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Abstract. Feedback particle filter (FPF) is a numerical algorithm to approximate the solution of the nonlinear
filtering problem in continuous-time settings. In any numerical implementation of the FPF algorithm,
the main challenge is to numerically approximate the so-called gain function. A numerical algorithm
for gain function approximation is the subject of this paper. The exact gain function is the solution
of a Poisson equation involving a probability-weighted Laplacian A,. The numerical problem is to
approximate this solution using only finitely many particles sampled from the probability distribution
p. A diffusion map-based algorithm was proposed by the authors in a prior work [58, 60] to solve this
problem. The algorithm is named as such because it involves, as an intermediate step, a diffusion
map approximation of the exact semigroup e®?. The original contribution of this paper is to carry
out a rigorous error analysis of the diffusion map-based algorithm. The error is shown to include two
components: bias and variance. The bias results from the diffusion map approximation of the exact
semigroup. The variance arises because of finite sample size. Scalings and upper bounds are derived
for bias and variance. These bounds are then illustrated with numerical experiments that serve to
emphasize the effects of problem dimension and sample size. The proposed algorithm is applied to
two filtering examples and comparisons provided with the sequential importance resampling (SIR)
particle filter.
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1. Introduction. This paper is concerned with a numerical solution of a certain linear
partial differential equation (PDE) that arises in nonlinear filtering problem in continuous-
time settings.

Nonlinear filtering problem: The standard model of the nonlinear filtering problem is
given by the following stochastic differential equations (SDE) [65]:

(1.1a) State process: dX; = a(Xy)dt + dB;, Xo ~ po
(1.1b) Observation process: dZ; = h(Xy)dt + dWr,

where X; € R? is the (hidden) state at time ¢, Z; € R is the observation, and B;, W; are
two mutually independent standard Wiener processes (w.p.) taking values in R? and R,
respectively. The mappings a(-) : RY — R? and h(-) : R? — R are known C' functions,
and pg is the density of the prior probability distribution. The scalar-valued observation is
considered here for notational ease. The extension to the general vector-valued observation is
straightforward and described in Remark 3.3.
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The objective of the filtering problem is to compute the posterior distribution of the state
X, given the time history of observations (filtration) Z; := 0(Zs: 0 < s < t).

The problem is linear Gaussian if a(-), and h(-) are linear functions and pg is a Gaussian
density. We use A and H to denote the matrices that define these linear functions, i.e,
a(x) = Az and h(z) = Hz. The background on the linear Gaussian problem, along with its
solution given by the Kalman-Bucy filter [35], appears in [40].

Feedback particle filter (FPF) is a numerical algorithm to approximate the posterior
distribution in nonlinear non-Gaussian settings [67, 66]. The FPF algorithm is an alternative
to the sequential importance resampling (SIR) particle filters [30, 25, 3, 22]. The distinguishing
feature of the FPF is that the importance sampling step is replaced with feedback control.
Steps such as resampling, reproduction, death or birth of particles are altogether avoided. The
particles in FPF have uniform importance weights by construction. Therefore, the FPF does
not suffer from the particle degeneracy issue that is commonly observed in implementations
of the SIR particle filters [25]. In independent numerical evaluations and comparisons, it has
been observed that FPF exhibits smaller simulation variance and better scaling properties
with the problem dimension [9, 54, 55]. However, as is the focus of the remainder of this
paper, implementing the FPF algorithm is computationally challenging because of the gain
function approximation problem (1.5).
The construction of FPF is based on the following two steps:

Step 1: Construct a stochastic process, denoted by X; € R¢, whose conditional distribution
(given Z;) is equal to the conditional distribution of Xj;

Step 2: Simulate N stochastic processes, denoted by {Xf}i]il, to empirically approximate
the distribution of X;.

N
L)1 20 M2 B2 R D )
=1

exactness condition

The process X; is referred to as mean-field process and the N processes {X;}¥, are
referred to as particles. The construction ensures that the filter is exact in the mean-field
(N = 00) limit.

The details of the two steps are as follows:

Mean-field process: In the FPF, the mean-field process X; evolves according to the SDE
given by

h(Xy) + hy
2

feedback control law

(12) dXt = CL(Xt) dt + dBt + Kt(Xt) ¢} (dZt — dt), XO ~ Po,
—_—

propagation

where By is a standard Wiener processes independent of X and hy := E[h(X;)|Z,]. The o
indicates that the SDE is expressed in its Stratonovich form. The gain function is K¢(x) :=
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Vi (x) where ¢y is the solution of the Poisson equation:

~

Poisson equation: V- (pe(2)Vi(z)) = —(h(x) — hy), VaeRY

1
(1.3) pi(z)
s.t. /<Z5t(95)17t(95) dz =0,
where V and V- denote the gradient and the divergence operators, respectively, and p; denotes
the conditional density of X; given Z;. The operator on the left-hand side of the Poisson
equation (1.3) is referred to as the probability-weighted Laplacian. It is denoted as A, where
the probability density p is the conditional density p;.

Particles: The particles { X/}, evolve according to:

(1.4) AXi = a(Xi)dt + dBi + KM (XP) o (dZ, —

5 Lid.

(X)) + by
SECTR ), X o,

fori=1,... N, where {Bz}f\il are mutually independent standard Wiener processes, ﬁgN) =

% ZZJ\L Lh(X}), and KEN) is the output of an algorithm that approximates the solution to the
Poisson equation (1.3)

(1.5) Gain function approximation: KEN) := Algorithm({ X/ }¥ ,; h).

The notation is suggestive of the fact that algorithm is adapted to the ensemble {Xl?}f\;l and
the function h; the density p;(z) is not known in an explicit manner.

Development and error analysis of one such gain function approximation algorithm is the
subject of the present paper. Before describing the general case, it is useful to review the filter
for the linear Gaussian case where the solution of the Poisson equation is explicitly known.

FPF for Linear Gaussian setting: Suppose a(x) = Az, h(x) = Hz, and p; is a Gaussian
density with mean m; and variance ;. Then the solution of the Poisson equation is known in
an explicit form [66, Sec. D]. The resulting gain function is constant and equal to the Kalman
gain:

(1.6) Ki(z)=SH', YzeRe
Therefore, the mean-field process (1.2) for the linear Gaussian problem is given by:

HX, + Hmy

dX; = AX;dt + dB, + %, H ' (dZ; — 5

dt)? XO ~ Po-

Given the explicit form of the gain function (1.6), the empirical approximation of the gain

is simply KgN) = El(fN)H T where ZEN) is the empirical covariance of the particles. Therefore,
the evolution of the particles is:
(1.7) dX; = AX{dt+ dB; + K, /(dZ; — —————dt), X{ ~ po,

2
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(N)

fori =1...., N, where m; ’ is the empirical mean of the particles. The empirical quantities
are computed as:
N N
. N N
= >, M = Z )(XE—m{MHT
i=1 i=1

The linear Gaussian FPF (1.7) is identical to the square-root form of the ensemble Kalman
filter (EnKF) [8, Eq. 3.3].

One extension of the Kalman gain is the so called constant gain approximation formula
whereby the gain K, is approximated by its expected value (which represents the best least-
squared approximation of the gain by a constant). Remarkably, the expected value admits
a closed-form expression which is then readily approximated empirically using the particles
(see Remark 2.3 for derivation):

Const. gain approx: E[K,(X})|Z] = / (h(z) — hy) 2 py(x) da
R4

1< P
NZ My x7.

The constant gain approximation formula has been used in nonlinear extensions of the EnKF
algorithm [21]. The connection to the Poisson equation provides a justification for this formula.
The formula is attractive because it provides a consistent (as the number of particles N — o0)
approximation of the Kalman gain in the linear Gaussian setting.

(1.8)

Design and analysis of the gain function approximation algorithm (1.5) in the general case
is a challenging problem because of two reasons: (i) Apart from the Gaussian case, there are
no known closed-form solutions of (2.1); (ii) The density p;(x) is not explicitly known. At
each time-step, one only has samples {X} ﬁ\;l. For the purpose of this paper, these samples
are assumed to be i.i.d. drawn from p;. The assumption is justified because in the limit of
large N, the particles are approximately i.i.d. (by the propagation of chaos); cf., [56].

1.1. Contributions of this paper. The paper presents a diffusion map-based algorithm
for the gain function approximation problem. The algorithm is named as such because it
involves, as an intermediate step, a diffusion map approximation of the exact semigroup e?.
The following is a summary of specific original contributions made in this paper:

(i) Error estimates that relate the exact semigroup to its diffusion map approximation.
The error estimates are derived by employing a Feynman-Kac representation of the
semigroup (Proposition 3.4);

(ii) A uniform spectral gap for the diffusion map based on the use of the Foster-Lyapunov
function method from the theory of stochastic stability of Markov processes (Proposi-
tion 4.2); and

(iii) Error estimates for the empirical approximation of the diffusion map (Proposition 3.5).
The results from (i) and (ii) are used to derive estimates for the bias and to show that the
bias converges to zero in a certain limit (Theorem 4.3). Results from (iii) are used to prove
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the convergence of the variance error term to zero in the infinite- N limit (Theorem 4.4). The
paper contains numerical experiments that serve to illustrate the effects of problem dimension
and sample size. The algorithm is applied to two filtering examples and comparisons provided
with the sequential importance resampling (SIR) particle filter.

1.2. Relationship to prior work. The gain function algorithm first appeared in the con-
ference version of this paper [58]. Its preliminary error analysis was reported in the conference
paper [60]. The important distinction is that the results in these conference papers were pre-
liminary in nature. The proofs were either altogether omitted or based on formal arguments.
The main techniques employed in this paper, namely, (i) the use of Feyman-Kac representa-
tion to quantify the error due to the diffusion map approximation of the exact semigroup, and
(ii) the use of stochastic stability theory to derive uniform spectral gap for the diffusion map,
are original and do not appear in the conference papers. These techniques are important to
be able to obtain precise estimates as enumerated above in the list of contributions. Since the
main technical tools are new, all the proofs, based on these techniques, are new and original
contributions of this paper. The diffusion map was introduced in [15], in the context of spec-
tral clustering [6, 63]. Results on its convergence analysis appears in [32, 52, 15, 28, 31, 64, 7].
The use of diffusion map approximations for filtering problems is originally due to the authors.

1.3. Literature survey. Apart from its direct relevance to numerical approximation of the
FPF, there are three topics of current research interest that are relevant to the subject of this
paper: (i) ensemble Kalman filter; (ii) particle flow algorithms for nonlinear filtering; and (iii)
optimal transport. Specifically, the algorithms for gain function approximation described in
this paper are also directly applicable to these other topics. These relationships are briefly
discussed next:

Ensemble Kalman filter: The EnKF algorithm was first developed in the discrete-time set-
ting [27]. In the continuous-time setting, two formulations of the EnKF have been developed:
stochastic EnKF, and the more recent deterministic EnKF [8, 51]. As has already been noted,
the deterministic EnKF is in fact identical to the FPF algorithm (1.7) in the linear Gaussian
setting [8, 57].

The EnKF algorithm provides a consistent approximation in the linear Gaussian setting.
Compared to the Kalman filter, the main utility of EnKF is that it does not require propa-
gation of the covariance matrix. This reduces the computational complexity from O(d?) for
the Kalman filter to O(Nd). This is clearly advantageous in high dimensional problems when
N « d. This property has made EnKF popular in applications such as weather prediction
in high dimensional settings [36, 47]. The disadvantage of the EnKF algorithm, of course, is
that it does not provide a consistent approximation for nonlinear problems.

FPF represents a the generalization of the EnKF to the nonlinear non-Gaussian set-
ting [57]: With the constant gain approximation, the algorithms are identical. Given this par-
allel, the problem of improving the EnKF algorithm in more general nonlinear non-Gaussian
settings is directly related to the problem of better approximating the gain function in the
FPF. In an application software based on EnKF, it is a relatively simple matter to replace
the constant gain formula for the gain by more sophisticated approximations described in this
paper. Certain empirical evaluations on the performance of FPF in high-dimensional settings
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are reported in [55, 54, 53, 9].

Error analysis and stability of EnKF is an active area of research; see [43, 41, 24] for
linear models and [21, 23, 37] for nonlinear models. The error analysis for the gain function
approximation reported in this paper is a step towards error analysis of the FPF along these
lines.

Particle flow algorithms: The following first-order (and hence an under determined) form
of the Poisson equation appears in most types of particle flow algorithms:

V- (pe(2)K(z)) = (rhs),

where the righthand-side (rhs) is given and K(z) defines a vector field that must be obtained to
implement the particle flow. The PDE appears in the first interacting particle representation
of the continuous-time filtering in [17, 18] and the discrete-time filtering in [19]. Stochas-
tic extensions of these have also recently appeared in [20] where approximate solutions are
also described based on Gaussian assumption on the density. The algorithm described here
represent an approximation of a particular gradient form solution of the first-order PDE.

Optimal transport: The mean-field SDE (1.2) represents a transport that maps the prior
distribution at time 0 to the posterior distribution at an (arbitrary) future time ¢ > 0. Syn-
thesis of optimal transport maps for implementing the Bayes formula appears in [50, 14, 26,
59, 33, 13]. The relationship with the Poisson equation is through the ensemble transform
filter which relies on a linear programming construction to approximate the optimal transport
map [14]. As discussed in [57, Sec. 5.5], the solution of the Poisson equation yields an in-
finitesimal optimal transport map from the “prior” pi(z) to “posterior” %pt(x)e_th(x), where
~ is the normalization constant. Another closely related approach is transportation through
Gibbs flow [33].

Directly related to the FPF, the Galerkin method for the numerical solution of the Pois-
son equation appeared in original papers [66, 67]. The Galerkin algorithm represents the
‘direct” PDE approach to construct a numerical approximation. The constant gain approx-
imation is a particular example of a Galerkin solution. In general, the main problem with
the Galerkin approximation is that it requires a selection of basis functions. This becomes
intractable in high dimensions. To mitigate this issue, a proper orthogonal decomposition
(POD)-based procedure to select basis functions is introduced in [11]. Other existing ap-
proaches are a continuation scheme for approximation [44], a probabilistic approach based
on dynamic programming [48], and a procedure based on expressing the gain function in a
reproducible Hilbert kernel space [49]. A comparison of different gain function approximation
methods appears in [10].

1.4. Paper outline. The outline of the remainder of this paper is as follows: The mathe-
matical problem of the gain function approximation together with a summary of known results
on this topic appears in section 2. The diffusion-map based algorithm is described in a self-
contained fashion in section 3. The main theoretical results of this paper including the bias
and variance estimates appear in section 4. Some numerical experiments for the same appear
in section 5. All the proofs appear as part of the supplementary material.
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1.5. Notation. For vectors z,y € R? the dot product is denoted as -y and |z| := /z - z.
The space of positive definite d x d matrices is denoted as Sﬁlr .. The Borel o-algebra on R% is
denoted by B(R?). The indicator function, for a measurable set A € B(R?), is denoted asT4(+).

The space of measurable functions f : R? — R such that 1l ey == ([ 1f (= ]pp )1/p
oo is denoted as LP(p). The inner product on L?(p) is defined by {f,g) := [ f(z (x) dx.
The space H'(p) is the space functions f € L?(p) whose derivative (defined in the Weak sense)
is in L?(p). For a (weakly) differentiable function f, |V f|l1o(p) := ([ |V f(2)[Pp(z) dz) YP For
an integrable function f, f, := [ f(x)p(z) dz denotes the mean. L3(p) := {f € L*(p) | f, = 0}
and H}(p) := {f € H(p) | fp = 0} denote the co-dimension 1 subspace of functions whose
mean is zero. L>°(Q) denotes the space of bounded functions on Q C R? with the sup-norm
denoted as [ - ||~ (q). The space of bounded and continuous functions on Q C R¢ and the
space of bounded and smooth functions on 2 is denoted as Cy(€2) and C;°(f2) respectively.
For a linear operator T, on a Banach space X with norm || - ||, the operator norm is denoted
as ||T||x. The Gaussian distribution with mean m and covariance ¥ is denoted as N (m, X).
The variance of the random variable X is denoted as Var(X).

2. Gain function approximation.

2.1. Problem formulation. The mathematical problem is to numerically approximate the
solution of the Poisson’s equation (1.3) introduced in section 1 and also repeated below:

~A,p=h—h,,
(2.1) /¢ 2)di =0,

where the weighted Laplacian A,¢(x) := e )V (p(x)Vé(x)); p(x) is an everywhere positive

probability density on R?; h(z) is a real-valued function defined on R¢ and Bp = [ h(z)p(z) dz.
The function ¢ is referred to as the solution. Its gradient is referred to as the gain function
and denoted as K(x) := V¢(x). The PDE (2.1) is referred to as the Poisson’s equation.

The numerical approximation problem is as follows:

Problem statement: Given N samples {X!,..., X? ..., XV} drawnii.d.. from p, approx-
imate the gains {K',... K’ ... KN} where K’ := K(X?) = V¢(X?). The density p is not
known in an explicit form.

2.2. Mathematical preliminaries. Assumptions: The following assumptions are made
throughout the paper:
(i) Assumption Al: The probability density p is of the form p(z) = e~V(*) where the
function V(z) = 3(z —m) L7 (x — m) + w(z) for some m € RY, ¥ € S1,, and w € C°(RY);
(i) Assumption A2: The function h : R? — R is (weakly) differentiable with ||A|| Li(p) <
o0, HVhHL‘l(p) < 00.

Remark 2.1. Assumption Al is used to prove the approximation result (Proposition 3.4)
and to derive the spectral gap (Proposition 4.2) for the diffusion map approximation first
introduced in section 3. In prior literature, a similar assumption has been previously used
for studying functional inequalities to obtain Poincaré inequality with a constant that does
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not depend on the dimension [62, Ch. 8]. Assumption Al is restrictive, e.g., a mixture of
Gaussians does not satisfy the assumption. Based on numerical experiments, it is conjectured
that Assumption Al can be relaxed. A weaker assumption would be to assume p = p, *xw, the
convolution of a Gaussian density p, with a density w that has a compact support. Proving
the theoretical results under this weaker assumption is the subject of future work.

2.2.1. Spectral representation. Under Assumption (A1), the weighted Laplacian A, has
a discrete spectrum with an ordered sequence of eigenvalues 0 = Ay < Ay < A9 < ... and asso-
ciated eigenfunctions {e,} that form a complete orthonormal basis of L?(p) [5, Cor. 4.10.9].
The trivial eigenfunction eg(x) = 1, and for f € L(p), the spectral representation yields:

(2'2) - Apf = Z /\m<ema f>€m
m=1

The positivity of the smallest non-trivial eigenvalue (A1 > 0) is referred to as the Poincaré
inequality (or the spectral gap condition) [4]. The inequality is equivalently expressed as

[0=qpede s [ 19iPods, Ve HYG),
R4 1 JRrd

where f, = [ fpdz.

The Poincaré inequality is important to show that the Poisson equation is well-posed and
a unique solution exists. The solution to the Poisson equation is defined using the weak
formulation.

2.2.2. Weak formulation. A function ¢ € H}(p) is said to be a weak solution of (2.1) if

23) [ Vo) Vol de = [(ha) - hv@p)ds Vo e H ),

Equation (2.3) is referred to as the weak-form of the Poisson’s equation. The weak-form is
expressed succinctly as (Vo, Vi) = (h — ﬁp, 1Y) where (-, -) is the inner-product in L?(p). The
existence and uniqueness of the solution to the weak-form of the Poisson equation is stated
in the following Proposition.

Proposition 2.2. [42, Thm. 2.2.] Suppose p satisfies Assumption (A1) and h satisfies
Assumption (A2). Then there exists a unique function ¢ € H}(p) that satisfies the weak-form
of the Poisson equation (2.3). The solution satisfies the bound:

[ IVo@)Ppw)de < - [ (@) - b)ota) da.

Remark 2.3 (Constant gain approximation). The weak formulation (2.3) has led to the
Galerkin algorithm presented in the original FPF papers [66]. A special case of the Galerkin
solution is the constant gain approximation formula (1.8). The formula is obtained upon
choosing the test functions in (2.3) to be the coordinate functions: ©,(x) = z,, for m =
1,2,...,d. Then,

%

oy (x)p(x)dx = /(h(w) - ﬁp)xmp(x) de, for m=1,...,d,
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which yields the formula (1.8).

The diffusion map-based algorithm presented in this paper is based on the semigroup
formulation of the Poisson equation.

2.2.3. Semigroup. Let {P;}:>0 be the semigroup associated with the weighted Laplacian
A,. The semigroup allows for a probabilistic interpretation which is described next. Consider
the following reversible Markov process {S;}i>0 evolving in R¢:

dS; = —VV(S;) dt + V2dB;,
where V (x) := —log(p(z)) and {B;};>0 is a standard Weiner process in R?. Then

Fif(x) = E[f(S)]So = .

It is straightforward to verify that P, : L?(p) — L?(p) is symmetric, i.e., (P.f,g) = (f, P;g)
for all f,g € L?(p) and p(z) = e~V ®) is its invariant density. The semigroup also admits a
kernel representation:

Pef(@) = 3 € e fleml@) = [ Fala,n) f(u)olo) du,
m=1

where ki (7, y) := > o0 _ e ey, (@)em(y).

The spectral gap implies that || ;|| L2(p) = e M < 1. Hence, P, is a strict contraction on
L% (p). For the special case of Gaussian density, the eigenfunctions are given by the Hermite
polynomials. This leads to an explicit formula for the kernel k;(z,y) in the Gaussian case, as
described in section SM1.

By definition of the semigroup

or.f
ot

Integrating the equation from time 0 to ¢ yields

= PA,f.

t
Pf—f= /0 P.A, f ds.

Letting f = ¢ where ¢ solves the Poisson equation (2.1) concludes the following fixed-point
equation for all ¢ > 0:

t
(2.4) (exact fixed-point equation) ¢ = Pip + / Py(h — h,) ds.
0

Equation (2.4) is referred to as the semigroup form of the Poisson equation (2.1).
The following Proposition shows that the weak form (2.3) and the semigroup form (2.4)
are equivalent. The proof appears in the section SM2.

Proposition 2.4. Suppose p satisfies Assumption (A1) and h satisfies Assumption (A2).
Then the unique solution ¢ € Hi(p) to the weak form (2.3) is also the unique solution to the
fized-point equation (2.4).
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The semigroup formulation has led to the diffusion-map based algorithm which is the main
focus of the remainder of this paper.

3. Diffusion map-based Algorithm. The diffusion map-based algorithm is based on a nu-
merical approximation of the fixed-point equation (2.4). The main technique is to approximate
the semigroup in the following steps:

1. Diffusion map approximation: A family of Markov operators {T¢}.~o are defined
as follows:

1

ne(z)

(31) T.f(@) = s | kel w)ola) do

where ne(z) := [ ke(z,y)p(y) dy is the normalization factor,

9e(z,y)

ke(z,y) =
VI 9@, 2)p(2) a2/ [ ey, 2)p(2)

Y

lz—yl® . . "
and gc(x,y) = e~ 7~ is the Gaussian kernel in R. For small positive values of

€, the Markov operator T; is referred to as the diffusion map approximation of the
exact semigroup P, [15, 32]. The precise statement of this approximation is contained
in Proposition 3.4. For the special case of Gaussian density, an explicit formula for
the diffusion map appears in the section SM1.

2. Empirical approximation: The operator T, is approximated empirically by the
family of operators {TE(N)}O(), ~en defined as follows:

1 N

(3.2) TN f(2) =~ Dk (@, X9) (X),

ne () j=1

(N

where n.¢ )(ac) = Zf\i L ke(z, X?) is the normalization factor and

Y () = ge(2,9) |
\/Zé\[:l ge(‘% Xj)\/Z;V:1 ge(ya Xj)

Recall that X7 & pfori =1,...,N. So, by law of large numbers (LLN), Te(N)f
represents an empirical approximation of the diffusion map T,.. The precise statement
of the empirical approximation is contained in Proposition 3.5.

3. Approximation as Markov matrix: An N x N Markov matrix T is defined with
(i,7)-th element given by

1 .
(3.3) Tij = ———KM(X? X7).
T ™ (x)
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Finite-dimensional fixed-point equation: Using the three steps described above, the
original infinite-dimensional fixed-point equation (2.4) is approximated as a finite dimensional
fixed-point equation

(3.4) O =Td +e(h —n(h)),
where h := (h(X1),...,h(XN)) is a N x 1 column vector, and 7(h) = SN | mh(X?) where
(N)(xi
ne " (X*)

the probability vector m; = is the unique stationary distribution of the Markov

SN aM(xd)
matrix T. The solution ¢ is used to define an approximation to the solution of the Poisson
equation as follows:

N
1 :
(3.5) o8 (@) =~y Dk (2, XY@ + e(h(z) — w(h)).
ne () j=1

The approximation for the gain function is as follows (see also Remark 4.8):

1 < A
(3.6) KM (@) =V | gy 2 k™ (2, X7)(@; + ehy)

ne () j=1

Upon evaluating the gradient in closed-form, the following linear formula results for the gain
function evaluated at particle locations:

N
(3.7) K= KX =3 sy X7,
j=1
where
1 N
(38) Sij 1= ZTij(rj — ZTika), Tji= ij + Ehj.
k=1

The details of the calculation leading to the linear formula appear in the section SM3.

Remark 3.1 (Numerical procedure). The fixed-point problem (3.4) is solved in an iterative

manner. The vector ® is initialized to ®g = (0,...,0) € RY and updated according to
(3.9) &1 =T, +e(h —7(h)),
forn=1,..., L for a finite number of L iterations. The procedure is guaranteed to converge,

with a geometric convergence rate, because T is a strict contraction on L3(r) (Proposition 4.1-
(ii)). The overall algorithm is presented in Algorithm 3.1.

The proposed iterative procedure (3.9) is preferred to other numerical procedures because
(i) it is straightforward to implement and does not require matrix inversion; (ii) it may be
numerically more efficient than solving a system of N linear equations; and (iii) it allows one
to use the solution obtained from the previous filter step, as initialization for the iterative
procedure (3.9), resulting in quick convergence — typically in a few iterations. The reason
for quick convergence is that the change in the solution of the fixed point equation (3.4) is
(typically) small from one filtering step to the next. This is because the change in particle
locations is (typically) small for a small choice of time increment.
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Algorithm 3.1 diffusion-map based algorithm for gain function approximation
Input: {X}Y | {R(X)IY,, Pprev, €, L
Output: {K}Y¥,

7|X¢—Xj\2

1: Calculate g;; :=e” " 4 for¢,j=1to N
;:ﬁfori,jzlto]\f
3: Calculate d; = Ej kij for i =1to N

4: Calculate T;; := %9 fori,7 =1to N

5: Calculate m; = ﬁ fori=1to N

6: Calculate h = Zf\il m;h(X?)

7: Initialize ® = ey

2: Calculate k;;

8: fort =1to L do R
9: &, :Z?Ll Tij®; +e(h—h)fori=1to N

10: end for

11: Calculate r; = ®;, +€h; fori =1 to N

12: Calculate s;; = = T;;(r; — Zszl Tierg) fori,j =1to N
13: Calculate K' =3, si; X7 for i =1to N

Remark 3.2. The computational complexity of the Algorithm 3.1 is O(N?) because of the
need to assemble the N x N matrix T. The computational complexity may be reduced by
employing sub-sampling techniques and exploiting the approximate sparsity structure of the
matrix T. It is noted that the matrix can be made sparse, e.g., by setting g.(X*, X7) = 0
whenever | X?—X7|? > ¢. Compared to the Galerkin algorithm with computational complexity
of O(Nd?), the diffusion-map algorithm is advantageous in high-dimensional problems where
d> N.

Remark 3.3 (Extension to vector-valued observation). Consider the continuous-time filter-
ing problem (1.1a) and (1.1b) with vector-valued observation process Z; = (Z},...,2Z"),
observation function h = (h!,... ™), and a standard w.p. model for the observation noise
W. In this case, the update law (1.2) for the mean-field process of the FPF algorithm takes
the form

(X hJ
h (Xt2)+ht ),

dX; = a(Xy) dt + dB, + 3 KI(X) o (42 —
j=1

where h! = E[h/(X;)| 2], and KI(z) = V¢ () for j = 1,...,m. The function ¢ is the solution
of the Poisson equation (1.3) with the function & replaced by the function A/, for j = 1,...,m.
In order to approximate the gain function with the diffusion map-based algorithm, one first
forms the Markov matrix T according to (3.3), and then solves the finite-dimensional fixed-
point problem (4.4) for each observation function (h',...,h™). The overall computational
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cost is of order O(mN?) scaling linearly with the number of observations.

3.1. Approximation results. The notation G¢(f)(z) := [ ge(x,y)f(y) dy is used to denote
the heat semigroup with a Gaussian kernel g(x,y), and

L, Gep) 1
1 = —1 = _71
(3.10a) U 5 og( 2 ), U 5 og(p),
1
(3.10D) We = ~log(e™Ge(e™)), W =|VU] - AU.
€

The proof of the following proposition appears in section SM5.
Proposition 3.4. Consider the family of Markov operators {T.}c~o defined according to
(3.1). Letn € N, t € (0,t9) with tg < 0o, and € = % Then,
(i) The semigroup P; and the operator T?' admit the following representations:
(3.11) Pif(z) = V@E[e~ Jo W(B5) ds~U(BS) ¢ (B2 )]
(3.12) T2 f(w) = e Efem im0 WelPhd o ~Ue(P) (B3, ),

for all x € R where BY is the Brownian motion with initial condition BE = z.
(ii) In the asymptotic limit as € — 0:

U(z) + 2eW (z) + eAV (z) 4+ 2rM (z),
W(x) + er®(z),

(3.13a) Ud(z)
(3.13b) W(z)

where |1 ()], 1r ()| = O(|1z[?) and |Vr ()] = O(|z|) as |z| — oo.
(iii) For all functions f such that f,Vf € L*(p):

» tvt
(3.14) (T2 = P) 2y < “o2C s + IV Flian):

where the constant C only depends on ty and p.
The proof of the following proposition appears in section SMS.

Proposition 3.5. Consider the diffusion map kernel {T¢}c~o, and its empirical approxima-

tion {TG(N)}€>07N€N. Then for any bounded continuous function f € Cy(R%):
(i) (Almost sure convergence) For all v € R?

lim TN f(z) = T.f(z), a.s.
N—oo

(ii) (Convergence rate) For any 6 € (0,1), in the asymptotic limit as N — oo,

log(%)
NEd )7

(3.15) / T f(2) — Tof ()P pla) dae < O

with probability higher than 1 — 4.
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Remark 3.6. The key idea in the proof of the Proposition 3.4 is the Feynman-Kac rep-
resentation of the semigroup (3.11). To the best of our knowledge, this representation has
not been used before in the analysis of the diffusion map approximation. Most of the ex-
isting results concerning the convergence of the diffusion map are based on a Taylor series
expansion that would lead to a convergence of the form lim._,q M = A, f(x) for each
r € R? [32, 15, 28]. Convergence results of the form lim,, oo HTﬁf PtfHL2(p = 0 appear

in [15, 61], based on functional analytic arguments. The Taylor series type arguments typically
require the distribution to be supported on a compact manifold which is not assumed here.

4. Convergence and error analysis. The analysis of the diffusion-map algorithm involves
the consideration of the following four fixed point problems:

t
(4.1) (exact) ¢»=Po+ / Py(h — h,)ds,

(4.2) (diffusion-map approx.) Ge = Tepe + e( iz ),

(4.3) (empirical approx.) o) = T gN) 4 ¢(h — 7(h)),

(4.4) (finite-dim.) =T+ e(h—m(h)),

where h,, == [ h(z)p.(z) dz and p.(z) = f:?(;i)p() is the density of the invariant probabil-

ity distribution assomated with the Markov operator 7.

In practice, the finite-dimensional problem (4.4) is solved. The existence and uniqueness
of the solution for this problem is the subject of the following proposition whose proof appears
in section SM4.

Proposition 4.1. Consider the finite-dimensional fized point equation (4.4).
Then almost surely
(i) T is a reversible Markov matriz with a unique stationary distribution

n™M (X1
SN M (xd)

(45) T =

fori=1,...,N.

(ii) T i4s a strict contraction on Li(m) = {v € RY; > mu; = 0}. Hence the fived point
equation (4.4) has a unique solution ® € L(r).

(iii) The (empirical approz.) fixed point equation (4.3) has a unique solution given by

(see (3.5))
o ()

(z, X7)®; + e(h(z) — m(h)).

Based on the results in Propomtlon 2.4 and Proposition 4.1, the exact solution ¢ and the
numerical solution (;SEN) are both well-defined. The remaining task is to show the convergence

of gZ)EN) — ¢ as N — oo and ¢ — 0. We break the convergence analysis into two parts, bias
and variance:

o) NToo ) 0

(variance) ‘ (bias)
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Before describing the general result, it is useful to first introduce an example that helps
illustrate the bias-variance trade-off in this problem.

4.1. Example - the scalar case. In the scalar case (where d = 1), the Poisson equation
is:

1 d d¢

) ) g () = () .

Integrating twice yields the solution explicitly

do 1 r -
(4.6) Kexact () = a(az) ) /OO p(2)(h(z) — h)d=.

For the choice of p as the sum of two Gaussians N'(—1,0?) and N (+1,0?) with 02 = 0.2
and h(x) = z, the solution obtained using (4.6) is depicted in Figure 1 (a). Also depicted is the
approximate solution obtained using the diffusion-map algorithm with N = 200, for different
values of e. The constant gain approximation is evaluated according to the explicit integral
formula (1.8). As € — oo the approximate gain converges to the constant gain approximation.
As € becomes smaller, the approximation becomes more accurate. However, for very small
values of € the approximation is poor due to the variance error.

The bias-variance trade-off while varying the parameter € is depicted in Figure 1 (b). The
L? error is computed as a Monte-Carlo average:

L Mo N
_ m 7 7\ 12
(4.7) ms.e = o mE:1 N ;1 K™ (X) — Kexact (X )|

Figure 1 (b) depicts the error obtained from averaging over M = 1000 simulations as a function
of the parameter e. It is observed that for a fixed number of particles IV, there is an optimal
value of € that minimizes the error.

The vector counterpart of this example appears in subsection 5.1.

4.2. Bias. The analysis of bias has two parts:
1. To show that the (diffusion-map) fixed-point equation (4.2) admits a unique solution
¢, for all positive choices of ¢;
2. To show that ¢ — ¢ as € | 0.
For n € N, iterate the fixed-point equation (4.2) n times to obtain:

n—1

(4.8) G =T+ > TF(h — hy,).
k=0

We let € = % for some ¢t > 0 and study the solution of this fixed-point equation as n — oo.
Note that the solution to the iterated fixed-point equation (4.8) is identical to the solution
to the fixed-point equation (4.2). In the context of equation (4.8), the parameter e = % is
interpreted as a small time step-size.

The fixed-point equation (4.8) is the (discrete) Poisson equation that appears in the theory

of Markov chain simulation [29, 46] and stochastic control [45, Ch. 9]. Theory presented in
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exact —e— diffusion map
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=
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&
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Figure 1. Simulation results for the diffusion-map algorithm for the scalar bimodal example: (a) Approwi-
mate gain function for different choices of € compared to the exact gain function (solid line). The shaded area in
the background is the bimodal probability density function p. The dashed line is the constant gain approzimation
solution; (b) Gain function approzimation error of the diffusion-map algorithm as a function of the parameter
€. All the results are with N = 200 particles.

these references illustrates how bounds on the solution are obtained under a Foster-Lyapunov
drift condition. A similar strategy is adopted here.

In the following proposition, an existence-uniqueness result is described for the fixed-point
equation (4.8). The technical step in the proof involves a Foster-Lyapunov condition known
as DV(3) [39]. The proof appears in section SM6.

Proposition 4.2. Consider the family of Markov operators {T.}c>o defined in (3.1). Let
neN, te(0,ty), and e = %, with tg < co. Then there exists positive constants a, b, R, §, a
probability measure v, and a number ng € N such that for all n > ng:

(4.9a) log(e VeTrmeVs) < —atU, + b,
(4.9b) TMa(z) > 6v(A)Lj<p VA € BRY).
Consequently,
(i) The chain with transition kernel T is geometrically ergodic with invariant density
no(@)p(x)
(4.10) pe(x) i = —i~F7—.
[ ne(z)p(x) dz

(il) 17 is reversible with respect to the density p. It admits a spectral gap as a linear
operator T : L3(pe) — L3(pe) that is uniform with respect to €. The spectral gap is denoted
as .

(iii) There ezists a solution to (4.8) with the bound

Pl z2¢p0)

I¢cl22 < =

The proof of the following main result appears in section SM7.
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Theorem 4.3. Suppose the assumptions (A1)-(A2) hold for the density p and the function
h, and ¢ denotes the exact solution of (4.1). Consider the approximation of this problem
defined by the (diffusion-map) fized-point equation (4.2). For the approzimate problem:
(i) Ezistence-Uniqueness: For each fized € > 0, there exists a unique solution ¢e.
(i) Convergence: In the asymptotic limit as € — 0

(4.11) e — @ll2(p0) < Ofe).

4.3. Variance. The analysis of the variance concerns the (empirical) fixed-point equa-
tion (4.3) whose solution is denoted as ¢£N). The parameter € is assumed to be positive and
fixed and N is assumed to be finite but large.

The existence-uniqueness of qng) has already been shown as part of Proposition 4.1. The
convergence has only been shown below only for the case where the density has a compact
support.

Assumption A3: The distribution p has compact support given by Q C R¢.

Theorem 4.4. Suppose the assumptions (A2)-(A8) hold for the density p and the function
h, and ¢. denotes the solution of the (kernel) fixed-point equation (4.2) for a fized positive
parameter €. Consider the approzimation of this problem defined by the (empirical) fized-point
equation (4.3). For the approximate problem:
(i) Existence-Uniqueness: For each finite N, there exists (almost surely) a unique
solution d)EN).

(ii) Convergence: The approzimate solution QSEN) converges to the kernel solution ¢,

; V) _ gl
(4.12) Jim (60— gllpeioy =0, as

The proof of the convergence ngN) — ¢ is based on classical results in the numerical
analysis of integral equations on a grid [1, 2]. It relies on the verification of the following three
conditions:

(i) The family of operators {Te(N)}]O\,O:1 is collectively compact as linear operators on
Co(92).
(ii) For any function f € Cy(Q2),

(4.13) lim TN f —T.f| (@) =0, as.
N—oo

(iii) The inverse (I —T.)~! exists and it is a bounded on Cy(f2) := {f € Cy(Q); fp = 0}.
Once these three conditions have been verified, the convergence result (4.12) follows from
a standard result in the approximation theory of the numerical solutions of integral equa-
tions [34, Thm. 7.6.6]. The proof appears in section SMO.

Remark 4.5 (Convergence rate). The result in Theorem 4.4 establishes asymptotic con-
vergence of the variance error to zero. However, it does not provide an explicit form for the
convergence rate. It is possible to obtain an explicit form based upon a convergence rate
estimate for the uniform convergence (4.13). The latter is difficult because the existing re-
sult in [28] holds only under rather strong regularity conditions on f and assumes that the
distribution p is uniform.
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Based upon the approximation result Proposition 3.5, suppose a convergence rate holds
for (4.13) with order O(W). In this case, it is straightforward to derive the following
explicit form of the convergence rate for the variance:

1
N
e = 6 || Lo (@) < O(N1/2€1+d/2)'

The validity and tightness of this bound is studied using numerical experiments in section 5.

Remark 4.6. (Unbounded domain) Analysis of the variance error for the case where the
support of p is unbounded has proved to be difficult. In the unbounded case, it is more
appropriate to consider T, and T, e(N) as linear operators on L?(p). Following the same approach
as used in the proof of Theorem 4.4, one would need to verify the three conditions noted above.
However, for the unbounded case, we could not verify the condition (i) that {Tg(N) X s
collectively compact on L?(p). An alternative approach is to follow the spectral method
as outlined in [38]. In this approach, one examines the convergence of empirical matrix
k(X% X7)N_, where k(-,-) is a given symmetric kernel. However, this approach does not

2,7=1
directly apply to the analysis of the empirical operator TE(N). This is because the form of the
kernel k:gN)(-, -), as it is used in the definition of TE(N), is not explicitly given. It too must

be empirically approximated as a ratio whose convergence analysis has proved to be rather
challenging.

4.4. Relationship to the constant gain approximation. Although the convergence and
error analysis pertains to the € | 0 limit, an important property of the diffusion-map approx-
imation is that the numerical procedure yields a unique solution for arbitrary values of € (see
Proposition 4.1). In fact, more can be said: one recovers the constant gain approximation
formula in the € — oo limit.

Before stating the result, it is useful to recall the three formulae for the gain:

(i) Exact formula: K = V¢ is defined using the exact solution ¢;
(ii) Kernel formula: K. is defined using the solution ¢, to the (diffusion-map) approx-
imation fixed-point equation:

1
ne(z)

(iii) Empirical formula: KEN) is the empirical version of the kernel formula. It was
defined in (3.6) using the solution ® of the finite-dimensional fixed-point problem.

(4.14) Ke(r) = vx[ [ kel ) 60) + b)) ]

The proof of the following Proposition appears in the section SM10.

Proposition 4.7. Consider the fized-point problems (4.2) and (4.3) in the limit as € — co.
(i) The kernel formula of the gain is given by

1i>m Ke = /(h(:n) - Bp)m)(z:) dz.
(ii) For any finite N, the empirical formula of the gain is given by

(h(X") = M) X" as.
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This result serves to highlight the connection between the FPF and the EnKF: With the
diffusion map approximation of the gain, the FPF approaches EnKF in the limit of large e.
The parameter € can then be regarded as the tuning parameter to “improve” the gain. Of
course, for any finite value of N, this can only be done up to a point — where variance becomes
dominant (see Figure 1).

Remark 4.8 (Justification of the approximation (3.4) and (3.6)). The exact fixed-point
equation (2.4) may be approximated empirically in terms of TG(N) in the following two ways:

(4.15a) N = TMGN) 4 e(h — m(n)),
(4.15b) o) = TN + 1™ (h— 7 (h)).

The (4.15a) and (4.15b) follow from two ways to approximate the integral term

/OePS(h — h,) ~e(h—h,),

~

/ Py(h —h,) ~ eP.(h — h,),
0

upon approximating P, with 7). In the limit as € — 0, both (4.15a) and (4.15b) are valid
approximations of exact equation (2.4). However, the two approximations exhibit significantly
different asymptotic behaviour as € — co. In the limit as e — oo, the solutions to (4.15a) and
(4.15b) are given by asymptotic formulae

respectively. Similarly, the empirically approximated gain function may be defined in two
ways:

(4.16a) K@) [T§N>¢§N> +e(h— w(h))} ,

v
(4.16b) KM = v [T<N>¢§N> +eT ™M (h — w(h))} ,

where gng) is either given by (4.15a) or (4.15b). The two approximations yield the same limit
as € — 0, however exhibit different asymptotic behaviour as € — oo. Given two ways to define

) according to (4.15a) and (4.15b), and two ways to define KW according to (4.16a) and

(4.16b), there are four different asymptotic behaviour for KM as e — oo, that are tabulated
in Table 1.

In the paper, we choose to define qng) according to (4.15a) and define the gain KEN) ac-
cording to (4.16b) . With these choices, the gain converges to the constant gain approximation

formula (1.8), in the limit as € — oo.

5. Numerics.
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K™ def.
A qof (4.16a) (4.16D)
(4.15a) SVh+ 5Kest  Kest
(4.15D) §Vh Kest
Table 1

Asymptotic behaviour of the gain KN ase— 00, corresponding to definitions (4.16a) or (4.16b) of KEN),

where ¢>£N> is defined by either (4.15a) or (4.15b). Here Kcs: denotes the constant gain approzimation (1.8).

5.1. Example - the vector case. A vector generalization of the scalar example in subsec-
tion 4.1 is obtained by considering the following form of the probability density function in
d-dimensions:

d
p(x) = pp(x1) H pg(an), for = (x1,22,...,2q4) €RY
n=2
where py, is the bimodal distribution A (—1,02) + 3N (+1,0?) introduced in subsection 4.1,
and p, is the Gaussian distribution A(0,0%). Also suppose the function h(z) = z1. The
simple example is illustrative of realistic application scenarios where the density has non-
Gaussian features along certain (not necessarily apriori known) low-dimensional subspace.
The directions orthogonal to this subspace are modelled here as Gaussian noise.
For this problem, the exact gain function is easily obtained as

Kexact(x) = (Kexact($1), 0,..., O)a

where the function Kexact(21) is given by the formula (4.6) in subsection 4.1. The exact
solution is used to compute error properties as dimension increases.

The diffusion-map algorithm (Algorithm 3.1) is simulated to approximate the gain function
for this problem. The number of iterations in Algorithm 3.1 set to L = 103. For each particle

X' = (X},...,X}), the first coordinate X} £ IN(=1,0%) + IN(+1,0?) and other the

coordinates X R N(0,02) for n = 2,...,d. The constant gain approximation is evaluated
according to the explicit integral formula (1.8).

Figure 2 depicts the m.s.e (4.7) computed from running M = 100 simulations. A summary

of these results is as follows:

1. Figure 2-(a) depicts the error as a function of the parameters € and d for a fixed

number of particles N = 1000. Also depicted is the error with the constant gain
approximation. The constant gain error serves here as baseline.
For large values of €, the bias error is dominant, and as € — oo the error asymptotes to
the error for the constant-gain approximation. This is because (see Proposition 4.7)
the diffusion map gain approaches the constant gain as € — oo. For small values of ¢,
the variance error dominates. According to Remark 4.5, the upper-bound for m.s.e is
expected te be of the order O(ﬁ). However, the numerical error in Figure 2-(a) is
observed to be O(W). Therefore, the upper-bound in Remark 4.5 is not tight
for this specific problem.
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Figure 2. Simulation results for the diffusion-map algorithm for the vector bimodal example: (a) Gain
function approzimation error as a function of € for d € {1,2,5,10}. (b) Error as a function of € for N €
{100, 200, 500, 1000}. (c) Error as a function of N for e € {0.1,0.2,0.5,1.0}; (d) Comparison of the run-time.

2.

Figure 2-(b) depicts the bias-variance trade-off as a function of number of particles N
for the fixed d = 1. It is not a surprise that the error gets better, for all choices of e,
as the number of particles increase. However, the optimal value of € — at which the
error is the smallest — is relatively insensitive to changes in N.

. Figure 2-(c) depicts the error as function of N for different values of €. The dimension

d = 1 is fixed. The error goes down as O(%) and asymptotes to the O(e) bias. The

O(%) is due to the variance error obtained in Proposition 3.5 and O(e) bias error is

consistent with the conclusion of the Theorem 4.3.

. Figure 2-(d) depicts the run time comparison between the diffusion-map algorithm and

the constant gain algorithm. The scaling for the diffusion-map algorithm is O(N?)
which is significantly more expensive than the O(N) scaling of the constant gain
approximation.

Remark 5.1 (Selection of ¢€). The numerical results in Figure 2 suggest that there is an
optimal value of € such that the error is smallest. Given the fact that the constant gain
approximation results in the limit as € — oo, an optimal choice of € may be possible more
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generally. At the optimal value, one optimally trades-off the errors due to variance and bias.
The difficulty, of course, is that the formula for this optimal choice is not known and may
not even be possible in general settings. Instead, in the literature involving kernel methods, a

2
popular heuristic is to set € = 415)125(\1[)) where (med) is the median value of all pairwise distances

{|X% — X71}iz; [12]. The justification is that, with such a choice, the matrix [g(X?, Xj)]%-:l
is not close to the identity matrix (which represents the degenerate case).

Remark 5.2. It is worthwhile to also examine the limit as ¢ — 0 while NV is fixed at a
finite value. In this limit, the Markov matrix T converges to the identity matrix. As a result,
the solution ® to the fixed-point problem (4.4) is unbounded. However, in practice, value of
® is large but finite, because the equation (4.4) is solved in an iterative manner with finite
number of iterations. With a finite value of ® and T equal to identity, the gain function given
by the formula (3.7) is zero. Consequently, the feedback correction for each particle is zero.

5.2. Filtering example. Consider the following filtering problem:

dX; =0, Xo ~ po,
dZt = h(Xt) dt + Ow th,

where X; € R, Z; € R, o > 0, and {W;} is standard Brownian motion, independent of Xj.
The prior distribution pg is Gaussian AN(0,1) and the observation function h(xz) = |z|. For
the static filtering problem, the posterior distribution is explicitly given by:

< x _tp2(
p?(%’) = (CODSt.)pO(Qj)eU?H (h(z)Z sh ( ))

Three filtering algorithms are implemented for this problem: (i) the FPF algorithm with
the diffusion-map gain approximation; (ii) the FPF algorithm with the the constant gain
approximation (similar to EnKF); (iii) a sequential importance resampling (SIR) particle
filter [25]. The simulation parameters are as follows: The measurement noise o,, = 0.1. The
simulation is carried out for 7" = 500 time-steps with step-size At = 0.001. Both the algorithms
use N = 200 particles with identical initialization. For the diffusion-map approximation, the
kernel bandwidth was set to € = 0.1, and number of iterations in Algorithm 3.1 is set to
L = 100.

The numerical results are depicted in Figure 3. The distribution of the particles along
with the exact posterior distribution are depicted in Figure 3-(a). It is observed that the FPF
algorithm with the diffusion map approximation provides a more accurate approximation of
the posterior distribution. In contrast, the constant-gain approximation fails to reproduce the
bimodal nature of the posterior distribution. The fact that the approximated distribution,
using the constant-gain approximation, tends to the right is a random artifact due to the
initialization of the particles.

A quantitative estimate of the performance is provided in terms of a mean squared error
(m.s.e.). in estimating the conditional expectation of the function ¢(x) = z1,<¢. A Monte
Carlo estimate of the m.s.e. is depicted in Figure 3-(b) with M = 100 runs. At time ¢, it is
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Figure 3. Simulation results for the FPF algorithm for the filtering example: (a) The distribution of the
particles obtained using the diffusion-map approrimation and the constant gain approrimation as compared to
the exact distribution (dashed line); (b) Plot of the mean squared error in estimating the conditional expectation
of the function ¥(z) = xlz<o.

calculated according to

1 1Y i . ’
ms.e. = Mmz (N;W(t )—/w(:v)pt(l‘) dx) .

=1

At time ¢t = 0, the empirical distribution of the particles is an accurate approximation of
the prior distribution, because the particles are sampled i.i.d.. from the prior distribution.
Therefore, the m.s.e at t = 0 is small. As time progress, the difference between the empirical
distribution and the exact posterior becomes larger because the filter update is not exact. For
FPF, as the time-step At is small, the main source of the m.s.e. error is due to the error in
the gain function approximation. Therefore, the diffusion map FPF with its more accurate
approximation of the gain yields better m.s.e., compared to the EnKF using the constant
gain approximation. The particle filter, like FPF with diffusion map approximation, is able
to capture the bi-modal distribution. However, due to the stochastic noise, introduced from
the resampling step, it admits larger error.

5.3. Benes filter. Consider the following filtering problem:

dX; = uop tanh(UﬂXt) dt + opdB;, Xo= xo,
B

AZ; = (hi Xy + hihg) dt + AW,

where {X:},{Z:} € R are one-dimensional stochastic processes, {B;} and {W;} are one-
dimensional, independent, Brownian motions, x is a known initial condition, and the con-
stants u,op, h1,he € R. This filtering problem has a finite-dimensional analytical solution
given by a mixture of two Gaussians [3]:

th(at — bt,O'tQ) + (1 — wt)N(at + bt; 0'752)7
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Figure 4. Simulation results for the FPF algorithm for the Benes filter example: (a) The distribution of the
particles obtained using the diffusion-map approrimation and the constant gain approrimation as compared to
the exact distribution (dashed line); (b) Plot of the mean squared error in estimating the conditional expectation
of the function ¢ (z) = x.

where
ha + xo w

=ogV¥;tanh(hiogt) + ————— — h by = — tanh(hiopt

a; = op¥itanh(hiop )+cosh(h103t) 2, t h anh(hiopt),
t .

5 OB sinh(hi0ps) 1

= — tanh(hjopt U, = — =247 = )
ot h1 an ( 198 )7 t /0 Sinh(hlaBt) s W 1+ezztBbt coth(hiopt)

The three filtering algorithms, as in the previous example, are also implemented and
evaluated for this problem. The simulation parameters are chosen according to the values used
in [16]: p = 0.5, hy =04, hg =0, o = 0.8, g = 1.0. The simulations are carried out over
the time horizon T' = 10. The stochastic integrals are approximated with a first-order Euler
scheme using the discretization step-size At = 0.01. For FPF with DM gain approximation,
the kernel bandwidth e is selected according to the rule described in Remark 5.1 and number
of iterations in Algorithm 3.1 is L = 100.

The numerical results are depicted in Figure 4. It is observed that the FPF with DM and
constant gain approximations admit almost the same accuracy. The reason is that the exact
bimodal posterior distribution quickly converges to an almost uni-modal distribution. This is
because the weight of one of the mixture modes converges to zero. The accuracy of the SIR
particle filter is poor because of the stochastic noise introduced from resampling step.

6. Conclusions and Directions for Future Work. In this paper, the diffusion map (DM)
algorithm was presented for the problem of gain function approximation in the FPF. It was
shown that the approximation error converges to zero in the limit as the number of particles
N — oo and the kernel bandwidth parameter € — 0 (Theorems 4.3 and 4.4). In the limit as
€ — 00, the gain obtained using the DM algorithm was shown to converge to the constant
gain approximation (Proposition 4.7). Consequently, in this limit, the FPF using the DM
algorithm reduces to an EnKF. This is an important property because it suggests a path to
improve the performance of an EnKF algorithm by choosing an appropriate (finite) value of
the parameter €. The bounds, scalings and the numerical experiments described in this paper
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provide guidance on how to choose the parameter e for large but finite V. Some directions
for future work are as follows:

2]

8]

[4]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

1.

~ R R ZE

Relaxing the assumptions: The analysis is based on Assumption A1l which is restrictive
because it does not include the mixture of Gaussians. Relaxing this assumption,
possibly as suggested in Remark 2.1, is one possible avenue of future work.

. Error analysis for the FPF: The error analysis in this paper concerns primarily the

convergence of function gng) to the exact solution ¢. Extending these results to
include the convergence analysis of the gain KEN) = V(;SEN) to the exact gain K = V¢

is important for the complete error analysis of the FPF with finitely many particles.
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