Performance Evaluation of Federated Learning
over Wireless Mesh Networks with

Low-Capacity Devices

No Author Given

No Institute Given

Abstract. Federated learning is a distributed learning technique in which
a machine learning model is trained collaboratively among several nodes.
While the privacy preservation of the training data is one of the impor-
tant promises of federated learning, there is also an opportunity to use
low capacity devices for machine learning model training by taking ad-
vantage of the fact that the training effort is divided among many nodes.
In this paper we conduct experiments with a federated learning net-
work deployed on several low capacity devices connected to a wireless
mesh network. The measurements show the hardware capacity and link
bandwidth of the clients on the federated learning process. The results
suggest that for heterogeneous networks the federated learning clients
should be extended with more autonomous decision capacities according
to the network and local conditions.

Keywords: edge computing, federated learning

1 Introduction

Federated learning (FL) is a recent approach to training machine learning models
in a distributed fashion in which many client nodes participate in the model
training [1]. Different to the centralized training approach requiring all training
data to be available at a single location, in FL the client nodes train a machine
learning model with their local data. This circumvents data needing to leave the
node, which has important advantages for the privacy preservation of the data.

There is a strong tendency to run machine learning (ML) models on ever
smaller computing devices. For the inference with trained models, simple recog-
nition tasks can nowadays be performed even with devices as tiny as microcon-
troller boards [2|. The training of the machine learning models, however, is a
more compute-intensive task, and imposes challenges with low capacity devices.
GPUs instead of CPUs may be used for better performance. However, in low-
capacity devices, such as mini-PCs or single-board-computers (SBCs), GPUs are
not always available. As a consequence, there is a high load on the CPU dur-
ing the training process, which also takes much longer time than on high-end
devices.

Principally, the training of a neural network model with large datasets re-
quires the availability of important computational resources during the training

process. Federated learning, however, splits the training effort among several
nodes. In the FL scenario, the local dataset at each client is considered to be
smaller, since for instance the data may consist only of the information collected
at this node. The lower amount of training data at each node opens the possibility
to train models on low capacity devices, but it also introduces a new challenge to
train models at different clients with non-independent and identically distributed
data (non-IID), which adds complexity to the training process [3].

In this paper, we aim to study the federated learning process on computing
devices consisting of mini-PCs or Single-Board-Computers (SBCs), such as those
found in home environments. Typically, in user environments these computing
devices run as home servers to manage several user-oriented services. Therefore,
these devices are not dedicated exclusively to a machine learning application.
A real scenario for this situation is the Guifi.net community network!, where
some users provide applications on such low-capacity nodes to other users [4].
From this scenario, an important research topic can be motivated: it is important
to understand how federated learning consumes computing resources, since in
non-dedicated home devices, i.e., those running multiple services, the resource
consumption of federated learning must not affect the Quality of Experience
(QoE) which the user perceives from other applications running simultaneously
in the device.

In particular we analyze the resource usage of federated learning by means
of experimentation on real devices connected to a wireless mesh network. We
aim to understand better how the different phases of a federated learning round
(i.e., the model exchange and local model training) affect the CPU and memory
consumption of a low capacity device and the traffic in the network.

Therefore, the main contributions of the paper are:

1. We provide results on the computing resource usage of a federated learning
process measured on real distributed low-capacity devices connected to a
wireless mesh network.

2. The analysis of the results suggests the design of an adaptive client node
enabling a context-aware federated learning in wireless mesh networks.

2 Related work

In this section, we review selected works related to the application of federated
learning on low capacity devices and works which suggested mechanisms for the
configuration or adaptability of federated learning.

In [5], an adaptive federated learning approach is proposed. The focus is on
the global aggregation frequency parameter. Specifically, this work proposes a
control algorithm to determine in real time after how many local training epochs
at a node the model data is sent back to the aggregator node. This approach is
different to the typically used fixed global aggregation frequency. The evaluation
is performed by simulations and some experiments in real nodes consisting of

! nttp://guifi.net/

http://guifi.net/

3 Raspberry Pi and 2 laptop computers. We note that the global aggregation
frequency is determined by the aggregator node in a centralized fashion, while
an alternative could be to determine at each node the individually most suitable
number of training epochs.

In [6], a highly-efficient federated learning framework is presented. The het-
erogeneity of worker nodes given in the context of the IoT is addressed. Two
measures are suggested, which are relaxed worker synchronization for tolerat-
ing dropouts of sporadic workers, and similarity-based worker selection, which
aims to select a subset of the most efficient workers. By calculating the simi-
larity among the received local models, the server can decide to exclude certain
worker nodes for the next training round, e.g., those which may not contribute
sufficiently to the global model. The principal idea is to empower the FL server
to take smarter decisions on how to orchestrate the FL process over the worker
nodes. The proposed system is evaluated in Google Cloud Platform focusing on
the accuracy, but not on how the resource usage is affected.

In [7], a federated learning framework for the IoT is proposed. The specific
application is to detect anomalies in the network traffic of IoT devices. The
scenario is motivated by cybersecurity requirements, in which the communication
overhead of a centralized over-the-cloud approach is unfeasible. For the anomaly
detection, a deep autoencoder model is trained in a federated learning fashion
on each node. The evaluation is performed on real devices, namely Raspberry Pi
model 4 and NVIDIA Jetson Nano. While the evaluation focuses on the accuracy
of the detection, it was also stated that only a small fraction of the 4GB memory
of the Raspberry Pi was used.

The work of Y. Gao et al [8] performs an empirical evaluation of two different
state-of-art machine learning techniques, namely split neural networks (SplitNN)
and federated learning. For an end-to-end evaluation, a variety of datasets, differ-
ent model architectures, multiple clients and various performance metrics were
considered. The learning performance was assessed for two types of distributed
data, imbalanced and non-IID data. Model training was done on Raspberry Pi
devices, where the CPU consumption, memory usage, communication overhead
and training time was measured. From the experiments, the authors conclude
that FL overall perform better in comparison with SplitNN, because of the lower
communication overhead.

From the reviewed related works, it can be seen that there are several ap-
proaches proposed for reducing the computational resource consumption of fed-
erated learning, ranging from changes of the machine leaning model training up
to off-loading of specific services to other platforms. However, there is still a
lack of results on the performance of FL in real environments. Our work aims to
provide practical results by running federated machine learning on low-capacity
devices, giving input on how to design the federated learning process for different
end user environments.

3 Federated learning implementation

3.1 Federated learning architecture

We use a federated learning architecture consisting of a server as global aggre-
gator and distributed client nodes which train locally an instance of the global
model. Figure 1 shows the federated learning components and illustrates the
principal idea: The aim is to train a global ML model hosted by the federated
learning server. Training data is available locally at the client nodes. For a new
training round, the server sends the current version of the global model to the
client nodes. They train this model for a predetermined number of epochs with
their local data. After the training, the updated model parameters are sent back
to the server. The server then generates a new global model by averaging the
model parameters received from the different clients nodes. The training phase
may have several rounds initiated by the server.

FEDERATED
LEARNING
SERVER

E private data
'f local ML model

LEARNING LEARNING

CLIENT og global ML model CLIENT

Fig. 1: Federated learning architecture with interaction between the server and
clients.

3.2 Implementation

The federated learning network we use for the experimentation is implemented
in Python language. The system is composed of two major components, i.e.,
the code for the client and the server. In our implementation, the server sends
both the model parameters and the hyperparameters, which relate to the control
of how the training is done on the clients. These hyperparameters assigned are
the learning rate, number of local training epochs, and batch size. This data
is sent between server and clients in JSON format over http POST messages,
where both the server and the client implement a REST API. The server does
not make a distinction between different client nodes, i.e., all clients receive the

same value of the hyperparameters. For both the federated learning server and
the client, we create Docker images in order to instantiate them with Docker
containers on the different devices. The source code of the federated learning
network is available on Github?. Additional information on the code design can
be found in [9].

4 Experimental evaluation of the federated learning
network

4.1 Experimental environment and testbed

We deploy the previously introduced federated learning network on a testbed
of low-capacity computing nodes connected to a wireless mesh network called
GuifiSants®. GuifiSants is part of the Guifi.net community network. The Guifi.net
communication network is an infrastructure of more then 30.000 interconnected
heterogeneous network devices (wired and wireless), belonging to the thousands
of community network members [10].

Within the Guifi.net communication infrastructure, edge computing services
started around 2015 [4]. These edge devices located at the premises of the com-
munity network member typically host the owner’s specific application services
but also host some community-oriented service for helping to manage the net-
work, such as contributing to network monitoring [11]. In order to have a low
energy consumption, these edge devices are often mini-PCs.

(a) Minix mini-PC. (b) PC Engines APU2.

Fig. 2: Computing nodes of the testbed used for federated learning experiments.

2 https://github.com/eyp/federated-learning-network
3 Live monitor of GuifiSants. http://dsg.ac.upc.edu/qmpsu/index.php

https://github.com/eyp/federated-learning-network
 http://dsg.ac.upc.edu/qmpsu/index.php

In order to build a testbed for the federated learning experimentation, we
have connected several Minix mini-PCs* (Figure 2a) and PC Engines APU2°
(Figure 2b), both type of devices with Debian 10 Buster installed, to the GuifiSants
wireless mesh network. As such, they form a testbed which is part of the pro-
duction network and allow to experiment under real conditions (Figure 3).

~ N 1 1
’) 1
S, A l = I
\) !
) | 10.1.24.71-75 \ \ ’
A} A} /’

1 \ 4 hops, - RN ’
! \ 13 Mbitsisec_ _ = - e
r 1 - ~ .~ Minix cluster e104 P
1 - PLA T -
| I ~ B hops, R
\ i ~7 31Mbitsisec,
\ 1 i ’ 2 hops,
\ [1’ 3 hops, e . 530 Mbits/sec
\ ,~~ 18 Mbitslsec e ’
A Minix cluster e208 ’ ~o - ’
AN ’ ~o e ’ _
~ Pid SN ’ -
RN -~ Thops, PRI e .
S =~ - \\BMhi(stec e S~ /’ /l
5 hops, I S L’ Sso v i
5 Mbits/sec ! ~N_7 b ! .~
1 A ~o 0
| - N ’ ~ _—
1 > ’
| 6 hops, i AN ’ B
| 7 Mbitslsec, ~ ~ PAPET N
| -7 6 hops, S =TT -
- DS, S ’ ~ —
=t - 9Mbitslsec _ _ - -~"S_ _ s _ ’ 4
’4’ “\\ —,4“ ’,' ~a ’/ e
’ N . ~.
// < ,/ v° 6hops,
B ~ ‘\ 9 hops, ’ \ 37 Mbitslsec
| | 8 Mbitslsec ; ¢ M
' Losmm «~ 4900 0'------
' | 1
\\ M’ 7 1 L ! e e m - wireless
AN Minix Pisuerga ,’l \\ g 1’ wired
RS - N Minix Bellvitge 4

Fig. 3: Testbed infrastructure and approximate bandwidth between the locations.

4.2 Experimentation

The objective of the experimentation is to measure the resource consumption of
federated learning devices interconnected over the wireless mesh network.

For the experiment, the federated learning task to be executed is to train a
CNN (Convolutional Neural Network) model with the Chest X ray datasetS.
Since the testbed nodes are of a low computing capacity, the clients are config-
ured to train 1 epoch in each round and the number of images for training and
testing are reduced to 200 and 100, respectively. The machine learning model

4 Minix NEO Z83-4 with Intel Atom x5-Z8350 processor and 4GB DDR3 RAM. https:
//minix.com.hk/products/neo-z83-4-pro

® PC Engines APU2 with AMD Embedded G series GX-412TC processor and 4 GB
DDR3 RAM. https://pcengines.ch/apu2e4.htm

5 Chest X-Ray Images. https://www.kaggle.com/paultimothymooney/
chest-xray-pneumonia

https://minix.com.hk/products/neo-z83-4-pro
https://minix.com.hk/products/neo-z83-4-pro
https://pcengines.ch/apu2e4.htm
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

to be trained is a 6-layer CNN, which has around 420.000 parameters. Three
rounds are trained in both experiments.

Experiment 1: Federated learning clients on different hardware.
The objective of this experiment is to observe the behaviour and resource con-
sumption of FL clients when run on different hardware. For this experiment we
run one client in a device of the APU2 cluster €104, and the other client in a
device of the Minix cluster e104 (see Figure 3). The server is deployed on an-
other device in the PC Engines APU2 cluster e104. Figure 4 shows the results.
Comparing the times in Figure 4d to 4f, when the model is exchanged with the
server, it can be seen that the client in the Minix device replies quicker to the
server with the trained model than the client in the APU2.

Experiment 2: Federated learning clients with different link band-
width. In this experiment we aim to observe the effect of different link bandwidth
available at the clients. We chose one device from each of the 5 locations of the
testbed. The FL server is installed in one of the APU2 devices from its cluster
€l04. The FL clients are installed on Minix Pisuerga device, Minix Bellvitge de-
vice, a device from the Minix cluster €208, and one from the Minix cluster e104,
in total 4 clients, all on Minix devices.

Figure 5 shows the measured resource consumption. With regards to the
CPU and memory consumption of the clients (Figures 5c, e), the three training
rounds done by each client can be clearly observed by the peaks in the CPU con-
sumption. For the training, almost the complete CPU capacity (the four cores)
are used. The memory consumption is moderate, as being below 1 GB and tak-
ing into account that the devices have 4 GB RAM available. It can be observed
that the FL client Minix Pisuerga (Figure 5¢) started with a higher memory con-
sumption compared to the other client (Figure 5e). This is due to the fact that
the client Minix Pisuerga participated already previously in a federated learning
round with the server, while the other clients joined the federated learning net-
work later. The traffic produced during the federated learning rounds is shown
in Figures 5d, f. It reflects the available bandwidth between the locations. For
instance, in the low bandwidth link to the Minix Pisuerga client, the traffic pro-
duced by sending the ML model between the client and server is lower and takes
longer, while in the faster link of the client in the Minix cluster €208 the traffic
due to the model exchange has higher peaks.

Figure 5a, b shows the resource consumption of the FL server. The CPU
consumption in the server is clearly lower than in the clients, where the server
uses approximately 1 core (Figure 5a). The peaks of the CPU consumption seem
to correspond to the communication phases with the clients, in which the model
exchange takes place. The memory consumption of the server with around 0.5
GB is low and lower than the approx. 1 GB memory used by the FL clients. The
traffic shown in Figure 5b represents the model exchanges with the four clients
during the three training rounds. The peaks correspond to the communication
with the high capacity links. It can be observed how the low capacity link (in
the testbed, the link to the Minix Pisuerga client) delays the finalization of the
federated learning rounds.

120 {
1600004 —7 TX)
— R Server receives Server
100 [400 140000 1 Server sends out C;”el;??; fl:/lljimx receives
n % model mini-PC model
120000 4 ! from client
801 — — F3o0 2 | |/ " in Alix
= 7 100000 4 i APU
3 = g i /
£ § £ !
S 604 £ S 800004 i <
& t2002 g [:
] S 60000 4 i |
40 4 = ii I
40000 - il |
100 i i
204 20000 4 i i L
I i i
o] il | i
0 T T T T T T T T 0 T T T T T T T T
o 25 50 75 00 125 150 175 o 25 50 75 100 125 150 175
time (s) time (s)

(a) FL server in APU2: CPU and memory (b) FL server in APU2: bandwidth con-

consumption. sumption.
400
gooo0{ " 1
350 4 t 1000 —] |
300 |
9 [800 60000 §
5 250 @ i
1) =
s = 2 §
o r600 I £
3 > 2
5 200 5 < 40000 E
o E £ v
150 g £ 1]
S Faoo = ii
5]] ii |
100 4 20000 i i i
200 i i !
| i |
0 i i I
[[
4 25 50 75 00 125 150 175 0 25 50 75 100 125 150 175
time (s) time (s)

(c¢) FL client in Minix mini-PC: CPU and (d) FL client in Minix mini-PC: bandwidth

memory consumption. consumption
800004 7 7]
400 1000 —
70000
L 800 60000
300 4 s
= 7 50000
g teoo 5 2
> £ S 40000 ! I
& 200 = 5]]
= s | I
Laoo & 30000 | i I
I i I
20000 | i |
100 | i i
200 10000 i i ii
ii i il
A 0
04— T T T T T ? —-0 T T T r T T T T
[25 50 75 100 125 150 175 [25 50 75 00 125 150 175
time (s) time (s)

(e) FL client in APU2: CPU and memory (f) FL client in APU2: bandwidth con-

consumption. sumption

Fig.4: Federated learning clients in different hardware: Resource consumption
in three training rounds.

Server sends out

model Server receives
120 model from 4 600
clients 2nd round 3rd round
100 Py sy 500
—

nUHLH T H s
80 [, w008
g g
3 60 300 §
G =
s
&

40 200

20 J /‘J 100

0 L L 0
0 50 100 150 200 250 300
time (s)

(a) FL server in APU2 cluster e104: CPU
and memory consumption.

400
350 | 1000
300 4

= 800

R

& 2501 @

N :

I F600 T

2 200 >

S s

Y £

= 2

— 150

S bao0 =

a

[}

100
200
50
04— : L f L — —-0
[50 100 150 200 250 300
time (s)

(c) FL client Minix Pisuerga: CPU and

memory consumption.

f 1000
400+
800
300 5
£
s S
g t600 2
2 £
& 2004 =
E
00
100 4
200
01— T " T T T —-0
4 50 100 150 200 250 300
time (s)

(e) FL client in Minix cluster e208: CPU
and memory consumption.

— T
100000 Rx
80000
g
£ 60000
9
£
e
= 40000
20000

0 50 100 150
time (s)

(b) FL server in APU2 cluster ¢104: band-
width consumption.

200 250 300

20000 _._ 1y
— Rx
17500
15000
= 12500 |
n
z !
£
= 10000 %
£ [
H i
5 7500 ‘II
| i
5000 i 1 i[lF
i jl,!
2500 H !
i i
0 |
[50 100 150 200 250 300

time (s)

(d) FL client Minix Pisuerga: bandwidth

consumption.

— T
250004 T ™
20000
7
g
£ 15000 1
g a i !
e i [it
10000 I i ji!
i i t
5000 li i LK
;il I h (K
i I]
o i il Al

0 50 100 150 200 250 300
time (s)

(f) FL client in Minix cluster e208: band-
width consumption

Fig.5: Federated learning clients with different link bandwidth: Resource con-

sumption in three training rounds.

10

5 Conclusions

This paper presented a federated learning deployment using low capacity de-
vices in a wireless mesh network. The resource consumption of the clients and
server in terms of CPU, memory, and bandwidth consumption were measured.
During the model training at the clients a high CPU consumption which uses
the four cores of the processor was observed, which could be a problem if other
applications run simultaneously on the device for which certain service levels
must be guaranteed to end users. The experiments furthermore showed how a
low bandwidth link of clients delay the model exchange and thus the finalization
of a of federated learning round, leading to an overall slower model training.
Therefore, for improved performance in such environments with heterogeneous
bandwidth and hardware of the clients, the obtained results suggest to design
federated learning clients which can dynamically adapt the training parameters
to enable a context-aware federated learning.

References

1. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: Concept and
applications. ACM Trans. Intell. Syst. Technol. 10(2) (January 2019)

2. Sakr, F., Bellotti, F., Berta, R., De Gloria, A.: Machine learning on mainstream
microcontrollers. Sensors 20(9) (May 2020) 2638

3. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.. Federated Learning: Challenges,
Methods, and Future Directions. IEEE Signal Processing Magazine 37(3) (May
2020) 50-60

4. Baig, R., Freitag, F., Navarro, L.: Cloudy in guifi.net: Establishing and sustaining
a community cloud as open commons. Future Generation Computer Systems 87
(2018) 868887

5. Wang, S., Tuor, T., Salonidis, T., Leung, K.K., Makaya, C., He, T., Chan, K.:
Adaptive federated learning in resource constrained edge computing systems. IEEE
Journal on Selected Areas in Communications 37(6) (2019) 1205-1221

6. Xu, H., Li, J., Xiong, H., Lu, H.: Fedmax: Enabling a highly-efficient federated
learning framework. In: 2020 IEEE 13th International Conference on Cloud Com-
puting (CLOUD). (2020) 426-434

7. Zhang, T., He, C., Ma, T., Ma, M., Avestimehr, S.: Federated learning for internet
of things: A federated learning framework for on-device anomaly data detection
2021

8. g}ao,)Y., Kim, M., Abuadbba, S., Kim, Y., Thapa, C., Kim, K., Camtep, S.A.,
Kim, H., Nepal, S.: End-to-end evaluation of federated learning and split learning
for internet of things. In: 2020 International Symposium on Reliable Distributed
Systems (SRDS). (2020) 91-100

9. Parareda, E.Y.: Federated learning network: Training distributed machine learning
models with the federated learning paradigm. (2021)

10. Baig, R., Roca, R., Freitag, F., Navarro, L.: Guifi.net, a crowdsourced network
infrastructure held in common. Comput. Netw. 90(C) (October 2015) 150-165
11. Centelles, R., Selimi, M., Freitag, F., Navarro, L..: Redemon: Resilient decentralized
monitoring system for edge infrastructures. In: 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID), Los Alamitos,

CA, USA, IEEE Computer Society (may 2020) 91-100

	Performance Evaluation of Federated Learning over Wireless Mesh Networks with Low-Capacity Devices
	Introduction
	Related work
	Federated learning implementation
	Federated learning architecture
	Implementation

	Experimental evaluation of the federated learning network
	Experimental environment and testbed
	Experimentation

	Conclusions

