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Abstract—There is a growing research interest in Federated
Learning (FL), a promising approach for data privacy preserva-
tion and proximity of training to the network edge, where data
is generated. Resource consumption for Machine Learning (ML)
training and inference is important for edge nodes, but most
of the proposed protocols and algorithms for FL are evaluated
by simulations. In this demo paper, we present an environment
based on distributed mini-PCs to enable experimental study of
FL protocols and algorithms. We have installed low-capacity
mini-PCs within a wireless city-level mesh network and deployed
container-based FL. components on these nodes. We show the
deployed FL clients and server at different nodes in the city and
demonstrate how an FL experiment can be set and run in a real
environment.

Index Terms—Federated Learning, Edge/cloud computing, Mini-
PCs, Test-bed.

I. INTRODUCTION

Federated Learning (FL) distributes the effort of training
Machine Learning (ML) models over many distributed small
nodes [1]. With FL, there is the opportunity to perform
ML model training on edge devices, thus exploiting edge
nodes’ computing power and the emergence of lightweight
ML frameworks such as TensorFlow Lite!.

FL can unlock the obstacles of centralized ML approaches.
An important feature is privacy preservation of local training
data. Since only trained models rather than raw data are
exchanged between server and clients, the characteristics of
private local data are embedded in the trained models, and
methods like differential privacy help to reduce what remains
from the exposition of private data through these models [2].
Among popular FL-based applications are Apple’s Siri, which
leverages privacy-preserving FL2.

While several variations of FL algorithms have been pro-
posed and evaluated on different datasets, the practical aspects
of FL are less well understood, while most of new ideas are
validated only in simulation. Therefore, there exists a gap
between the established theoretical knowledge and the answer

'Deployed ML  models on mobile and IoT  devices.
https://www.tensorflow.org/lite
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Figure 1. Commodity devices as testbed nodes deployed in the GuifiSants
city mesh network with installed FL components.

to the question of what would be the building blocks of FL
operating in real edge scenarios. However, there are a few
works towards this direction, e.g. by Gao et. al. [3], in which
FL experimentation is performed in controlled conditions with
Raspberry Pi nodes.

In this demo paper, we present an experimental environment
deployed within a wireless network, in which FL can be
researched under real conditions. Figure 1 illustrates the testbed
nodes when they are used for an experiment. Nodes are
connected to the routers of a wireless mesh network called
GuifiSants? in the city of Barcelona.

II. EXPERIMENTATION ENVIRONMENT

The hardware used for testbed nodes consists of Minix mini-
PCs* and PC Engines APU2’. The original operating system
of these devices was replaced by Debian 10 Buster.

The GuifiSants wireless mesh network is part of the larger
Guifi.net community network®. Thus, the testbed nodes (as part

3GuifiSants monitor. http://dsg.ac.upc.edu/qmpsu/index.php

4Minix NEO Z83-4, with Intel Atom x5-Z8350 processor and 4GB DDR3
RAM. https://minix.com.hk/products/neo-z83-4-pro

SPC Engines APU2 with AMD Embedded G series GX-412TC processor
and 4 GB DDR3 RAM. https://pcengines.ch/apu2e4.htm

Shttps://guifi.net/
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Figure 2. FL server web interface with the list of registered FL clients.

of Guifi.net) have routable IP addresses within Guifi.net as-
signed from the 10.0.0.0/8 network segment. Access to testbed
nodes can be either remote from the public Internet for which
we have created a Wireguard and VPN access, or by connecting
locally to a Guifi node. We use an FL implementation with
client and server components implemented in Python. The
design of the implementation is modular, allowing one to
experiment with different ML models or application cases. For
the experimentation, we use an image classification task, for
which a Convolutional Neural Network (CNN) is trained at each
client. The code is packed in Docker images for the deployment
at different nodes. We have installed a Docker registry and a
Debian repository proxy within Guifi.net for nodes with limited
or no Internet access. Thus, newly-built Docker images, which
the experimenter creates for testing changes in protocols and
algorithms, are pushed to the local Docker registry, and from
there they can be pulled by any testbed node within Guifi.net.

The experimentation may study different parameters of the
FL design space. One aspect can be the application level,
e.g., analyzing the effects of different protocols and algorithms
on inference accuracy. Another focus can be the architecture,
in terms of client and server designs and their interactions.
For edge scenarios, where nodes have limited bandwidth and
computational capacities, the resource usage pattern of different
FL designs and algorithms is important to understand. The
experimentation environment may be controlled through the
Web interface of the FL server (Figure 2).

Since the experimentation goals can be broad and diverse,
we use more than one monitoring tool. For general long-
term monitoring of experiments, we have implemented a
Prometheus-Grafana solution. Fig. 3 shows a dashboard which
monitors for an experiment the CPU, memory and bandwidth
consumption of the FL server. Periodic patters can be observed,
corresponding to the FL training rounds. For short-term exper-
imentation, we have installed other open-source tools in the
testbed nodes for measuring resource consumption and traffic
of the FL component at the level of seconds.

III. EXPERIMENTATION

Experimentation in this demo aims to show the capabilities
and potential of the testbed environment in conducting FL
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Figure 3. Grafana dashboard for FL. node monitoring.

research experiments by showing:

1) Preparation of an experiment by choosing and registering
a set of FL clients to the server and configuration options.

2) Running of an FL experiment on several distributed
testbed nodes.

3) The steps for analysis of results and examples of detected
behavior.

4) Our on-going work on extensions of the FL experimen-
tation environment.
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