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ABSTRACT. The purpose of this paper is to describe the feedback particle filter
algorithm for problems where there are a large number (M) of non-interacting
agents (targets) with a large number (M) of non-agent specific observations
(measurements) that originate from these agents. In its basic form, the prob-
lem is characterized by data association uncertainty whereby the association
between the observations and agents must be deduced in addition to the agent
state. In this paper, the large-M limit is interpreted as a problem of collec-
tive inference. This viewpoint is used to derive the equation for the empirical
distribution of the hidden agent states. A feedback particle filter (FPF) algo-
rithm for this problem is presented and illustrated via numerical simulations.
Results are presented for the Euclidean and the finite state-space cases, both
in continuous-time settings. The classical FPF algorithm is shown to be the
special case (with M = 1) of these more general results. The simulations help
show that the algorithm well approximates the empirical distribution of the
hidden states for large M.
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1. Introduction. Filtering with data association uncertainty is important to a
number of classical applications, including target tracking, weather surveillance,
remote sensing, autonomous navigation and robotics [3, 20]. Consider, e.g., the
problem of multiple target tracking with radar. The targets can be multiple air-
crafts in air defense, or multiple weather cells in weather surveillance, or multiple
landmarks in autonomous navigation and robotics. In each of these applications,
there exists data association uncertainty in the sense that one can not assign, in
an apriori manner, individual observations (measurements) to individual targets.
Given the large number of applications, algorithms for filtering problems with data
association uncertainty have been extensively studied in the past; cf., [3, 8, 9] and
references therein. The feedback particle filter (FPF) algorithm for this problem
appears in [22].

The filtering problem with data association uncertainty is closely related to the
filtering problem with aggregate and anonymized data. Some of these problems have
gained in importance recently because of COVID-19. Indeed, the spread of COVID-
19 involves dynamically evolving hidden processes (e.g., number of infected, number
of asymptomatic etc..) that must be deduced from noisy and partially observed data
(e.g., number of tested positive, number of deaths, number of hospitalized etc.). In
carrying out data assimilation for such problems, one typically only has aggregate
observations. For example, while the number of daily tested positives is available,
the information on the disease status of any particular agent in the population
is not known. Such problems are referred to as collective or aggregate inference
problems [15, 16, 7].

In a recent important work [17], algorithms are described for solving the collective
inference problem in graphical models, based on the large deviation theory. These
results are also specialized to the smoothing problems for the hidden Markov models
(HMMSs). Two significant features of these algorithms are: (i) the complexity of the
data assimilation does not grow with the size of the population; and (ii) for a single
agent, the algorithm reduces to the classical forward-backward smoothing algorithm
for HMMs.

The main purpose in this paper is to interpret the collective inference problem
as a limit of the data association problem, as the number of agents (M) become
large. Indeed, for a small number of agents, data association can help reduce the
uncertainty and improve the performance of the filter. However, as number of agents
gets larger, the data association-based solutions become less practical and may not
offer much benefit: On the one hand, the complexity of the filter grows because
the number of associations for M agents with M observations is M!. On the other
hand, the performance of any practical algorithm is expected to be limited.

In this paper, the filtering problem for a large number of agents is formulated
and solved as a collective inference problem. Our main goal is to develop the FPF
algorithm to solve the collective filtering problem in continuous-time settings. For
this purpose, the Bayes’ formula for collective inference is introduced (following
the formulation of [17]) and compared with the standard Bayes’ formula. The
collective Bayes’ formula is specialized to derive the equations of collective filtering
in continuous-time settings. The FPF algorithm for this problem is presented for
the Euclidean and the finite state-space cases. The classical FPF and ensemble
Kalman filter (see [5, 18, 12, 13]) algorithms are shown to be the special case (with
M = 1) of these more general results. The algorithm is illustrated using numerical
simulations.
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The outline of the remainder of this paper is as follows. The problem formulation
appears in Section 2. The collective Bayes formula and the filter equations are
derived in Section 3. The FPF algorithm is described in Section 4. The simulation
results appear in Section 5. All the proofs are contained in the Appendix.

2. Problem formulation.

2.1. Dynamic model.

1. There are M agents. The set of agents is denoted as M = {1,2,..., M}. The
set of permutations of M is denoted by II(M) whose cardinality [II(M)| =
M.

2. Each agent has its own independent state—observation pair. The state process
for the j* agent is X/ = {X/ : t € I'}, a Markov process and I is the index
set (time). The associated observation for the 5™ agent is Z7 = {ZJ : t € I}.

3. At time t, the observations from all agents is aggregated while their labels
are censored through random permutations o, € II(M). The association
or = (0f,07,...,0{") signifies that the j™ observation originates from agent
o}. The random permutations is modeled as a Markov process on II(M).

For each state-observation process, we consider the following types of models.

Discrete-time model. The index set I = {0,1,...}. The state and observation
space are denoted as X and ), respectively. The state and observation processes
are modeled as follows:

P(Xi1 € A| X, = a') = /A p(z | ') du(z)

P(ZieB|X,=42')= / o(z | ') dv(z)
B
where ;1 and v are reference measures defined over measurable sets A and B in X
and ), respectively. Typical choices for the reference measures are the counting
measure in discrete state-space settings and the Lebesgue measure in Euclidean
settings. The set of joint probability densities on X x ) with respect to u X v is
denoted as P(X,)).

A topical example is the COVID-19 testing data assimilation problem. The
state-space X is the set of epidemiological states, e.g., susceptible (S), infected (I),
recovered (R) for the so-called SIR Markov chain model. The sensor is the binary-
valued output of the PCR test for viremia.

Continuous-time model. The index set I = [0,00) and the state process {X; :
t > 0} is a continuous-time Markov process with the generator denoted as A. The
associated adjoint is denoted as AT. Three special cases of interest are: (i) Ito
diffusions in the Euclidean state-space, (ii) the linear Gaussian case, and (iii) the
discrete state-space case.

In continuous-time settings, we assume the following stochastic differential equa-
tion (SDE) model for scalar-valued observations:

A7, = W(X) dt + 0y AW,  Zg =0 (1)

where {W, : t > 0} is the standard Wiener process and o,, > 0. It is assumed that
the observation noise is independent of the state process. The reason for restricting
the observation model to (1) is because we are primarily interested in deriving
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the FPF algorithm. The scalar-valued case is considered for notational ease. The
generalization to vector-valued observation is straightforward.

2.2. Standard filtering problem with data association. In its most general
form, the filtering problem is to assimilate the measurements Z; = O'(Zti 1< <
M,0 < s < t) to deduce the posterior distribution of the hidden states {X; : 1 <
i < M}. Given the associations are also hidden, the problem is solved through
building a filter also to estimate the permutation o;.

Remark 1. A number of approaches have been considered to solve the problem in
a tractable fashion: Early approaches included multiple hypothesis testing (MHT)
algorithm, requiring exhaustive enumeration [14]. However, exhaustive enumeration
leads to an NP-hard problem because number of associations increases exponentially
with time. The complexity issue led to development of the probabilistic MHT or
its simpler “single-scan” version, the joint probabilistic data association (JPDA)
filter [8, 4]. These algorithms are based on computation (or approximation) of the
observation-to-target association probability. The feedback particle filter extension
of the JPDA filter appears in [22].

2.3. Collective filtering problem. In the limit of large number of non-agent spe-
cific observations, it is more tractable to consider directly the empirical distribution
of the observations:

| M
q@(z) == MZ(SZg(z)

and use it to estimate the empirical distribution of the hidden states — denoted as
m; at time ¢. The problem is referred to as the collective filtering problem.

3. Collective Bayesian filtering. As with the standard Bayes’ formula, it is
easiest to introduce the collective Bayes’ formula for the discrete-time model. This
is done before presenting the generalization to the continuous-time model.

3.1. Discrete-time model. Optimization problem: Given m; and g;1 the one-
step collective inference problem is

Minimize : D(I5 | P) (2a)
PeP(X,2)
Subject to: / P(z,2) du(z) = g1 (2) (2b)
x

where P(z,2) = [, p(z | 2’)m(2) dp(a’) o(z|x) and D(- | ) is the K-L divergence.

The justification for considering this type of optimization objective to model the
collective inference problem is given in [17, Sec. III-A]. The K-L divergence is the
rate function in the large deviation theory and characterizes the exponential decay in
probability of observing an empirical distribution [6]. The solution to this problem
is described in the following proposition whose proof appears in Appendix A.1.
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Proposition 1. Consider the optimization problem (2). The optimal P has a den-
sity given by the following equations:

Tep1pe(x) = /Xp(x | 2" ) (2") dp(z”) (3a)

€raa(z) = ]£f0<z | @)y aje(z) dp) (3b)
ﬁmw=“ﬂﬁ$ﬁ”%w> (30

The optimal one-step estimate is the marginal of the optimal P on X which is:

o(z | 37>7Tt+1\t(55)

mﬂm=éfmaw@=émwg%maww (1)

Remark 2. With M = 1, the one-step estimate (4) reduces to the Bayes’ formula.

Remark 3. The optimization problem (2) is a special case of the problem intro-
duced in [17] over a time horizon.

Remark 4. An interesting feature of the optimization problem is that g;11 need
not necessarily be generated using the transition kernel o(z | z). In large M settings,
this is important for two reasons:

1. The practical reason is that the transition kernel o(z | z) is a nominal model.
There is invariably a degree of heterogeneity in observation models for agents.

2. The theoretical reason is simply the nature of the optimization problem at
hand: Is(ac7 z) is the joint distribution that is closest to the joint distribution
P(z, z) of the nominal model and satisfies the marginal constraint. The theo-
retical reason is similar to the justification used in constructing a Schrodinger
bridge.

In the remainder of this paper, we focus on the continuous-time model with
observation model (1). For this case, the formula for the collective filter, counterpart
of (3), appears in the following subsection. Because of the Remark 4, we present
the filter for the more general case where ¢ is arbitrary. The filter formulae are then
also specialized to the case where ¢ is generated from the nominal model.

3.2. Continuous-time model. In the continuous-time settings, the empirical dis-
tribution ¢ = {q : t > 0} of the observations is defined for an increment AZ] :=

Zj

AT Z] for j =1,2,..., M. We denote the mean process by:

M
. 1 ,
AZ; = /Az dg:(Az) = i E AZ]
=1

Due to the linearity of the definition, we can write AZ, = Zt+m — Z, where Z =
{Z; : t > 0} (which itself may be an infinite variation process) is defined by

1 Y
7 J
7, = ;_1 7
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The following quantities related to the second-moment are also of interest:

V= lim — (AZ)?

At—0 At
1 | M
I 2 o= 1 VAV
Vi = Agmo . /(Az) dg:(Az) -V = Agmo ; jg_l(AZt) Vi

It is assumed that these limits are well-defined. The first limit represents the qua-
dratic variation of the stochastic process {Z; : t > 0} and the second limit is an
empirical variance of the increments. It is further assumed that the variance of

observation V; < o2 for all t > 0.

Optimal recursive update. Using this notation, the continuous time counterpart
of the Prop. 1 is as follows. In the statement of the proposition, 7; is a density with
respect to the Lebesgue measure. The proof appears in the Appendix A.2.

Proposition 2. The collective filter {m : t > 0} solves the following evolution
equation:

1 A . .
dm(z) = ATyrt(aj) dt + J—th(x)(h(x) — he)(dZy — he dt) + Cy dt (5)
where the correction term
1 VitV
Cr= o m(@)(9(@) =3 (< — 1)

and hy = [ h(z)m(z) dz, g(z) = 3(h(z) —hy)2, 9 = J g(x)m(x) dz. For the special
case where q is generated from (1), the correction term Cy =0 a.s.

Remark 5. Equation (5) is an example of a parabolic SPDE with a well-developed
theory of existence and uniqueness [1]. The first two terms of the right-hand side
of (5) are similar to the Kushner-Stratonovich equation with dZ; replaced by the
empirical mean dZ;. The third term is an additional correction term that arises
on account of the second moment of q. If ¢ is generated from the model, the term
vanishes because V; + V; = o2 . The following special cases are also of interest:

1. (M =1). The empirical distribution ¢ is a Dirac delta measure concentrated
on a single trajectory Z, = Z;. In this case the variance V; = 0 and the
third term vanishes (using the Ito’s rule dZ2 = V; dt = 02 dt). Therefore, for
M =1, the collective filter reduces to the Kushner-Stratonovich equation.

2. (M = o). In this case, Z; is a deterministic process fot E(h(X,)) ds and
V; = 02 almost surely. In this case, both the second and third terms of (5) are
zero and the collective filter reduces to the Kolomogorov’s forward equation.

3.3. Linear-Gaussian case. A special case of the continuous-time model is the
linear-Gaussian case where the state and observation processes are defined by:

dX, = AX,dt + QY?dB,, Xy~ N(mg,%) (6a)

dZt = HXt dt + ow th (6b)
Here the drift term and the observation function are linear and the noise processes
and initial condition are Gaussian.

The following is the counterpart of (5) for the linear-Gaussian case. Its proof
appears in the Appendix A.3.
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Proposition 3. Consider the collective filtering problem for the continuous-time
linear Gaussian model (6). Then m; is a Gaussian whose mean m; and variance %
evolve according to

1 A
dmy = Amydt + — S, H " (dZ, — Hm, dt) (7a)
0y
d T 1 T v,
G = AT AT Q- (1 - g)HEt (7b)

with the initial conditions specified by mgy and Xg.

4. Collective feedback particle filter. The feedback particle filter is a controlled
interacting particle system to approximate the solution of (5). In this section, we
extend the FPF formulae in [21, 23] to the collective filtering settings.

4.1. Euclidean setting. The state process is defined by the following SDE:
dXt = &(Xt) dt+U(Xt) dBt7 XO ~ T

where a € CYR%:RY), 0 € C2(R%R¥P) and B = {B; : t > 0} is a standard
Wiener process. my denotes the initial distribution of Xg. It is assumed that 7 has
a probability density with respect to the Lebesgue measure. For (1), the observation
function h € C2(R%;R).
Feedback particle filter. The formula for collective FPF is as follows:

dX; =a(X})dt + o(X]) dB} + Ki(X})(dZ; — hy dt) — o K (X)) (R(X]) — hy) dt
Vi +V,

2
Ow

1 S . .
+ 5 (K] VIG) (X)) Vi dt + ( - 1)ut(X;) at, Xi e~ 8)
where B = {B} : t > 0} is an independent copy of the process noise; and «; :=
11— Y%). The gain functions K; = V¢, and u; = —%Kt(h — ht) + Vo, where ¢

2 o2
and ¢ are chosen to solve Poisson equations:

=V (1 Vi) = o_igﬁ-t(g — Gt) (9b)

where 7; denotes the distribution of X} and hy = [ 74 (z)h(z) dz, g = [ 7(z)g(x) da.

Remark 6. The final term in the FPF (8) is identically zero in the special case
where ¢ is generated from the observation model (1) (see Remark 5). In this case, the
algorithm is similar to the classical FPF [21]. In particular, one need not solve (9b)
to compute wuy.

Remark 7. The aim of the paper is to present a representation of the filter. The
representation is not unique. For example, one may add any drift term “v,(X}) dt”
to the right-hand side of (8) such that V- (7,v:) = 0. There are two technical issues
pertaining to the well-posedness of the collective FPF: (i) Existence and uniqueness
of the process {m; : ¢ > 0}; and (ii) Existence and uniqueness of the solution
of the Poisson equation (9). These are simply assumed to hold in the paper. A
unique weak solution of the Poisson equation exists if 7; satisfies Poincaré inequality,
and [ h?7,dz < oo, [¢?dx < oo [10, Theorem 2.2]. A probability distribution
satisfies the Poincaré inequality when it has Gaussian decay [2]. In this paper, we
assume 7y satisfies Poincaré inequality and f h47, dx < oo for all £ > 0 to ensure
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both Poisson equations (9) are well-posed. It is possible to prove Poincaré inequality
for the solution of the collective filter ; by extending the existing results that
establish the Poincaré inequality for the nonlinear filtering in certain settings [11,
Lemma 5.1], [10, Prop 2.1].

The following proposition states the exactness property of the filter. (That is,
the distribution of the particles exactly matches the distribution of the collective
filter). The proof appears in Appendix A.5.

Proposition 4. Consider the FPF (8) and suppose its probability density function
{7i: : t > 0} exists and is unique. Then it evolves according to the equation (5).

Consequently, if 1y = mo, then
7_Tt = T Vit Z 0

Remark 8. Noting that the term %K TVK is the Wong-Zakai correction term, it
is useful to express the collective FPF in its Stratonovich form:
dX] = a(X}) dt + o(X}) dB} + K(X}) o (dZ; — aph(X}) dt — (1 — o)y dt)
Vi + Vi
n ( t t

2
Ow

- 1)ut(Xg') dt + v (XHVdt, X3 ~ 7o (10)

Depending upon the interpretation of o, there are two definitions of the drift term
(N
1. In the classical derivation of the FPF, the gain function K;(x) is interpreted
as a function of space x and time ¢, and the o in the Stratonovich form is
interpreted only with respect to the space x. Using this interpretation, v; = 0.
2. In a recent paper [11, Sec. 3], the gain function is defined and interpreted as
a function of space x and the density. This is natural because the dependence
upon time ¢ comes because of the changes in density (7;) as the time evolves.
Because the density is a stochastic process, it is argued that the appropriate
interpretation of o in the Stratonovich form should involve both space x and
the density. Using such an interpretation, v;(x) = V. (x) where @, satisfies
the following Poisson equation whose derivation appears in Appendix A.4:
1 1 1
V- (7Vr) = (=K, Vh— —3
( t <Pt) 0—120 t(2 t Ugugt)
Remark 9. In a special case of M = 1, the variance V; = 0 and Z=27"isa single
trajectory, so V; = o2. Therefore (10) with v; = 0 becomes:
) ) ) ) ) . X — h .
dX; =a(X;)dt + o(X})dB; + Ki(X}) o (dZt — % dt)7 X4 ~ o
where o is interpreted only with respect to the space. This is precisely the FPF on
Euclidean case appear in [21, Remark 1].

Note that FPF (8) is not practical because it requires the distribution 7;. In
practice, these are approximated by finite N number of particles. In this case, for
i=1,...,N, X} is N iid samples from 7o and noise processes B’ is also N copies
of independent Wiener processes. In this case,

1 N 1 N
7 (N Xi _(N z : Yi
hi(£ ) = N E h( t)a gt( ) = N g( t)
i=1 i=1
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and the Poisson equations are also accordingly constructed. In the limit as N —
00, the empirical distribution converges to @ because of the propagation of chaos
property of the interacting particle systems [19].

4.2. Linear-Gaussian case. In linear-Gaussian case (6), the distribution is Gauss-
ian and completely characterized by its mean m; and the varriance ¥;. In this case,
the explicit formulae for the solution of the Poisson equations can be obtained, and
it is stated in the following lemma.

Lemma 4.1. In linear-Gaussian case, K¢(-) = U%E_JtHT and ut(+) = 0 solves the
Poisson equations (9).

The proof is straightforward by directly using (9). Consequently, the FPF algo-
rithm for the linear-Gaussian case is as follows:

dX; = AX] dt + dB] + K;(dZ; — (0, HX] + (I — o) Himy) dt)
5 iid
Xo ~ N(mo, o) (11)
where {Bé: 1 <i<N,t> 0} are N independent copies of the process noise
{Bt}t207 K; = %?“EtHTv ap = L

1(I — X%). It is readily seen that the mean and the
variance of the particles evolves exactly according to (7).

4.3. Finite-state case. Consider the continuous-time Markov chain {X; : ¢ > 0}
defined on the finite state space case X := {e1,ea,...,eq} where ey are standard
bases on R for k = 1,...,d. The dynamics of the Markov chain is given by

dXe = Y (z-Xydg

rEX, x#£X

where (¥ is a Poisson processes with rate r, , for 2,y € X. A count from Poisson
process (; Xt causes the Markov-chain to jump to state x. The observation model

is (1). The FPF update law for the finite-state case is as follows:

Xi= 3 @-XDATT 3D - XD

zEX ,xAX]} TEX TAX]
Y @-XDAET Xj~m (12)
TEX x#£X]
where ¢7Y (7" are time-modulated Poisson processes of the following form

(Y= NP, BV = KT

Here, N*¥(-) and N*¥(.) are standard Poisson processes with rate equal to one.
The inputs U’ and U are defined according to

- ez Vi +V,
AU? = K, (2)(dZ; — hy dt), de:Kt(x)( -

w

—1)dt
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where the gain vectors K (-) and K(-) solve the finite-state space counterpart of the
Poisson equations (9)

Ki(z) — 7 () Z Ki(y) = Ujﬁt(ﬂf)(h(l’) — )
yeEX w

Rofa) = m(a) 3 Kily) = 5 mla)o(a) — )
yeEX w

The general form of the solution is explicitly known:

Ki(2) = 2 m(@)(h(z) — o), Klz) =~ m(z)(g(z) - &)

2 2
Ow Ow

where ¢ and ¢ are constants. The constants are chosen so that UF and U are
non-decreasing leading to a well-posed Poisson processes N*¥(UF) and N*Y(UY).
In particular,

w

max, h(z), else max, g(x), else

{minm h(x), if dZ, —hydt >0 N {minmg(:c), if (% -1)>0
C =

Remark 10. The FPF for finite state-space Markov chain is proposed in [23]. It
simulates the Wonham filter. Notice that the first line of (12) has the same structure
with the algorithm proposed in [23] and it is indeed identical when M = 1.

5. Simulations. In this section, we simulate the collective filtering algorithm for
a simple linear-Gaussian system. There are two objectives: (i) To evaluate the
collective filter described in Prop. 3 as the number of agents M increases; (ii) To
show the convergence of the estimates using the FPF algorithm as the number of
particles N — oo. In order to avoid using any other approximation, the mean and
the variance from the each algorithms are directly compared.

Comparisons of the collective filtering algorithm are made against the gold stan-
dard of running independent Kalman filters with known data association. It will
also be interesting to compare the results using joint probabilistic data association
(JPDA) filter and this is planned as part of the continuing research.

The continuous-time system (6) is simulated using the parameters

A= 45) H=0

The process noise covariance (Q = 0.11 and the measurement noise covariance o
0.7. The initial condition is sampled from a Gaussian prior with parameters

1 1 02
mo:(o)’ E02(0.2 1)

The sample path for each agent is generated by using an Euler method of numerical
integration with a fixed step size At = 0.01 over the total simulation time interval
[0,5]. At each discrete time-step, ¢ is approximated as a Gaussian whose mean and

2

w =
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FIGURE 1. Normalized error for mean (blue circle) and variance
(orange circle) with the KF and CKF algorithms. The KF algo-
rithms were run as M independent Kalman filters with fully known
data associations.
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FIGURE 2. Normalized error for mean (blue circle) and variance
(orange circle) with the CKF and FPF algorithms. The number of
agents is fixed to M = 30 for this simulation.

variance are defined as follows:

1 o,
Zt:MZ:lzg

The comparison is carried out for the following three filtering algorithms:

Vi

j=

1

M
=AM Z ((th+At — Zyine) — (2] -
j=1

7))

553

e (KF) This involves simulating M independent Kalman-Bucy filters for the M
sample paths {Z] : 0 <t < 5} for j = 1,2,..., M. The data association is

fully known.

e (CKF) This involves simulating the mean and the variance of a single collective
Kalman-Bucy filter using the filtering equations (7) in Prop. 3.



554 J.-W. KIM, A. TAGHVAEI, Y. CHEN AND P. G. MEHTA

e (FPF) This involves simulating a single FPF (11) with N particles.

At the terminal time T, KF simulation yields M Gaussians (posterior distribu-
tions for each of the M independent Kalman filters) whose mean and variance are
mgﬂ) and ng), respectively for j = 1,2,..., M. We use ml}f and El}f to denote the
mean and the variance of the sum (mixture) of these M Gaussians. Note the mean

and the variance is computed by:
M
kf L ()
i = 3 Yo
j:

M
1 , 4 4
ng i g ng) + (m(Tj) — ml}f) (mgpj) — ml}f)T
Jj=1

The mean and the variance for the CKF is denoted as m$ and T, respectively.

Similarly, mepf and Eprf are the empirical mean and variance computed using the
FPF algorithm with N particles.

Figure 1 depicts the normalized difference for the mean and the variance between
(KF) and (CKF), as the number of agents increase from M = 2 to M = 200. It
is observed that both the differences converge to zero as the number of agents
increases. Though omitted in the plot, for the M = 1 case, these do match exactly.

Figure 2 depicts the distance between normalized difference for the mean and
the variance between (CKF) and (FPF). In this simulation, M = 30 is fixed and
N varies from 30 to 1000. The plots show that the difference converges to zero
as NN increases. Therefore, the FPF is able to provide a solution to the collective
inference problem.

Appendix A. Proofs of the propositions.

A.1. Proof of Proposition 1. Eq. (3a) for 7}, is the usual prediction step, and
the nominal distribution P(z,z) = m1¢(x)o(z | x). Therefore the optimization
problem becomes

min P(z,2)1o M x)dv(z
3 //Xxyp( Al g7Tt+1| (z)o(z | =) du(z) dv(z)

and the constraint is that the marginal of P on Zi+1 must be gp41.
Hence a Lagrange multiplier A(z) is introduced and the objective function be-
comes

inimize: P(x,z)lo M z)dr(z
Misimise: [ Pla,2)los —— TES s dute) e

3LA@x[;WL@dquwuaww@>

Differentiate with respect to |5(x, z) yields

P(x, z)

@z o) TR =0

log

The solution is
P(x,2) = mpe(x)o(z | ) exp ( —1- )\(z))
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It is substituted to the constraint:
/ Teene(@)o(z | ) du(@)exp (— 1 — A2)) — gesn(2) dpa(z) = 0
X

Therefore,
_ qe+1(2)
S Ty (z)o(z | ) dp(z)
Denote the denominator by &41(2) = [, mp1pe(z)o(z | ) dpu(z) and collect the
result to conclude:

mn@) = [ Pl = [ ””“(”“"’gﬁ ('j)""*“(z) av(z)

exp ( —-1- )\(z))

O

A.2. Proof of Proposition 2. The proof is given for the Euclidean case where
the reference measures p and v are both Lebesgue measures. Let At be the discrete
time-step. From time ¢ — ¢ 4+ At, the likelihood function is approximated as a
Gaussian density

N h(m)AtP)

202 At
Denoting AZ := Zy, Ay — Zy, upon suitably adapting the formulae from Proposi-
tion 1,

o(Ziyar — Zi| Xy = ) o< exp (

_|AZ—h(z)At]?

exp(— =525 )me(x)
Terar(@) — m(z) = Alm(z) At + / ety dg:(AZ) + O(At%)
y &(AZ)
where | ()2
AZ — h(x)At
ft(AZ) = /){eXp ( — W)ﬂ't(l‘) d.'L'
Note that the term exp(—%) appears both in numerator and denominator and

therefore cancel. For the other terms, we use the expansion keeping the terms up
to second-order for AZ and first-order for At. Since exp(z) = 1+ + 322 4+ O(z?),
the numerator inside the integral becomes:

exp ( _ h(z)2At — 2h(x)AZ>7rt($)

202,
1 2 1 1 2 A 72 2 A3
= (1— —h(z)*At + J—Zh(x)AZ + ——h(z)’AZ% + O(At*, AZ°)) ()

2 4
202 203,

Similarly the denominator is also expressed by:

w

/(Lmi%mﬂﬂ+éﬁ@MZ+;%MﬁAT+O@ﬁAT»m@Mx
X ag

2
20w w w

14+x
. ) 1+y
simplifies to

We use =142 —y+y*—ay+ O(zy? y?) to express the ratio, and then it

eaele) = mla) = Am@)Bt [ S (@)0(@) - h)(AZ - hear) dg (A2)

w

1 N 1 2
+ /A o ml@)9(@) — 90 (7 A7 — A1) dg (AZ)

w w

+O(AL2, AZ?)
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Take the limit as At — 0 to conclude

dry(x) = Almy(a) dt + Uizm(x)(h(x) — h)(dZs — by dt)

+ am(z)(g(x) - t)(vt;%‘z - 1) dt

If g is generated from M i.i.d. copies of the model (1), then

M
N 1 .
= lim —— ) (AZ]})?> =0
Vet Vo= I aras Z} 1) =ou
J:
almost surely, and Cy; = 0 in this case.
The formulae for discrete state-space models are entirely identical. The integral
over X is replaced by a summation. O

A.3. Proof of Proposition 3. For linear-Gaussian example, the mean and the
variance fully characterize the distribution. Thus, we repeat the procedure in 3.2
for the linear-Gaussian case. Although the linear Gaussian is a special case of the
general Euclidean result, we provide here a proof as a continuous limit of a discrete-
time model (which is of independent interest). The results are stated and proved
in somewhat more general settings with vector-valued observations.

A.3.1. Discrete-time linear-Gaussian problem. The model is

Xt+1 = AXt + Bt, Xo ~ N(mo, Eo) (13&)
Zy=HX;+ W, (13b)

where {B;}i>0, {Wi}i>0 are mutually independent i.i.d. Gaussian random vari-
ables with zero mean and variance ) and R, respectively, and also assumed to be
independent of Xy. The observation ¢; is assumed to be a Gaussian with mean Zt
and variance V;. The discrete-time update (3) for the mean and the variance of
linear-Gaussian problem is illustrated in the following proposition.

Proposition 5. Consider the collective filtering problem for the discrete-time linear
Gaussian model (13). Suppose g = N'(Z,V;) and w7y = N'(my, %) are both Gauss-
ian. It is assumed that R —Vy is positive semi-definite. Then myq1); and m11 are
also Gaussian whose mean and variance evolve according to the following recursion:

My = Amy (14a)
S = AT AT +Q (14b)
Ky = Zt+1|tHT(HZtJrntH—r +R)™! (14c)
Miy1 = Myy1)e + Kt+1(2t+1 - Hmt+1\t) (14d)
Ser1 = Seprp — Kepr(HS e H + R = Vig) K/ (14e)
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Proof. Recall the one-step estimator (3)-(4) in Euclidean state-space settings:

_ o(z | x)mi1)e(2) 2 ds
Ty1() 7/—§(z) qr1(2)d

:7Tt+1|t(x)/0(§(2)x)%+1(2) dz

&(z) = /o(z | 2)mq1p () doe

where the probability density is involved instead of probability mass function. Note
£(z) is the pdf of a Gaussian with mean Hm, ;; and variance HEH”,:HT + R,
and therefore

o(z | &) x exp ( - %(z —Hz)"R™ (2 — Hx))
&(2) xexp ( - %(z — Hmt+1|t)T(HZt+1‘tHT + Rz — Hmt+1|t))

1 B .
qr+1(2) o< exp ( - 5(2 — Zi1) Vi (2 — Zt+1))

Therefore, the integrand % X exp ( — %El) where

E1 = (Z — H.’L’)TR_l(Z — H.’L’) + (Z — ZAt+1)T‘/t;%_(Z - Zt+1)
— (Z — Hmt+1|t)T(HEt+1|tHT + R)_I(Z — Hmt+1‘t)

Since we will integrate over z, any perfect square of z becomes a constant. Therefore,
we complete the square terms on z,

Er=z" (R'"+V 1+ HS H +R) )z
22" (R He + V1 Zepr + (HE b H + R) ™ "Hmy ) + ()
= (2 — Gy 'eo(@)) " Co(z — Gy teo(x)) — eo(@) " Oy Heo() + ()
where
Co=R'"+V 1+ HS H +R)™
co(x) = R Ha + V{1 Zpr + (HS b H' + R) ™ Hmy
Collect non-constant term of co(x)TC(; Leo (z) and remaining term of Fj, one can
obtain
By = (Hx — Zys1) ' Ci(Ha — Zyy1)
+ (Hmgyqpe — Zt+1)T02(Hmt+1\t ~ Zyi1)
+ (Hx — Hmt+1|t)TCg(Hx — Hmyqqt)
+ (2 — Cyteo(x) " Co(z — Cy teo(w)) 4 (const.)
where
Ci=R YR+ V7 —(HS H + RNV
Co = =V (R + Vil — (HE g H + R)7) 7 (HE 0 H' + R)™
Cs=—R MR+ Vi —(HS oy H + R (HSy 1 H' +R)™!
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Also, 711 (x) o exp ( - %Eg) where
EQ = (:ZJ — mt+1|t)TE;_11|t(x - mt+1|t) + (HZL' - Zt+1)Tcl(HI - Zt+1)
+ (HJT — HmtJrl‘t)TCg(Hx — Hmt+1‘t)

=z! (Et_-‘,-ll\t + HT(Cl + C3)H)JZ

— 2" (Z;rllltmﬂ_l‘t + HTC’lth + HTC’SHm,H_”t) + (const.)
Therefore, 741 is a Gaussian pdf with mean and variance is given by:

Myl = Bgq1 (Et__i_ll‘tmt+1|t +H"C1 Zpi1 + HTC3Hmy 1)) (15)

Ser = (S, + HT(CL+ Co)H) ™ (16)

By the matrix inversion lemma, the variance formula becomes
Yir1 =Dy — Et+1|1tHT ((Cl + 03)_1 + H2t+1|tHT)_1HZt+1|t
Observe that
Ci+Cy =R R4+ V) — (HS o H T+ R
(Vi - HE o HT + R
= (R+ (V3 — (HSpH' + R)™H) ™)

-1

Therefore
(C1+Cs)~ ' + HZt+1|tH—r
=R— (HSy H + R =V )"+ HS o H '
= —Vt—s-l(HEtJrutHT +R - VH_l)_l(HEH”tHT +R)
+ (HSp1 H' + R)
= (HS H' + R)(HSy 1 HT + R—Vigy) ™!
(HSp1 H' + R)
Substituting back to the variance equation (16), the Riccati equation (14e) is ob-
tained. It is substituted to (15) to obtain (14d). O

A.3.2. Proof of Proposition 3. The previous proposition is extended to continuous-
time problem by considering suitable limits.
Consider the continuous-time system (6) with a discrete time-step At,
Xt+At = (I + AAt)Xt + ABt
Zt+At = Zt + HXtAt + AWt
where AB; and AW; are normal random variables with variance QAt, o2 IAt,
respectively. Z,.a; — Z; is assumed to be a normal random variable and its mean

and variance are AZy := Zyap = Zt, and V; At respectively.
By the Proposition 5, the prediction step is:

Mypaepe = (I 4+ AAL)m,
Sirane = ([ + AADS(I + AAL) T + QAt
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For the estimation step, omit the higher order terms such as HY; i H TAt? to
simplify the equation, and then we have

My At|t+AL = My At|t — Et+At|tHTR71(AZAt - Hmt+At\tAt)
Yty Atitrar = Derade — 2t+At\tHTRfl(R - Vt)RilHEt—&-AtltAt

up to o(At) error. Substitute m;; as: and ¥y a¢¢ to the equation, and ignoring
higher order terms,

Meyar —myg = AmgAt + X H'T R™YAZ, — HmyAt)
Serar = S = (A% + 24T +Q - % HT (R = RTVR™Y) HY, ) At

The differential formula is obtained by letting At — 0, and R = 2. O

A.4. Derivation of the Stratonovich expression (10). By the relation between
It6 stochastic integral and Stratonovich integral,

. ~ ) N 1 A
Ki(X})o dZ; = Ky(X})dZ; + 3 d[K(X}), Zi]

where [Kt(Xti),ZAt} denotes the quadratic covariation term of the two processes.
This term is expressed by:

Ad[K(X}), 2] = VE(X])d[X], Z] + d[Kq(), Z)(X})
= (K VE)(X])V, dt + d[K.(-), Z)(X])

spatial correction density correction

The spatial correction term appears in (8), and it motivates the Stratonovich ex-
pression of the FPF with v; = 0. In order to compute the density correction, assume
that K satisfies a stochastic partial differential equation of the form:

AdKy(z) = (- ) dt — 2v(z) dZ,

then the density correction term is exactly vy(X{)V; dt. To derive equation for v,
differentiate the Poisson equation (9a) with respect to time:

1 - _ _
-V (7 dK, + K, dmy + d[7m, Ky)) = U—Q(dfrt(h — hy) = m(dhy) — d[7e, b))

w

Since we are interested in only stochastic term, remove all finite variation terms.
Recall from (5) that dai; = (---)dt + ->7;(h — hy) dZ;, we obtain the equation for

a2
dZt terms:

1 - 1 - 1
QV . (7_Tﬂ)t) - O—QV . (Ktﬁ't(h, - ht)) = Tﬁt(h - ht)z - 0_747_rt(2gt)

w

Upon using (9a),

_ _ 1 _
V- (Kime(h —he)) = (h— he)V - (RedSy) + 7] Vh = ——m(h - hi)? + 7K, Vh

w
This is substituted back to the previous calculation to conclude that v; satisfies

1 1 1
V- (ﬁtvt) = O_Tﬁt(iKtTVh - O’Tgt)

w



560 J.-W. KIM, A. TAGHVAEI, Y. CHEN AND P. G. MEHTA

A.5. Proof of Proposition 4. In order to check if the FPF update law gives the
required distribution, we express the Fokker-Planck equation for X;:

A o2
d'ﬂ't :ATﬂ't dt —V - (ﬂ'th)( dZt ht dt Z axnaxm (KnK 7Tt)Vt dt
- 1K 0 )
+%v-mggm—h9yu—§n%;ax(mKra KMV, dt
Vi, + V,

where K denotes the n-th element of the gain K;(z) = (K}(x),..., K}(z)) € R4.
Upon using the Poisson equations (9) and collecting the terms

1 - L 1 .
dmy =Alm dt + —-my(h — hy)(dZ; — by dt) + 5v (K - () dt
Uw
Vi+ Vi
2

Ow

+%v4mmm—m»m+( —ngmmmm—m»

1
+ Ujﬂt(g - §t)) dt

w

1 _ N ~
=Almydt + —my(h — hy)(dZ; — hy dt) — —V - (m Ky (h — hy))V; dt
g

A 207,
- Vi +V;
+%V4mm@7m»@+2(t ! ) (K (h — ) dt
1 (Vi+V, _
g <? - 1)7Tt(g —gy)dt
1 S 1 (Vi+V _
:ATﬂ't dt + 07271',5(]7, - ht)(dZt — ht dt) + 0_72 (% — 1>7Tt<g — gt) dt
concluding the update law (5) for the collective filter. O
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