z) is always monotonically increasing (even in the Chemotaxis
da(z)

and Diffusion regimes). Since Z—Z > 0, we have that p(z) > Ba,, from Eq. S67. Further, since d/zi(zz) o=z, >

0, we know that p(zmin) < p(zm — €) < 2Bam as Zmin < zm- We declare 7 < zmin < z, such that p(z*) =
2Bay, and Ba, < p(z) < 2PBay, for z € (z*,zm).
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Now, for a(z) > (r/Ac)an, the ansatz holds, and thus Eq. S67 can be written as

p(z) > Bam+ @ a(z) = B(a(z) +am) [S70]

For a(z) < am = a(z) ~ Fzam.

r [%m Ny T
E/z p(z)dz >;l3am(zm—Z) [S71]

As we will show below, a(z) < apnexp(A(z—zm)) for z <z,

Zm
— [ p()de > B anlog(an/a(2)) > Ba(2) 572]
Z
And for the chemotactic drift, we have,

xo p(z) da_xo PBam N
) tands ¢ al) ray WA~ PaC) [S73]

Thus, from Eq. S67,

p(z) > Bam+ Ba(z) = B(a(z) +am) [S74]
Thus, p(z) > B(a(z) + am) for z < z,,. From Eq. S21 and this lower bound on p(z),

da(z) D,d*a(z) p p(z)

& e a2 Tea@ta,"® 57
D,d*a(z) U
- dZZ +Ta(z) [576]
_ Dyd*a(z)  (xo+Da)
= () [S77]

If a(z) can locally be described as a slowly varying exponential such that a(z) = exp(4,(z)z), then for
(Zm — Zmin) < 1/(In(A4(2)))’, we may take a(z) = exp(Aaz) where A4 = Ay (Zmin)

Ama(z) > Aa(z) + %a(zmz ~22) S78]

D
— M —A > (A= A) [S79]
C
This is only possible if 44 > A. Thus,

a(z) = amexp(Aa(z—zm)) < amexp(A(z—zm)) for z < z. [SSO]
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Further, for z* < z < 7, from Eq. S75

da(@) _ puplan) oy 2BR 0 200D

[S81]
dz canm ¢ X0
— M < M [S82]
X0
This provides bounds on %:
da(z) _ 2(xo+Da)A
A < < S83
alz) < —- PO [S83]
This also gives us bounds on v(z) = a(zic—i%d?l(;):
xha(z) <v(z) < 2200 +Da)2 a(z) [S84]
2a, (x0) am
2 Dy)A
= v(z) < XO(XO;F ) exp(A(z — zZmin)) [S85]
From Eq. S20, d’zlgz) =0if
d(v(z)p(z dv(z
rp(e) = WEPEN_ ), (ss6
dv(z) X0 (dza(z) (da/dz)z)
= = — S87
— T4 a(z)+am \ dzz2  a(z)+am [587]
X0 2 a(z)’ )
_ A _ S88
a(z) +am (a(z) a(z) +am [585]

From Eq. 11, we know that for growth to be comparable to the chemotactic drift, a(z) < a,, and thus

0 ram
ra f—mlfa(zmm) — alemn) = 2 589
From the bounds on A4 from Eq. S82 and Eq. S80,
, 2
r a<me) r X0

T AT Tam  Ack(o+Do)?

[S90]

Numerically, we find that a(zmin) = ra,,/Ac (see Fig. 5B), which means that )»j ~ Ac/xo ~ A? where the
final equality holds if D, — 0. Thus, we find that A4 < A = A4(zm) and Ay(Zmin) = Ae(zm), numerically
verifying our assumption above that A4 ~ A,(z) for z* < z < Zmin-
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Now, at z = Z such that p(Z) = 2efay,, assuming that p(z) o« exp(—Agz) for z* >z > 2:

J(2)=—v(2)p(2) 191
A
— _éexp (-ﬁ +AA(2—zmm)) p(2) [S92]
r A4
< Zexp (—z) 2eﬁam [593]

As we will show below, A4 > Ag = exp(A4/Ag) > Aa/Ag, and thus the final term is much smaller than
the net growth in time (z,, —2)/c:

—J(&) < =2e—1)Pan <r / " o()d? [S94]
G b4

Thus, using Eq. S62 and p(z,,) = 2Ba,, (since the ansatz is valid at z = z,,), we can rewrite Eq. S67 for
z<Zas

cp(z)=cp+r| p(d)dZ, [S95]

p = Ba, +£ p(Z)dz, [S96]

for z < Z, with the only approximation coming from the condition Eq. S94.

Solving Eq. S95 yields
p(z<2)=pexp[Ag(Z—2)], [S97]

with
Ac = —r/c, [S98]

We note that if D, > 0, we would have another solution such that A ~ —c/ D,. However, this solution
would be rejected as it corresponds to a solution dominated by diffusion and is an unstable solution at
the front of the wave (since growth is greater than or comparable to chemotactic drift, there is no term to
balance diffusion in the diffusion-dominated solution and thus lead to the transition to the Chemotaxis
regime. Thus, diffusion can only dominate when the right BCs are asymptotic, i.e., p(z) — 0 as in the
Diffusion regime) (46). Thus, as cited earlier, we can see that A4 /A = Ac/r > 1 in our parameter regime.
To determine the width of the transition zone between the exponentially decreasing and exponentially
increasing profiles of p(z) in the Growth and Chemotaxis Regimes respectively, we note that for £ < z < z,,,
Bam < p(z) < 2eBay,. Thus, Eq. S96 can be written as

r
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where 2¢ > o > 1. Thus,

o C(2e—1) (2e—1) .
(zm—2) = = reie <(zm—2) <

(2e—1)
Ag

S8. Relation to Literature on Chemotactic Pattern Formation

Soon after the introduction of the KS model, other models that considered the growth of the bacteria were
proposed. Following a misconception that chemotaxis is driven by a search for nutrients, most such models
coupled the growth rate and the concentration of the attractant (61-66). However, such a coupling cannot
account for the large expansion speeds observed (30). Cremer et al. note that a small amount of an attractant
in the presence of a nutrient can lead to significantly higher expansion speeds than if the attractant is the
only nutrient source. Thus, though some of these models resulted in traveling waves (62, 64), they treat an
unnatural case.

Other models require production of attractant by the bacteria. There has been very extensive mathematical
literature (38, 71, 81-85) (for a comprehensive review, refer to (86)) focusing on the chemotactic models
with attractant production due to crucial experiments that demonstrated that in motile bacterial cells
aggregate in response to gradients of attractant which they excrete themselves, and form complex spatial
patterns (55). Much work has also been done on traveling-wave solutions and their connection the F-KPP
equation (87-91). However, this work has been primarily motivated by the formation of complex patterns,
rather than on the relatively simple migratory bands discussed in this paper. Further, the work has been
mostly mathematical in nature, focusing on existence and uniqueness proofs, and scaling results and concise
approximations with phenomenological parameters that can be utilized by experimentalists are lacking.

In light of recent experimental evidence for physiological roles of chemotaxis such as range expansion,
we hope that tools developed for complex chemotactic pattern formation may be adapted to understanding
the relatively simple migratory bands, and build on our simplified model. The minimal nature of our
simplified model allows for further analysis upon perturbation by inclusion of more terms such as an upper
Weber cutoff, or production of attractant by the bacteria. Further, by relating the system of chemotaxis
to other well-studied systems such as the F-KPP equation, we hope that the understanding of the other
systems can be drawn to our system, and that physical, biological and experimental insights related to our
system can be utilized for the other systems. We hope that the confluence of the these three systems, which

have historically been pursued by different scholastic communities, spurs insightful exchange.
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