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Abstract: This paper is concerned with the definition and characterization of the observability for a
continuous-time hidden Markov model where the state evolves as a continuous-time Markov process on
a compact state space and the observation process is modeled as nonlinear function of the state corrupted
by a Gaussian measurement noise. The main technical tool is based on the recently discovered duality
relationship between minimum variance estimation and stochastic optimal control: The observability is
defined as a dual of the controllability for a certain backward stochastic differential equation. Based
on the dual formulation, a test for observability is presented and related to literature. The proposed
duality-based framework allows one to easily relate and compare the linear and the nonlinear systems.
A side-by-side summary of this relationship is given in a tabular form (Table 1).
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1. INTRODUCTION

This paper is concerned with the definition of observability for a
partially observed pair of continuous-time stochastic processes
(X,Z) where the state X is a Markov process and the obser-
vation Z is a nonlinear function of the state corrupted by the
Gaussian measurement noise. The precise mathematical model
appears in the main body of the paper.

In deterministic linear time-invariant (LTI) settings, observ-
ability (more generally detectability) and its dual relationship
to the controllability are foundational concepts in linear sys-
tems theory; (Kalman, 1960). It is an important property that
a model must satisfy to construct asymptotically stable ob-
servers (Kailath et al., 2000). For a partially observed stochastic
LTT system, the detectability property of its deterministic coun-
terpart is necessary and also sufficient (under mild additional
conditions) to deduce results on asymptotic stability of the
optimal (Kalman) filter; (Ocone and Pardoux, 1996).

Generalization of these concepts to nonlinear deterministic and
stochastic systems has been an area of historical and current
research interest, e.g. (Hermann and Krener, 1977; Moraal and
Grizzle, 1995; Liu and Bitmead, 2011). In settings more general
than this paper, the fundamental definition of observability is
due to van Handel (2009a,b). The definition is used to estab-
lish results on asymptotic stability of the nonlinear filter (Chi-
gansky et al., 2009; van Handel, 2010). Certain extensions of
van Handel’s observability definition appear in recent papers
by McDonald and Yiiksel (2019).

In this paper, we utilize the recently discovered duality rela-
tionship between minimum variance estimation and stochastic
optimal control (see Kim et al. (2019)) to define observability
as a dual to the controllability. The latter property is somewhat
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‘natural’ because it bears close resemblance to the definition of
controllability in deterministic LTI settings. The definition of
observability is obtained by using duality. In finite state-space
settings, certain Kalman-type rank conditions are derived to
verify the observability property. These conditions are shown
to be identical to the ones reported by van Handel (2009a) but
derived here using alternate means.

The original contributions of our paper are as follows: We pre-
sented the observability in terms of the controllability property
of the dual. This type of duality is different from prior works on
duality such as Fleming and Mitter (1982); Mitter and Newton
(2003); Goodwin et al. (2005); Todorov (2008). We relate our
definition of observability with literature (van Handel, 2009a).
Note the background and motivation for our work is different
from Van Handel’s approach which is entirely probabilistic in
nature. The upshot of our work is that we can establish paral-
lels between linear and nonlinear cases (see Table 1). This is
expected to be useful in several ways, e.g., to obtain approxi-
mation algorithms and for stability analysis of the filter.

The remainder of this paper is organized as follows: The back-
ground on the classical deterministic LTI model appears in
Sec. 2. The nonlinear model is introduced in Sec. 3 and its
stochastic observability defined and discussed in Sec. 4. The
finite state case is illustrated in Sec. 5. The conclusions appear
in Sec. 6. All the proofs are contained in the Appendix.

2. BACKGROUND: DUALITY IN LINEAR SYSTEMS

In linear algebra, it is an elementary fact that the range space of
a matrix is orthogonal to the null space of its transpose. In func-
tional analysis, the closed range theorem provides the necessary
generalization of this elementary fact in infinite-dimensional
settings. The theorem (Hutson et al., 2005, Theorem 6.5.10)
states that

R(L)=N(L£")*



Table 1. Comparison of the controllability—observability duality for linear and nonlinear systems

Linear-deterministic case (Sec. 2)

Nonlinear-stochastic case (Sec. 4)
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where R(L) is closure of the range space of a bounded linear
operator £ and N(L") is the null space of its adjoint operator
L". This dual relationship is of fundamental importance to un-
derstand the duality between controllability and observability.
The overall procedure is as follows:

(1) Define the appropriate function spaces and the associated
linear operators; and

(2) Express controllability and observability properties in
terms of range space and null space of these operators.

We briefly review this well known procedure first in the classi-
cal settings.

Function spaces: Denote U := L*([0,T];R™) to be the Hilbert
space of R™-valued (input or output) square-integrable signals
on the time interval [0, T]. The space is equipped with the inner
product {u,v)y = fOT u v, dt for u,v eU. Denote ) := R? to be
the Euclidean space equipped with the standard inner product
(vo,X0)y = y§xo for yo,xo € V.

Operators: For given matrices A € R”*? and H e R™ define a
linear operator £ : U — ) as follows:

T r
Eu:fo et "H u, dt =t yg

The definition of the adjoint operator £ : ) - U follows from
the following calculation:

T
(Lu,x0)y :ygxo = [0 u,THeA’xodt = (u,ﬁTxo)u (1)

Therefore,
(E%xo)(t) =Heé''xg=:7, forte [0,T]

Controllability and observability: The operator £ defines the
map from a given input signal u = {u,; : 0 <t < T} to the initial
condition yq for the linear system ! :
i =ATy+H u;, yr=0 (2)
The range space R(L) is referred to as the controllable sub-
space. The system (2) is said to be controllable if R(L) = ).

' The system (2) is an example of a backward ordinary differential equation
(ODE) because the terminal condition at time 7 = T is set (to zero in this case).

The adjoint operator £ defines the map from a given initial
condition xy to the observation signal z={z :0<¢ < T} for the
linear system

X; =Ax;, withinit. cond. xp (3a)

z=Hx (3b)

The system (3) (henceforth referred to as the linear model
(A,H)) is said to be observable if N(L") = {0}.

By the closed-range theorem (or more directly by simply us-
ing (1)), R(£) = N(LT)*. Therefore, the system (3) is observ-
able if and only if the system (2) is controllable. This is useful
in the following ways:

(i) Definition of observability: as the property of the dual
system being controllable.

(i) Geometric interpretation of non-observability: If the
controllable subspace R(£) ¢ R then there exists a
non-zero vector % € N(L") such that yJ% = 0 for all
yo € R(L). The vector % has an interpretation of being
the “un-observable” direction in the following sense:
For any given xo € RY, He''xg = He™ (xo + %) for all
t € [0,T]. This in turn provides an equivalent definition
of observability: The model (A,H) is observable if

He''x$) = He x(P) v 1 € [0, T implies x{V = x$P (4)

(iii) Tests for observability: By the use of the Cayley-
Hamilton theorem,

R(L) =span{H",ATH",... (A" 'H"} (5)

This provides a straightforward test to verify observabil-
ity: The model (A,H) is observable if the span on the

right-hand side of (5) is R.

The aim of this paper is to repeat the above program—viz., (i)
the definition of the function spaces I/ and ); (ii) the definition
of the linear operator £ and its adjoint £'; (iii) the math-
ematical characterization of the controllable subspace R(L);
and (iv) its use in definition and geometric interpretation of
the observability—for a partially observed nonlinear stochastic
system. A summary of the paper appears in the form of a
comparison between the linear-deterministic and the nonlinear-
stochastic system in Table 1.



3. PROBLEM FORMULATION
3.1 Model & notation

The nonlinear model is defined for a pair of continuous-time
stochastic processes denoted as (X,Z). The details of the model
are as follows:

(i) The state X = {X;: 0<¢ < T} is a Markov process that
evolves in a compact state-space S2 . The generator of
the Markov process X is denoted as .A.

(ii) The observation process Z ={Z;: 0<r < T} is defined
according to the following model:

7= ["hox)asw, ©)

where i :S — R™ is a given observation function and
{W, : t > 0} is an m-dimensional Wiener process (w.p.).
It is assumed that W is independent of X.

(iii) We refer to the above model as the nonlinear model

(Ah).

Notation: We denote Z; := 6({Z;:s<t}) to be the 5-algebra
generated by the observations up to time t and Z := {Z;:0<¢ <
T} is the entire filtration.

The law of (X,Z) is denoted as P with the associated expecta-
tion operator E. To emphasize the model for initial condition Xp,
we use P to denote the law of (X,Z) when the initial condition
Xo~U.

For the state-space S, we let 5(S) denote the Borel c-algebra
on S; M(S) is the vector space of (signed) Radon (bounded
and regular) measures on B(S); and P(S) c M(S) is the
set of probability measures. C(S) is used to denote the dual
space of M(S), which is identified by continuous functions on
S (Treves, 1967, Ch. 21). Throughout this paper, we will use
the notation:

u(h)= [ rem(a)

to denote the integral of a measurable function f with respect to
the measure . It is the natural duality paring between M (S)
and C(S).

3.2 Preliminaries

The main concern of this paper is to define and characterize
observability for the nonlinear model (.A,%). In his paper, van
Handel (2009a) proposes the following probabilistic defini-
tion> of observability for stochastic processes (X,Z):

Definition 1. Suppose X is a Markov process defined on a
compact set S and Z is defined according to model (6). Suppose
P# and P are two laws of the process (X,Z) with initial
measure Xg ~ U and Xy ~ Vv, respectively. The model is said to
be P-observable if

P, =P = p=v ()

P
where PH ’ z denotes the restriction of the probability measure
P* to the o-algebra Z7.

2 The results of this paper are expected to carry over to locally compact spaces.
3 The definition in van Handel (2009a) applies to a more general class
of stochastic processes (X,Z) whereby the independent increment of the
measurement noise may not be of the additive Gaussian form (as assumed here).

Before presenting the main result, it is useful to review some
concepts from the theory of nonlinear filtering (Xiong, 2008,
Ch. 5):

Change of measure: Given P, define a new measure P accord-
ing to the Radon-Nikodyn derivative

%E(w) = exp(—fOThT(X,)dZ,+%f0T|h(Xl)|2dt)

By the Girsanov theorem, Z is a P Wiener process. For a given
function f, the un-normalized filter is defined by

o:(f) = E(Dif(X)|Z:)
where E(-) denotes the expectation operator with respect to the
new measure P and

t t
D,:exp([ hT(XS)dZS—%f Ih(x,)ds)
0 0
The un-normalized filter o;(f) solves the Zakai equation of
nonlinear filtering. The nonlinear filter is given by
o (f)
T =E(f(X)|Z) = 8
() =E(f(X)]Z) (1) (®)
where 1(x) =1V x €S denotes the unit constant function.

As before, we use superscript (e.g., o', ') to emphasize
dependence on the initial measure (1) of Xp.

4. MAIN RESULT: STOCHASTIC OBSERVABILITY
4.1 Function spaces

In nonlinear settings, the signal space U = L% ([0, T];R™) is
the Hilbert space of R™-valued stochastic processes on [0,7].
The subscript Z denotes the fact that the signals are (forward)
adapted to the filtration Z. The space is equipped with the inner
product

ARY ::E(/OTU,TV,dt)

The expectation E is with respect to the measure P. For the
proof that ¢/ is a Hilbert space with respect to this inner
product (Le Gall, 2016, p. 99).

The space Y = C(S) and its dual " = M(S). For a function
y € C(S) and a measure u € M(S), the dual pairing is as
follows:

(1 f)y =) = [ FEm(dn)

A side-by-side comparison of the signal space and the function
space for the linear and nonlinear cases appears as first two rows
in Table 1.

4.2 Controllability

Parallel to the linear case, we define controllable subspace as
the range space of a bounded linear operator. For this purpose,
we introduce the following backward stochastic differential
equation (BSDE):
~dY;(x) = (AY(x) + AT (x) (Us +Vi(x)) ) dt =V, (x) dZ,

Yr(x)=cl(x) YxeS ©))
where ¢ € R and the input signal U € /. The solution (Y,V) :=
{(Y;(x),V;(x)) : t € [0,T], x € S} of the BSDE is (forward)
adapted to the filtration Z. For the purposes of this paper, well-

posedness (existence, uniqueness and regularity) of the solu-
tion (¥,V) e L% ([0,T]:C(S)) x L% ([0,T];C(S)) is assumed;



cf., (Ma and Yong, 1997). The BSDE is the nonlinear counter-
part of the backward ode (2) in the LTI setting. The justification
for considering the BSDE (9) appears in Appendix A where our
prior work (Kim et al., 2019) on the topic of duality is briefly
reviewed.

The bounded linear operator* £:U xR — ) is defined through
the solution of the BSDE (9) as follows:

L(U, ¢) =Yy (10)
and its range space R(L) = {Yp € YV : U €U, c € R} is referred
to as the controllable space. The BSDE (9) is said to be
controllable if R(L) is dense in ).

In finite state-space settings, when the state space S is of
cardinality d, R(L) is a subspace of RY. Therefore, in this
setting, the system is controllable if R(L) = RY,

Duality is used to propose an indirect definition of observability
as follows:

Definition 2. The nonlinear model (A, 1) is said to be observ-
able if

R(L) is dense in (01)

4.3 Observability

We develop a more direct definition of observability by consid-
ering the dual operator. In the Prop. 1 (stated below), it is shown
that the adjoint to the BSDE (9) is the Zakai equation:

t t
AN =R+ [ w(ANds+ [ EmMBdZ VfeY

(11)

where the initial condition 7 € M(S) is given? . For a given

function f € ), the solution of the Zakai equation (11) is

denoted as #(f) := {#(f):0<r<T}. In finite state-space

settings, the Zakai equation is simply a linear SDE on R? with

initial measure 7 € R9.

The following proposition is proved in Appendix B.1:

Proposition 1. Consider the linear operator (10). Its adjoint
L7 YT > U xR is given by

L7 = (7 (h), (1))
where #(h) = {#(h):0<r<T} is the solution of the Zakai
equation (11) with f = & and the initial measure 7 € Y.

For the purposes of defining observability, the adjoint’s null
space N(L") = {7y e YT : 7a(h) = 0, #4p(1) = 0} is of interest.
In the finite state-space settings, N(LT) is a subspace of RY.

The dual of definition (O1) is as follows:

Definition 3. The nonlinear model (A, 1) is said to be observ-
able if '

N(LT) = {0} (02)
The two definitions (O1) and (O2) are equivalent: By the closed
range theorem R(L) = N(£)*. If the controllable subspace
R(L) ¢ YV then there exists a non-zero measure iy € N(£')

4 The bounded-ness property is based on the well-posedness of the solution of
the BSDE (9).

5 In nonlinear filtering, the Zakai equation is considered with initial measure
7o € P(S). In this paper, the initial measure is allowed to be a signed measure.

such that T(Yp) = 0 for all ¥y € R(L). The measure &y has
an interpretation of being the un-observable measure in the
following sense: For given i € P(S) being a “true” distribution
of Xo, suppose € # 0 is chosen such that v = u + €ffy € P(S).
Then owing to the linearity of (11),
cl'(h)=0c"(h) t-ae. P'-as.

As will be justified more fully in the proof of Theorem 1, this
leads to the third equivalent definition of observability:

Definition 4. The nonlinear model (A, 1) is said to be observ-
able if

a'(h)=n'(h) t-ae. Ptas. = pup=v (03)

It is noted that (O3) is the stochastic analog of (4).

The proof of the following theorem appears in the Ap-
pendix B.2.

Theorem 1. (Observability). The three conditions: (O1), (02),
and (O3) are equivalent.

The following theorem provides an explicit characterization of
the controllable space. Its proof appears in the Appendix B.3.

Theorem 2. Consider the linear operator (10). Its range space
R(L) is the smallest such subspace C c ) that satisfies the
following two properties:

(i) The constant function 1 €C;

(ii) If geC then AgeC and g-heC. (g-h is the Hadamard
(element-wise) product of functions g and h) 6,

4.4 Relationship to P-observability

For the particular (additive Gaussian noise) form of the obser-
vation model (6), there is a formula, due to (Clark et al., 1999,
Theorem 3.1), for the relative entropy between P%T and PET:

T
D(PY, [P, =E* [ [af () -= (w)ar

Combined with Theorem 1, a straightforward corollary is the
following proposition:

Proposition 2. Consider the observation model of the form (6).
The model (A, k) is observable (according to one of the equiv-
alent definitions 2, 3, or 4) if and only if it is P-observable
(definition 1).

5. FINITE STATE-SPACE CASE

Although X is allowed to be a general Markov process in a
compact state-space, a guiding example is when the state space
S is finite, namely, S = {1,2,...,d}. In this setting, any real-
valued function or finite measure can be expressed by a vector
in RY, where i element represent the function value at i. The
observation function / is also represented by a matrix H € R¥"".
The generator A of the Markov process is identified with a
row-stochastic rate matrix A ¢ R?“ which acts on functions
(elements of RY) through right-multiplication: A : f — Af.

Using this notation, the BSDE (9) is expressed as follows:
~dY, = (AY, + HU, +diag" (HV,))dt - V,dZ;, Y7 =cl

6 For a vector-valued function i(x) = [h(x),...,hn(x)], g-h € C means g-
h; € C for each i = 1,...,m. The Hadamard product is simply the product of
functions, i.e., (g-h;)(x) = g(x)h;(x) forall x € S.



where 1 is a vector of ones in RY and diagT (HV,") is the vector
of the diagonal elements of the matrix HV ". The solution pair
is (Y,V) e LZ ([0, T;RY) x LZ ([0, TJ; RY*™).

The controllable space R(£) is a subspace in R?:

R(L) = span{l,H,AH,AzH,A3H, ey
H-H,A(H-H),H-(AH),A*(H-H),...,
H-(H-H),(AH)-(H-H),H-A(H-H), ...}

where the dot denotes the element-wise product. The nonlinear
model (A,H) is observable if the vectors in the righthand-side

of (12) span R?. This provides a test for verifying observability
of the nonlinear model.

12)

We next compare the above test with the observability test (5)
for the linear model (A,H). It is clear that if the linear model
(A,H) is observable (in the sense of (5)) then the nonlinear
model (A, H) is also observable. However, the latter property is
in general much weaker than the observability in linear systems
theory. The following proposition is shows such a case. The
proof is omitted.

Proposition 3. (A sufficient condition). Consider the nonlinear
model (A,H) for the finite state-space. Then (A,H) is observ-
able if 2(x) = H"x is an injective map from S into R™. If A =0
then the injective property of the function # is also necessary
for observability.

Remark 1. For the finite state nonlinear model (A,H), the
test for observability first appeared in (van Handel, 2009a,
Lemma 9). The test was obtained by explicitly calculating the
probability of each observation and applying (7). For a general
class of linear BSDE-s, the controllable subspace is identically
defined by (Peng, 1994, Lemma 3.2). However, its use in the
study of observability appears to be new.

6. CONCLUSION AND FUTURE DIRECTIONS

In this paper, the duality introduced in our previous work (Kim
et al., 2019) is used for the purposes of defining and character-
izing observability of nonlinear stochastic systems. The main
idea is to define observability as a dual of the controllability of
a certain BSDE (9). Based on the dual formulation, a test for ob-
servability is presented and related to literature. The proposed
duality-based framework allows one to relate and compare the
linear and the nonlinear systems. A side-by-side summary of
this relationship is given in a tabular form (Table 1).

The methodology of this and our earlier duality paper is cur-
rently being used to investigate nonlinear filter stability; and
to develop new control-based algorithms for approximating the
nonlinear filter. These are the subjects of continuing research
and preprints are in Kim et al. (2021); Kim and Mehta (2021).

REFERENCES

Chigansky, P., Liptser, R., and Van Handel, R. (2009). Intrinsic
methods in filter stability. Handbook of Nonlinear Filtering.

Clark, J.M.C., Ocone, D.L., and Coumarbatch, C. (1999). Rel-
ative entropy and error bounds for filtering of markov pro-
cesses. Mathematics of Control, Signals and Systems, 12(4),
346-360.

Fleming, W. and Mitter, S. (1982). Optimal control and nonlin-
ear filtering for nondegenerate diffusion processes. Stochas-
tics, 8, 63-717.

Goodwin, G.C., de Dona, J.A., Seron, M.M., and Zhuo, X.W.
(2005). Lagrangian duality between constrained estimation
and control. Automatica, 41(6), 935-944.

Hermann, R. and Krener, A. (1977). Nonlinear controllability
and observability. IEEE Transactions on automatic control,
22(5), 728-740.

Hutson, V., Pym, J., and Cloud, M. (2005). Applications
of functional analysis and operator theory, volume 200.
Elsevier.

Kailath, T., Sayed, A.H., and Hassibi, B. (2000).
estimation. Prentice Hall.

Kalman, R.E. (1960). On the general theory of control systems.
IFAC Proceedings Volumes, 1(1), 491-502.

Kim, J.W. and Mehta, P.G. (2021). A dual characterization of
the stability of the Wonham filter. submitted for publication.

Kim, J.W., Mehta, P.G., and Meyn, S.P. (2019). What is the
Lagrangian for nonlinear filtering? In 2019 IEEE Conference
on Decision and Control (CDC), 1607-1614.

Kim, J.W., Mehta, P.G., and Meyn, S.P. (2021). The conditional
Poincaré inequality for filter stability. submitted for publica-
tion.

Krylov, N.V. (2011).  On the It6—Wentzell formula for
distribution-valued processes and related topics. Probability
theory and related fields, 150(1-2), 295-319.

Le Gall, J.E. (2016). Brownian Motion, Martingales, and
Stochastic Calculus, volume 274. Springer.

Liu, A.R. and Bitmead, R.R. (2011). Stochastic observability
in network state estimation and control. Automatica, 47(1),
65-78.

Ma, J. and Yong, J. (1997). Adapted solution of a degenerate
backward spde, with applications. Stochastic processes and
their applications, 70(1), 59-84.

McDonald, C. and Yiiksel, S. (2019). Observability and filter
stability for partially observed markov processes. In 2079
IEEE Conference on Decision and Control (CDC), 1623—
1628.

Mitter, S.K. and Newton, N.J. (2003). A variational approach
to nonlinear estimation. SIAM journal on control and opti-
mization, 42(5), 1813-1833.

Moraal, P. and Grizzle, J. (1995). Observer design for nonlinear
systems with discrete-time measurements. IEEE Transac-
tions on automatic control, 40(3), 395-404.

Ocone, D. and Pardoux, E. (1996). Asymptotic stability of
the optimal filter with respect to its initial condition. SIAM
Journal on Control and Optimization, 34(1), 226-243.

Peng, S. (1994). Backward stochastic differential equation and
exact controllability of stochastic control systems. Progress
in natural science, 4(3), 274-284.

Todorov, E. (2008). General duality between optimal control
and estimation. In 2008 47th IEEE Conference on Decision
and Control, 4286-4292.

Treves, F. (1967). Topological Vector Spaces, Distributions
and Kernels: Pure and Applied Mathematics, volume 25.
Elsevier.

van Handel, R. (2009a). Observability and nonlinear filtering.
Probability theory and related fields, 145(1-2), 35-74.

van Handel, R. (2009b). Uniform observability of hidden
Markov models and filter stability for unstable signals. The
Annals of Applied Probability, 19(3), 1172-1199.

van Handel, R. (2010). Nonlinear filtering and systems the-
ory. In Proceedings of the 19th International Symposium on
Mathematical Theory of Networks and Systems.

Linear



Xiong, J. (2008). An Introduction to Stochastic Filtering
Theory, volume 18. Oxford University Press on Demand.

Appendix A. DUALITY BETWEEN ESTIMATION AND
CONTROL

This section includes a brief review of the duality between
nonlinear filtering and stochastic optimal control introduced in
our recent paper (Kim et al., 2019).

Dual optimal control problem:
T
. _ef1 2 .
Min J(U) = (3o (Xo) ~mo(Yo)*+ [ * 6t ;Ui X))

Subj. - dY¥,(x) = (AY,(x) +h" (x) (U, +V,(x))) dt - V;" (x)dZ,

Yr(x) = f(x) VxeS (A1)
where the set of admissible control ¢/ := L% ([0,7],R™) and the
cost function

[y, vusx) = 30(0) (x) + 5 (u+v(x)) TR(u+v(x))

where Q(y)(x) is the carré du champ operator asspciated with
the state process. It is noted that the constraint is a backward
stochastic differential equation (BSDE) with solution (¥,V) :=
{(Y.V;) :1 € [0,T]} € LZ([0,T]:C(S)) x Lz ([0,T]:C™(S)).
The terminal condition f € C(S) is prescribed.

Consider the following linear structure of the estimator:

T
ST:nO(YO)—[O UTdz,

where U € U is an admissible control and Y, is obtained
by (A.1). The precise duality relationship is as follows:

Proposition 4. (Prop. 1 in (Kim et al., 2019)). Consider the ob-
servation model (6), together with the dual optimal control
problem (A.1). Then for any choice of admissible control U € /:

JU) = LE(IST - £ (X7)I)

The significance of the duality relationship is as follows: The
problem of obtaining the minimum variance estimate St of
f(Xr) (minimizer of the right-hand side of the equality) is
converted into the problem of finding the optimal control U
(minimizer of the left-hand side of the identity). Additional
details including the use of the dual optimal control problem
to derive the nonlinear filter can be found in (Kim et al., 2019).

Appendix B. PROOFS OF THEOREMS
B.1 Proof of Proposition 1

By linearity, £(U;c) = L(U;0) + ¢l for U € U and c € R.
Therefore, for 7y € V7,

(700, L(U:¢))y = (7, L(U;0))y +c (1)
Thus, the main calculation is to transform (7, £(U;0))y. For
this purpose, consider (9) with ¢ =0 and express (7, L(U;0))y =
7p(Yp). Using the Ito-Wentzell formula for measures (Krylov,
2011, Theorem 1.1),

d(7, (%)) = (% (AY)dt + 7, ('Y ) dZ, ) + % (hTV;) dt
+ (% (-AY, -h"U, - h"V,) dt + 7,(V;) dZ;)
=-U'#(h)dt + 7% (h"Y, +V,)dZ,
Integrating both sides,

T T
ftT(YT)—fro(Yo):—fo UtTft,(h)dtJrfO A (1KY, +VT)dZ,

Under the probability measure P, Z is a Wiener process. Hence,

fzo(yo)=E(fOTU;ﬁ,(h)dt)=<fz(h),U>u
Therefore,
<7%07’C(U;C)>y = (ﬁ-(h)»U)M +C7~t0(1)

B.2 Proof of Theorem 1

(O1) and (O2) are equivalent by the closed range theorem. The
proof of (02) <= (03) is presented next.

Necessity: We first show (O3) = (02). For a given 7y € N (/.ZT),
then for any u, v € P(S) such that £/ =  — v for some constant
€0, we have:

87'i7t(h) = Gt“(h) - Gtv(h)
Since i € N(£") implies 7 (k) =0 P-ass.,
cl'(h)=c'(h) t-ae. P-as. (B.1)
Using the Zakai Eq. (11) with f =1 (the constant function),

t
of(1) =1+ [ ol(n)dz,

Therefore (B.1) implies that the normalization constant 6} (1) =
¢ (1) for all # € [0,T]. Thus, using (8),
al'(h)=x'(h) t-ae. P-as.

Finally, this is also P#-a.s. event since P* <« P.

(B.2)

Sufficiency: Assume (O3) is not true: There exists U + V €
P(S) such that /' = ”. We want to show that g —v e N(L").
Equations (B.2) and (8) are combined into:

G,“(l):1+f0t6f(1)n§‘(h)dzs

This implies o; (1) = 6, (1), and therefore o/ (h) = 6" (h)
(PH-a.s.) by (8). Again it is P-a.s. event by equivalency. It is
obvious that t1(1) = v(1) =0, so u—v e N(L").

B.3 Proof of Theorem 2

For notational ease, we assume m = 1. The objective is to show
C = R(L). The proof below is adapted from Peng (1994).
The definition of N(£") is:

FoeN(LT) & 74y(1) =0and #(h) =0 Vie[0,T]
Since N(LT) is the annihilator of R(L), we have 1,k € R(L).
Consider next the Zakai equation (11) with the initial condition
fipeN(LT) and f = h:

t t
7.(h) = 7o (h) + fo 74,(AR) ds + fo 7, (h) dZ,
Since ¢ is arbitrary, the left-hand side is identically zero for all
t €[0,T] if and only if

fo(h) =0, #(AR)=0, #&(h*)=0 Vte[0,T]
and in particular, this implies Ak, h> € R(L).

The subspace C is obtained by continuing to repeat the steps ad
infinitum: If at the conclusion of the k™ step, we find a function

g €C such that 7, (g) =0 for all ¢ € [0, T]. Then through the use
of the Zakai equation,

(g) =0, #(Ag)=0, @(hg)=0 Vre[0,T]
s0 Ag, hg € C. By construction, because & € N(L'), C = R(L).



