Poster: Testbed in Wireless City Mesh Network with Application
to Federated Learning Experiments

Felix Freitag Lu Wei
Pedro Vilchez Department of Computer Science
{felix freitag,pedro.vilchez}@upc.edu Texas Tech University
Computer Architecture Department, UPC BarcelonaTech Lubbock TX, USA
Spain luwei@ttu.edu
Chun-Hung Liu Mennan Selimi
Department of Electrical and Computer Engineering Max van der Stoel Institute
Mississippi State University South East European University
Starkville MS, USA North Macedonia
chliu@ece.msstate.edu m.selimi@seeu.edu.mk
ABSTRACT The training of the machine learning models, however, is a more
The increase of the computing capacity of IoT devices and the ap- compute-intensive task than the inference, and imposes challenges
pearance of lightweight machine learning frameworks have led for being done with low capacity devices. GPUs instead of CPUs
to the situation that machine learning can nowadays be run in may be used for an improved training performance. However, in
IoT applications at the network edge. There is an opportunity to low-capacity devices, such as mini-PCs or single-board-computers
implement machine learning algorithms with the more and more (SBCs), often GPUs are either not available or the GPU is not sup-
computationally powerful edge nodes and using the ever increas- ported by the machine learning binary. As a consequence, during
ing amount of local data coming from nearby sensors. For this the training process there is a high load on the CPU. Training takes
purpose, federated learning becomes a promising machine learning much longer time in these low-capacity devices.

approach, where a machine learning model is trained by various Federated learning (FL) is a recent approach to training machine
nodes using their local data. For performing practical federated learning models in a distributed fashion in which many client nodes
learning experiments, we have built a testbed deployed within a participate in the model training [8]. Different to the centralized
wireless city mesh network with geographically distributed low training approach requiring all training data available at a single
capacity devices. We describe the testbed implementation and show location, in FL. many client nodes train a machine learning model
its potential to experimentally study federated learning protocols only with their local data. One important advantage is the privacy
and algorithms in real edge environments. preservation of the data, since only the trained machine learning
model is shared, but the local data does not have to leave the node.
KEYWORDS For low-capacity IoT devices, the split of the training effort

among several nodes done in federated learning is another im-

testbeds, federated learning, IoT devi) .)
estbeds, federated fearning, 102 devices portant feature, since potentially less energy and storage is needed

ACM Reference Format: at each node to perform the model training. Furthermore, in FL the
Felix Freitag, Pedro Vilchez, Lu Wei, Chun-Hung Liu, and Mennan Selimi. local dataset at each client node is considered to be smaller, as it
2021. Poster: Testbed in Wireless City Mesh Network with Application to may consist, for instance, only of the sensor data collected at this

Federated Learning Experiments. In 11th International Conference on the
Internet of Things (IoT *21), November 8—12, 2021, St.Gallen, Switzerland. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3494322.3494353

node.

There are a few works that address the resource consumption
of federated learning in IoT scenarios. In [9], a federated learn-
ing framework for the IoT is proposed. The specific application
is to detect anomalies in the network traffic of IoT devices. The

1 INTRODUCTION

There is a strong tendency to run machine learning (ML) models on scenario is motivated by cybersecurity requirements, in which the
ever smaller computing devices. For inference with trained models, communication overhead of a centralized over-the-cloud approach
simple recognition tasks can nowadays be performed even with is unfeasible. For the anomaly detection, a deep autoencoder model
devices as tiny as microcontroller boards [6]. is trained with federated learning at each node. The evaluation

is performed on real devices, namely Raspberry Pi model 4 and

NVIDIA Jetson Nano. While the evaluation focuses more on the
= accuracy of the detection but not on the resource consumption as-

pects, it was observed that only a small fraction of the 4GB memory

of the Raspberry Pi was used.

10T °21, November 8-12, 2021, St.Gallen, Switzerland In the work of Y. Gao et al [4] an empirical evaluation of two state-

© 2021 Copyright held by the owner/author(s). of-art machine learning techniques is presented, namely the split

ACM ISBN 978-1-4503-8566-4/21/11.
https://doi.org/10.1145/3494322.3494353

This work is licensed under a Creative Commons Attribution International
4.0 License.

169

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3494322.3494353
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3494322.3494353

loT ’21, November 8-12, 2021, St.Gallen, Switzerland

neural networks (SplitNN) and federated learning. For an end-to-
end evaluation, a variety of datasets, different model architectures,
multiple clients, and various performance metrics were consid-
ered. Model training was done on Raspberry Pi devices, where the
CPU consumption, memory usage, communication overhead, and
training time was measured. From the experiments, the authors
conclude that FL overall outperforms SplitNN, because of the lower
communication overhead.

In [7], an adaptive federated learning approach is proposed. The
focus is on the global aggregation frequency parameter. Specifically,
a control algorithm is proposed to determine in real time after how
many local training epochs at a node the model data is sent back to
the aggregator node. This approach is different to the typically used
fixed global aggregation frequency. The evaluation is performed by
simulations and with a few experiments in real nodes consisting of
three Raspberry Pi and two laptop computers.

It can be seen that there are several works that propose ways
for reducing the computational resource consumption of federated
learning, ranging from changes of the machine leaning model train-
ing up to off-loading of specific services to other platforms. There is,
however, a lack of studies that test federated learning in real envi-
ronments. In this paper we present a testbed with which a federated
learning implementation can be practically experimented. For this
we deployed low-capacity devices as testbed nodes in a wireless city
mesh network. With initial experiments we show the potential of
the testbed to conduct experimental research on federated learning
protocols and algorithms.

The main contributions of the paper are:

e We present a testbed consisting of low capacity devices de-
ployed within a wireless city mesh network for the evalua-
tion of distributed services such as federated learning.

e We present initial performance measurements of federated
learning using the testbed nodes.

2 GUIFISANTS WIRELESS CITY MESH
NETWORK

The choice for the environment to deploy the testbed was the
GuifiSants! wireless mesh network. One one hand, our university
campus is already connected to GuifiSants through a few Guifi
nodes. On the other hand, this wireless mesh network offers a real
and dynamic edge network environment, which provides a realistic
setting for the targeted practical federated learning experiments.
GuifiSants began to operate in 2009 in the Sants quarter of the
city of Barcelona, Spain. Technically it is based on the mesh net-
work technology developed in the Quick Mesh Project (QMP)?. The
GuifiSants network is an urban mesh network and is a subset of the
larger Guifi.net community network®. The Guifi.net network is a
communication infrastructure of more then 30, 000 interconnected
(wired and wireless) heterogeneous networking devices (routers),
belonging to the thousands of community network members [2].
At the time of writing, the GuifiSants wireless mesh network
has around 54 routers*. There are four gateways (i.e., proxies)

!http://sants.guifinet/

Zhttp://qmp.cat

3guifi.net: Commons Telecommunication Network Open Free Neutralhttp://guifi.net/
“4http://dsg.ac.upc.edu/qmpsu/index.php

170

Freitag and Vilchez, et al.

Q
&
il
&5
4
&
2
A

Figure 1: Nodes and connctivity of the GuifiSants wireless
mesh network in the city of Barcelona.

distributed in the network that connect GuifiSants to the rest of
Guifi.net and the Internet (proxies highlighted in Figure 1). A de-
tailed study of the GuifiSants mesh network can be found in [3].

Edge computing services started around 2015 within Guifi.net[1].
For this community network members installed edge devices at
their premises. These devices typically host the device owner’s
specific application services, sometimes shared with other com-
munity network members, but also community-oriented service
such as network monitoring. Within this context, the testbed nodes
represent additional edge computing infrastructure, connected to
routers within GuifiSants.

3 TESTBED

3.1 Hardware

As hardware for the testbed nodes we use Pc Engine’s APU2 and
Minix mini-PCs. This hardware is already successfully used by some
community network members of Guifi.net to host local services for
which the devices have sufficient computing capacity. Furthermore,
these devices are low-energy consuming and users are willing to run
them in a 24/7 modes. Another reason for the choice of these devices
as testbed nodes was to be conformant to the typical computing
hardware used in Guifi.net, such that any findings and insights
gained from the testbed preparation and experimentation can be
easily transferred and applied in Guifi.net.

The Minix mini-PC is the NEO Z83-4 with Intel Atom x5-Z8350
processor and 4GB DDR3 RAM?® . The PC Engine’s model used is
the APU2 with an AMD Embedded G series GX-412TC processor
and 4 GB DDR3 RAM® . In both type of devices we install Debian 10
Buster. It is worth mentioning that within these two device types,
the Minix NEO Z83-4APU2 integrates an Intel GPU while the Pc
Engine’s APU2 does not have any GPU.

Shttps://minix.com.hk/products/neo-2z83-4-pro
®https://pcengines.ch/apu2e4.htm

http://sants.guifi.net/
http://qmp.cat
http://guifi.net/
 http://dsg.ac.upc.edu/qmpsu/index.php
https://minix.com.hk/products/neo-z83-4-pro
https://pcengines.ch/apu2e4.htm

Poster: Testbed in Wireless City Mesh Network with Application to Federated Learning Experiments

Bellvitge

."; Pisuerga

*I'Hospitalet. it

loT ’21, November 8-12, 2021, St.Gallen, Switzerland

Minix Cluster C6e208

‘ Cluster node

. Single node
Minix device

-

Testbed nodes in GuifiSants

Figure 2: Testbed nodes within GuifiSants deployed in the city of Barcelona.

3.2

Several of the previously described APU and Minix nodes were
deployed as testbed nodes in the GuifiSants wireless city mesh
network. The devices are connected to a Guifi node, i.e., a router
typically located at the rooftop’. The router assigns a static Guifi-
wide routable IP address to the testbed device, such that the device
can host services and connect to other nodes of the Guifi community
network.

Figure 2 illustrates the testbed in the area of Barcelona. The
testbed has two types of nodes, clusters of devices and individual
nodes. The clusters of devices (named Minix cluster C6e104, Minix
cluster C6e208 and APU cluster C6e104) consist of several devices
at the university campus, which are connected through Guifi.net
nodes to the GuifiSants wireless mesh network. The individual
nodes of the testbed are at different locations in GuifiSants, either at
the premises of a community network member or at a municipality
installation, where a Guifi.net node could be installed.

Table 1 shows the testbed heterogeneity in terms of comput-
ing devices (APU2 and Minix) and network (e.g., connectivity) at
the different location, where low bandwidth corresponds to links
with typically less than 10 MBits/sec to other nodes, medium band-
width to links with typically 10-100 MBits/sec bandwidth to other
nodes, and high bandwidth to links which can have more than 100
MBits/sec.

Testbed Deployment

3.3 Experimentation

For doing experimentation with a distributed federated learning net-
work, we use a Python-based implementation. The implementation
consists of two major components, the code for the FL client and the

7 An example of such routers are the Ubiquity NanoStation. https://www.ui.com/
airmax/nanostationm/

171

Table 1: Testbed nodes.

Location name Devices Node connectivy
Minix cluster C6e104 4 Minix high bandwidth
Minix cluster C6e208 5 Minix medium bandwidth
APU cluster C6e104 7 APU2 high bandwidth

Pisuerga 1 Minix low bandwidth
Bellvitge 1 Minix medium bandwidth
Manacor 1 Minix low bandwidth

FL server. Additional information on the software implementation
of the federated learning network can be found in [5].

For running the federated learning components on the distributed
nodes of the testbed, we create Docker images for the server and
client. Since the processor of the Minix and APU2 devices are both
64 bit x86 instruction set-based, it could be expected that a single
Docker image could be used for both types of devices. We noticed,
however, that the default Tensorflow binary (at time of writing the
v2.5), which is integrated in the client of the federated learning
software for the machine learning part, leveraged the Advanced
Vector Extensions (AVX) instruction set, which is supported by the
CPU of the APU2 device, but not by the CPU on the Minix device.
For this reason, a specific binary of Tensorflow was used to build
the Docker images for the Minix devices.

We use the nodes from the testbed to run an experiment. The
goal is to measure the resource consumption of federated learning
devices and observe the effect of the heterogeneity of the wireless
mesh network on federated learning training. We use an APU2
device from the APU cluster C6e104 to run the FL server. As FL
clients we chose one Minix device from the Minix cluster C6e104,
which has a high bandwidth to the FL server, and the Minx device

https://www.ui.com/airmax/nanostationm/
https://www.ui.com/airmax/nanostationm/

loT ’21, November 8-12, 2021, St.Gallen, Switzerland

from the Pisuerga node, which has a low bandwidth to the FL server.
Both clients train locally a CNN machine learning model with the
same number of samples and same number of epochs. We conduct
three training rounds during a duration of around 3 minutes. We
measure the resource consumption at the FL server in terms of CPU,
memory and bandwidth consumed. In Figure 3 it can be seen that
the FL server has peaks for the CPU consumption when sending the
machine learning model to the clients, as well as when receiving
the model from the two clients. The 2nd, 5th and 8th peak in the
CPU consumption corresponds to the model reception of the high
bandwidth client, the 3rd, 6th and 9th peak to the low bandwidth
client. The memory consumption of the server during the training
process is fairly stable. Figure 4 shows the peaks of bandwidth
consumption corresponding to the sending and reception of models
by the server. It can be observed that it takes longer to send the
model from the FL server to the low bandwidth FL client, and also
that the server receives the model later from this client.

120 A

500
100 +

- 400
80

T
w
=3
5]

60

CPU (%)
Real Memory (MB)

40 F200

LU

4] 25 50 75

100

A

175

100 125 150

time (s)

Figure 3: CPU and memory consumption of federated learn-
ing server in three training rounds with two clients.

80000 - i
|
|

60000 - {
|
i
|

40000 -| § 1 i

il
"M

T
100
time (s)

traffic (kbps)

20000

A

T
175

T T
125 150

Figure 4: Bandwidth consumption of federated learning
server in three training rounds with two clients.

172

Freitag and Vilchez, et al.

4 CONCLUSIONS AND OUTLOOK

This paper presented a testbed of distributed low-capacity devices
deployed geographically within a wireless city mesh network, tar-
geting at the experimentation with distributed services running at
edge nodes. Specifically, the usage of the testbed for a federated
learning experiment was exemplified. The testbed has been shown
to be a tool that can help researchers to better understand the practi-
cal design of federated learning applications for edge environments
of the IoT, and experimentally study federated learning protocols
and algorithms in real settings.

Our next steps will focus on extending the usage of this testbed
for assessing different design options of federated learning with
regards to their resource usages patterns. There seems to be an
opportunity for more adaptive federated learning designs, which
will be critical to making this machine learning training paradigm
suitable for resource-constraint IoT environments.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agree-
ment No 871582 — NGlatlantic.eu and was partially supported
by the Spanish Government under contracts PID2019-106774RB-
C21, PCI2019-111850-2 (DiPET CHIST-ERA), PCI2019-111851-2
(LeadingEdge CHIST-ERA). The work of C.-H. Liu was supported
in part by the U.S. National Science Foundation (NSF) under Award
CNS-2006453 and in part by Mississippi State University under
Grant ORED 253551-060702. The work of L. Wei is supported in part
by the U.S. National Science Foundation (#2006612 and #2150486).

REFERENCES

[1] Roger Baig, Felix Freitag, and Leandro Navarro. 2018. Cloudy in guifi.net: Estab-
lishing and sustaining a community cloud as open commons. Future Generation
Computer Systems 87 (2018), 868-887. https://doi.org/10.1016/j.future.2017.12.017
Roger Baig, Ramon Roca, Felix Freitag, and Leandro Navarro. 2015. Guifi.Net, a
Crowdsourced Network Infrastructure Held in Common. Comput. Netw. 90, C
(Oct. 2015), 150-165. https://doi.org/10.1016/j.comnet.2015.07.009

Lloren¢ Cerda-Alabern, Axel Neumann, and Pau Escrich. 2013. Experimental
Evaluation of a Wireless Community Mesh Network. In Proceedings of the 16th
ACM International Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (Barcelona, Spain) (MSWiM ’13). ACM, New York, NY, USA,
23-30. https://doi.org/10.1145/2507924.2507960

Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S. A. Camtep, H. Kim, and
S. Nepal. 2020. End-to-End Evaluation of Federated Learning and Split Learning
for Internet of Things. In 2020 International Symposium on Reliable Distributed
Systems (SRDS). 91-100. https://doi.org/10.1109/SRDS51746.2020.00017

Eduardo Yanez Parareda. 2021. Federated learning network: Training distributed
machine learning models with the federated learning paradigm. (2021). http:
//hdlhandle.net/10609/126546

Fouad Sakr, Francesco Bellotti, Riccardo Berta, and Alessandro De Gloria. 2020.
Machine Learning on Mainstream Microcontrollers. Sensors 20, 9 (May 2020), 2638.
https://doi.org/10.3390/520092638

Shigiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian
Makaya, Ting He, and Kevin Chan. 2019. Adaptive Federated Learning in Resource
Constrained Edge Computing Systems. IEEE Journal on Selected Areas in Commu-
nications 37, 6 (2019), 1205-1221. https://doi.org/10.1109/JSAC.2019.2904348
Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated Machine
Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol. 10, 2, Article
12 (Jan. 2019), 19 pages. https://doi.org/10.1145/3298981

Tuo Zhang, Chaoyang He, Tianhao Ma, Mark Ma, and Salman Avestimehr. 2021.
Federated Learning for Internet of Things: A Federated Learning Framework for
On-device Anomaly Data Detection. arXiv:2106.07976 [cs.LG]

https://doi.org/10.1016/j.future.2017.12.017
https://doi.org/10.1016/j.comnet.2015.07.009
https://doi.org/10.1145/2507924.2507960
https://doi.org/10.1109/SRDS51746.2020.00017
http://hdl.handle.net/10609/126546
http://hdl.handle.net/10609/126546
https://doi.org/10.3390/s20092638
https://doi.org/10.1109/JSAC.2019.2904348
https://doi.org/10.1145/3298981
https://arxiv.org/abs/2106.07976

	Abstract
	1 Introduction
	2 GuifiSants wireless City Mesh Network
	3 Testbed
	3.1 Hardware
	3.2 Testbed Deployment
	3.3 Experimentation

	4 Conclusions and Outlook
	Acknowledgments
	References

