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H
ow data became one of the most powerful tools 
to fi ght an epidemic is a question that a recent 
(10 June 2020) The New York Times article poses 
in its title. Indeed, the spread of COVID-19 in-
volves dynamically evolving hidden data (for 

example, the number of infected people, the number of 

asymptomatic people) that must be deduced from noisy 
and partially observed data (for example, the number of 
daily deaths, the number of daily hospitalizations, and 
the number of daily positive tests). The underlying math-
ematics for posing and solving this and several other 
partially observed dynamic problems is familiar to con-
trol theorists.

A mathematical abstraction of these types of problems 
commonly involves the definition of two stochastic 
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processes, (X, Z), where in a continuous-time setting
:X X t 0St ! $= " ,  is the hidden signal process and 
:Z Z t 0Ot ! $= " , is the observed or measured process. 

For the sake of exposition, the state space S  and the obser-
vation space O  are assumed to be the Euclidean spaces, and 
the two processes are modeled as solutions of a stochastic 
differential equation (SDE):

( ) ( ) , ( ),tX a X X B Xd d d priort t t t 0 +v= +  (1)

( ) , ,Z h X t W Z 0d d dt t t 0= + =  (2)

where ( ),a $ ( ),$v ( )h $  are given smooth functions of 
their arguments, and the signal (or process) noise 

:B B t 0t $= " ,  and the measurement (or observation) 
noise :W W t 0t $= " ,  are assumed to be independent 
Wiener processes (w.p.). For example, in the models of 
disease spread, Zt  may indicate the number (cumula-
tive) of positive tests up to time t. In this case, Z Zt t2 1-  is 
the number (increment) of positive tests during the time 
interval , ,t t1 26 @  and Zd t  can be thought of as the infini-
tesimal increment over the infinitesimal time .td  Given 
the models for the stochastic processes (X, Z), the math-
ematical problem of stochastic filtering is to estimate 
the conditional distribution of the state ,Xt  given the 
observations up to time t. The conditional distribution 
P |X Zt t^ h  is referred to as the posterior distribution, 
where Zt  is the time history (filtration) of the observa-
tions up to time t.

There are many solution approaches under different mod-
eling assumptions. The most classical of these approaches is 
the method of least squares, which was invented at the turn 
of the 19th century. It remains popular in identification of the 
(static) model parameters (see [1] for an application of these 
methods to parameter estimation in disease modeling). For 
the dynamic case, when the models are linear [that is, 

( ) ,a x Ax= ( )xv v=  and ( ) ]h x Hx=  and the distributions (of 
the noise processes and the prior) are Gaussian, Kalman and 
Bucy derived a recursive algorithm [2] known as the Kalman–
Bucy filter:

,X AX t K Z HX td d d dt t t t t

dynamics control

= + -t t t^ h
1 2 34444 4444>

where : E ( | )X X Zt t t=t  is the conditional mean and Kt  is the 
Kalman gain. Each of the two terms on the right-hand side 
have an intuitive explanation. The first term accounts for 
the effect of the dynamics due to the signal model. The 
second term implements the effect of conditioning because 
of the most recent observation (increment) .Zd t  The second 
term is referred to as the correction or the Bayes’ update 
step of the Kalman filter. It is remarkable that the Bayes’ 
update formula in the Kalman filter takes the form of a 
feedback control law, where

control gain · error=6 6 6@ @ @

and

error Observation prediction .= -6 6 6@ @ @

Note that HX tdt
t  is the filter prediction of the new observa-

tion .Zd t  The formula is so simple that it can and should be 
a part of any introductory undergraduate controls class, as 
an example of proportional gain feedback control law! Of 
course, this straightforward formula has had an enormous 
impact in many applications (such as target tracking and 
surveillance, air traffic management, weather surveillance, 
ground mapping, geophysical surveys, remote sensing, 
autonomous navigation, and robotics). 

The Kalman filter has many extensions, for example, to 
problems involving additional uncertainties in the signal 
and the observation models. The resulting algorithms are 
referred to as the interacting multiple model (IMM) [3] and 
the probabilistic data association (PDA) filters [4], respec-
tively. In the PDA filter, the Kalman gain is allowed to vary 
based on an estimate of the instantaneous uncertainty in 
the observations. In the IMM filter, multiple Kalman filters 
are run in parallel, and their outputs combined to form an 
estimate. Arguably, the structural aspects of the Kalman 
filter have been as important as the algorithm itself in the 
design, integration, testing, and operation of the overall 
system. As a simple illustration of this, consider, for exam-
ple, the Kalman filter gain. The gain is known to scale pro-
portionally to the signal-to-noise ratio of the observations. 
In practice, the gain is often tuned or adapted in an online 
manner to trade off performance for robustness. Without 
such structural features, it is a challenge to create scalable, 
cost-effective, robust solutions. 

Summary
feedback particle filter (FPF) is a Monte Carlo algorithm 

used to approximate the solution of a stochastic fil-

tering problem. In contrast to conventional particle filters, 

the Bayesian update step in the FPF is implemented via a 

mean-field type feedback control law.

The objective of this article is to situate the develop-

ment of the FPF within the framework of optimal trans-

portation theory. Starting from the simplest setting of the 

Bayes’ update formula, a coupling viewpoint is introduced 

to construct particle filters. It is shown that the conventional 

importance sampling resampling particle filter implements 

an independent coupling. Design of optimal couplings is 

introduced first for the Gaussian settings and subsequently 

extended to derive the FPF algorithm. The final half of the 

article provides a review of some of the salient aspects of 

the FPF algorithm, including the feedback structure, al-

gorithms for gain function design, and a comparison with 

conventional particle filters. The comparison serves to il-

lustrate the benefit of feedback in particle filtering.

A
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A limitation of the Kalman filter is that it gives an exact 
solution only in the linear Gaussian settings. Beginning in 
the early 1990s (spurred, in part, by computational advances), 
simulation-based Monte Carlo (MC) algorithms became 
popular for the purposes of numerically approximating the 
posterior distribution in more general settings. These classes 
of algorithms, referred to as particle filters, approximate the 
posterior distribution using a population of N particles 

: , .X t i N0 1t
i $ # #" ,  One can interpret each of the particles 

as independent samples drawn from the posterior. Alterna-
tively, one can interpret the empirical distribution of the 
population as approximating the posterior distribution.

Like the Kalman filter, the particle filter is also an recur-
sive algorithm. The signal model is used to simulate the 
effect of the dynamics. The Bayesian update step is imple-
mented using techniques such as importance sampling 
and resampling. Although these techniques are easily 
described, they bear little resemblance to the feedback con-
trol structure of the Kalman filter.

The focus of this article is on the feedback particle 
filter (FPF) algorithm (see “Summary”). An FPF repre-
sents an exact solution of the nonlinear non-Gaussian fil-
tering problem in (1) and (2), where the state space S  can 
in general be a Riemannian manifold. In applications, 
Euclidean spaces and matrix Lie groups are most 
common. The distinguishing feature of the FPF is that the 
Bayesian update step is implemented via a feedback con-
trol law of the form

	 · ,control gain error=6 6 6@ @ @
where

. .2
1

2
1

error Observation

Part.predict. Pop.predict

=

- +` j
6 6

6 6
@ @

@ @

The terms [Part. predict.] and [Pop. predict.] refer to the 
prediction—regarding the next [Observation] Zd t` _—as 
made by the particle and the population, respectively 
(see Figure 1). Because the control for each particle 
depends also on the population (and thus the empirical 
distribution), this is an example of a mean-field-type 
control law [5], [6]. For the linear Gaussian problem in 
the Euclidean state space, the gain6 @  of the FPF is exactly 
the Kalman gain. In non-Gaussian settings, the gain 
solves a certain linear partial differential equation (PDE), 
which is known as the weighted Poisson equation. The 
exact formula for the FPF control and gain appears in the 
main body of the article. 

At the turn of the decade (beginning in 2010), the FPF 
algorithm was introduced by our research group at the 
University of Illinois [7]–[9]. The algorithm can be viewed 
as a modern extension to the Kalman filter, a viewpoint 
stressed in [10]. Like the Kalman filter, the FPF is easily 
extended to handle additional uncertainties in signal 
and measurement models. These extensions, namely, the 

PDA-FPF and the IMM FPF, appear in the prior works 
[11] and [12]. 

From a historical perspective, the FPF is a part of a 
broader class of exact and approximate interacting parti-
cle algorithms, specifically, the ensemble Kalman filter 
(EnKF), which is widely used for data assimilation in 
weather prediction and other types of geophysical appli-
cations [13]. Closely related to and predating the work on 
the FPF, the first interacting particle representation of the 
continuous-time nonlinear filtering problem in (1) and (2) 
appears in [14]. In linear Gaussian settings, the update 
formula for the FPF is known as the square root form of 
the EnKF [15], [16].

The objective of this article is to situate the development 
of the FPF and its related controlled interacting particle 
system algorithms (for example, the EnKF) within the 
framework of optimal transportation theory. The key 
notion is that of “coupling” between two distributions—
prior and posterior in the Bayesian settings of this article. 
Optimal transportation theory is then applied to design the 
optimal coupling. In practice, this requires a solution of 
certain PDEs, such as the Poisson equation that arises in the 
FPF algorithm. The coupling viewpoint has several advan-
tages, which are described in the main body of this article. 

THE COUPLING VIEWPOINT
The heart of any simulation-based recursive particle filter 
algorithm is the Bayes’ update formula

· .posterior likelihood prior?6 6 6@ @ @

The notation ( ),p0 $  ( ),p1 $  and ( )$,  is used to denote the prior, 
posterior, and likelihood distributions, respectively. The 
expressions for these in the linear Gaussian example appear 

dXt = “dynamics” + Kt dIt

"

dZt = h (Xt)dt

" "

Zt

"

Zt

Zt

It

+

+
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–
Zt

" i
It
idZt =

"

dXt = “dynamics” + Kt (Xt ) ° dIt
i ii
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FIGURE 1 The feedback control structure of a (a) Kalman filter (KF) 
and (b) feedback particle filter (FPF). Xt

t  in the KF is the estimate 
(conditional mean) of the hidden state. Xt

i  in the FPF is a sample 
from the posterior (conditional distribution) of the hidden state. In 
both algorithms, the Bayesian update is implemented via a gain 
times error control law.
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in the “Optimal Coupling for Gaussian Distributions” sec-
tion. In any particle filter algorithm, one also needs to simu-
late the effect of dynamics. This step is straightforward using 
the signal model directly. Therefore, the focus of this section 
is only on the update formula. One of the challenges in sim-
ulation settings is that an analytic expression of the prior 
distribution is not available. Instead, the prior is approxi-
mated in terms of N independent samples : :X i N1i

0 # #" ,

,p x N x1
X

i

N

0
1

i
0. d

=

^ ^h h/

where zd  is the Dirac distribution at .z S!  The expres-
sion on the right-hand side is referred to as the empirical 
distribution of the population. Alternatively, one can 
think of Xi

0  as an independent sample drawn from the 
prior. In a numerical implementation of the update for-
mula, the problem is to convert the sample of N particles 

:X i N1i
0 # #" ,  from the prior distribution ( )p0 $  to a 

sample of N particles :X i N1i
1 # #" ,  from the posterior 

distribution ( ) .p1 $  The algorithmic problem is depicted in 
Figure 2 and is expressed as

: , ,
: .

X i N p

X i N p

1
1

Input: samples likelihood function
Output: samples 

i

i

0 0

1 1

,# # +

# # +

"
"

,
,

The task of converting samples from one distribution ( )p0 $  
to samples from another distribution ( )p1 $  is viewed as the 
problem of finding a coupling ( , )$ $r  [17]–[19]. By defini-
tion, a coupling is any joint probability distribution that 
satisf ies the marginal constraints y , ( )x x x p xd 1r =l l^ h  
and y , .x x p xxd 0r =l l^ ^h h  It is convenient to express ( , )x xr =l  

| ,x x p xT 0l l^^ hh  where ( )T $ $;  is referred to as the transition 
kernel. Once the coupling is at hand, new samples are gener-
ated using the transition kernel.

Given this viewpoint, the MC algorithm simulates the 
following stochastic update law for the system of particles:

	 .uX XTi i
1 0$+ ^ h 	�  (3)

This means that a new sample Xi
1  is generated by sampling 

from the distribution u .XT i
0$^ h  The sampling algorithm (3) 

ensures that if the probability distribution of Xi
0  is ,p0  then 

the probability distribution of Xi
1  is .p1  The associated 

algorithmic task is expressed as

: , ,
 .

X i N p

p p

1Input: samples likelihood function
Output: coupling between and

i
0 0

0 1

,# # +" ,

Sequential Importance Resampling Particle Filter
There are infinitely many couplings between two distribu-
tions. The simplest possible choice is an independent cou-
pling, where , .xx x p x p1 0r = ll^ ^ ^h h h  For independent coupling, 
the transition kernel u ( ).xx x pT 1=l^ h  The sequential 
importance resampling (SIR) particle filters [20], [21] numeri-
cally implement the independent coupling in two steps:

1)	 A weighted distribution of the particles is first 
formed according to ,wi Xi

N
1 i

0dR =  where the weights 
/ .lw X XlN

i
i

j
j

0 1 0R= =^ ^h h  The weighted distribution is an 
approximation of the posterior distribution .p1  This 
step is called importance sampling.

2)	 N particles are independently sampled from the 
weighted distribution ~X wi

Ni
i X1 1 i

0dR =  by sampling 
from a multinomial distribution with parameter vector 

, .N wi i
N

1=^ h" ,  This step is called resampling.
Theoretically, it is shown that the empirical approxima-

tion with particles becomes exact in the limit as N "3 with 
error rate O N /1 2-^ h [22], [23]. However, both empirically and 
theoretically, it was discovered that particle filters can 
suffer from a large simulation variance that worsens as the 
dimension of the problem increases [24]–[26]. To maintain 
the same mean-squared error, a particle filter requires a 
number of particles that scales exponentially with the 
dimension. This issue is referred to as the curse of dimen-
sionality (CoD). The issues with the stochastic independent 
coupling in SIR filters has motivated the investigation of 
other forms of coupling that are also optimal in some sense 
[27], [28]. In the simulation literature, this is referred to as 
the design of proposal distributions.

Optimal Transport Coupling
Optimal transportation theory provides a principled approach 
for identifying a coupling. Given two distributions, p0  and ,p1  
the optimal transportation problem is

Prior Posterior

T

p0 p1

FIGURE 2 The coupling viewpoint of the filtering problem. The task 
of a particle filter is to convert a sample of N particles from the 
prior distribution to a sample of N particles from the posterior dis-
tribution. This task is viewed as finding a coupling between the 
prior and the posterior distributions. 

The distinguishing feature of the FPF is that the Bayesian update step is 

implemented via a feedback control law.
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	 ,min X XE( , )X X 0 1
2

,p p
0 1

1

-
!

+
r

r
P 0

6 @ � (4)

where ,p p0 1P  is the set of all the couplings with marginals 
fixed to p0  and .p1  The optimal cost is referred to as the L -2

Wasserstein distance between p0  and p1  [29]. The optimi-
zation problem (4) is known as the Kantorovich formula-
tion of the optimal transportation problem. By a 
famous result due to Brenier, if the two distributions admit 
density with respect to a Lebesgue measure, then the opti-
mal coupling is unique and deterministic of the form 

, ( ) ,xx x p x( )x 0r d= dUl ll^ ^h h  where U  is a convex function [29, 
Th. 2.12]. The function U  is obtained by solving the Monge–
Ampère PDE [30]. A numerical solution to the Monge–
Ampère PDE based only on the samples is a challenging 
problem. In the following, these results are described for 
the special case when the prior and the posterior distribu-
tions are both Gaussian.

Optimal Coupling for Gaussian Distributions
In Gaussian settings, the prior and the likelihood are both 
Gaussian distributions:

	
,

| |
.

exp

exp

p x x m x m

l x
y Hx

2
1

0 0 0
1

0

2

?

?

R- - -

-
-

< -

2

^ `

c

^ ^

^

h h

m

hj

h

In this case, a simple completion of square helps show that 
the posterior is also a Gaussian distribution

	 .expp x x m x m2
1

1 1 1
1

1? R- - -R -^ ` ^ ^h h hj

This yields the following update formula for the mean and 
the variance:

	 K K, ,m m Y Hm H1 0 0 1 0 0R R R= + - = -^ h

where K ( )H H H I0 0
1R R= +R R -  is the Kalman gain. This is 

the update formula for the discrete-time Kalman filter.
The coupling design problem is to couple the Gaussian 

prior p0  and the Gaussian posterior .p1  The optimal cou-
pling [solution to the optimal transportation problem (4)] 
between two Gaussian distributions is explicitly known 
and is an affine map of the form

	 ,T x F x m m0 1= - +^ ^h h � (5)

where F is the (unique) symmetric matrix solution to 
the matrix equation .F F0 1R R=  The explicit form of the 
solution is

.F 0
2
1

0
2
1

1 0
2
1 2

1

0
2
1

R R R R R=
- -` j

Note that if ,X mN 0 0+ R^ h then ,T X mN 1 1+ R^ ^h h because:  
1) the mean ,( )T X mE 1=6 @  2) the variance [( ( ) )T X mE 1-  

,( ( ) ) ]T X m F F1 0 1R R- = =R  and 3) an affine transformation of 
a Gaussian random variable is again Gaussian. The optimal 
transport map (5) yields the following algorithm for sampling:

.X T X F X m mi i i
1 0 0 0 1= = - +^ ^h h

Given ,X pi
0 0+  .X pi

1 1+  The optimal coupling depends on 
the statistics of both the prior and posterior distributions. 
In a simulation-based setting, one has only a population 
of particles : .X i N1i

0 # #" ,  The transport map must also 
be approximated from the particles. One such approxi-
mation is

K ,X F X m m Y Hmparticle update: ( ) ( ) ( ) ( ) ( )i N i N N N N
1 0 0 0 0= - + + -^ ^h h

� (6)

where /Nm X1( )
i
NN i

0 1 0R= =^ h  is an empirical approximation of 
the mean ,m0  / N X m X m1 1( ) ( ) ( )

i
NN i N i N

0 1 0 0 0 0R R= - - -
R

=^ ^ ^ ^hh h h  
is an empirical approximation of the variance, F( )N  is the 
unique symmetric matrix solution to the matrix equation 

,F F K H( ) ( ) ( ) ( ) ( ) ( )N N N N N N
0 0 0R R R= -  and K H H H( ) ( ) ( )N N N

0 0R R= +R R^  
.I 1+ -h

The update formula (6) is compared to the discrete-time 
EnKF update

K ( ),X X Y HX Wparticle update (EnKF): ( )i i N i i
1 0 0= + - + � (7)

where :W i N1i # #" , are independent copies of the obser-
vation noise. The EnKF update is an example of a stochas-
tic coupling in contrast to the deterministic optimal 
coupling (6). The EnKF update does not require solving 
for .F( )N  This makes it simpler to implement numerically. 
However, the presence of noise W i  in the update law 
introduces an additional source of error in any finite-N 
implementation [31]. 

Besides (7), there are several other forms of the EnKF 
update. One particular update, which has been crucial in 
successful application of EnKF in geoscience, is the ensem-
ble square-root Kalman filter (EnSRKF) [32]. This update is 

Optimal transportation theory provides a principled approach  

for identifying a coupling.
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an example of a deterministic coupling that also avoids the 
need to compute F( )N  [17, Sec. 7.1]. In the sequel, the contin-
uous-time version of the EnSRKF arises as a special case of 
the FPF.

The systems in (6) and (7) are both examples of inter-
acting particle systems. The interaction arises because of 
the terms involving the empirical quantities m ( )N

0  and 
.( )N

0R  In the limit as ,N "3  these converge to their respec-
tive statistics, and the particles become independent of 
each other [33]–[37]. This phenomenon is referred to as the 
propagation of chaos [38], [39]. The N 3=^ h limit is 
referred to as the mean-field limit, and for (6), it is identi-
fied by a single equation:

K: ( ) .X F X m m Y Hmmean-field update 1 0 0 0 0= - + + -r r ^ h  (8)

As a practical matter, one first designs a coupling (5) that is 
used to define the mean-field process (8). Subsequently, the 
mean-field terms are approximated empirically to define a par-
ticle system (6). A finite-N implementation of the particle 
system yields a practical algorithm to solve the filtering task.

A synopsis of this section is presented in “Summary of 
the Linear Gaussian Example.” An excellent exposition of 
the coupling approach to discrete-time filtering appears in 
[17] and [18]. Other examples of couplings include an 
approximation of the Rosenblatt transport map [40], [41] and 
Gibbs flow [42].

FEEDBACK PARTICLE FILTER
The coupling viewpoint is employed next to introduce and 
describe the FPF algorithm. An FPF is an MC solution to the 
continuous-time nonlinear filtering problem in (1) and (2). A 
construction of the FPF proceeds in the following two steps:

1) Construct a stochastic process :X X t 0St ! $=r r" , such 
that the conditional distribution (given )Zt  of Xtr  is 
equal to the posterior distribution of .Xt

2) Simulate N stochastic processes : ,X t i N0 1St
i ! $ # #" ,

to empirically approximate the conditional distribu-
tion of .Xtr

uuf X f X N f X1E EZ Zt t t t
i

N

t
i

1exactness condition

Step 2Step 1
.=

=

r ^^ ^ hh h6 6@ @
1 2 344444444 44444444

/

for all bounded functions f. The process Xr  is referred 
to as the mean-field process, and the N processes are 
referred to as particles. The construction ensures that 
the filter is exact in the mean-field N 3=^ h limit.

Mean Process
The mean-field process Xr  is modeled as a solution of a con-
trolled SDE:

K ,

,

X a X t X B u X t X Z

X X

d d d d dt t t t t t t t t

0 0

dynamics control
d

v= + + +

=

r r r r

r

r^ ^ ^^ h h hh
1 2 344444 44444 1 2 3444444 444444

(9)

where :B B t 0t $=r r" , is a w.p., independent of .X0r  The first 
two terms in (9) are a copy of the dynamics in (1). The other 
two terms are control laws (transition kernels) that must be 
designed to implement the filtering update step: The mathe-
matical control objective is to design :( ) tu 0t $ $" , and 

K ( ) : t 0t $ $" , such that the conditional distribution (given 
)Zt  of Xtr  is equal to the posterior distribution of .Xt  The con-

trol is regarded as implementing the transition kernel of a 
coupling. As in the simpler discrete-time setting in the pre-
ceding section, there are infinitely many couplings and 
associated transition kernels that satisfy the exactness crite-
ria. This is not surprising. The exactness condition specifies 
only the marginal distribution of Xtr  at times .t 0$  This is 
clearly not enough to uniquely identify a stochastic process 
(for instance, the joint distributions at two time instants are 
not specified).

The procedure from the preceding section is suitably 
adapted to design the optimal coupling. The optimality cri-
terion is the Kantorovich form (4) of the optimal transpor-
tation problem. The details appear in “Optimal Transport 
Construction of Stochastic Processes,” where it is shown 
that the optimal Kt  is of the gradient form as follows: 
K ( ),x xt tdz=^ h  where tz  solves the partial differential 
equation (PDE) ,p p h ht t t t$d dz- = - t^ ^h h d  is the gradient 
operator, $d  is the divergence operator, : ( )|h h XE Zt t t=t r6 @

y ,xh x p x dt= ^^ hh  and pt  is the conditional density of .Xtr

The optimal solution for ut  is

K K K( ) ,u x h x h x x x2
1

2
1

t t t t t td p=- + + +t^ ^ ^ ^ ^h h h h h

where tp  is the (unique such) divergence-free vector field 
(that is, ( ) ),p 0t t$d p =  such that ut  is of a gradient form. An 
intuitive explanation of the three terms is as follows. The 
first term is gain K ( )xt  times the average of the particle pre-
diction h(x) and the population prediction .ht

t Together with 
the stochastic term K ,Zdt t  the first term yields the gain times 
error structure of the FPF. The second term is the so-called 
Wong–Zakai correction term, from which it follows that the 
gain times error formula is expressed in its Stratanovich 
form. The geometric significance of the Stratanovich form is 

Summary of the Linear Gaussian Example
:
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described after the FPF formula has been formally pre-
sented. The significance of the third term follows. The diver-
gence-free choices of tp  parameterize a manifold of 
couplings, all of which yield the same (exact) posterior. 
Therefore, the choice of tp  affects only the (Wasserstein) opti-
mality, but not the exactness property of the filter. In the FPF, 

tp  is set to zero for all .t 0$  Although such a solution is opti-
mal only in the scalar (1D) settings, it avoids the need to 
solve an additional PDE to compute the optimal .tp  The 
resulting algorithm is referred to as the FPF.

Feedback Particle Filter
The mean-field process Xr  evolves according to the SDE: 

K ,

,

( )
X a X t X B X Z

h X h
t

X p

2d d d d dt t t t t t t
t t

0 0

dynamics
Bayes update: feedback control law

%

+

v= + + -
+

l

r r r

r

r
r t

^ ^ c^ h h mh
1 2 344444 44444 1 2 344444444 44444444

� (10)

where the symbol % denotes the fact that the SDE is 
expressed in its Stratanovich form [43, Sec. 3.3]. The Itô 
form of the FPF includes the standard Wong–Zakai correc-
tion term that arises on account of the dependence of the 
gain K ( )t $  on the state Xt  [44, eq. 2]. Because the gain also 
depends upon the density, the interpretation of the Strato-
novich form in the general case is more involved, as dis-
cussed at length in [45].

Optimal Transport Construction of Stochastic Processes

DETERMINISTIC PATH

Let RP d
2 ^ h be the space of everywhere positive probabil-

ity densities on Rd  with a finite second moment. Given a 

smooth path : ,p t 0RPt
d

2! $^ h" ,  the problem is to construct a 

stochastic process ;X t 0t $r" , such that the probability density 

of Xtr  (denoted as )ptr  equals pt  for all .t 0$  The exactness 

condition is expressed as

	 , .p p t 0t t 6 $=r � (S1)

Now there are infinitely many stochastic processes that satisfy 

the exactness condition. This is because the exactness condi-

tion specifies only the one-time marginal distribution, which is 

clearly not enough to uniquely identify the stochastic process, 

for example, the two-time joint distributions are not specified. A 

unique choice is made by prescribing an additional optimality 

criterion based on the optimal transportation theory. To make 

these considerations concrete, assume that the given path 

 :p t 0t $" , evolves according to the partial differential equa-

tion (PDE)

,t
p

pV
t

t2
2

= ^ h

where ,( )V $  is an operator (for example, the Laplacian) that 

acts on probability densities. This necessarily restricts the 

operator ,V  for example, p x xy 0dV =^ ^h h  for all .p RP d
2! ^ h  

The following model is assumed for the process : :X t 0t $r" ,

	 , ,t X u X X pd
d

t t t 0 0+=r r r^ h � (S2)

where ( )ut $  is a control law that must be designed. Using the 

continuity equation, the exactness condition (S1) will be satis-

fied if

	 , .p u p t 0Vt t t$d 6 $- =r r^ ^h h � (S3)

The nonuniqueness issue is now readily seen. The first-order 

PDE (S3) admits infinitely many solutions. A unique solution ut  

is selected by optimizing the coupling between Xtr  and Xt tT+
r  in 

the limit as .t 0"T  The leading term in the transportation cost 

X XE t t t
2

-T+6 @ is of order O t2T^ h whereby

.lim
t

X X u x p x x1 dE
t

t t t t t
0 2

2 2

RdT
- =

"T
T+ r ^^ hh6 @ #

Therefore, for each fixed , ,t 0 1! 6 @  the control law ut  is ob-

tained by solving the constrained optimization problem

	 , .min d p uu x p x x psubject to Vt t
u

t t t
2

Rt d
$d- =r r r^ ^ ^ ^h h h h# � (S4)

The cost is the infinitesimal form of the L -2 Wasserstein dis-

tance, and the constraint expresses the exactness condition. 

By a standard calculus of variation argument, the solution of 

(S4) is obtained as ,ut tdz=)  where tz  solves the second-order 

PDE .p pVt t t$d dz- =r r^ ^h h  The resulting stochastic process Xtr  

evolves according to

, ,

 · .
t
X X X p

p p
d
d

solves the PDE V

t
t t

t t t t

0 0d

d d

+z

z z

=

- =

r r r

r r^ ^
^

h h
h

As a concrete example, suppose that the given path is a solu-

tion of the heat equation ./p t pt t2 2 T=  So ( )V $  is the Laplacian 

operator. The solution of the second-order PDE is easily ob-

tained as .log pt tz = r^ h  The optimal transport process Xtr  then 

evolves according to

	 , .logt X p X X pd
d

t t t 0 0d +=-r r r^ ^ hh

This process should be compared to the stochastic differential 

equation (SDE)

	 , ,d dX B X pt t 0 0+= � (S5)
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The gain function is :K ,x xt tdz=^ ^h h  where tz  is the 
solution of the Poisson equation

( ) ,

.
p x p x x h x h

x

1Poisson equation:

R

t
t t t

d

$d d

6 !

z- = - t^ ^ ^ ^ ^h hh hh

� (11)

The operator on the left-hand side of (11) is the probability-
weighted Laplacian. It is denoted as : ,/1 $d dT t t=t ^ ^h h  where 
at time t the probability density t is the conditional density .pt  
Equation (11) is referred to as the Poisson equation of nonlinear 
filtering [46]. The Stratanovich form of the update formula pro-
vides for an intrinsic (that is, coordinate independent) descrip-
tion of the filter. It was shown that the FPF is an exact filter, not 

only in the Euclidean settings, but also when the state space S  
is a Riemannian manifold (for example, a matrix Lie group 
[47]). For a manifold with boundaries, the Poisson equation is 
supplemented with the Neumann boundary conditions. 

Particles
A finite-N  algorithm is obtained by empirical ly 
approximating the mean-field control law. The particles 

: ,X t i N0 1t
i $ # #" , evolve according to

	
K

( ) ( )

( ) (
( )

), ~ ,

X a X t X B

X Z
h X h

t X p2

d d d

d d( )
( )

t
i

t
i

t
i

t
i

t
N

t
i

t
t
i

t
N

i
0 0

i.i.d.
%

v= +

+ -
+ t

where :B t 0t $" , is a w.p. The SDE (S5) is a well-known sto-

chastic coupling whose one-point marginal evolves according 

to the solution of the heat equation.

Stochastic Path
In the filtering problem, the path of the posterior probability den-

sities is stochastic (because it depends upon random observa-

tions : .Z t 0t $ h" ,  Therefore, the discussion in the preceding 

section is not directly applicable. Suppose that the stochastic 

path ( ) :p t 0RP d
t 2$ ! $^ h" , is governed by a stochastic PDE

,dp p dIHt t t= ^ h

where ( )H $  is an operator that acts on probability densities, 

and :I t 0t $" , is a w.p. Consider the following SDE model:

, ,X u X t X I X pd d K dt t t t t t 0 0+= +r r r r^ ^h h

where, compared to the deterministic form of (S2), an additional 

stochastic term is now included. The problem is to identify con-

trol laws ( )ut $  and ( )Kt $  such that the conditional distribution of Xtr  

equals .pt  This exactness condition, counterpart of (S3), is now

	 ,p K pHt t t$d- =r r^ ^h h � (S6a)

	 .p u p p2
1 0K K K Kt t t t t t t t$ $d d d- + + =r r r^ ^ ^h h h � (S6b)

These equations are obtained by writing the time evolution 

of the conditional probability density of Xtr  [44, Prop. 1]. 

As in the deterministic setting, the solution is not unique. 

The unique optimal control law is obtained by requiring that 

the coupling between Xtr  and Xt tT+
r  is optimal in the limit as 

.t 0"T  In contrast to the deterministic setting, the leading 

term in the transportation cost X XE t t t
2

-T+6 @  is the order of 

( ),O tD  whereby

	 .lim xt X X p x x1 K dE
t

t t t t t
0

2 2

RdT
- =

"T
T+ r^ ^h h6 @ # � (S7)

Therefore, for each fixed , ,t 0 1! 6 @  the control law K t  is ob-

tained by solving the constrained optimization problem

	 ( ) , .min p Kx p x x pK d subject to Ht tt t t t
2

K Rt d
$d- =r r r^ ^ ^h h h# �(S8)

As before, the solution of the optimization problem (S8) is 

given by ,K t tdz=)  where tz  solves the second-order PDE 

.p pHt t t$d dz- =r r^ ^h h  It remains to identify the control law for .ut  

For this purpose, the second-order term in the infinitesimal 

Wasserstein cost is used:

.lim t X X t p x p xu1 K d dE
t

t t t t t tt
0

2 2 2

R Rd dT
T =- -

"

)

T
T+ r r` j6 @ # #

The right-hand side is minimized subject to the constraint 

(S6b). Remarkably, the optimal solution is expressed as

,u p p2
1

2
1Ht

t
t t t t t

2d d dz z z p=- + +)

r
r^ h

where tp  is the (unique such) divergence-free vector field (that 

is, ),p 0t t$d p =^ h  such that ut  is of a gradient form. The result-

ing optimal transport process is

	 , .dX X I p p t X t X p2
1d d dHt t t t

t
t t t 0 0%d +z p= - +r r

r
r r r^ c ^^h m hh � (S9)

It is also readily shown that the process :X t 0t $r" , is exact for 

any choice of divergence-free vector field .tp  The most convenient 

choice is obtained by simply setting .0t /p  The resulting filter is 

exact and also (infinitesimally) optimal to the first order [see (S7)].

For the special case of the nonlinear filtering problem, 

p h h pH = - t^ ^h h  where yh h x p x xd=t ^ ^h h  and I Z h td d dt t t= - t  

is the increment of the innovation process. The optimal transport 

stochastic process (S9) is then given by the Stratonovich form

, .X X Z h h t X t X p2
1d d d dt t t t t t t 0 0%d +z p= - + +r r t r r^ ^ ^`h h hj

The control law in (10) represents the particular suboptimal 

choice .0t /p
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for , , ,i N1 f=  where { : , }B t i N0 1t
i $ # #  are mutually 

independent standard w.p., ( )( / )h XN h1( )
t
N

i t
iN

1R= =:t  is the 
empirical approximation of ,ht

t  and K( )
t
N  is the output of an 

algorithm that approximates the solution to (11) at each 
fixed time t:

	
K

:

({ : }; ) .X i N h1

Gain function approximation

Algorithm( )
t
N

t
i # #=:

The notation is suggestive of the fact that the algorithm is 
adapted to the ensemble { : }X i N1t

i # #  and the function h; 
the density ( )p xt  is not known in an explicit manner. Two 
examples are presented in the sidebars to illustrate the 
FPF algorithm in practice. In “Benefit of Feedback,” ana-
lytical and numerical comparisons are provided to show 
how feedback control can help ameliorate the CoD. In 
“Example: Feedback Particle Filters for SIR Models,” the 
FPF algorithm is applied to an epidemiological SIR model. 
At this point, it is instructive to specialize the FPF to the 
linear Gaussian case where the solution of the Poisson 
equation is explicitly known.

Feedback Particle Filters for a Linear Gaussian Setting
Suppose that ( ) ,a x Ax=  ( ) ,h x Hx=  and that pt  is a Gaussian 
density with mean mtr  and variance .tRr  Then the solution of the 
Poisson equation is known in an explicit form [44, Sec. D]. The 
resulting gain function is constant and equal to the Kalman gain:

	 K ( ) , .x H x Rt t
d6/ !R <r � (12)

Therefore, the mean-field process (10) for the linear Gauss-
ian problem is

, ~ .X AX t B H Z HX Hm t X p2d d d d dt t t t t
t t

0 0R= + + - +<r r r r r r rc m

Given the explicit form of the gain function (12), the empirical 
approximation of the gain is simply K ,H( ) ( )

t
N

t
NR= <  where 

( )
t
NR  is the empirical covariance of the particles. Therefore, 

the evolution of the particles is

	 K , ~X AX t B Z HX Hm t X p2d d d d d( )
( )

t
i

t
i

t
i

t
N

t
t
i

t
N

i
0 0

i.i.d.
= + + -

+c m  
�

(13)

Benefit of Feedback

In this section, a simple example is used to illustrate the phe-

nomena of the curse of dimensionality (CoD) in particle filters 

(PFs). A comparison with the feedback PF (FPF) is provided 

to see how the curse is mitigated using feedback control. The 

example considered is

	 , ( , ),X X I0 0d Nt d0 0
2+ v= � (S10a)

	 ,Z X t Wd d dt t w tv= + 	�  (S10b)

for [ , ],t 0 1!  where Xt  is a d-dimensional process, , ,0w 0 2v v  

and Id  is a d d#  identity matrix. The posterior distribution 

at time t 1=  is a Gaussian distribution ( , )mN 1 1R  with mean 

m Zw1 0
2

0
2 2

1v v v= +` ^ hj  and variance .Iw w d1 0
2 2

0
2 2v v v vR = +` ^ hj  

Consider the following MC approaches to approximate the 

posterior distribution:

1)	 Sequential importance resampling PF: Sample :Xi
0"  

i N1# # , from the initial distribution. Form the weighted 

distribution and generate new samples from the weight-

ed distribution.

	 , , ( , ).X w w

e

e X I0

E

N

Z

i
i

i

N

X i
Z X

Z X

i
d1

1

2
0 0

2

2 1

i

w

i

w

i

0

2

1 0
2

2

1 0
2+ +d v= v

v

=

-
-

-
-= G

/  

�
(S11)

2)	 FPF: Simulate the particles according to

	 ,,X Z
X m

t X I1
2 0d d d N

( )N

t
i

w

N
t

t
i

t i
dt2 0 0

2+
v

vR= -
+c ^^ m hh  

� (S12)

for [ , ],t 0 1!  where m( )
t
N  is the empirical mean of the par-

ticles, and ( )
t
NR  is the empirical variance of the particles.

The mean-squared error (MSE) in approximating the exact 

conditional mean m1  of X1  is defined as

.N X m1MSE E i

i

N

1 1
1

2
|= -

=

= G/

The following is proved in [37].

Proposition 1

Consider the filtering problem (S10) with dimension d. Then,

1)	 For the PF (S11),

.f N N3 2 2
1 2MSE d d

2 2
1

PF $v v= - +^ ^`h h j

2)	 For the FPF (S12),

.f N d d3 2MSE
2

2
FPF # v +^ ^h h

These results are consistent with the extensive studies on impor-

tance sampling-based PFs [24], [26], [S1], [S2]. In these articles, 

it is shown that if ( /)log log dN d 0"  then the largest impor-

tance weight max w 1i N
i

1 "# #  in probability. Consequently, to 

prevent weight collapse, the number of particles must grow expo-

nentially with the dimension. This phenomenon is referred to as 

the CoD for the PFs.

A numerical comparison of the MSE as a function of N and d is 

depicted in Figure S1(a) and (b). The expectation is approximated 

by averaging more than M 1000=  independent simulations. It is 

observed that, to have the same error, the importance-sampling-

based approach requires the number of samples N to grow expo-

nentially with the dimension d [whereas the growth using the FPF 

for this numerical example is ( )].O d /1 2  The scaling with dimension 
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for . , ,i N1 f=  where m( )
t
N  is the empirical mean of the par-

ticles. The empirical quantities are computed as

., ( ) ( )m N X N X m X m1
1

1( ) ( ) ( ) ( )
t
N

t
i

i

N

t
N

t
i

t
N

i

N

t
i

t
N

1 1
R= =

-
- - <

= =

:: / /

The linear Gaussian FPF (13) is identical to the square-root 
form of the EnKF [16, eq. 3.3]. The main difficulty in imple-
menting an FPF in the general nonlinear settings is the 
gain function approximation. The two algorithms for this 
problem are presented in the following section.

GAIN FUNCTION APPROXIMATION
The exact gain function is a solution of (11). In practice, this 
problem is solved numerically:

K

,
( ),

( ) : ,

: ~
h

X

X i N

i N

1

1
observation function

Output: gain function

Input: samples

i

i i.i.d.

$

# #

# #

t

"

"

,

,

where t  is the (posterior) density at time t. The explicit 
dependence on time t is suppressed in this section. The 
problem is illustrated in Figure 3.

Constant Gain Approximation
The simplest approximation is the constant gain approxi-
mation formula, where the gain Kt  is approximated by its 
expected value (which represents the best least-square 
approximation of the gain by a constant). Remarkably, 

∇φ (x )

∇φ (Xi)

Xi x

FIGURE 3 The gain function approximation problem in the feedback 
particle filter. The exact gain function ( ) ( ),x xK dz=  where z  
solves the Poisson equation (11); the numerical problem approxi-
mates ( )x ux Xidz =  using only the particles :X i N1i # #" , sampled 
from density t  (depicted as the shaded region).

depicted in Figure S1(b) suggests that the ( )O d2  bound for the 

MSE in the linear FPF is loose. This is because of the conserva-

tive nature of approximations used in deriving the inequality [37]. 

The overall conclusions of the study are consistent with the other 

numerical results reported in the literature [S3].
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FIGURE S1 Overcoming the curse of dimensionality of particle filters (PFs). The solid lines correspond to the level sets of the mean-
squared error (MSE) for the filtering problem in (S10). To have the same error, the PF requires the number of samples N to grow expo-
nentially with the dimension d, whereas the growth using the feedback PF (FPF) for this numerical example is ( ).O d /1 2  (a) The impor-
tance sampling PF in (S11) and (b) the FPF in (S12).
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the expected value admits a closed-form expression, 
which is then readily approximated empirically using 
the particles

	

:

( ( ) ) .

[ ( )| ] ( ( ) )

( )

K X h x h

x p x x N h X h X1

Constant gain approximation

d

E Z

( )

t t t t

t t
i

t
N

t
i

i

N

1

Rd

.

= -

-
=

t

t

/

# �

(14)

Figure 4 depicts the constant gain approximation. With 
the constant gain approximation, the FPF algorithm sim-
plifies to an EnKF algorithm [10]. The constant gain 

Example: Feedback Particle Filter for SIR Models

The basic mathematical model of epidemiological disease 

propagation is the susceptible-infected-recovered (SIR) or-

dinary differential equation model

,

,

,

S S I

I S I I

R I

t t t

t t t t

t t

b

b a

a

=-

= -

=

o

o

o

where ,St  ,It  and Rt  are the susceptible, infected, and recov-

ered population fractions, respectively, at time t. The param-

eters b  and a  are the transmission and recovery rate param-

eters, respectively. In an epidemic, one observes the number 

of newly infected people over a time increment (daily). For the 

study, this is modeled as

	 ,Z I S t Wd d dt t t W tb v= +^ h � (S16)

where :W W t 0t $= " ,  is the standard w.p., and Wv  is the 

standard deviation (std dev) parameter. Given the obser-

vations, the filtering objective is to estimate the population 

sizes and possibly also the model parameters. In this study, 

the recovery rate parameter a  is assumed known, while the 

transmission rate parameter b  is estimated. In a filtering 

setup, this requires a model that is assumed to be of the form

,Bd dt B tb v=

where :B B t 0t $= " , is a standard w.p. and Bv  is the std dev 

parameter.

The model and filter are simulated using the Euler discreti-

zation scheme for time integration. The simulation parameters 

are as follows: time-discretization step-size ;t 1T =  std 

dev for the observation noise . ;0 1Wv =  std dev for the pro-

cess noise . ,0 1Bv =  initial distribution ( ) , .I 0 0 0 1unif+ 6 @ and 

( ) ( );S I0 1 0= -  recovery rate . ;0 1a =  and the transmission 

rate b  is fixed to be 0.1 but assumed unknown to the filter-

ing algorithm. The feedback particle filter (FPF) is simulated 

using N 100=  particles. Two gain function approximation al-

gorithms are implemented: the constant gain and diffusion 

map approximations. For the diffusion map approximation, 

the heuristic 10med ;1 log,X X i j N N
2 1i j –# #e = -` ^ ^j hh$ .  is 

used, where med( )$  denotes the statistical median. The simu-

lation parameters and their values are tabulated in Table S1.  

Figure S2 depicts the numerical results for the synthetic obser-

vation data generated using the model. Although the results 

depicted in the figure are illustrative as an application of FPF 

to the SIR models, additional work is necessary for its use in 

prediction with real COVID-19 data. This is because of the fol-

lowing reasons:

1)	 The observation model (S16) is not accurate. In real-world 

settings, one observes only a certain unknown (and pos-

sibly a time-varying and delayed) fraction of the newly in-

fected population. This leads to fundamental issues with 

the identifiability of the transmission rate parameter b  [S4], 

[S5]. An accurate estimation of b  (or the closely associated 

nondimensional reproduction number )R0  is important to 

capture the initial growth of the epidemic [S6].

2)	 The three-state SIR dynamic model is rather simplistic. 

This is because of several reasons: 1) The model assumes 

a homogeneous, well-mixed population (while in practice, 

there is strong evidence of heterogeneities [S7] as well as 

spatial network effects [S8]); 2) the model is based on the 

underlying assumption of Markovian transitions between 

the epidemiological states, which is contradicted by the 

experimental data on delay distributions [S9]; and 3) even 

in the simplistic settings of the SIR model, the transmission 

rate parameter b  is strongly time varying. It is affected by 

both the individual choices (for example, mask wearing) 

of the large number of agents as well as population-level 

government mandates (for example, lockdowns).

These difficulties notwithstanding, ensemble Kalman filter-

based solutions to the COVID-19 data-assimilation problem 

appear in [S10] and [S11]. However, much work remains to 

be done on this important problem of immense societal im-

portance. In a post-COVID reality, it is not inconceivable that 

the surveillance and monitoring of infectious diseases such 

∇φ (x )

Xi
t

x

t∇φ (Xi)

E[∇φ ]

FIGURE 4 The constant gain approximation in the feedback particle 
filter. The gain function is approximated by its expected value 
according to (14).
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formula (14) was known in the EnKF literature prior to the 
FPF derivation [16], [48], and there have been a number of 
studies to improve upon this formula [9], [44], [49]–[53]. 
The following describes the diffusion map approxima-
tion, which appears to be the most promising approach in 
general settings.

Diffusion Map-Based Algorithm
The notation eeDt  is used to denote the semigroup associ-
ated with the probability-weighted Laplacian Dt  [54]. As 
explained in “Poisson Equation and Its Approximations” 
(and more fully in [55]), (11) is equivalently expressed as the 
fixed-point equation

( ) ,e e h h sds

0

z z= + -e

e

D Dt t t#  (15)

where 02e  is arbitrary. For small values of ,e  there is a 
well-known approximation of the exact semigroup e eDt  in 
terms of the so-called diffusion map

( ) ( ) ( ) ( )

( )
( ) ( ) ,T f x n x g y z z z

g x y
f y y y1

d
d

Rd t
t=

-

-

e
e

e
e :

#
#

where ( )g x e | |x 42

= e
e

-: ` j  is the Gaussian kernel in ,R  and 
( )n xe  is the normalization factor chosen so that ( )T x x1 1d8 =e

as seasonal flu will be as pervasive and commonplace as 

weather tracking is today.
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Parameter Notation Value

Time step-size tT 1 

Observation noise Wv 0.1 

Process noise Bv 0.1 

Number of particles N 100 

Recovery rate a 0.1 

Transmission rate b 0.1 

TABLE S1 The simulation parameters for the application

of the feedback particle filter to the epidemiological 

example.
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FIGURE S2 An application of the feedback particle filter (FPF) 
on the SIR epidemiological model. The observation is the 
number of new confirmed cases each day ID  [depicted in (a)]. 
The size of infected population is I(t), and the size of suscepti-
ble population is S(t). The infection transmission rate b  is 
assumed to be unknown and is estimated. The estimation 
algorithm is an FPF with constant gain (FPF-CG) approxima-
tion and an FPF with diffusion map (FPF-DM) approximation.
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Poisson Equation and Its Approximations

The Poisson equation (11) of nonlinear filtering is a linear 

partial differential equation. Its finite-dimensional counter-

part is a familiar linear problem:

	 ,Ax b= � (S13)

where A is an n n#  (strictly) positive definite symmetric matrix, 

and the right-hand side b is a given n 1#  vector. The prob-

lem is to obtain the unknown n 1#  vector x. For this purpose, 

the following equivalent formulations of the finite-dimensional 

problem are first introduced:

1)	 x is the solution of the weak form

	 , .y Ax y b y Rn6 != <<

2)	 For any ,t 02  x is the solution to the fixed-point equation

	 .x e x e b sdtA sAt

0
= +- -#

3)	 x is the solution of the optimization problem

	 .min x Ax x b2
1

x Rn
- <<

!

When n is large, these formulations are useful to numerically 

approximate the solution of (S13):

1)	 For each fixed ,y Rn!  the weak form is a single equa-

tion. By restricting y to a suitable low-dimensional 

subspace ,S Rn1  the number of linear equations is 

reduced for the purposes of obtaining an approximate 

solution (possibly also in S).

2)	 The fixed-point equation form is useful because e tA-  is 

a contraction for positive-definite A. So, a good initial 

guess for x can readily be improved by using the Ban-

ach iteration.

3)	 The optimization form is useful to develop alternate (for 

example, search-type) algorithms to obtain the solution 

to (S13).

Next, the Poisson equation (11) expressed succinctly as

	 ,h hT z- = -t
t

where ( )( / )1 $d dT t t=t  is the probability-weighted Lapla-

cian. Functional analytic considerations require the intro-

duction of function spaces: ( )L2 t  is the space of square 

integrable functions with respect to t  with inner product 

, ( ) ( ) ( ) ,f g f x g x x xdL2G H t= #  ( )H1 t  is the Hilbert space of func-

tions in ( )L2 t  whose first derivative (defined in the weak sense) 

is also in ( ),L2 t  and ( ) ( ) ( ) ( ) .dH H x x x 00
1 1!t } t } t= =$ .#  

These definitions are important because ( )H0
1 t  is the natural 

space for the solution z  (11). The operator T- t  is symmetric 

(self-adjoint) and positive definite because

, , , , , ( ).f g f g f g f g HL L L 0
1

2 2 2d d 6T T !G H G H G H t- = =-t t

One requires an additional technical condition—the Poin-

caré inequality—to conclude that the operator is strictly 

positive definite. Assuming that the Poincaré inequality 

holds, it is also readily shown that 1Dt
-  is well defined, that 

is, a unique solution ( )H0
1!z t  exists for a given ( )h L2! t  

[44, Th. 2]. For the purposes of numerical approximation, 

entirely analogous to the finite-dimensional case, the fol-

lowing equivalent formulations of the Poisson equation are 

introduced:

1)	 z  is a solution of the weak form

	 , , ( ).h h HL L 0
1

2 2d d 6 !G H G H} z } } t= - t � (S14)

2)	 z  is a solution of the fixed-point equation

	 ( ) .e e h h sdt st

0
z z= + -T Tt t t#

3)	 z  is the solution of the optimization problem

	 , , .min h h2
1

( )H
L L

0
1

2 2d dG H G Hz z z+ -
!z t

t � (S15)

These formulations have been used to develop numerical 

algorithms for gain function approximation:

1)	 Instead of ( )H0
1!} t  in the weak form (S14), a relax-

ation is considered, whereby { , , },S span M1 f!} } }=  

a finite-dimensional subspace of ( ) .H0
1 t  The resulting 

algorithm is referred to as the Galerkin algorithm for 

gain function approximation [44]. The constant gain 

formula (14) is obtained by considering S to be the sub-

space spanned by the coordinate functions.

2)	 The semigroup etTt  is approximated with the diffusion 

map operator ,Te  as described previously in the article. 

This approximation yields the diffusion map-based 

algorithm for gain function approximation tabulated 

in “Diffusion Map-Based Algorithm for Gain Function 

Approximation.” 

3)	 The optimization formulation (S15) is useful to explore 

nonlinear parameterizations of the gain function, for 

example, using neural networks. A preliminary in-

vestigation of this appears in [S12]. The related deep 

learning-inspired techniques for solving partial 

dif ferential equations using neural networks appear 

in [S13].
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[56]. It is straightforward to approximate the diffusion map 
empirically in terms of the particles

( )
( )

( )

( )
( ),T f x

n x
g X X

g x X
f X1( )

( )
N

N

j

N
i j

i

i

N
i

1

1
=

-

-

e
e

e

e

=

= /
/

where ( )n x( )N
e  is the normalization factor. Upon approxi-

mating (15) using the empirical approximation T( )N
e  for ,eeDt  

the diffusion map-based algorithm is obtained. The algo-
rithm is summarized in “Diffusion Map-Based Algorithm 
for Gain Function Approximation.”

Error: Bias-Variance Tradeoff
The error in diffusion map approximation comes from two 
sources: 1) the bias error due to the diffusion map approxi-
mation of the semigroup and 2) the variance error due to 
empirical approximation in terms of particles. The error is 
analyzed in [15], where it is shown that

	 K( K ( .| ) ( )| )O O
NN X X 11

Root ean quare rrorm s e

E d
i

N
i i 2

1

1 2 2
1

1

2

bias
variance

exact #
e

e

=

- +
=

+
ce mo= G

1 2 3444 444
;/

�

(16)

The error due to bias converges to zero as ,0"e  and the 
error due to variance converges to zero as .N " 3  There is 
a tradeoff between the two errors. To reduce bias, one must 
reduce ;e  however, for any fixed value of N, one can reduce 
e  only up to a point where the variance starts increasing. 
The bias-variance tradeoff is illustrated in Figure 5. If e  is 
large, the error due to bias dominates; however, if e  is 
small, the error due to variance dominates. As a final point, 
there is a remarkable and somewhat unexpected relation-
ship between the diffusion map and the constant gain 
approximations. Specifically, in the limit as ," 3e  the dif-
fusion map gain converges to the constant gain. This sug-
gests a systematic procedure to improve upon the constant 
gain by detuning the value of e  away from the [ 3e = ] 
limit. For any fixed N, a finite value of e  is chosen to 

Diffusion Map-Based Algorithm  
for Gain Function Approximation
Input: { : , { ( ) : ,X i N h X i N1 1i i# # # #} }  Kernel bandwidth e  
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FIGURE 5 The bias-variance tradeoff in diffusion map-based gain 
function approximation. (a) The dashed line is the constant gain 
solution in (14). As ,"3e  the diffusion map gain converges to the 
constant gain. The shaded area in the background is the density 
function t  taken as the sum of two Gaussians, ( , )1N 2v-  and 

( , ),1N 2v+  with . .0 22v =  The exact gain function ( )xK  is com-
puted for ( )h x x=  by using an integral formula [55, eq. 4.6]. (b) The 
root-mean-square error is computed as an empirical approxima-
tion of (16) by averaging 1000 simulations for N 020=  particles.
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minimize the root mean square error according to the bias-
variance tradeoff. Based on this, a rule of thumb for choos-
ing the e  value appears in [55, Remark 5.1].

SOME FINAL REMARKS
In the past decade, the coupling perspective to data-assim-
ilation problems has been enormously valuable, with out-
standing theoretical contributions and application impacts. 
Given the limited scope of this article (with its narrow 
focus on the FPF algorithm), it is not possible to do justice to 
the depth and breadth of this exciting new area in one arti-
cle. The reader is referred to [17] and [18] for an excellent 
introduction to the subject.

A few important remarks are also necessary. The contin-
uous-time formulation is stressed in this article for the rea-
sons of mathematical elegance and beauty. In practice, 
discrete-time formulations are much more common. The 
coupling viewpoint also applies to these settings [17] and 
was used in the article to introduce the main ideas. Next, 
optimal couplings are almost always difficult to compute. 
The most popular forms of couplings used, in practice, are 
suboptimal. This is true for the classical EnKF and the FPF 
algorithms. A discussion and exactness and optimality for 
FPF appears in “Optimal Transport Construction of Sto-
chastic Processes.” 

As a final point, closely related to the coupling view-
point is the gradient flow interpretation of the Bayes’ 
update formula (see [46] for an FPF-specific exposition and 
also [57] and [58] for related algorithms).

There are several directions for future work. It is an 
open problem to fully carry out stability and error analy-
sis of the finite-N FPF particle system with the diffusion 
map-based gain function approximation. It will be very 
useful to characterize the CoD in these general settings. 
It is also of interest to construct optimization-type formu-
lations that directly yield a finite-N algorithm without 
the need for empirical approximation as an intermediate 
step. Such constructions may lead to better error proper-
ties by design. Finally, apart from the optimal transpor-
tation formulation stressed in this article, one may 
consider alternative approaches for control design. One 
possible direction is based on the Schrödinger bridge 
problem [18], [59].
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