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ow data became one of the most powerful tools
to fight an epidemic is a question that a recent
(10 June 2020) The New York Times article poses
in its title. Indeed, the spread of COVID-19 in-
volves dynamically evolving hidden data (for
example, the number of infected people, the number of
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asymptomatic people) that must be deduced from noisy
and partially observed data (for example, the number of
daily deaths, the number of daily hospitalizations, and
the number of daily positive tests). The underlying math-
ematics for posing and solving this and several other
partially observed dynamic problems is familiar to con-
trol theorists.

A mathematical abstraction of these types of problems
commonly involves the definition of two stochastic
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processes, (X, Z), where in a continuous-time setting
X={X,eS:t=0} is the hidden signal process and
Z={Zi€0:t=0} is the observed or measured process.
For the sake of exposition, the state space S and the obser-
vation space () are assumed to be the Euclidean spaces, and
the two processes are modeled as solutions of a stochastic
differential equation (SDE):

dXi=a(Xy)dt+o(Xy)dB;, Xo~ (prior), W)
dZ:=h(Xydt +dW;, Zo=0, ¥

where a(:), o(), h() are given smooth functions of
their arguments, and the signal (or process) noise
B={B;:t>0} and the measurement (or observation)
noise W={W,:t=0} are assumed to be independent
Wiener processes (w.p.). For example, in the models of
disease spread, Z:; may indicate the number (cumula-
tive) of positive tests up to time t. In this case, Z,, — Z, is
the number (increment) of positive tests during the time
interval [ti, t2], and dZ; can be thought of as the infini-
tesimal increment over the infinitesimal time df. Given
the models for the stochastic processes (X, Z), the math-
ematical problem of stochastic filtering is to estimate
the conditional distribution of the state X given the
observations up to time t. The conditional distribution
P(X(|Z:) is referred to as the posterior distribution,
where Z: is the time history (filtration) of the observa-
tions up to time t.

There are many solution approaches under different mod-
eling assumptions. The most classical of these approaches is
the method of least squares, which was invented at the turn
of the 19th century. It remains popular in identification of the
(static) model parameters (see [1] for an application of these
methods to parameter estimation in disease modeling). For
the dynamic case, when the models are linear [that is,
a(x)= Ax, o(x)=o0 and h(x) = Hx] and the distributions (of
the noise processes and the prior) are Gaussian, Kalman and
Bucy derived a recursive algorithm [2] known as the Kalman-
Bucy filter:

dXt = A)A(fdt + Kt(de - HX(CU’),

dynamics

control

where X;:=E(X:| Z)) is the conditional mean and K; is the
Kalman gain. Each of the two terms on the right-hand side
have an intuitive explanation. The first term accounts for
the effect of the dynamics due to the signal model. The
second term implements the effect of conditioning because
of the most recent observation (increment) dZ;. The second
term is referred to as the correction or the Bayes” update
step of the Kalman filter. It is remarkable that the Bayes’
update formula in the Kalman filter takes the form of a
feedback control law, where

[control] =[gain]- [error]

and
[error] =[Observation] — [ prediction].

Note that HX,dt is the filter prediction of the new observa-
tion dZ;. The formula is so simple that it can and should be
a part of any introductory undergraduate controls class, as
an example of proportional gain feedback control law! Of
course, this straightforward formula has had an enormous
impact in many applications (such as target tracking and
surveillance, air traffic management, weather surveillance,
ground mapping, geophysical surveys, remote sensing,
autonomous navigation, and robotics).

The Kalman filter has many extensions, for example, to
problems involving additional uncertainties in the signal
and the observation models. The resulting algorithms are
referred to as the interacting multiple model (IMM) [3] and
the probabilistic data association (PDA) filters [4], respec-
tively. In the PDA filter, the Kalman gain is allowed to vary
based on an estimate of the instantaneous uncertainty in
the observations. In the IMM filter, multiple Kalman filters
are run in parallel, and their outputs combined to form an
estimate. Arguably, the structural aspects of the Kalman
filter have been as important as the algorithm itself in the
design, integration, testing, and operation of the overall
system. As a simple illustration of this, consider, for exam-
ple, the Kalman filter gain. The gain is known to scale pro-
portionally to the signal-to-noise ratio of the observations.
In practice, the gain is often tuned or adapted in an online
manner to trade off performance for robustness. Without
such structural features, it is a challenge to create scalable,
cost-effective, robust solutions.

Summary

Afeedback particle filter (FPF) is a Monte Carlo algorithm
used to approximate the solution of a stochastic fil-

tering problem. In contrast to conventional particle filters,

the Bayesian update step in the FPF is implemented via a

mean-field type feedback control law.

The objective of this article is to situate the develop-
ment of the FPF within the framework of optimal trans-
portation theory. Starting from the simplest setting of the
Bayes’ update formula, a coupling viewpoint is introduced
to construct particle filters. It is shown that the conventional
importance sampling resampling particle filter implements
an independent coupling. Design of optimal couplings is
introduced first for the Gaussian settings and subsequently
extended to derive the FPF algorithm. The final half of the
article provides a review of some of the salient aspects of
the FPF algorithm, including the feedback structure, al-
gorithms for gain function design, and a comparison with
conventional particle filters. The comparison serves to il-
lustrate the benefit of feedback in particle filtering.
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A limitation of the Kalman filter is that it gives an exact
solution only in the linear Gaussian settings. Beginning in
the early 1990s (spurred, in part, by computational advances),
simulation-based Monte Carlo (MC) algorithms became
popular for the purposes of numerically approximating the
posterior distribution in more general settings. These classes
of algorithms, referred to as particle filters, approximate the
posterior distribution using a population of N particles
{Xi:+=0,1<i<N}. Onecan interpret each of the particles
as independent samples drawn from the posterior. Alterna-
tively, one can interpret the empirical distribution of the
population as approximating the posterior distribution.

Like the Kalman filter, the particle filter is also an recur-
sive algorithm. The signal model is used to simulate the
effect of the dynamics. The Bayesian update step is imple-
mented using techniques such as importance sampling
and resampling. Although these techniques are easily
described, they bear little resemblance to the feedback con-
trol structure of the Kalman filter.

The focus of this article is on the feedback particle
filter (FPF) algorithm (see “Summary”). An FPF repre-
sents an exact solution of the nonlinear non-Gaussian fil-
tering problem in (1) and (2), where the state space S can
in general be a Riemannian manifold. In applications,
Euclidean spaces and matrix Lie groups are most
common. The distinguishing feature of the FPF is that the
Bayesian update step is implemented via a feedback con-
trol law of the form

[control] =[gain] - [error],
where

[error] =[Observation |
- (% [Part.predict.] + % [Pop.predict.]).

The terms [Part. predict.] and [Pop. predict.] refer to the
prediction—regarding the next [Observation] “dZ:”—as
made by the particle and the population, respectively
(see Figure 1). Because the control for each particle
depends also on the population (and thus the empirical
distribution), this is an example of a mean-field-type
control law [5], [6]. For the linear Gaussian problem in
the Euclidean state space, the [gain] of the FPF is exactly
the Kalman gain. In non-Gaussian settings, the gain
solves a certain linear partial differential equation (PDE),
which is known as the weighted Poisson equation. The
exact formula for the FPF control and gain appears in the
main body of the article.

At the turn of the decade (beginning in 2010), the FPF
algorithm was introduced by our research group at the
University of Illinois [7]-[9]. The algorithm can be viewed
as a modern extension to the Kalman filter, a viewpoint
stressed in [10]. Like the Kalman filter, the FPF is easily
extended to handle additional uncertainties in signal
and measurement models. These extensions, namely, the
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PDA-FPF and the IMM FPF, appear in the prior works
[11] and [12].

From a historical perspective, the FPF is a part of a
broader class of exact and approximate interacting parti-
cle algorithms, specifically, the ensemble Kalman filter
(EnKF), which is widely used for data assimilation in
weather prediction and other types of geophysical appli-
cations [13]. Closely related to and predating the work on
the FPF, the first interacting particle representation of the
continuous-time nonlinear filtering problem in (1) and (2)
appears in [14]. In linear Gaussian settings, the update
formula for the FPF is known as the square root form of
the EnKEF [15], [16].

The objective of this article is to situate the development
of the FPF and its related controlled interacting particle
system algorithms (for example, the EnKF) within the
framework of optimal transportation theory. The key
notion is that of “coupling” between two distributions—
prior and posterior in the Bayesian settings of this article.
Optimal transportation theory is then applied to design the
optimal coupling. In practice, this requires a solution of
certain PDEs, such as the Poisson equation that arises in the
FPF algorithm. The coupling viewpoint has several advan-
tages, which are described in the main body of this article.

THE COUPLING VIEWPOINT
The heart of any simulation-based recursive particle filter
algorithm is the Bayes” update formula

[posterior] o< [likelihood ] - [prior].
The notation po(), p1(), and 4(’) is used to denote the prior,

posterior, and likelihood distributions, respectively. The
expressions for these in the linear Gaussian example appear

d)A(t = “dynamics” + K;d/;
dZ,= h(X)dt 2 - Iy

(a)

dX; = “dynamics” + K,(X}) » dI}

azl= L
2

(h(X}) + hy)dt 2 i

(b)

FIGURE 1 The feedback control structure of a (a) Kalman filter (KF)
and (b) feedback particle filter (FPF). X in the KF is the estimate
(conditional mean) of the hidden state. X! in the FPF is a sample
from the posterior (conditional distribution) of the hidden state. In
both algorithms, the Bayesian update is implemented via a gain
times error control law.
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The distinguishing feature of the FPF is that the Bayesian update step is
implemented via a feedback control law.

in the “Optimal Coupling for Gaussian Distributions” sec-
tion. In any particle filter algorithm, one also needs to simu-
late the effect of dynamics. This step is straightforward using
the signal model directly. Therefore, the focus of this section
is only on the update formula. One of the challenges in sim-
ulation settings is that an analytic expression of the prior
distribution is not available. Instead, the prior is approxi-
mated in terms of N independent samples {X§:1<i <N}

pol)~ 1 (),

where §: is the Dirac distribution at z&€ S. The expres-
sion on the right-hand side is referred to as the empirical
distribution of the population. Alternatively, one can
think of X} as an independent sample drawn from the
prior. In a numerical implementation of the update for-
mula, the problem is to convert the sample of N particles
{X6:1<i<N} from the prior distribution po() to a
sample of N particles {Xi:1<i <N} from the posterior
distribution p1(). The algorithmic problem is depicted in
Figure 2 and is expressed as

Input: samples {X5:1<i<N} ~ po, likelihood function ¢,
Output: samples {Xi:1<i<N} ~ p1.

The task of converting samples from one distribution po(:)
to samples from another distribution pi(') is viewed as the
problem of finding a coupling 7 (") [17]-[19]. By defini-
tion, a coupling is any joint probability distribution that
satisfies the marginal constraints [z(x, x")dx" = pi(x)
and [7z(x, x')dx = po(x'). Ttis convenient to express 7 (x, x') =
T(x]|x')po(x’), where 77(:|") is referred to as the transition
kernel. Once the coupling is at hand, new samples are gener-
ated using the transition kernel.

Given this viewpoint, the MC algorithm simulates the
following stochastic update law for the system of particles:

X~ 7 (| X5). @)

This means that a new sample X iis generated by sampling
from the distribution 77(-|X)). The sampling algorithm (3)
ensures that if the probability distribution of X} is po, then
the probability distribution of Xi is pi. The associated
algorithmic task is expressed as

Input: samples {X5:1<i<N} ~ po, likelihood function ¢,
Output: coupling between po and p:.

Sequential Importance Resampling Particle Filter

There are infinitely many couplings between two distribu-
tions. The simplest possible choice is an independent cou-
pling, where 7(x, x')=p1(x)po(x’). For independent coupling,
the transition kernel 7 (x|x')=pi(x). The sequential
importance resampling (SIR) particle filters [20], [21] numeri-
cally implement the independent coupling in two steps:

1) A weighted distribution of the particles is first
formed according to N wiSx, where the weights
wi= l(Xé)/Z?’:ll(Xé). The weighted distribution is an
approximation of the posterior distribution pi. This
step is called importance sampling.

2) N particles are independently sampled from the
weighted distribution Xi~2N w; 8x; by sampling
from a multinomial distribution with parameter vector
(N, {wi}Y.,). This step is called resampling.

Theoretically, it is shown that the empirical approxima-

tion with particles becomes exact in the limit as N — oo with
error rate O(N™"?) [22], [23]. However, both empirically and
theoretically, it was discovered that particle filters can
suffer from a large simulation variance that worsens as the
dimension of the problem increases [24]-[26]. To maintain
the same mean-squared error, a particle filter requires a
number of particles that scales exponentially with the
dimension. This issue is referred to as the curse of dimen-
sionality (CoD). The issues with the stochastic independent
coupling in SIR filters has motivated the investigation of
other forms of coupling that are also optimal in some sense
[27], [28]. In the simulation literature, this is referred to as
the design of proposal distributions.

Optimal Transport Coupling

Optimal transportation theory provides a principled approach
for identifying a coupling. Given two distributions, po and p1,
the optimal transportation problem is

Prior Po P4 Posterior

FIGURE 2 The coupling viewpoint of the filtering problem. The task
of a particle filter is to convert a sample of N particles from the
prior distribution to a sample of N particles from the posterior dis-
tribution. This task is viewed as finding a coupling between the
prior and the posterior distributions.
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Optimal transportation theory provides a principled approach
for identifying a coupling.

min E o x| Xo — X1]7], @

7€M,

where II,,p, is the set of all the couplings with marginals
fixed to po and p1. The optimal cost is referred to as the L*-
Wasserstein distance between po and p1 [29]. The optimi-
zation problem (4) is known as the Kantorovich formula-
tion of the optimal transportation problem. By a
famous result due to Brenier, if the two distributions admit
density with respect to a Lebesgue measure, then the opti-
mal coupling is unique and deterministic of the form
7(x,x") = 8vow) (X)po(x'), where @ is a convex function [29,
Th. 2.12]. The function ® is obtained by solving the Monge-
Ampere PDE [30]. A numerical solution to the Monge-
Ampere PDE based only on the samples is a challenging
problem. In the following, these results are described for
the special case when the prior and the posterior distribu-
tions are both Gaussian.

Optimal Coupling for Gaussian Distributions
In Gaussian settings, the prior and the likelihood are both
Gaussian distributions:

po(x)oc exp(—%(x —mo) o' (x — mo)),

l(x)ocexp<—|y+Hx|2>.

In this case, a simple completion of square helps show that
the posterior is also a Gaussian distribution

p1(x)oc exp(—%(x —m)TZ N (x — ml)).

This yields the following update formula for the mean and
the variance:

mi=mo+ K(Y — Hmo), 21=2X0— KHZ(),

where K=Z¢HT(HZoHT + 1) is the Kalman gain. This is
the update formula for the discrete-time Kalman filter.

The coupling design problem is to couple the Gaussian
prior po and the Gaussian posterior pi. The optimal cou-
pling [solution to the optimal transportation problem (4)]
between two Gaussian distributions is explicitly known
and is an affine map of the form

T(x)=F(x —mo)+ma, ®)
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where F is the (unique) symmetric matrix solution to
the matrix equation FXoF = X1. The explicit form of the
solution is

Note that if X~ N(mo, Zo) then T(X)~ N(m1,XZ1) because:
1) the mean E[T(X)]=m, 2) the variance E[(T(X)— m)
(T(X)—m1)T]= FXoF = Z1, and 3) an affine transformation of
a Gaussian random variable is again Gaussian. The optimal
transport map (5) yields the following algorithm for sampling:

X4 =T(Xb) = F(X — mo) + m.

Given Xj ~ po, Xi ~ p1. The optimal coupling depends on
the statistics of both the prior and posterior distributions.
In a simulation-based setting, one has only a population
of particles {X{:1<i<N}. The transport map must also
be approximated from the particles. One such approxi-
mation is

particle update: Xi=F™(X§—mf")+m§" +K™M(Y — Hm{"),
6)
where m{" = (1/N)ZN, X} is an empirical approximation of
the mean mo, T4V =(1/(N—-1))ZX,(X)—m{)(Xh—m{)T
is an empirical approximation of the variance, F®™ s the
unique symmetric matrix solution to the matrix equation
FOZVFM =3 —KOHEN and KM =xVHT(HZVHT
+I)7.
The update formula (6) is compared to the discrete-time
EnKF update

particle update (EnKF): Xi= X{+K™(Y — HXo+ W), (7)

where {W':1<i< N} are independent copies of the obser-
vation noise. The EnKF update is an example of a stochas-
tic coupling in contrast to the deterministic optimal
coupling (6). The EnKF update does not require solving
for F™. This makes it simpler to implement numerically.
However, the presence of noise W' in the update law
introduces an additional source of error in any finite-N
implementation [31].

Besides (7), there are several other forms of the EnKF
update. One particular update, which has been crucial in
successful application of EnKF in geoscience, is the ensem-
ble square-root Kalman filter (EnSRKF) [32]. This update is
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an example of a deterministic coupling that also avoids the
need to compute F™ [17, Sec. 7.1]. In the sequel, the contin-
uous-time version of the EnSRKF arises as a special case of
the FPF.

The systems in (6) and (7) are both examples of inter-
acting particle systems. The interaction arises because of
the terms involving the empirical quantities mBN) and
2V, In the limit as N — oo, these converge to their respec-
tive statistics, and the particles become independent of
each other [33]-[37]. This phenomenon is referred to as the
propagation of chaos [38], [39]. The (N =o0) limit is
referred to as the mean-field limit, and for (6), it is identi-
fied by a single equation:

mean-field update: X1 = F(Xo—mo)+mo+K(Y —Hmo). (8)

As a practical matter, one first designs a coupling (5) that is
used to define the mean-field process (8). Subsequently, the
mean-field terms are approximated empirically to define a par-
ticle system (6). A finite-N implementation of the particle
system yields a practical algorithm to solve the filtering task.

A synopsis of this section is presented in “Summary of
the Linear Gaussian Example.” An excellent exposition of
the coupling approach to discrete-time filtering appears in
[17] and [18]. Other examples of couplings include an
approximation of the Rosenblatt transport map [40], [41] and
Gibbs flow [42].

FEEDBACK PARTICLE FILTER
The coupling viewpoint is employed next to introduce and
describe the FPF algorithm. An FPF is an MC solution to the
continuous-time nonlinear filtering problem in (1) and (2). A
construction of the FPF proceeds in the following two steps:
1) Construct a stochastic process X ={X;€S:t>0} such
that the conditional distribution (given Z) of X; is
equal to the posterior distribution of X;.
2) Simulate N stochastic processes {X}€S:t>0,1<i<N}
to empirically approximate the conditional distribu-
tion of X;.

BLC0| 20 "2 BLA)|2) ™ 3 A0

exactness condition

for all bounded functions f. The process X is referred
to as the mean-field process, and the N processes are
referred to as particles. The construction ensures that
the filter is exact in the mean-field (N = o) limit.

Mean Process
The mean-field process X is modeled as a solution of a con-
trolled SDE:

er = {Z(Xf)dt + G(X[)dBr + M[(Xz)dt + Kz(X[)dZt,

dynamics

Xo 2 Xo, ©)

control

Summary of the Linear Gaussian Example

Prior: Gaussian N(mo, Zo)
Observationmodel: Y =HX+ W

2
Likelihood function: /(x)= exp(—%)

Posterior: Gaussian N(m1, Z1)

Optimal transport map: T(x)=F(x —mo)+ m;

Mean-ield process: X1 = F(Xo—mo)+mo+ K(Y — Hmo)

Particle system: X =F™(Xb—mi")+m$ + KM (Y —Hm{"),
for i=1,...,N.

where B={B;:t>0} is a w.p., independent of Xo. The first
two terms in (9) are a copy of the dynamics in (1). The other
two terms are control laws (transition kernels) that must be
designed to implement the filtering update step: The mathe-
matical control objective is to design {u:():t=0} and
{Ki():+=0} such that the conditional distribution (given
Z)) of X, is equal to the posterior distribution of X;. The con-
trol is regarded as implementing the transition kernel of a
coupling. As in the simpler discrete-time setting in the pre-
ceding section, there are infinitely many couplings and
associated transition kernels that satisfy the exactness crite-
ria. This is not surprising. The exactness condition specifies
only the marginal distribution of X; at times ¢ > 0. This is
clearly not enough to uniquely identify a stochastic process
(for instance, the joint distributions at two time instants are
not specified).

The procedure from the preceding section is suitably
adapted to design the optimal coupling. The optimality cri-
terion is the Kantorovich form (4) of the optimal transpor-
tation problem. The details appear in “Optimal Transport
Construction of Stochastic Processes,” where it is shown
that the optimal K; is of the gradient form as follows:
Ki(x)=V¢:i(x), where ¢: solves the partial differential
equation (PDE) =V - (p:V¢)=pi(h—h), V is the gradient
operator, V- is the divergence operator, hi=E[h(X)| Z:]
= [h(x)p:(x)dx, and p: is the conditional density of X:.
The optimal solution for u; is

() = =2 (h(@) + K (x) + TKIK () + &0 (x),

where &; is the (unique such) divergence-free vector field
(that is, V- (p:£:) = 0), such that u; is of a gradient form. An
intuitive explanation of the three terms is as follows. The
first term is gain K;(x) times the average of the particle pre-
diction h(x) and the population prediction hs. Together with
the stochastic term K:dZ,, the first term yields the gain times
error structure of the FPF. The second term is the so-called
Wong-Zakai correction term, from which it follows that the
gain times error formula is expressed in its Stratanovich
form. The geometric significance of the Stratanovich form is
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described after the FPF formula has been formally pre-
sented. The significance of the third term follows. The diver-
gence-free choices of & parameterize a manifold of
couplings, all of which yield the same (exact) posterior.
Therefore, the choice of £; affects only the (Wasserstein) opti-
mality, but not the exactness property of the filter. In the FPE,
&1 is set to zero for all ¢ = 0. Although such a solution is opti-
mal only in the scalar (ID) settings, it avoids the need to
solve an additional PDE to compute the optimal &:. The
resulting algorithm is referred to as the FPFE.

Feedback Particle Filter
The mean-field process X evolves according to the SDE:

h()‘(ngf dt)/

Bayes’ update: feedback control law

de = ﬂ(X{)df + O'(X[)dBt + K,‘(Xt) o <dZt -

dynamics

Xo ~ po, (10)

where the symbol - denotes the fact that the SDE is
expressed in its Stratanovich form [43, Sec. 3.3]. The Itd
form of the FPF includes the standard Wong—Zakai correc-
tion term that arises on account of the dependence of the
gain K;(-) on the state X; [44, eq. 2]. Because the gain also
depends upon the density, the interpretation of the Strato-
novich form in the general case is more involved, as dis-
cussed at length in [45].

Optimal Transport Construction of Stochastic Processes

DETERMINISTIC PATH
Let P, (R?) be the space of everywhere positive probabil-

ity densities on R? with a finite second moment. Given a
smooth path {p: € P>(RY) : t > 0}, the problem is to construct a
stochastic process {X;; t >0} such that the probability density
of X: (denoted as p:) equals p: for all t=>0. The exactness
condition is expressed as

pt=pt, Vt=0. (S1)

Now there are infinitely many stochastic processes that satisfy
the exactness condition. This is because the exactness condi-
tion specifies only the one-time marginal distribution, which is
clearly not enough to uniquely identify the stochastic process,
for example, the two-time joint distributions are not specified. A
unique choice is made by prescribing an additional optimality
criterion based on the optimal transportation theory. To make
these considerations concrete, assume that the given path
{p:: t=0} evolves according to the partial differential equa-
tion (PDE)

P _
- = V(p),
where V(-), is an operator (for example, the Laplacian) that
acts on probability densities. This necessarily restricts the
operator V, for example, [V(p)(x)dx =0 for all p € P2 (R?).
The following model is assumed for the process {X::t>0}:

%)_(l = Ut()_(r), )_(o ~ Po,

g (82)

where u:(’) is a control law that must be designed. Using the
continuity equation, the exactness condition (S1) will be satis-

fied if

=V - (ptur)=V(p:), Vt=0. (S3)
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The nonuniqueness issue is now readily seen. The first-order
PDE (S3) admits infinitely many solutions. A unique solution u;
is selected by optimizing the coupling between X; and X;a¢ in
the limit as At — 0. The leading term in the transportation cost
E[| Xe+se — X:|*] is of order O(At?) whereby

AI;TO#E[I Xtvat— Xt ‘2] = f1&d| Ut<X)|2pt(X)dX-

Therefore, for each fixed t€[0,1], the control law u; is ob-
tained by solving the constrained optimization problem

rrlllitnfyd|ut(x)|2pp(x)dx, subjectto —V:(piur)=V(p:). (S4)

The cost is the infinitesimal form of the [>Wasserstein dis-
tance, and the constraint expresses the exactness condition.
By a standard calculus of variation argument, the solution of
(S4) is obtained as u; = V¢, where ¢: solves the second-order
PDE -V - (p:V¢:) = V(p:). The resulting stochastic process X;
evolves according to
% =Vi(X:), Xo~ po,
¢: solves the PDE -V - (bN(ﬁr) = (V(,Dt)

As a concrete example, suppose that the given path is a solu-
tion of the heat equation dp:/dt = Ap:. So V() is the Laplacian
operator. The solution of the second-order PDE is easily ob-
tained as ¢:=log(p:). The optimal transport process X; then
evolves according to

4% ==VIog(p:(X), Xo~ po.
This process should be compared to the stochastic differential
equation (SDE)

dX:=dBt, Xo~ po, (S5)
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The gain function is K;(x):=V¢,(x), where ¢: is the
solution of the Poisson equation

Poisson equation: —ﬁv (pi(x)Vei(x)) = (h(x) — ),

vxeR (11)

The operator on the left-hand side of (11) is the probability-
weighted Laplacian. It is denoted as A, = (1/p)V - (pV), where
at time t the probability density p is the conditional density p:.
Equation (11) is referred to as the Poisson equation of nonlinear
filtering [46]. The Stratanovich form of the update formula pro-
vides for an intrinsic (that is, coordinate independent) descrip-
tion of the filter. It was shown that the FPF is an exact filter, not

where {B::t>0} is a w.p. The SDE (S5) is a well-known sto-
chastic coupling whose one-point marginal evolves according
to the solution of the heat equation.

Stochastic Path

In the filtering problem, the path of the posterior probability den-
sities is stochastic (because it depends upon random observa-
tions {Z::t>0}). Therefore, the discussion in the preceding
section is not directly applicable. Suppose that the stochastic
path {p:() € P.(R):t >0} is governed by a stochastic PDE

dp:= (]‘{(pt)d/r,

where H(-) is an operator that acts on probability densities,
and {/;:t =0} is a w.p. Consider the following SDE model:

d)_(t = Ut()_(t)dt + Kt()_(t)d/t, )_(o ~ Po,

where, compared to the deterministic form of (S2), an additional
stochastic term is now included. The problem is to identify con-
trol laws u¢()) and K(-) such that the conditional distribution of X;
equals p:. This exactness condition, counterpart of (S3), is now

=V (peKe)=H(py),
V- (ruie) + (V- (PeKOK: + peKTK) = 0.

(S6a)
(S6b)

These equations are obtained by writing the time evolution
of the conditional probability density of X: [44, Prop. 1].
As in the deterministic setting, the solution is not unique.
The unique optimal control law is obtained by requiring that
the coupling between X; and X, is optimal in the limit as
At — 0. In contrast to the deterministic setting, the leading
term in the transportation cost E[| X;+a — X¢|*] is the order of
O(At), whereby

AIEEnOﬁEH XHA,—x,|2]:fL;d|K,(x)|2pt<x)dx. (S7)

only in the Euclidean settings, but also when the state space S
is a Riemannian manifold (for example, a matrix Lie group
[47]). For a manifold with boundaries, the Poisson equation is
supplemented with the Neumann boundary conditions.

Particles

A finite-N algorithm is obtained by empirically
approximating the mean-field control law. The particles
{Xi:t=0,1<i< N} evolve according to

dXi = a(X})dt + o (X})dBi

AL
+KM(Xl) - (dZi— Mdt), X p,

Therefore, for each fixed t €[0,1], the control law K; is ob-
tained by solving the constrained optimization problem

min [[,|K:() 'pe(x)dx, sublectto —V-(piKe)=He(po). (S8)

As before, the solution of the optimization problem (S8) is
given by Ki=Ve¢:, where ¢: solves the second-order PDE
—V - (p:V:)=H(p:). It remains to identify the control law for u:.
For this purpose, the second-order term in the infinitesimal
Wasserstein cost is used:

" 1 412 = _

lim 7 (Ell X = X, - Atfkd| Ki| prdx):fkd|m|2prdx.
The right-hand side is minimized subject to the constraint
(S6b). Remarkably, the optimal solution is expressed as

i == H(POVSe+ F ViV + £

where &; is the (unique such) divergence-free vector field (that
is, V-(p:&:)=0), such that u: is of a gradient form. The result-
ing optimal transport process is

dXe= Ve (Xe) - (d/t - zi@ﬂ(pf)dt) +E(X)dt, Xo~po. (S9)

It is also readily shown that the process {X::t >0} is exact for
any choice of divergence-free vector field £:. The most convenient
choice is obtained by simply setting £:= 0. The resulting filter is
exact and also (infinitesimally) optimal to the first order [see (S7)].
For the special case of the nonlinear filtering problem,
H(p)=(h—h)p where h=[h(x)p(x)dx and dl;=dZ:— h.dt
is the increment of the innovation process. The optimal transport
stochastic process (S9) is then given by the Stratonovich form

dX: = Ve (Xe) - (dZ: — %(h +he)dt) + E(Xdt, Xo~ po.

The control law in (10) represents the particular suboptimal
choice &:=0.
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Benefit of Feedback

In this section, a simple example is used to illustrate the phe-
nomena of the curse of dimensionality (CoD) in particle filters

(PFs). A comparison with the feedback PF (FPF) is provided

to see how the curse is mitigated using feedback control. The

example considered is

dX;=0, Xo~ N(0,05/a),
dZ; = X.dt + 0w dWs,

(S10a)
(S10b)

for t €[0,1], where X; is a d-dimensional process, ow, 0o > 0,
and Iy is a dxd identity matrix. The posterior distribution
at time t=1 is a Gaussian distribution N(m+1, Z1) with mean
mi = (03/(08+ 0%))Z1 and variance L1 = (030% /(0% + 0%))la.
Consider the following MC approaches to approximate the
posterior distribution:

1) Sequential importance resampling PF: Sample {X5 :
1</ <N} from the initial distribution. Form the weighted
distribution and generate new samples from the weight-
ed distribution.

e 2%

|z1- X[
e 252

N
X~ Z widxi, W=

I=1

Xb ~ N(0, o814).

E

J
(S11)
2) FPF: Simulate the particles according to
i (N) )
XM ot), X~ N(O, 0Bla)

axi=-L Z(,N)(er -
Y (S12)

=
for t € [0,1], where m{" is the empirical mean of the par-
ticles, and " is the empirical variance of the particles.

for i=1,...,N, where {Bi:+=0,1<i<N} are mutually
independent standard w.p., N = (1/N)Z h(X)) is the
empirical approximation of fzf, and K™ is the output of an
algorithm that approximates the solution to (11) at each
fixed time t:

Gain function approximation:
KM = Algorithm ({Xi:1 <i < N}; h).

The notation is suggestive of the fact that the algorithm is
adapted to the ensemble {Xi:1<i < N} and the function /;
the density p:(x) is not known in an explicit manner. Two
examples are presented in the sidebars to illustrate the
FPF algorithm in practice. In “Benefit of Feedback,” ana-
lytical and numerical comparisons are provided to show
how feedback control can help ameliorate the CoD. In
“Example: Feedback Particle Filters for SIR Models,” the
FPF algorithm is applied to an epidemiological SIR model.
At this point, it is instructive to specialize the FPF to the
linear Gaussian case where the solution of the Poisson
equation is explicitly known.
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The mean-squared error (MSE) in approximating the exact
conditional mean m1 of X; is defined as

1, 2
=X —mi[].
N,;| ! “]

The following is proved in [37].

MSE =E

Proposition 1
Consider the filtering problem (S10) with dimension d. Then,
1) For the PF (S11),

e O a1 02 Hd+1
MSEPF(f)_ N(3(2> 2)2 N2 o
2) For the FPF (S12),
0_2
MSEFFF(f>S—N (3d2+2d>.

These results are consistent with the extensive studies on impor-
tance sampling-based PFs [24], [26], [S1], [S2]. In these articles,
it is shown that if (logNlogd)/d — 0 then the largest impor-
tance weight maxi<i<yw'— 1 in probability. Consequently, to
prevent weight collapse, the number of particles must grow expo-
nentially with the dimension. This phenomenon is referred to as
the CoD for the PFs.

A numerical comparison of the MSE as a function of N and d is
depicted in Figure S1(a) and (b). The expectation is approximated
by averaging more than M = 1000 independent simulations. It is
observed that, to have the same error, the importance-sampling-
based approach requires the number of samples N to grow expo-
nentially with the dimension d [whereas the growth using the FPF
for this numerical example is O (d"2)]. The scaling with dimension

Feedback Particle Filters for a Linear Gaussian Setting
Suppose that a(x) = Ax, h(x) = Hx, and that p: is a Gaussian
density with mean 71; and variance 2. Then the solution of the
Poisson equation is known in an explicit form [44, Sec. D]. The
resulting gain function is constant and equal to the Kalman gain:

Ki(x)=ZH', vxeR. (12)
Therefore, the mean-field process (10) for the linear Gauss-
ian problem is

dX: = AX.dt+dB:+ EtHT<dZ, —wdt>, Xo~po.

Given the explicit form of the gain function (12), the empirical
approximation of the gain is simply KM =2MHT where
Zﬁm is the empirical covariance of the particles. Therefore,
the evolution of the particles is

jiid.

dt), X0~ Po
(13)

_ _ _ ; ™
dXi = AXidt + dBi + K™ (dz, - m
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FIGURE S1 Overcoming the curse of dimensionality of particle filters (PFs). The solid lines correspond to the level sets of the mean-
squared error (MSE) for the filtering problem in (S10). To have the same error, the PF requires the number of samples N to grow expo-
nentially with the dimension d, whereas the growth using the feedback PF (FPF) for this numerical example is O(d"?). (a) The impor-

tance sampling PF in (S11) and (b) the FPF in (S§12).

depicted in Figure S1(b) suggests that the O(d?) bound for the
MSE in the linear FPF is loose. This is because of the conserva-
tive nature of approximations used in deriving the inequality [37].
The overall conclusions of the study are consistent with the other
numerical results reported in the literature [S3].

REFERENCES
[S1] P. Bickel, B. Li, and T. Bengtsson, “Sharp failure rates for the boot-
strap particle filter in high dimensions,” in Pushing the Limits of Con-

fori=1...., N, where mﬁN) is the empirical mean of the par-
ticles. The empirical quantities are computed as

N X N . i
m =23 X, 2= Y (K= m) (X - m)
i=1 i=1

The linear Gaussian FPF (13) is identical to the square-root
form of the EnKF [16, eq. 3.3]. The main difficulty in imple-
menting an FPF in the general nonlinear settings is the
gain function approximation. The two algorithms for this
problem are presented in the following section.

GAIN FUNCTION APPROXIMATION
The exact gain function is a solution of (11). In practice, this
problem is solved numerically:

Input: samples {X':1<i < N},
observation function # (),
Output: gain function {K(X’):1 <i < N},
where p is the (posterior) density at time t. The explicit

dependence on time t is suppressed in this section. The
problem is illustrated in Figure 3.

temporary Statistics: Contributions in Honor of Jayanta K. Ghosh, B.
Clarke and S. Ghosa, Eds. Beachwood OH: Institute of Mathematical
Statistics, 2008, pp. 318-329.

[S2] C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson, “Ob-
stacles to high-dimensional particle filtering,” Monthly Weath-
er Rev., vol. 136, no. 12, pp. 4629-4640, 2008. doi: 10.1175/
2008MWR2529.1.

[S3] S. C. Surace, A. Kutschireiter, and J.-P. Pfister, “How to avoid the
curse of dimensionality: Scalability of particle filters with and without
importance weights,” SIAM Rev., vol. 61, no. 1, pp. 79-91, 2019. doi:
10.1137/17M1125340.

Constant Gain Approximation

The simplest approximation is the constant gain approxi-
mation formula, where the gain K; is approximated by its
expected value (which represents the best least-square
approximation of the gain by a constant). Remarkably,

Vo(x)

:’—’—.—’—>
Xi x

FIGURE 3 The gain function approximation problem in the feedback
particle filter. The exact gain function K(x)=V¢(x), where ¢
solves the Poisson equation (11); the numerical problem approxi-
mates V¢ (x)|x—x' using only the particles {X':1<i <N} sampled
from density p (depicted as the shaded region).
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Example: Feedback Particle Filter for SIR Models

he basic mathematical model of epidemiological disease
propagation is the susceptible-infected-recovered (SIR) or-
dinary differential equation model

Si=—pStl,
Ii= BStli — al,,
Rr = O(/r,

where S, I, and R: are the susceptible, infected, and recov-
ered population fractions, respectively, at time t. The param-
eters B and a are the transmission and recovery rate param-
eters, respectively. In an epidemic, one observes the number
of newly infected people over a time increment (daily). For the
study, this is modeled as

dZ: = (BI:St)dt + owdW:, (S16)

where W ={W;:t>0} is the standard w.p., and ow is the
standard deviation (std dev) parameter. Given the obser-
vations, the filtering objective is to estimate the population
sizes and possibly also the model parameters. In this study,
the recovery rate parameter « is assumed known, while the
transmission rate parameter S is estimated. In a filtering
setup, this requires a model that is assumed to be of the form

dB:=o0sdB:,

where B={B;:t>0} is a standard w.p. and oz is the std dev
parameter.

The model and filter are simulated using the Euler discreti-
zation scheme for time integration. The simulation parameters
are as follows: time-discretization step-size At=1; std
dev for the observation noise ow =0.1; std dev for the pro-
cess noise op=0.1, initial distribution /(0) ~ unif[0,0.1] and
S(0)=1-1/(0); recovery rate o=0.1; and the transmission
rate B is fixed to be 0.1 but assumed unknown to the filter-
ing algorithm. The feedback particle filter (FPF) is simulated
using N =100 particles. Two gain function approximation al-
gorithms are implemented: the constant gain and diffusion

Vo(x)

map approximations. For the diffusion map approximation,
the heuristic €=10med({|X'— X/|%1<i,j <N})(log(N))" is
used, where med(-) denotes the statistical median. The simu-
lation parameters and their values are tabulated in Table S1.
Figure S2 depicts the numerical results for the synthetic obser-
vation data generated using the model. Although the results
depicted in the figure are illustrative as an application of FPF
to the SIR models, additional work is necessary for its use in
prediction with real COVID-19 data. This is because of the fol-
lowing reasons:

1) The observation model (S16) is not accurate. In real-world
settings, one observes only a certain unknown (and pos-
sibly a time-varying and delayed) fraction of the newly in-
fected population. This leads to fundamental issues with
the identifiability of the transmission rate parameter 3 [S4],
[S5]. An accurate estimation of S (or the closely associated
nondimensional reproduction number Ro) is important to
capture the initial growth of the epidemic [S6].

2) The three-state SIR dynamic model is rather simplistic.
This is because of several reasons: 1) The model assumes
a homogeneous, well-mixed population (while in practice,
there is strong evidence of heterogeneities [S7] as well as
spatial network effects [S8]); 2) the model is based on the
underlying assumption of Markovian transitions between
the epidemiological states, which is contradicted by the
experimental data on delay distributions [S9]; and 3) even
in the simplistic settings of the SIR model, the transmission
rate parameter f is strongly time varying. It is affected by
both the individual choices (for example, mask wearing)
of the large number of agents as well as population-level
government mandates (for example, lockdowns).

These difficulties notwithstanding, ensemble Kalman filter-
based solutions to the COVID-19 data-assimilation problem
appear in [S10] and [S11]. However, much work remains to
be done on this important problem of immense societal im-
portance. In a post-COVID reality, it is not inconceivable that
the surveillance and monitoring of infectious diseases such

the expected value admits a closed-form expression,
which is then readily approximated empirically using

the particles

Constant gain approximation:

EIK(X)| Zd = [ (h(x)—h)

]Rz/
N . ~ .
xpul)de = 22 (n(X) ~ i) X1 (149
i=1

Figure 4 depicts the constant gain approximation. With
the constant gain approximation, the FPF algorithm sim-
plifies to an EnKF algorithm [10]. The constant gain

FIGURE 4 The constant gain approximation in the feedback particle
filter. The gain function is approximated by its expected value
according to (14).
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( )

0.03 o TABLE S1 The simulation parameters for the application
= 0.02 7 K‘ of the feedback particle filter to the epidemiological
0.01 AN example.
0 N Y
0 50 100 150 200 250 300 350 400 .
¢ Parameter Notation Value
(a) Time step-size At 1
1 Observation noise ow 0.1
0.75 Process noise os 0.1
- 05 )
oo N Number of particles N 100
0 Recovery rate a 0.1
0 50 100 150 200 250 300 350 400 L
¢ Transmission rate B 0.1
. J
(b)
1 as seasonal flu will be as pervasive and commonplace as
[} 0072 weather tracking is today.
0.25
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% Measurement

—— Estimate (FPF-DM)

FIGURE 82 An application of the feedback particle filter (FPF)
on the SIR epidemiological model. The observation is the
number of new confirmed cases each day A/ [depicted in (a)].
The size of infected population is /(t), and the size of suscepti-
ble population is S(f). The infection transmission rate S is
assumed to be unknown and is estimated. The estimation
algorithm is an FPF with constant gain (FPF-CG) approxima-
tion and an FPF with diffusion map (FPF-DM) approximation.

formula (14) was known in the EnKF literature prior to the
FPF derivation [16], [48], and there have been a number of
studies to improve upon this formula [9], [44], [49]-[53].
The following describes the diffusion map approxima-
tion, which appears to be the most promising approach in
general settings.

Diffusion Map-Based Algorithm

The notation e is used to denote the semigroup associ-
ated with the probability-weighted Laplacian A, [54]. As
explained in “Poisson Equation and Its Approximations”
(and more fully in [55]), (11) is equivalently expressed as the
fixed-point equation

analysis of epidemics over networks: An overview,” Annu. Rev. Control,
vol. 50, pp. 345-360, Sept. 2020. doi: 10.1016/j.arcontrol.2020.09.003.
[S9]S.Y.Olmezetal., “Adata-informed approach foranalysis, validation,
and identification of COVID-19 models,” 2020. [Online]. Available: https://
www.medrxiv.org/content/early/2020/10/06/2020.10.03.20206250.1
[S10] R. Engbert, M. M. Rabe, R. Kliegl, and S. Reich, “Sequential
data assimilation of the stochastic seir epidemic model for regional
COVID-19 dynamics,” 2020. [Online]. Available: https://doi.
org/10.1101/2020.04.13.20063768

[S11] G. Evensen et al., “An international assessment of the COVID-19
pandemic using ensemble data assimilation,” 2020. [Online]. Available:
https://doi.org/10.1101/2020.06.11.20128777

p=ep+ [N (h-hyds, (15)
0

where € > 0 is arbitrary. For small values of ¢, there is a

well-known approximation of the exact semigroup e in

terms of the so-called diffusion map

(x—y)
(y—2)p(z)dz

T) = 1ty f 7rs fW)py)dy,

where gc(x) :== ¢"(1x1/4) is the Gaussian kernel in R, and
71¢(x) is the normalization factor chosen so that JTe1(x)dx = 1

AUGUST 2021 « IEEE CONTROL SYSTEMS 45

Authorized licensed use limited to: University of lllinois. Downloaded on July 22,2021 at 02:38:16 UTC from IEEE Xplore. Restrictions apply.



Poisson Equation and Its Approximations
The Poisson equation (11) of nonlinear filtering is a linear

partial differential equation. Its finite-dimensional counter-
part is a familiar linear problem:

Ax = b, (S13)

where A is an n x n (strictly) positive definite symmetric matrix,
and the right-hand side b is a given nx 1 vector. The prob-
lem is to obtain the unknown n x 1 vector x. For this purpose,
the following equivalent formulations of the finite-dimensional
problem are first introduced:

1) xis the solution of the weak form

y'Ax=y'b, YyeR".

2) Forany t > 0, x is the solution to the fixed-point equation
_AtA t _—sA
xX=e x+f0 e *bds.
3) x is the solution of the optimization problem

Xngi]knn %XTAX—XTb.
When n is large, these formulations are useful to numerically
approximate the solution of (S13):

1) For each fixed y € R”, the weak form is a single equa-
tion. By restricting y to a suitable low-dimensional
subspace S c R”, the number of linear equations is
reduced for the purposes of obtaining an approximate
solution (possibly also in S).

2) The fixed-point equation form is useful because e ™ is
a contraction for positive-definite A. So, a good initial
guess for x can readily be improved by using the Ban-
ach iteration.

3) The optimization form is useful to develop alternate (for
example, search-type) algorithms to obtain the solution
to (S13).

Next, the Poisson equation (11) expressed succinctly as

—App=h—h,

where A, = (1/p)V-(pV) is the probability-weighted Lapla-
cian. Functional analytic considerations require the intro-
duction of function spaces: L?(p) is the space of square
integrable functions with respect to p with inner product
(f,g>L2=ff(x)g(x)p(x)dx, H'(p) is the Hilbert space of func-
tions in L?(p) whose first derivative (defined in the weak sense)
is also in L?(p), and Hé(p)z{u/eH‘ (p)‘fy/(x)p(x)dx=0}.
These definitions are important because Hj(p) is the natural
space for the solution ¢ (11). The operator —A, is symmetric
(self-adjoint) and positive definite because
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_<f7 Apg>L2 :<va Vg>L2 :_<Al7f1 g>L2’ Vfr ge Ha(p)

One requires an additional technical condition—the Poin-
caré inequality—to conclude that the operator is strictly
positive definite. Assuming that the Poincaré inequality
holds, it is also readily shown that A," is well defined, that
is, a unique solution ¢ € Hi(p) exists for a given h € L2(p)
[44, Th. 2]. For the purposes of numerical approximation,
entirely analogous to the finite-dimensional case, the fol-
lowing equivalent formulations of the Poisson equation are
introduced:
1) ¢ is a solution of the weak form

(Vy, Vo) 2 =(y,h—h) e vy €Hi(p). (S14)
2) ¢ is a solution of the fixed-point equation
¢ =e¢+ [‘e(h—h)ds.
3) ¢ is the solution of the optimization problem
min %<V¢,V¢>L2+<¢,h—f7)g. (S15)

$eH3(p)

These formulations have been used to develop numerical

algorithms for gain function approximation:

1) Instead of y € Hj(p) in the weak form (S14), a relax-
ation is considered, whereby v € S = span{y,...,yu},
a finite-dimensional subspace of Hi(p). The resulting
algorithm is referred to as the Galerkin algorithm for
gain function approximation [44]. The constant gain
formula (14) is obtained by considering S to be the sub-
space spanned by the coordinate functions.

2) The semigroup e'’ is approximated with the diffusion
map operator Te, as described previously in the article.
This approximation yields the diffusion map-based
algorithm for gain function approximation tabulated
in “Diffusion Map-Based Algorithm for Gain Function
Approximation.”

3) The optimization formulation (S15) is useful to explore
nonlinear parameterizations of the gain function, for
example, using neural networks. A preliminary in-
vestigation of this appears in [S12]. The related deep
learning-inspired techniques for solving partial
differential equations using neural networks appear
in [S13].
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[56]. It is straightforward to approximate the diffusion map
empirically in terms of the particles

ge(x = X)
2. 8(X'= X))
j=1

T = ol S

”gN)(x) i=1

fX),

where n
mating (15) using the empirical approximation T™ for e
the diffusion map-based algorithm is obtained. The algo-
rithm is summarized in “Diffusion Map-Based Algorithm
for Gain Function Approximation.”

™ (x) is the normalization factor. Upon approxi-

€Ay
4

Error: Bias-Variance Tradeoff

The error in diffusion map approximation comes from two
sources: 1) the bias error due to the diffusion map approxi-
mation of the semigroup and 2) the variance error due to
empirical approximation in terms of particles. The error is
analyzed in [15], where it is shown that

Root mean square error =

(E

1

18 ; i 2 1
A8 o0t <ol )
—€ 2N2J

variance

bias

(16)

Diffusion Map-Based Algorithm

for Gain Function Approximation

Input: {(X':1<i<N},{h(X):1<i< N}, Kernel bandwidth €
Output: {K':1<i<N}

| X -xi

1) gi=e

l fori,j=1to N
2) k;/‘::igi/
/z/:gn /leg,-/

3) di=> kijjfori=1toN
)

fori,j=1to N

4) T;,-:=k—"’_'for i,j=1toN

d
5) 7mi= 9 forj=1to N
2.d;
j
~ N .
6) h=> mh(X)

7) ®=(0,...,0)eR"

Solve the fixed-point problem ® =T® +e(h— h)
iteratively

9) n=®;+ech;fori=1to N

8

N
10) S,/:éT,,(r,-— z T;kl’k) for i,j:1 toN
k=1

1) K'=>s;X fori=1to N
]

The error due to bias converges to zero as € — 0, and the
error due to variance converges to zero as N — co. There is
a tradeoff between the two errors. To reduce bias, one must
reduce €; however, for any fixed value of N, one can reduce
€ only up to a point where the variance starts increasing.
The bias-variance tradeoff is illustrated in Figure 5. If € is
large, the error due to bias dominates; however, if € is
small, the error due to variance dominates. As a final point,
there is a remarkable and somewhat unexpected relation-
ship between the diffusion map and the constant gain
approximations. Specifically, in the limit as € — oo, the dif-
fusion map gain converges to the constant gain. This sug-
gests a systematic procedure to improve upon the constant
gain by detuning the value of € away from the [€=o0]
limit. For any fixed N, a finite value of € is chosen to

10 .
Exact
8 e £=0.02
El e=0.1
6 4
X
4
2
04
-3 -2 -1 0 1 2 3
X
(a)
—e— Diffusion Map
---- Constant Gain
. 100
o
i
Variance Bias
Dominates Dominates
107! = T T T T
1073 1072 107" 100 10’
€

FIGURE 5 The bias-variance tradeoff in diffusion map-based gain
function approximation. (a) The dashed line is the constant gain
solution in (14). As € — o, the diffusion map gain converges to the
constant gain. The shaded area in the background is the density
function p taken as the sum of two Gaussians, N(-1,02) and
N(+1,0%), with 62=0.2. The exact gain function K(x) is com-
puted for h(x) = x by using an integral formula [55, eq. 4.6]. (b) The
root-mean-square error is computed as an empirical approxima-
tion of (16) by averaging 1000 simulations for N =200 particles.
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The error due to bias converges to zero as € — 0, and the error due
to variance converges to zero as N - «.

minimize the root mean square error according to the bias-
variance tradeoff. Based on this, a rule of thumb for choos-
ing the € value appears in [55, Remark 5.1].

SOME FINAL REMARKS

In the past decade, the coupling perspective to data-assim-
ilation problems has been enormously valuable, with out-
standing theoretical contributions and application impacts.
Given the limited scope of this article (with its narrow
focus on the FPF algorithm), it is not possible to do justice to
the depth and breadth of this exciting new area in one arti-
cle. The reader is referred to [17] and [18] for an excellent
introduction to the subject.

A few important remarks are also necessary. The contin-
uous-time formulation is stressed in this article for the rea-
sons of mathematical elegance and beauty. In practice,
discrete-time formulations are much more common. The
coupling viewpoint also applies to these settings [17] and
was used in the article to introduce the main ideas. Next,
optimal couplings are almost always difficult to compute.
The most popular forms of couplings used, in practice, are
suboptimal. This is true for the classical EnKF and the FPF
algorithms. A discussion and exactness and optimality for
FPF appears in “Optimal Transport Construction of Sto-
chastic Processes.”

As a final point, closely related to the coupling view-
point is the gradient flow interpretation of the Bayes’
update formula (see [46] for an FPF-specific exposition and
also [57] and [58] for related algorithms).

There are several directions for future work. It is an
open problem to fully carry out stability and error analy-
sis of the finite-N FPF particle system with the diffusion
map-based gain function approximation. It will be very
useful to characterize the CoD in these general settings.
It is also of interest to construct optimization-type formu-
lations that directly yield a finite-N algorithm without
the need for empirical approximation as an intermediate
step. Such constructions may lead to better error proper-
ties by design. Finally, apart from the optimal transpor-
tation formulation stressed in this article, one may
consider alternative approaches for control design. One
possible direction is based on the Schrédinger bridge
problem [18], [59].
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