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a b s t r a c t

This paper is concerned with the problem of state estimation for discrete-time linear systems in the
presence of additional (equality or inequality) constraints on the state (or estimate). By use of the
minimum variance duality, the estimation problem is converted into an optimal control problem.
Two algorithmic solutions are described: the full information estimator (FIE) and the moving horizon
estimator (MHE). The main result is to show that the proposed estimator is stable in the sense of
an observer. The proposed algorithm is distinct from the standard algorithm for constrained state
estimation based upon the use of the minimum energy duality. The two are compared numerically on
the benchmark batch reactor process model.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

In many practical estimation problems arising in control ap-
lications, there are invariably additional constraints on the state
rocess (Goodwin, Seron, & De, 2006). In such applications,
alman filter (KF) may yield sub-optimal estimates that violate
he constraints. It is notable also that the KF is derived un-
er the assumption of (unbounded) Gaussian noise, which is
lso unrealistic in the constrained settings of the problem. In
articular, in the presence of unbounded noise, local stability
esults are not applicable and global stability results are very
onservative due to actuator saturation (Chatterjee, Ramponi,
okayem, & Lygeros, 2012; Mishra, Chatterjee, & Quevedo, 2017).

Although clever modifications in KF are still possible (Yang &
Blasch, 2009), the stability and optimality properties of such
modifications require further investigation (Simon, 2010). For
these reasons, constrained estimation is a problem of paramount
practical importance; c.f., (Goodwin et al., 2006) for a book length
treatment.

A popular strategy for constrained estimation is based on the
use of duality between estimation and optimal control. A practical
advantage of converting a constrained estimation problem into
a constrained optimal control problem is that model predictive
control (MPC) methods, algorithms, and softwares can readily be
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applied to obtain a solution. The resulting estimation algorithms
are referred to as the full information estimator (FIE), when all the
observations are used, and moving horizon estimator (MHE), when
a moving window of most recent past observations are used.
Practically, a MHE algorithm is preferred because the number of
decision variables in the optimization problem do not increase as
more observations are collected.

In linear settings of the problem, there are in general two types
of duality: the minimum energy (or maximum likelihood) duality
and the minimum variance duality. Refer to Pavon and Wets
(1982), Pearson (1966) and Todorov (2008) for more discussion
on duality. For the construction of estimators, the minimum
energy duality is by far the more popular technique with con-
tributions in Alessandri, Baglietto, and Battistelli (2010), Alessan-
dri and Gaggero (2020), Brembeck (2019), Copp and Hespanha
2017), Farina, Ferrari-Trecate, and Scattolini (2010), Flayac (2019)
nd Schneider, Hannemann-Tamás, and Marquardt (2015) and
umerical algorithms in Haverbeke (2011) and Morabito, Kögel,
ullinger, Pannocchia, and Findeisen (2015). Although minimum
ariance control has attracted much attention (Bakolas, 2018a,
018b; Makkapati, Rajpurohit, Okamoto, & Tsiotras, 2020), and
hese recent papers provide motivation also for our work, the
se of minimum variance duality for constrained estimation has
eceived comparatively less attention.

State estimation problem for linear systems with equality
onstraints is considered in Ko and Bitmead (2007) and Teix-
ira, Chandrasekar, Torres, Aguirre, and Bernstein (2007), and
ith inequality constraints in Liew (1976). Since the number
f decision variables in the underlying optimization program
ncreases as more measurements are collected, an MHE algorithm
s proposed in the early work of Jazwinski (1968) in the absence
f constraints. This algorithm is extended in Muske, Rawlings,
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nd Lee (1993) to incorporate constraints. The stability proper-
ties of this constrained MHE algorithm are studied rigorously
in Rao, Rawlings, and Lee (2001). Enhancements of these basic
lgorithms have been considered both in deterministic (observer
esign) (Alessandri, Baglietto, & Battistelli, 2003; Gharbi & Eben-
auer, 2018; Sui & Johansen, 2014; Sui, Johansen, & Feng, 2010)
nd stochastic (filter design) (Jazwinski, 1968; Kwon, Kim, & Han,
002; Muske et al., 1993; Rao et al., 2001) settings of the problem.
n stochastic settings, the MHE optimal control problem is still
eterministic but statistical information about uncertainties and
rior are used to design the (maximum likelihood-type) objective
unction. More recent extensions include a game theoretic formu-
ation in Garcia T., Marquez-Ruiz, Botero C., and Angulo (2018). It
s noted that Garcia T. et al. (2018), Jazwinski (1968), Kwon et al.
2002), Muske et al. (1993) and Rao et al. (2001) are based on
the use of the minimum energy duality. We refer readers to Rao
(2000, Appendix B) for a quick review of duality and to Mortensen
(1968) for minimum energy duality in particular.

In this paper, an alternate form of duality, viz., the minimum
variance duality is employed to transform the minimum variance
estimation problem into a deterministic optimal control prob-
lem. The state estimate is constructed as a linear function of
past measurements. Without constraints, the optimal estimate
is equivalent to a Kalman filter. Both the FIE and the MHE are
described for the unconstrained case, together with expression
for choosing the terminal cost in the MHE.

The main focus of this paper is on the modification of these
(unconstrained) FIE and MHE algorithms in the presence of con-
straints. In particular, a certain approximate expression for the
terminal cost is introduced for the constrained MHE. The main
result of this paper is to establish sufficient conditions to obtain
stability (in the sense of an observer) for the constrained FIE
and MHE algorithms. Furthermore, we also establish a certain
type of stochastic stability by showing that the variance of the
constrained FIE converges under certain technical conditions.

Although estimators based on minimum variance duality are
less well studied (Kim, Mehta, & Meyn, 2019), some closely
related estimators have appeared in Darouach and Zasadzinski
(1997), Darouach, Zasadzinski, and Boutayeb (2003), Kwon, Han,
Kwon, and Kwon (2007), Kwon et al. (2002), Kwon, Kim, and
ark (1999) and Zhao, Shmaliy, Huang, and Liu (2015). In contrast
o our paper, these prior works do not incorporate equality
r inequality constraint on state (or estimate) in the estimator
esign. The original contributions of our paper are as follows:

Based on minimum variance duality, a MHE is presented in
(12) and its equivalence with FIE is shown in Lemma 2. This
contribution is different from Kwon et al. (2002) and Kwon
et al. (2007) in the sense that unbiasedness constraints are not
required. The proposed estimator (13) is equivalent to KF.
Constrained FIE and MHE algorithms are presented in (16) and
(19), respectively. Apart from the fact that these algorithms are
distinct from Rao et al. (2001), our minimum variance-based
approach has certain technical advantages.
Although the notion of stability is borrowed from Rao et al.
(2001), Theorems 1 and 2 are first such results on stability of
constrained minimum variance estimators.
Under certain technical conditions, the variance of constrained
FIE is shown to converge in Theorem 3.

The remainder of this paper is organized as follows: The prob-
em statement appears in Section 2 followed by a description
f the minimum variance duality for the construction of the
nconstrained estimators, both FIE and MHE, in Section 3.1. These
re extended to the constrained case in Section 3.2. The main
esults on stability of the constrained FIE and MHE appear in
ection 4. The algorithms are illustrated with the aid of some
2

umerical experiments in Section 5. The paper closes with some
onclusions and directions for future research in Section 6. All the
roofs appear as part of the two appendices, Appendices A and B,
or the unconstrained and the constrained cases, respectively.

LetR,N0,Z+ denote the set of real numbers, the non-negative
ntegers and the positive integers, respectively. We use the sym-
ols 0 and I to denote zero matrix and identity matrix, re-
pectively, of appropriate dimensions. For any vector or matrix
equence (Mn)n∈N0 ∈ Rr×m, r,m ∈ Z+, let Mn:k ∈ Rrk×m

enote the matrix
[
M⊤

n M⊤

n+1 · · · M⊤

n+k−1

]⊤, k ∈ Z+. Let
max(M) denote the largest eigenvalue value of M , λmin(M) its
mallest eigenvalue, M† its Moore–Penrose pseudo inverse and
r(M) its trace. The Euclidean norm of a vector A is denoted by
A|. The Frobenius norm of a matrix A is denoted by |A|F . A t step
eachability matrix of a matrix pair (A, B) is given by Rt (A, B) :=
At−1B . . . AB B

]
.

. Problem statement

Consider a linear discrete-time system

t+1 = Axt + wt ,

yt = Cxt + ςt ,
(1)

here xt ∈ X̄ ⊂ Rd, yt ∈ Rq are state and measurement of
he system at time t , respectively. The system matrix A ̸= 0. The
dditive process noisewt and the measurement noise ςt are mean
ero, mutually independent and identically distributed random
ectors with variance Q and R, respectively. The initial state of the
ystem x0 is a random vector with mean x̂−0 and varianceΣ−

0 , and
s independent of the process noise and the measurement noise.

The minimum variance estimation problem is to compute x̂t
t time t such that the variance of error xt − x̂t is minimized over
ome class of admissible estimators. In this paper, the admissible
stimators are assumed to be linear deterministic functions of
vailable measurements. It is also assumed that some additional
nsight into the states (or estimates) is given in terms of equality
nd inequality constraints such that the estimated states belong
o a convex set X ⊇ X̄ , i. e. x̂t ∈ X for all t . We make the
ollowing assumption:

ssumption 1. The set X is positively invariant under the
ominal dynamics, i. e. Ax ∈ X for every x ∈ X .

The above assumption is meaningful. Suppose Ax̂t /∈ X for
ome x̂t ∈ X then there is a non-zero probability that xt+1 /∈ X̄ for
andomwt , e.g., when x̂t = xt and a bounded disturbance set with
nown bounds is not safely prescribed. The optimization problem
s as follows:

min
x̂t∈X

E

[⏐⏐xt − x̂t
⏐⏐2] . (2)

he solution approach is based on duality between estimation
nd control. In the following section, we begin by presenting an
nconstrained estimator which is useful for the development of
constrained estimator in Section 3.2.

. Minimum variance estimators

.1. Unconstrained estimator

In this section, we assume X = Rd, i.e., the constraints are not
resent. We are interested in an estimator linearly parameterized
n the innovation terms as follows:

ˆt = At x̂−0 −

t∑
α⊤

i (yt−i − CAt−ix̂−0 ), (3)

i=0
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n which weights αi ∈ Rq×d are the decision variables for the
ptimization problem (2). In order to convert the minimum vari-
nce estimation objective into an optimal control problem, a dual
rocess (in forward time) is introduced:

i+1 = A⊤zi + C⊤αi+1; i = 0, . . . , t − 1,

z0 = I + C⊤α0,
(4)

here zi ∈ Rd×d is a matrix valued dual state and αi ∈ Rq×d is
ontrol signal for the dual process. From (4) we have

⊤

t = At
+

t∑
i=0

α⊤

i CAt−i. (5)

y substituting (5) into (3), we get the following expression:

ˆt = z⊤t x̂−0 −

t∑
i=0

α⊤

i yt−i. (6)

A slight modification of the standard result on minimum variance
duality (Åström, 1970, Page 238),1 in which only the past mea-
surements are used to design an estimator, i. e. αt = 0, is required
to include the current measurement. Let ℓi := z⊤i Qzi + α⊤

i Rαi,
0(zt ) := z⊤t Σ

−

0 zt and

t (α0:t+1) := α⊤

t Rαt +

t−1∑
i=0

ℓi. (7)

he estimate (3) takes into account all measurements available
t time t . Therefore, the corresponding estimator is called full
nformation estimator (FIE). Using the dual process (4), the FIE
ptimal control problem is expressed as follows:

IE:

{
minimize

α0:t+1
tr(Γ0(zt )+ St (α0:t+1))

subject to dual dynamics (4).
(8)

IE (8) is solved at each time t = 0, 1, . . .. The resulting optimal
olution is denoted as α0:t+1|t , where αk|t is the optimal weight
k computed at time t . Set

t := Γ0(zt|t )+ St (α0:t+1|t ), (9)

here St (α0:t+1|t ) is the optimal value of St (α0:t+1) obtained by
olving FIE (8). Then the optimal value of the objective function in
8) is tr(Σt ). The estimate x̂t|t at time t is obtained by substituting
he optimal values α0:t+1|t and zt|t in (6). In the remainder of the
anuscript, we will use x̂t to denote the estimate obtained by
ubstituting the optimizers in (6). We have the following Lemma
o show the equivalence of FIE (2) and (8) whenever X = Rd.

emma 1. Consider the system (1) and the dual process (4). If x̂t
s given by (6) then[⏐⏐xt − x̂t

⏐⏐2] = tr(Γ0(zt )+ St (α0:t+1)).

emark 1. The dual process is typically considered backward in
ime. However, because the optimal control problem is determin-
stic, a forward time dual process may equivalently be considered
imply by renaming the indices. This is done here to yield the
tandard form of an optimal control problem where the time
rrow is forward.

We present a finite horizon approximation of FIE (8), which
e refer to as moving horizon estimator (MHE). For this purpose,
efine
−

t := AΣt−1A⊤ + Q and x̂−t := Ax̂t−1. (10)

1 See Åström (1970, Exercise 1, Page 240) in which invertibility of the system
atrix A is assumed to define a dual process.
 v

3

Fix N ∈ N0 and for t ⩾ N + 1 define

t−N (zN ) := z⊤N Σ
−

t−NzN . (11)

he unconstrained MHE is as follows:

HE:

{
minimize

α0:N+1
tr(Γt−N (zN )+ SN (α0:N+1))

subject to dual dynamics (4).
(12)

or t ⩽ N , set Γt−N = Γ0, SN = St , which is identical to solving
he FIE problem (8). For t ⩾ N + 1, the MHE problem utilizes the
ost recent N + 1 measurements together with the previously
omputedΣt−N−1 to obtainΣ−

t−N . The resulting estimator and the
rror covariance matrix are

x̂t = z⊤N|t x̂
−

t−N −

N∑
i=0

α⊤

i|tyt−i, (13)

t = tr(Γt−N (zN|t )+ SN (α0:N+1|t )), (14)

here αi|t for i = 0, . . . ,N , and zN|t are obtained by solving MHE
(12) at time t . It is straightforward to show that, when N = 0,
HE (12) is the KF. A direct implication of dynamic programming

s the following result:

emma 2. If R ≻ 0 then FIE (8) is equivalent to MHE (12) and the
stimate (6) is equal to the estimate (13).

Proofs of Lemmas 1 and 2 are given in Appendix A.

.2. Constrained estimator

If the matrix pair (A, C) is observable then there exists an
nteger n ⩽ d ∈ Z+ such that rank(Rn(A⊤, C⊤)) = d. The smallest
uch n is referred to as the observability index of (A, C). Our
onstruction of the constrained FIE depends on n. In particular,
e augment the FIE (8) with the following additional constraints:

⊤

t−jx̂
−

0 −

t−j∑
i=0

α⊤

i yt−j−i ∈ X , (15)

here j = 0 for t ⩽ n and j = 0, . . . , t − n, for t ⩾ n + 1.
ote that the left hand side of the constraint is same as x̂t−j
ccording to (6). Although we are interested in this constraint
nly with j = 0, inclusion of the intermediate constraints, for
= 1, . . . , t − n, helps to ensure some properties. Additional
etails on this appear in the next section. The constrained FIE
roblem is formally defined as follows:

FIE:

⎧⎪⎨⎪⎩
minimize

α0:t+1
tr(Γ0(zt )+ St (α0:t+1))

subject to dual dynamics (4),
constraints (15).

(16)

he solution of the CFIE (16) is used to construct the constrained
ull information estimate by using the right hand side of (6). It
s denoted x̂cft to distinguish it from unconstrained estimate x̂t
btained by solving (8) or (12). In particular,

x̂cft := z⊤t|t x̂
−

0 −

t∑
i=0

α⊤

i|tyt−i,

cf
t := Γ0(zt|t )+ St (α0:t+1|t ),

(17)

here zt|t and α0:t+1|t are obtained by solving (16).

emark 2 (Feasibility and Convexity). If x̂−0 ∈ X then the optimal
ontrol problem (16) is feasible for all t because α0:t+1 = 0
atisfies (15). The left hand side of (15) is affine in decision

ariables α0:t+1 and the set X is convex. The set of decision
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ariables α0:t+1 in (15) is convex due to the fact that the inverse
mage of a convex set under an affine function is convex (Boyd
Vandenberghe, 2004, Page 38) and the intersection of convex

ets is convex.

emark 3. The right hand side of (6) is linear in the past mea-
urements. The justification comes from the unconstrained linear
aussian case where such a structure is sufficient to obtain the
inimum variance estimator. In the presence of constraints and
on-Gaussian noise, an optimal estimate may not be linear in
he past measurements. It is noted that the assumed structure is
lso nonlinear because of the dependence of α0:t+1 on y0:t+1 via
onstraint (15).

In the presence of constraints, the design of an MHE algorithm,
hat is provably equivalent to the FIE algorithm, is challenging
ecause of the difficulty in approximating the terminal cost.
herefore, approximation of the terminal cost (which is also
eferred to as arrival cost in the standard MHE literature) is
ecessary. The goal is to approximate the FIE as closely as possible
hile maintaining computational tractability and guaranteeing
tability.
Similar to CFIE (16), constrained MHE can also be defined by

dding extra constraints to the unconstrained MHE (12). The con-
trained MHE estimator is denoted as x̂cmt , where the superscript
cm is used to reflect the fact that this estimate at time t may
be different from the unconstrained estimate x̂t and the CFIE
estimate x̂cft . Similarly, the corresponding error covariance matrix
is denoted by Σcm

t to distinguish it from (14).
We need to define priors Σcm−

t−N and x̂cm−

t−N to compute the
terminal cost of the constrained MHE and its estimate as we did
in (11) and (13), respectively, for the unconstrained case. One
possible choice is to use Σ−

t−N and x̂−t−N obtained from the uncon-
strained case by using (10) and (12), which is same as running a
KF in parallel. The standard MHE (Rao et al., 2001) follows this
approach. Other MHE approaches like Sui and Johansen (2014)
also use priors from the unconstrained case. Since our approach
not only gives an estimated state which satisfies constraints but
also an error covariance matrix, it is reasonable to replace Σt−1
in (10) by Σcm

t−1 to get Σcm−

t and x̂t−1 by x̂cmt−1 to get x̂cm−

t . This
choice is intuitive because the pair (x̂cm−

t ,Σcm−

t ) represents our
prior knowledge about the pair (x̂cmt ,Σcm

t ) in the presence of
constraints. More precisely,

Σcm−

t := AΣcm
t−1A

⊤
+ Q and x̂cm−

t := Ax̂cmt−1. (18)

The constrained MHE problem is formally written as follows:

CMHE:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

minimize
α0:N+1

tr(Γ cm
t−N (zN )+ SN (α0:N+1))

subject to dual dynamics (4), and

z⊤N x̂cm−

t−N −

N∑
i=0

α⊤

i yt−i ∈ X ,

(19)

where Γ cm
t−N (zN ) := z⊤N Σ

cm−

t−N zN for t ⩾ N + 1. Similar to MHE
(12) for t ⩽ N , we set Γ cm

t−N = Γ0, SN = St and similarly
modify constraint by taking all t+1 measurements. Alternatively,
we can run CFIE (16) for t ⩽ N . Further, the estimate (6) and
corresponding covariance matrix can be written as

x̂cmt := z⊤N|t x̂
cm−

t−N −

N∑
i=0

α⊤

i|tyt−i,

Σcm
t := Γ cm

t−N (zN|t )+ SN (α0:N+1|t ),

(20)

where αi|t for i = 0, . . . ,N , and zN|t , are obtained by solving

CMHE problem (19) at time t .

4

4. Main results

In this section, stability of the proposed constrained estimators
is presented by using the notion of stability introduced in Rao
et al. (2001). Recall that the classical notion of stability of an
observer is obtained by modifying the definition of the stability
of a regulator. In an analogous manner, the definition of the
stability of a constrained regulator, which is given in Keerthi and
Gilbert (1988, §2), is modified in Rao et al. (2001) to introduce
the following definition:

Definition 1 (Keerthi & Gilbert, 1988; Rao et al., 2001). The esti-
mator is a stable observer for the system

xt+1 = Axt; yt = Cxt; xt ∈ X , (21)

if for any ε > 0, there exists δ > 0 and T ∈ Z+ such that if x̂−0 ∈ X
and

⏐⏐x0 − x̂−0
⏐⏐ ⩽ δ then

⏐⏐x̂t − Atx0
⏐⏐ ⩽ ε for all t ⩾ T . If in addition,

x̂t → Atx0 as t → ∞ then the estimator is called asymptotically
stable observer for the system (21).

Our approach has a minor advantage over (Rao et al., 2001)
in the sense that a key assumption is relaxed. In particular, we
do not assume any upper bound on cost a priori but it comes
naturally from the observability of the system. For the stability of
CFIE we need one of the following two conditions to hold:

(C1) Q −Σ−

0 ⪰ 0.
(C2) There exists some Kt ∈ Rq×d at each time t ⩾ n + 1 such

that αt = Ktzt−1|t−1 satisfies (15) for j = 0 and the following
stability criterion with Ãt = A⊤ + C⊤Kt :

Ã⊤t Σ
−

0 Ãt −Σ−

0 ⪯ −(K⊤

t RKt + Q ). (22)

The main stability result for the CFIE is as follows:

Theorem 1. Suppose Assumption 1 holds,
⏐⏐x̂−0 − x0

⏐⏐ < ∞, Σ−

0 ≻

0, (A, C) is observable, and one of the two conditions, either (C1) or
(C2), is satisfied. Then CFIE is an asymptotically stable observer for
the system (21).

Remark 4. It is easily verified that the conditions (C1) and (C2)
cannot simultaneously hold unless A = 0, which, because the
matrix pair (A, C) is observable, represents a trivially false case
when C is not a full column rank matrix. Let, if possible, (C1) and
(C2) hold simultaneously then (C2) gives

0 ⪯ Ã⊤t Σ
−

0 Ãt ⪯ −(K⊤

t RKt + Q −Σ−

0 ) ⪯ 0, (23)

which implies Ã⊤t Σ
−

0 Ãt = K⊤
t RKt+Q−Σ−

0 = 0. Therefore, Ãt = 0
because Σ−

0 ≻ 0 and K⊤
t RKt +Q = Σ−

0 , which results in Q ⪯ Σ−

0
and due to (C1) we get Q = Σ−

0 . By substituting Q = Σ−

0 in (23),
we get K⊤

t RKt = 0, which results in Kt = 0 because R ≻ 0. Since
Ãt = 0 due to (23), the substitution of Kt = 0 shows that A = 0.

We have the following result on stability of CMHE:

Theorem 2. Suppose Assumption 1 holds, Σ−

0 ≻ 0, R ≻ 0 and
(A, C) is observable then for N ⩾ n, CMHE is stable observer for the
system (21). If, in addition, Q ≻ 0,

⏐⏐x̂−0 − x0
⏐⏐ < ∞, then CMHE is

asymptotically stable observer for the system (21).

In Theorems 1 and 2, we proved stability of the proposed esti-
mators in the sense of an observer. Since the cost function repre-
sents variance in the proposed approach, we get its convergence
for the system (1) also under the following assumption:

Assumption 2. There exist α0 ∈ Rq×d, and a sequence of
matrices (Ki)i∈Z+

such that αi+1 = Kizi and α0 satisfy (15). There

exist λ0 > 0, λi < 1 for i ∈ Z+ such that
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C3) (I + C⊤α0)⊤Q (I + C⊤α0)+ α⊤

0 Rα0 ⩽ λ0Q
C4) (A⊤ + C⊤Ki)⊤Q (A⊤ + C⊤Ki)+ K⊤

i RKi ⩽ λiQ for i ∈ Z+

The above assumption gives a sufficient condition for the
feasibility of (16) and the existence of a stabilizing controller for
the dual process (4). Notice that (16) is feasible due to Remark 2.
he above assumption helps us to get an upper bound of the cost
n (16). We have the following result:

heorem 3. If x̂−0 ∈ X , (A,C) is observable and for all t ⩾ n + 1
either (C1) with Assumption 2 holds or (C2) is satisfied, then there
exists s′ ⩾ 0 such that

E

[⏐⏐⏐xt − x̂cft
⏐⏐⏐2] −→ s′. (24)

Proofs of Theorems 1–3 are given in Appendix B.

5. Numerical experiments

For numerical experiments, we consider the benchmark model
of a well-mixed, constant volume, isothermal batch reactor. This
model has previously been considered in Haseltine and Rawlings
(2005) and Sui and Johansen (2014). The system dynamics is
given by (1), where

A =

⎡⎣0.8831 0.0078 0.0022
0.1150 0.9563 0.0028
0.1178 0.0102 0.9954

⎤⎦ , C =
[
32.84 32.84 32.84

]
The observability index of (A, C) is 3. The additive process and
measurement noise are both assumed to be Gaussian with zero
means, and variances, (0.01)2I and (0.25)2, respectively. The
mean of the initial prior is x̂−0 =

[
1 1 4

]⊤. Since the states
represent concentration of chemicals in the batch reactor process,
these cannot be negative. Therefore, the estimated states are
constrained to lie in the set X := {x ∈ Rd

| x ⩾ 0}.

Experiment 1. In the first experiment, we assume that initial
state is also Gaussian with prior mean x̂−0 and prior variance
Σ−

0 = I . This is evident that simulated state of the system can be
negative due to the presence of Gaussian noises in simulation but
we consider this example for a fair comparison with minimum
energy MHE (MEMHE) (Rao et al., 2001).

We demonstrate a comparison between MEMHE and our pro-
posed approach CMHE in Fig. 1. MEMHE is simulated by using
nmhe object of freely available MATLAB based software pack-
age mpctools (Risbeck & Rawlings, 2016), which is based on
CasAdi (Andersson, Gillis, Horn, Rawlings, & Diehl, 2019) and
solver Ipopt (Wächter & Biegler, 2006). For CMHE, we use MATLAB
based software package YALMIP (Löfberg, 2004) and a solver
SDPT3-4.0 (Toh, Todd, & Tütüncü, 2012) to solve the underlying
optimization programs. We chose the optimization horizon N =

4 for both approaches and simulated for Ns = 1000 sample
paths. The empirical mean squared error et for both approaches
is computed by the following formula:

et =
1
Ns

Ns∑
i=1

⏐⏐xit − x̂it
⏐⏐2 , (25)

here xit and x̂it denote the simulated and estimated states, re-
pectively, at time t in the ith path.
Fig. 1 depicts that empirical mean squared error in our ap-

roach is smaller than that in MEMHE. Interestingly, at t = 0
oth approaches have almost same et but in our approach it
mmediately drops by approximately one unit and keeps mono-
onically decreasing after then. However, in case of MEMHE a
light increase is observed at t = 2 and after that it monotonically
ecreases but always remains higher than that of our approach.
5

Fig. 1. The empirical mean squared error for 1000 sample paths is smaller in our
proposed approach than that in standard MHE when initial state has Gaussian
distribution.

Fig. 2. The empirical mean squared error for 100 sample paths is almost same
in our proposed approach and standard MHE when initial state has uniform
distribution.

Experiment 2. In this experiment, we consider initial state to
be uniformly distributed between [0, 2x̂−0 ]. Rest of the simulation
data is same as in Experiment 1. We simulate for Ns = 100 sample
paths and compare between our proposed approach CMHE and
standard MEMHE in Fig. 2. The empirical mean squared error et
is computed according to (25). Fig. 2 depicts that both approaches
have almost the same empirical mean squared error for 100
sample paths.

Experiment 3. In this experiment, we choose optimization hori-
zon N = 3 and simulate only for one sample path. Rest of the
simulation data is same as in Experiment 2. We compare the
norm of estimate and cost by using CMHE and CFIE in Fig. 3.
Both approaches give almost same estimate and incur almost
same cost even though the optimization problem of CFIE has
intermediate constraints, which are absent in CMHE.

6. Conclusions and directions for future research

In this paper, the minimum variance duality is used to convert
the minimum variance estimation problem into a deterministic
optimal control problem. The main contribution is the specifica-
tion and the stability analysis of the FIE and MHE algorithms in
the presence of state constraints. The proposed algorithms are
distinct from and possess several useful features compared to
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Fig. 3. Norm of estimate and optimal cost in both CMHE and CFIE are almost
same.

the standard MHE algorithms based on the use of the minimum
energy duality. In particular, there is no need to run a KF in
parallel to approximate the terminal cost for the MHE. Both the
constrained FIE and MHE algorithms are stable in the sense of an
observer. Moreover, stochastic stability of constrained FIE is also
established.

This work opens up several avenues for future research: Some
deas of linear model predictive control with time varying termi-
al cost and constraints (Pluymers, Roobrouck, Buijs, Suykens, &
e Moor, 2005), and approximate dynamic programming meth-
ds with accumulating constraints (Bertsekas, 2005) may be
seful for the further study of the constrained MHE. Several
nteresting extensions of the proposed approach may be possi-
le including control design (Copp & Hespanha, 2017), systems
ith intermittent observations (Mishra, Chatterjee, & Quevedo,
020), distributed architecture (Farina et al., 2010), the problem
f unknown prior (Kong et al., 2020; Kwon et al., 2002) and
nclusion of pre-estimating observer (Alessandri et al., 2003; Kong
& Sukkarieh, 2018; Kwon et al., 2002).
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Appendix A. Proofs of Section 3.1

Proof of Lemma 1. Since z0 − C⊤α0 = I , we have

xt = (z0 − C⊤α0)⊤xt = z⊤0 xt − α⊤

0 Cxt . (A.1)

By using the system dynamics (1) and the dual dynamics (4), we
et

z⊤i xt−i = z⊤i (Axt−i−1 + wt−i−1)
⊤

i+1xt−i−1 = z⊤i Axt−i−1 + α⊤

i+1Cxt−i−1.
(A.2)

e substitute (A.2) in the expression of z⊤0 xt as follows:

z⊤0 xt =
t−1∑
i=0

(z⊤i xt−i − z⊤i+1xt−i−1)+ z⊤t x0

z⊤0 xt =
t−1∑(

z⊤i wt−i−1 − α⊤

i+1Cxt−i−1
)
+ z⊤t x0.
i=0 A

6

We further substitute z⊤0 xt in (A.1) to get

xt =
t−1∑
i=0

z⊤i wt−i−1 −

t∑
i=0

α⊤

i Cxt−i + z⊤t x0

xt =
t−1∑
i=0

z⊤i wt−i−1 −

t∑
i=0

α⊤

i (yt−i − ςt−i)+ z⊤t x0.

Further, we consider the estimate (6) and compute E[(xt−x̂t )(xt−
x̂t )⊤] as follows:

xt − x̂t = z⊤t
(
x0 − x̂−0

)
+

t−1∑
i=0

z⊤i wt−i−1 +

t∑
i=0

α⊤

i ςt−i

E[(xt − x̂t )(xt − x̂t )⊤] = z⊤t Σ
−

0 zt +
t−1∑
i=0

z⊤i Qzi +
t∑

i=0

α⊤

i Rαi

= z⊤t Σ
−

0 zt + α⊤

t Rαt +

t−1∑
i=0

ℓi = Γ0(zt )+ St (α0:t+1),

since the process noise, measurement noise and initial states are
mutually independent. Therefore, E

[⏐⏐xt − x̂t
⏐⏐2] = tr

(
Γ0(zt ) +

St (α0:t+1)
)
, where zt is obtained by (4) and x̂t is given by (6). □

Proof of Lemma 2. At t = 0, we compute

Γ0(z0)+ S0(α0) = z⊤0 Σ
−

0 z0 + α⊤

0 Rα0

= Σ−

0 + α⊤

0 (R+ CΣ−

0 C⊤)α0 +Σ−

0 C⊤α0 + α⊤

0 CΣ−

0 .

Since α0|0 = argmin tr(Γ0(z0)+ S0(α0)) = −(CΣ−

0 C⊤
+R)−1CΣ−

0 ,
due to our convention (9) we obtain Σ0 =

Γ0(z0|0)+ S0(α0|0) = Σ−

0 −Σ−

0 C⊤(CΣ−

0 C⊤
+ R)−1CΣ−

0 . (A.3)

The FIE cost can be written as

tr(Γ0(zt )+ St (α0:t+1)) = tr

(
Γ0(zt )+ α⊤

t Rαt +

t−1∑
i=0

ℓi

)
= tr

(
z⊤t Σ

−

0 zt + α⊤

t Rαt + z⊤t−1Qzt−1 + St−1(α0:t )
)
.

We substitute zt = A⊤zt−1 + C⊤αt in the above expression and
the minimizer α⊤

t|t = −z⊤t−1|tAΣ
−

0 C⊤(CΣ−

0 C⊤
+ R)−1. Further, by

substituting Σ0 from (A.3), we get

tr(Γ0(zt )+ St (α0:t+1)) = tr
(
z⊤t−1(AΣ0A⊤ + Q )zt−1 + St−1(α0:t )

)
= tr

(
z⊤t−1Σ

−

1 zt−1 + St−1(α0:t )
)
, (A.4)

where the last equality is due to our definition (10). Therefore,
Γ1(·) can be written as Γ1(zt−1) = z⊤t−1Σ

−

1 zt−1. The above expres-
sion of cost (A.4) at time t = 1 gives Σ1 = z⊤0|1Σ

−

1 z0|1 + S0(α0|1),
where α0|1 = −(CΣ−

1 C⊤
+ R)−1CΣ−

1 . By repeating the above
process t − N times, we obtain

tr(Γ0(zt )+ St (α0:t+1)) = tr
(
z⊤N Σ

−

t−NzN + SN (α0:N+1)
)
,

and therefore, we can define Γt−N (zN ) = z⊤N Σ
−

t−NzN . Now for
t ⩾ N > 0, we consider the expression of x̂t :

x̂t = z⊤t|t x̂
−

0 − α⊤

t|ty0 −
t−1∑
i=0

α⊤

i|tyt−i, where

z⊤t|t x̂
−

0 − α⊤

t|ty0 = z⊤t−1|tAx̂
−

0 − α⊤

t|t (y0 − Cx̂−0 ).

By substituting αt|t in the above expression, we get z⊤t|t x̂
−

0 −

⊤

t|ty0 = z⊤t−1|t

(
Ax̂−0 + AΣ−

0 C⊤(CΣ−

0 C⊤
+ R)−1(y0 − Cx̂−0 )

)
=

⊤

t−1|tAx̂0, which implies x̂t = z⊤t−1|t x̂
−

1 −
∑t−1

i=0 α
⊤

i|tyt−i, where x̂−1 =

ˆ ˆ
−
x0. At t = 1, we can compute x1 from the above expression. By
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(
t
t

epeating the above process t − N times we obtain the desired
expression (13). □

Appendix B. Proofs of Section 3.2

Lemma 3. If (C1) holds then tr(Σ cf
t ) ⩾ tr(Σ cf

t−1) for all t ⩾ n+ 1.

Proof. Let us define s∗t := tr(Σcf
t ) for notational simplicity. The

optimal cost at time t by substituting St (α0:t+1|t ) = α⊤

t|tRαt|t +∑t−1
i=0 ℓi|t in (17) is given by

s∗t = tr

(
Γ0(zt|t )+ α⊤

t|tRαt|t +

t−1∑
i=0

ℓi|t

)
, (B.1)

where ℓi|t := z⊤i|tQzi|t + α⊤

i|tRαi|t . We can observe for all t ⩾ n+ 1
that the constraints (15) at time t − 1 are same at time t for
j = 0, . . . , t−n−1. Therefore, α0:t|t , the first t number of decision
variables computed at time t , is a feasible control sequence at
time t − 1. Due to the optimality of α0:t|t−1 at time t − 1, we get
the following inequality:

s∗t−1 ⩽ tr

(
Γ0(zt−1|t )+ α⊤

t−1|tRαt−1|t +

t−2∑
i=0

ℓi|t

)

= tr

(
z⊤t−1|t (Σ

−

0 − Q )zt−1|t +

t−1∑
i=0

ℓi|t

)
= tr

(
z⊤t−1|t (Σ

−

0 − Q )zt−1|t − Γ0(zt|t )− α⊤

t|tRαt|t
)
+ s∗t ,

where the last equality is obtained by substituting (B.1). Since
Q −Σ−

0 ⪰ 0, for all t ⩾ n+ 1 we get

s∗t − s∗t−1 ⩾ tr
(
Γ0(zt|t )+ α⊤

t|tRαt|t + z⊤t−1|t (Q −Σ−

0 )zt−1|t
)
⩾ 0. □

Lemma 4. If (C2) holds, then tr(Σ cf
t ) ⩽ tr(Σ cf

t−1) for all t ⩾ n+ 1.

Proof. We can observe that α0:t|t−1 satisfies (15) at time t for
j = 1, . . . , t − n. We assumed that αt = Ktzt−1|t−1 satisfies
(15) for j = 0. Therefore, the control sequence α0:t|t−1 along
with αt = Ktzt−1|t−1 is a feasible control sequence at time t .
We compute zt by substituting α0:t|t−1 and αt in (4), which gives
us zt = A⊤zt−1|t−1 + C⊤Ktzt−1|t−1 = Ãzt−1|t−1. Now we recall
the expression of the optimal cost s∗t := tr(Σcf

t ) from (B.1). The
optimality of α0:t+1|t in the presence of stability criterion (22)
gives us

s∗t ⩽ tr

(
Γ0(Ãtzt−1|t−1)+ z⊤t−1|t−1K

⊤

t RKtzt−1|t−1 +

t−1∑
i=0

ℓi|t−1

)
= tr

(
z⊤t−1|t−1(Ã

⊤

t Σ
−

0 Ãt + K⊤

t RKt + Q )zt−1|t−1

)
+ tr

(
α⊤

t−1|t−1Rαt−1|t−1 +

t−2∑
i=0

ℓi|t−1

)

⩽ tr

(
Γ0(zt−1|t−1)+ α⊤

t−1|t−1Rαt−1|t−1 +

t−2∑
i=0

ℓi|t−1

)
= s∗t−1. □

Lemma 5. If Assumption 1 holds and the matrix pair (A, C) is
observable then there exists s > 0 such that for the system (21),

tr(Σ cf
t ) ⩽ s for all t and

tr(Σ cm
t ) ⩽ s for all N ⩾ n for all t.

Proof. Let us consider the expression of zt at t = n from (5). We
can write it in compact form: z = A⊤n(I+C⊤α )+R (A⊤, C⊤)α .
n 0 n 1:n

7

If we substitute

α1:n = −Rn(A⊤, C⊤)†(A⊤n)(I + C⊤α0) (B.2)

in the above expression for some α0 ∈ Rq×d, we get zn = 0. Now
we consider the estimator (3) and the nominal system (21). By
substituting yi = CAix0 and xt = Atx0 for the system (21) in (3),
we get

x̂t = At (x̂−0 − x0)+ Atx0 +
t∑

i=0

α⊤

i CAt−i(x̂−0 − x0)

= xt +

(
At

+

t∑
i=0

α⊤

i CAt−i

)
(x̂−0 − x0)

= xt + z⊤t (x̂−0 − x0), (B.3)

where the last equality is due to (5). If we substitute α1:n from
(B.2) in the above expression at t = n, we get x̂n = xn ∈ X̄ ⊆ X
because zn = 0 under (B.2). Therefore, (B.2) is feasible for (16) at
t = n. Let us define

s0 := tr(Γ0(zn)+ Sn(α0:n+1)), (B.4)

where zn and Sn are obtained by applying the given policy (B.2).
For all t ⩾ n, define β0:n+1 = α0:n+1 and βi = 0 for i > n.

Under the policy β0:t+1, we have zt = 0 and therefore x̂t = xt for
all t ⩾ n; this policy is feasible. Since tr(Γ0(zt ) + St (β0:t+1)) = s,
optimality of α0:t+1|t gives tr(Σcf

t ) ⩽ s0 for all t ⩾ n. For each t ⩽

n− 1, tr(Σcf
t ) ⩽ tr

(
AtΣ−

0 At⊤
+
∑t−1

i=0 AiQAi⊤
)
is bounded, where

the inequality holds due to optimality of tr(Σcf
t ) and feasibility of

α0:t+1 = 0. Defining s := max{tr(Σcf
0 ), tr(Σcf

1 ), . . . , tr(Σcf
n−1), s

0
},

we get the first part of the result. Similarly, we can observe that
β0:N+1 is feasible for (19) for all N ⩾ n and Σcm

t = Σcf
t for

t ⩽ N . □

Proof of Theorem 1. For any t ⩾ 0, the optimal cost tr(Σcf
t ) ⩽ s

due to Lemma 5. Therefore, Snyders (1973, Lemma 6) gives us the
bound λmin(Σ−

0 ) tr(zt|tz⊤t|t ) ⩽ tr(z⊤t|tΣ
−

0 zt|t ) ⩽ tr(Σcf
t ) ⩽ s, which

further implies

tr(zt|tz⊤t|t ) ⩽
s

λmin(Σ−

0 )
. (B.5)

Set
⏐⏐x̂−0 − x0

⏐⏐ < δ and consider
⏐⏐x̂cft − xt

⏐⏐2. Since from (B.3) x̂cft −

xt = z⊤t|t (x̂
−

0 − x0), by using the bound (B.5) we get⏐⏐x̂cft − xt
⏐⏐2 = (x̂−0 − x0)⊤zt|tz⊤t|t (x̂

−

0 − x0) ⩽ λmax(zt|tz⊤t|t )
⏐⏐x̂−0 − x0

⏐⏐2
⩽ tr(zt|tz⊤t|t )

⏐⏐x̂−0 − x0
⏐⏐2 ⩽

s
λmin(Σ−

0 )
δ2 =: ε2. (B.6)

Therefore, for a given ε > 0, we can choose δ =

√
λmin(Σ

−

0 )
s ε

which results in
⏐⏐x̂cft − xt

⏐⏐ ⩽ ε when
⏐⏐x0 − x̂−0

⏐⏐ ⩽ δ for all
t ⩾ 0. In order to prove convergence of x̂cft to xt for the system
21), we first consider the case when Q − Σ−

0 ⪰ 0. For all
⩾ n + 1, tr(Σcf

t ) is a monotonically increasing sequence due
o Lemma 3 and it is bounded above due to Lemma 5. Therefore,
it is convergent. From Lemma 4, tr(Σcf

t ) − tr(Σcf
t−1) → 0, which

implies tr(zt|tz⊤t|t ) → 0 because Σ−

0 ≻ 0. Then (B.6) immediately
confirms that

⏐⏐x̂cft − xt
⏐⏐ → 0 as t → ∞. Now, we consider

the second case when the stabilizing condition (22) of Lemma 4
is satisfied ((C2) holds). In this case, tr(Σcf

t ) is a monotonically
decreasing sequence which is bounded below. Similar to the first
case, the convergence of tr(Σcf

t ) implies tr(zt|tz⊤t|t ) → 0, which
further implies

⏐⏐x̂cft − xt
⏐⏐→ 0. □

Proof of Theorem 2. Let us consider the expression of Σcm
t

cm ⊤ cm− ⊤
∑N−1
from (20), Σt = zN|tΣt−N zN|t + αN|tRαN|t + i=0 ℓi|t , where
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i|t = z⊤i|tQzi|t + α⊤

i|tRαi|t . By substituting the expression of Σcm−

t−N
rom (18), we getΣcm

t = z⊤N|t
(
AΣcm

t−(N+1)A
⊤
+ Q

)
zN|t+α⊤

N|tRαN|t+
N−1
i=0 ℓi|t =

∑N
i=0 ℓi|t + z⊤N|tAΣ

cm
t−(N+1)A

⊤zN|t . Let us define γt,j :=
⊤zN|t−(j−1)(N+1)γt,j−1 with γt,0 = I . Therefore,

cm
t =

N∑
i=0

ℓi|t + γ⊤

t,1Σ
cm
t−(N+1)γt,1. (B.7)

or any t = k(N+1)+r , where k ∈ Z+ and r ∈ {0, . . . ,N}, define
j =

∑N
i=0 ℓi|t−j(N+1), by recursively solving (B.7) we get:

Σcm
t =

k−1∑
j=0

γ⊤

t,jVjγt,j + γ⊤

t,kΣ
cm
r γt,k (B.8)

=

k−1∑
j=0

γ⊤

t,jVjγt,j + γ⊤

t,k

(
z⊤r|rΣ

−

0 zr|r + α⊤

r|rRαr|r +

r−1∑
i=0

ℓi|r

)
γt,k.

Since s ⩾ tr(Σcm
t ) for t = k(N + 1) + r due to Lemma 5,

after ignoring some non-negative terms, we get s ⩾ tr(Σcm
t ) ⩾

tr(γ⊤

t,kz
⊤

r|rΣ
−

0 zr|rγt,k) ⩾ tr(γt,kzr|rγ⊤

t,kz
⊤

r|r )λmin(Σ−

0 ). Therefore,

tr(γt,kzr|rγ⊤

t,kz
⊤

r|r ) ⩽
s

λmin(Σ−

0 )
. (B.9)

ow, we consider the expression of estimator for CMHE for the
ystem (21) and substitute the expression of x̂cm−

t−N according to
our definition (18). For t = k(N + 1) + r , similar to (B.3), we
consider x̂cmt −xt = z⊤N|t (x̂

cm−

t−N −xt−N ) = z⊤N|tA(x̂
cm
t−(N+1)−xt−(N+1)) =

γ⊤

t,k(x̂
−
r − xr ) = γ⊤

t,kz
⊤

r|r (x̂
−

0 − x0). Therefore,⏐⏐x̂cmt − xt
⏐⏐2 = ⏐⏐γ⊤

t,kz
⊤

r|r (x̂
−

0 − x0)
⏐⏐2 ⩽ λmax(γ⊤

t,kz
⊤

r|r )
⏐⏐x̂−0 − x0

⏐⏐2
⩽

s
λmin(Σ−

0 )

⏐⏐x̂−0 − x0
⏐⏐2 =: ε2,

(B.10)

here the last inequality is due to (B.9). Therefore, for a given ε >

, we can choose δ =

√
λmin(Σ

−

0 )
s ε which results in

⏐⏐x̂cmt − xt
⏐⏐ ⩽ ε

when
⏐⏐x0 − x̂−0

⏐⏐ ⩽ δ for all N ⩾ n and t ⩾ N + 1. This completes
the first part of the proof. For the second part, we consider (B.8)
and take limit t → ∞, we get

lim
t→∞

tr(Σcm
t ) = lim

k→∞

tr

⎛⎝ k−1∑
j=0

γ⊤

t,jVjγt,j + γ⊤

t,kΣ
cm
r γt,k

⎞⎠ ⩽ s,

which results in tr(γ⊤

t,k−1Vk−1γt,k−1) → 0 as k → ∞. By
substituting Vk−1 =

∑N
i=0 ℓi|t−(k−1)(N+1), we conclude that tr(γ⊤

t,k−1
ℓN|N+1+rγt,k−1) → 0 and therefore, tr(γ⊤

t,k−1z
⊤

N|N+1+r
QzN|N+1+rγt,k−1) → 0. Since Q ≻ 0, we get tr(zN|N+1+rγt,k−1
γ⊤

t,k−1z
⊤

N|N+1+r ) → 0 as k → ∞. Now, we consider the expression
(B.10) and substitute γt,k = A⊤zN|N+1+rγt,k−1 to get x̂cmt −xt = (A⊤
zN|N+1+rγt,k−1)⊤z⊤r|r (x̂

−

0 −x0). Since s ⩾ tr(Σcf
r ) ⩾ tr(z⊤r|rΣ

−

0 zr|r ), we
get

⏐⏐zr|r ⏐⏐F ⩽
√

s
λmin(Σ

−

0 )
. We have⏐⏐x̂cmt − xt

⏐⏐ = ⏐⏐(zr|rA⊤zN|N+1+rγt,k−1)⊤(x̂−0 − x0)
⏐⏐

⩽
⏐⏐zN|N+1+rγt,k−1

⏐⏐
F

⏐⏐zr|r ⏐⏐F |A|F ⏐⏐x̂−0 − x0
⏐⏐

⩽
⏐⏐zN|N+1+rγt,k−1

⏐⏐
F

√
s

λmin(Σ−

0 )
|A|F

⏐⏐x̂−0 − x0
⏐⏐ ,

hich implies
⏐⏐x̂cmt − xt

⏐⏐ → 0 because
⏐⏐zN|N+1+rγt,k−1

⏐⏐
F → 0 as

→ ∞. This completes the second part of the proof. □

roof of Theorem 3. If Q − Σ−

0 ⪰ 0, tr(Σcf
t ) is a monotonically

increasing sequence due to Lemma 3. We get a feasible con-

trol sequence due to Assumption 2. Therefore, due to optimality

8

tr(Σcf
t ) ⩽ tr

(
Γ0(zt )+ α⊤

t Rαt +
∑t−1

i=0 ℓi

)
, where ℓi = z⊤i Qzi +

α⊤

i Rαi, αi+1 = Kizi and zi+1 = (A⊤+C⊤Ki)zi. Due to Assumption 2,
e have ℓ0 ⩽ λ0Q , and for t ⩾ 1, ℓt ⩽ λtz⊤t−1Qzt−1 ⩽ λtℓt−1 ⩽

tλt−1 . . . λ0Q . Let us define ρt := λtλt−1 . . . λ0, then

r(Σcf
t ) ⩽ tr

(
Γ0(zt )+ ℓ0 + α⊤

t Rαt +

t−1∑
i=1

ℓi

)

⩽ tr

(
z⊤t (Σ−

0 − Q )zt + ℓ0 +

t∑
i=1

ℓi

)

⩽ tr

(
λ0Q +

t∑
i=1

ℓi

)
⩽ tr

(
t∑

i=0

ρiQ

)
= tr(Q )

t∑
i=0

ρi.

ince ρi+1
ρi

= λi+1 < 1 for each i, there exists ρ̄ > 0 such
that

∑t
i=0 ρi < ρ̄ for each t. Therefore, tr(Σcf

t ) ⩽ ρ̄ tr(Q ) for
ach t . Since tr(Σcf

t ) is a monotonically increasing sequence and
s bounded above, there exists some s′ > 0 such that (24) holds.
his completes the first part of the proof.
For the second case, the stabilizing condition of Lemma 4 is

atisfied, and tr(Σcf
t ) ⩾ 0 is monotonically decreasing for all

⩾ n + 1. Therefore, there exists some s′ ⩾ 0 such that (24)
olds. This completes the second part of the proof. □
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