On the Lyapunov Foster criterion and Poincaré inequality
for Reversible Markov Chains

Amirhossein Taghvaei and Prashant G. Mehta

Abstract—This paper presents an elementary proof of stochas-
tic stability of a discrete-time reversible Markov chain starting
from a Foster-Lyapunov drift condition. Besides its relative
simplicity, there are two salient features of the proof: (i) it relies
entirely on functional-analytic non-probabilistic arguments; and
(ii) it makes explicit the connection between a Foster-Lyapunov
function and Poincaré inequality. The proof is used to derive an
explicit bound for the spectral gap. An extension to the non-
reversible case is also presented.

I. INTRODUCTION

This paper presents an elementary functional-analytic proof
of stochastic stability of a discrete-time reversible Markov
chain. The main hypothesis is the existence of a Foster
Lyapunov function, drift condition (v4) in [11, Ch. 15, Ch. 16].
The main result is to establish Poincaré inequality and relate
it to a spectral gap under additional hypothesis. The spectral
gap yields geometric convergence as an easy consequence.

The use of Lyapunov drift condition (v4) to establish
geometric convergence rate is standard in the theory of Markov
chains; cf., [11] and references therein. It is known that the
geometric ergodicity is equivalent to a spectral gap for the
corresponding Markov operator in a certain normed vector
space LY [10]. The spectral gap in LY implies a spectral
gap in L? for reversible Markov chains [13]. Explicit bounds
on the convergence rate are obtained in [12], [14]. However,
in a general setting, the existing bounds can be difficult to
compute.

The techniques and tools used in [11] and the related
literature are probabilistic in nature. In contrast, the short proof
in this paper is entirely analytical and relies on elementary
arguments. The key is to use the Lyapunov Foster condition
(v4) to derive a Poincaré inequality. This is then related to
existence of the spectral gap from which the convergence
result follows. The approach of this paper is inspired by [3],
[1] [2, Ch. 4] where Lyapunov function is related to Poincaré
inequality for a continuous-time Markov processes. To the best
of our knowledge, the extension of this connection, between
Poincaré inequality and Lyapunov function, in discrete-time
setting is not known. Given the elementary nature of the proof
and the explicit bound on spectral gap, the results of this paper
are expected to be broadly useful to the practitioners who use
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the discrete-time reversible Markov chain for Markov chain
Monte-Carlo (MCMC) and simulation purposes.

Analysis of geometric ergodicity based on Lyapunov drift
condition appears in [7]. Their main result [7, Thm. 1.3]
is based on introducing a family weighted normed spaces
LAY and establishing the spectral gap in this space, for a
particular weight 5. This is different compared to this paper
where a direct connection between Lyapunov condition and
Poincaré inequality is established, and explicit bounds on the
L? spectral gap are derived.

The outline of the remainder of this paper is as follows:
The preliminaries and problem statement appears in Sec. II.
The main result for the reversible Markov chain appears in
Sec. III. Some extensions to reversible and to non-reversible
cases are discussed in Sec. IV. The main result is illustrated
with examples in Sec. V. Some concluding remarks appear in
Sec. VL.

II. PRELIMINARIES
A. Model and definitions

Consider a time-homogeneous discrete-time Markov pro-
cess { X, } >0 taking values in Polish state space X', equipped
with the Borel o-field B. Let P denote the corresponding
Markov operator defined such that

Pf(x) = E[f(X1)[Xo = «],

for all bounded measurable functions f : X — R. Let p :
X x B — [0, 1] be the probability transition kernel associated
with P. In terms of this kernel, the action of P on bounded
measurable functions as follows:

Pf()= /X fy)p(, dy).

The action of P on probability measure ;1 on (X,B) is as
follows:

uPQ%:/Lp@%Jdu@)

A probability measure 7 is invariant for P if 7P = 7.
Consider the space of square integrable functions with
respect to 7 denoted as L? () equipped with the inner product

%wh:/ﬂ@%@M@%

and the norm |[[f||3 . = (f, f)x. It follows from Jensen’s
inequality that P is a bounded linear operator on L?(r), when
m is the invariant measure [2, pp. 10]. The invariant measure
m is said to be reversible for the Markov operator P if P is
self-adjoint on L?(7), i.e.,

(f,Pg)x = (Pf.g)x, VYf g€ L*(r).



In this paper, we consider Markov chains P with a unique
reversible invariant measure 7, formalized below as an as-
sumption:

Assumption 1: P admits a unique reversible invariant mea-
sure 7.

The main question is to establish a spectral gap (in L?(r))
for P. Since P has an eigenvalue A = 1 with eigenfunction
f(x) = 1, we consider the orthogonal subspace L3(7) = {f €
L%*(m); [ f(z)dm(z) = 0}. P is said to admit a spectral gap
B> 0in LE(m) if
[P fll2.x
o < 1-8. (D

[[£ll2,x

Two immediate consequences of the spectral gap are as

follows:

|Pll2(x) = sup
feL(m)

1) Geometric convergence of the moments in L2 ()

1P f = m(Hllzx < A =B)"If = 7(H)llzr,

where 7(f) := [ f(z)dr(z) is the mean of f with
respect to the invariant measure 7.

2) Geometric convergence of the probability distribution in
the total-variation distance [4, Thm. 2.1],

|uP" = wllry < (1= 8)" [ = 12.r,

for any initial distribution dy = hdm.

For reversible Markov chains, the spectral gap is related to
the Poincaré inequality as explained in the following section.

B. Spectral gap and Poincaré inequality
Define the Dirichlet forms

ES )= I=P) )i EL )= (f,(L+P)f)r.

Then P is said to satisfy the Poincaré inequality, if there are
positive constants 5 and S_ such that

I1f113,- < (f.f). VfeLin), )

1
5t
17120 < %éo& ), Ve L. 3)

Lemma 1: Under Assumption 1,

(1) If P satisfies the Poincaré inequality (2) with constant
B4+ > 0, then the spectrum of P on L2(7) is bounded
above by 1 — .

(ii) If P satisfies the Poincaré inequality (3) with constant
B > 0, then the spectrum of P on L(7) is bounded
below by —1 4 _.

(iii) If P satisfies the Poincaré inequalities (2)-(3), then it
admits spectral gap 8 = min(S8, 5-).

Proof: Omitted. See [15, Sec. 5.2.1, pp. 115]

Remark 1: For a continuous-time reversible Markov pro-
cess with the infinitesimal generator L and the semigroup
P, = e'l, the Dirichlet form is defined as E(f,f) :=
—(f, Lf)x. Therefore, the Poincaré inequality (2) is expressed
as (f,Lf)x < —B4|fll35. from which the spectral gap
for the semigroup, [|Pi||r2(r) = [leF||p2@qm) < e7P+F < 1,

readily follows. In discrete-time settings, the second Poincaré
inequality (3) is also required. This is to rule out periodicity,
eigenvalue at —1 for the reversible case [15, Ch. 5].

III. MAIN RESULT

The main hypothesis of the paper is the Foster Lyapunov
condition (v4):
Assumption 2: Suppose P satisfies

PV < (1= \)V +blg, 4)
Ply(x) > av(A)lk(z), VAEB, (5)

for a positive function V : R? — [1,00), numbers b < oo,
a, A >0, aset K C X, and a probability measure v.

The condition (4) is known as the drift condition and con-
dition (5) is known as the minorization condition. The main
result of this paper is as follows:

Theorem 1: Under Assumptions 1-2, P admits a Poincaré
inequality (2) with constant S, = ﬁ

For continuous-time processes, the analogous result appears
in [2, Thm. 4.6.2 pp. 202]. Unlike the continuous-time case,
the conclusion of the Theorem 1 is not sufficient to establish a
spectral gap without also establishing (3), except for the case
when P is positive semi-definite.

Corollary 1: Under the assumptions of Theorem 1, if P is
a positive semi-definite operator, then P admits a spectral gap

A
B=0y=1rm-

Later, in Sec. IV-A, additional assumption is introduced
to establish spectral gap for Markov operators that are not
necessarily positive semi-definite.

A. Proof of Theorem |

Remark 2: If K = X then the minorization condition (5) is
the Doeblin’s condition which directly implies the spectral gap
||PHL3(7T) <1-% [15, Sec. 2.2, pp. 28]. However, Doeblin’s
condition is a very strong assumption for Markov-chains. In
the other extreme when K = () then the drift condition (4)
implies the spectral gap || P12(ry <1 — A from the spectral
theory of positive operators [6, Thm. 13.1.6, pp. 383]. Owing
to the eigenvalue at 1, this case does not apply to Markov
operators. However, by suitably adapting the proof from the
theory of positive operators to accomodate the minorization
condition (5), one obtains an elementary proof of Theorem 1
as presented next.

Proof of the Theorem 1: From the variational characteri-
zation of the mean, we have || f —7(f)[l2,x < [ f —m/[2,x for

all constants m € R. Therefore, in order to prove the Poincaré
inequality (2), it suffices to show that

If = mlE, < S0 = P) ), V€L, ©

for some constant m = m(f) to be chosen later.



Consider the Lyapunov drift condition (4). Multiply both The first inequality follows from the use of the mi-

sides by Y=m)” m) to obtain norization condition (5). The second inequality is the
Jensen’s inequality. The third inequality follows from
(f —m)? PV <(1=N(f-m)?+ bl (f —m)?1g the variational characterization of the variance of the
Vv - , , function f because m = ﬁ [y [ dm is the mean.
<A =N =m)” +b(f —m)" 1k, -
where the second inequality follows because V > 1. Rear-
ranging the terms B. A counter-example
( f—m)? ) The following counter-example serves to show that it is
AMf = m) % (I =P)V +b(f —m) 1k, not possible to obtain a bound for S_ using only the Foster
. . . . Lyapunov condition (v4).
and integrating both sides with respect to ,
(f )2 Example 1: Consider the Markov transition matrix
-m
Nif = ml . < (L5 (1= PYV)a bl (f = m) k3 e . { e 1o }
=, _ ,
It is claimed that ‘ ‘
(f — m)? on the state-space S = {1,2}. The invariant measure 7 =
<#, (I —-P)V). <{f,(I—=P)f)x, (7) [4, 4] is reversible. The eigenvalues of P are A = 1, -1+ 2.
9 Therefore, B, = 1 — 2¢ and S_ = 2e¢. In the followmg, we
I(f — m)llKH%,, < E<f7 (I —=P)f)r, (8) show that the conditions (4)-(5) hold, with constants that are
. ) . independent of €. As a result, it is not possible to derive a
with m = w(K) /] i/ dm. If the claims are true then bound on [_ simply from the constants that appear in the
) + 27b conditions (4)-(5).
| 2 < 2, (I = P)f)n, 1) Let the subset K = {1} C S. Then the condition (5)
holds with & = 1 and v = [v1, 5] = [¢, 1— €] because
which proves (6), hence the Poincaré inequality (2) with 5, =
14-)\@' It remains to prove the two claims: Pn=e=av, Pp=1l-e=oan.
1) Proof of the claim (7): Let ¢ = f — m. Then, using 2) For all e < 1. the condition (4) holds with V = [1, 3]T,
(I — P)1 =0, (7) is equivalently expressed as A=3, and b =3 because
2 i=1) PyVi+ PioVo=€e+3(1—c¢
(9. Pg)r < (5, PV)r ©) U=1 A i e (=
+3= (1_>‘)V1+b7
Note that 2 3
(y) g(x) 2 (222) P21V1+P22‘/2:1—€+36§52(1—)\)‘/2,
0<//V (()‘w ) ot 2095
x 1
The resulting bound for 3, is 1+22T3 =L
p(z, dy) dr(z)
IV. EXTENSIONS
p(x, dy) dr(x) By imposing additional conditions, the analysis of this paper
is useful to obtain bounds for the spectral gap in the reversible
-2 / / p(z, dy) dm(x) and also the non-reversible cases. Two sets of results are

described next.

g9’
= (L PV, +(V,PL). —2(g, Pg),.
<V, )w + AV, PL)e — 2{g, Pg)

Usmg the self—ad_]omt property of P, it follows that
(&, PV) =(V, Pg ) which in turn proves (9).

A. Spectral gap under stronger condition

From Corollary 1, a spectral gap is obtained whenever P is
positive semi-definite. Therefore, one way to prove the spectral

2) Proof of the claim (8): Note that gap for P is to consider P? which is always positive semi-
definite for reversible Markov processes. Given the counter-
(f,(I-P)f / / (33, dy)dm(z) example 1, it is not true that P2 satisfies condition (v4) (if P
does), without imposing some additional condition. One such
(1) o / / dy( ) dr(z) condition, based on [7, Assumption 2], is as follows:
Assumption 3: In condition (v4) (in Assumption 2), the set
Z*/ /f ) dv(y))” dn(z) K ={z€X; V(z) <R},

3) o

= 9 /K(f(f) - m)2 dn(z). for some R > 27”



Proposition 1: Suppose P is a Markov operator that satis-
fies Assumptions 1, 2, and 3. Then P2 satisfies

PV <(1-N)V 4 b1k, (10)
P*14(x) > o'v(A)lg(x), VAEB (11)
where ' = A(3 — X), ' = (2 — A)b, and o/ = o*v(K).
Consequently,
1
[Pl L2y < (1—57)2. (12)
croat . _AE=N)
with g1 = 1+§;2(_;))

Proof: Proof of (10): Because P is a positive operator',
Pf < Pg whenever f < g. Therefore, applying P to both
sides of the inequality (4),

P*V < (1 - \)PV +bPlg
< (1 =NV +(1—=MNblg +bPlg

—~
=

< (1=N2V4+ 1= Ablg +b(1g + %)

—~
INE

(1=X)2+ %)V + (2 — M\l g,

where the third inequality follows from Plx < P1 =1 <
1x + % and the fourth inequality is because R > % This
completes the proof of (10).

Proof of (11): Letting A = K in the minorization condi-
tion (5),
Plg(z) > av(K)1k(x).

As a result, applying P to both sides of (5),
P 4(x) > av(A)Plg(z) > o*v(K)v(A)lg(z),

which proves (11).

Spectral gap (12) follows from application of Corollary 1 to
positive semi-definite operator P? satisfying conditions (10)-
(1. ]

B. Spectral gap for a non-reversible chain

Suppose P is a Markov operator with a unique invariant
measure 7 and suppose PT is its adjoint in L?(7). Then PTP
is a Markov operator with a reversible invariant measure 7.

Proposition 2: Suppose both P and its adjoint PT satisfy
condition (v4) (inequality (4)-(5)) with the same Foster Lya-
punov function V/, set K and constants A, b and «. Then ptp
satisfies

PPV < (1= \N)V 41k, (13)
PPl 4(z) > o/v(A)lg(z), VAEB (14)
where ' = A(2 — X), b/ = (2 — A)b, and o/ = o*v(K).
Consequently,
1
1Pz < (1—-p%)2. (15)
c oAt A3
with 7 = 1+f72(i(_;?))

' An operator P is positive if Pf > 0 whenever f > 0.

Proof: The proof of (13)-(14) is entirely analogous to the
proof of Proposition 1. It follows from applying P to the
inequalities (4)-(5) upon using the fact that P also satisfies
the inequalities (4)-(5). The bound (15) then follows from
application of Corollary 1 to PP which is reversible, positive-
definite, and satisfies the conditions (13)-(14). |

V. EXAMPLES

A. Ornstein-Uhlenbeck process

Consider the discrete-time Markov chain {X,,},>¢ taking
values in R that evolves according to

Xpi1=(1—a)X, + 0B,

where @ € (0,1), ¢ > 0 and {B,},>0 are independent
Gaussian random variables. The associated Markov operator

Pf(z) =E[f(1 —a)z +oB1)]
— (1 —a)z)?
—/R(27rc72)éexp(—(y (1~ a)z)

202

)f(y)dy,

with a reversible Gaussian invariant measure

202 1 x?
drm(z) = (—5—) 2 exp(— —3 ) dz.
a 2%

The Markov operator P is an example of the Ornstein-
Uhlenbeck Diffusion semigroup [2, Sec. 2.7.1] with spectrum
An=(1-a)", n=0,1,...

yielding the spectral gap [|P||pz(r) =1 — a.
Our goal in this example is to apply the results of this paper
to obtain a bound for the spectral gap of P and compare

it to the exact spectral gap. Consider the Lyapunov function
V(x) = 1+ 2. Then,

PV(z) =1+ (1 —a)’2*+o?
S (1 — (L)V + (02 + ]-)]l|3:|§R7

02+1

with R? = Z£L.

The minorization condition (5) also holds:

Pla(z) =P{(1 —a)x+ 0By € A}
o

> aP{-Z B, € AV y1<n,

Z o {\/§ 1 } |[z|<R

2 . . .. .
where o = exp(—Z$11=%). Since P is a positive definite

operator on L?(), Corollary 1 applies and one obtains
a

1+ (02 + 1) exp(ZH =0y

a

||P||Lg(7r) <1

This is a conservative bound based on the exact spectral gap.
The bound may be improved with another choice of Lyapunov
function (e.g., exp(|z])). In general, it is known that the
Lyapunov method is only able to provide a conservative bound
for the spectral gap; cf. [2, pp. 203].



B. Diffusion map

The diffusion map T is a Markov operator defined as

Jza 9e(@ = y)e V@ f(y) dy
Te(.f)(x) = RfRd ge(x — y)e—U(y) dy )

(16)

=2
where g.(z) = exp*% is the Gaussian kernel, U(x) is a

potential function of sufficient regularity, and ¢ > 0 is a
positive parameter. The diffusion map was introduced and
studied in spectral clustering literature as asymptotic limit of
graph Laplacian matrix [5], [9]. Explicit bounds on the spectral
gap of T, are important for analysis of diffusion map-based
algorithms such as the gain function approximation algorithm
in the feedback particle filter. [16].

The spectral gap is obtained via an application of Corol-
lary 1. It is straightforward to check that T, is a Markov
operator with reversible invariant probability density

w(z) = 'ye*U(I) /ge(x — y)e*U(y) dy,

where ~ is the normalization constant. Moreover, T, is
positive-definite because

(1) = [

[ e =) (e @) ) drdy 20,

for all f € L?(r). It remains to verify the Lyapunov con-
ditions (4)-(5). This requires additional assumptions on the
potential function U(z), an example of which appears in the
following Proposition.

Proposition 3: Consider the diffusion map operator (16).
Suppose U is bounded from below and twice continuously
differentiable with a bounded Hessian ||V2U||o < oo. Also,
suppose 3 Ao, R > 0 such that

1
SIVU@)IP 2 XU (@) + VU oo, V|2l =R (A7)

Then, for all € € (0, W) the Lyapunov conditions (4)-
(5) hold and T, admits a spectral gap

6)\0

||TE||L[2)(7T) <1- 1t 2ebg

(18)

where

1

bo = V2U %) MU — —|VU 2

0= VUl + macx (MoU(@) = 5IVU (@),

o = min ie—%WU(@IQ—SeHVQUHOO—a%(z—UQVU(w)V.
2|<R \/2

2 _ 2e
and 0° = FESTAETi e

Remark 3: The assumption (17) on U is a type of a dissi-
pative condition for a dynamical systems with drift VU [8].
It is satisfied by any potential function U that has a quadratic
growth as |z| — oo. For example, U(z) = Uy(z) + 36||?
satisfies this assumption provided Uy is Lipschitz and § > 0.

Proof: Without loss of generality assume U(z) > 1 for
all z. The Lyapunov condition (4) holds with V' = U because

(TeU)(x) (%) IOg((TeeU)(x)) = — log(/ gé(:L' — y)e—U(y) dy)

®3) )
< —10g(/ ge(x — y)e V@ (VU@)y—2)=Fly—2" q,))

2
o
5)

€
where the Jensen’s inequality is used in the first step, and the
inequality U(y) < U(z)+ (VU (z),y—x)+ 2|y —z|? is used

= U(e) ~ T VU (@)~ 5 log

in the third step, with m = |[V2U||« and 0 = 75— Then,
using (17)
2 1 o’ 2
(TeU)(z) < Ulz) — oAU (z) — S log(5-) —om
€

<(1-A)U(@), if |a] > R

where 02 > ¢ and log(‘;—:) > —2em are used in the second
step. This proves Lyapunov condition (4), with A = e\g, K =
{x € R% |z| < R}, and b = €b.

The minorization condition (5) holds because
~ Jage(z —y)e "W dy

fRd 9e ({L‘ - y)er(y) dy
- esIVU@P =5 P (3 — 62VU(2) + 0B, € A)
= e2¢|VU (z)|?+2me

Te]lA($>

o
V2
This proves the Lyapunov conditions (4)-(5), which together

with the fact that T, is reversible and positive-definite, proves
the spectral gap (18) by Corollary 1. [ ]

> aP(

By € A), if || <R

VI. CONCLUSION

In this paper, a straightforward analytical approach is
presented to establish stochastic stability starting from the
Lyapunov drift condition (v4) (Theorem 1). A key message
of this paper is that the Lyapunov Foster drift condition
(v4), in of itself, only implies a bound on the spectral
gap from eigenvalue at 1. This is formalized in this paper
as a relationship between condition (v4) and the Poincare
inequality for the operator I — P (Theorem 1). From this main
theorem, two sets of bounds are obtained here under certain
hypotheses (Corollary 1 and Proposition 1). An extension to
the non-reversible chain is also described in Proposition 2.
Two illustrative examples are presented. The diffusion map
example is of independent interest for analysis of gain function
approximation in the feedback particle filter.
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