
Safety-Critical Control and Planning for Obstacle Avoidance between
Polytopes with Control Barrier Functions

Akshay Thirugnanam∗, Jun Zeng∗, and Koushil Sreenath

Abstract— Obstacle avoidance between polytopes is a chal-
lenging topic for optimal control and optimization-based tra-
jectory planning problems. Existing work either solves this
problem through mixed-integer optimization, relying on simpli-
fication of system dynamics, or through model predictive control
with dual variables using distance constraints, requiring long
horizons for obstacle avoidance. In either case, the solution
can only be applied as an offline planning algorithm. In
this paper, we exploit the property that a smaller horizon is
sufficient for obstacle avoidance by using discrete-time control
barrier function (DCBF) constraints and we propose a novel
optimization formulation with dual variables based on DCBFs
to generate a collision-free dynamically-feasible trajectory. The
proposed optimization formulation has lower computational
complexity compared to existing work and can be used as a fast
online algorithm for control and planning for general nonlinear
dynamical systems. We validate our algorithm on different
robot shapes using numerical simulations with a kinematic
bicycle model, resulting in successful navigation through maze
environments with polytopic obstacles.

I. INTRODUCTION

Obstacle avoidance in optimization-based control and tra-
jectory planning has received significant attention in the
robotics community. When a tight-fitting obstacle avoidance
motion is expected, the robot and the obstacles need to
be considered as polyhedral. In this paper, we propose
an optimization formulation to consider obstacle avoidance
between polytopes using discrete-time control barrier func-
tion (DCBF) constraints with dual variables. The proposed
formulation is shown to be a computationally fast algorithm
that can serve as a local planner to generate dynamically-
feasible and collision-free trajectories, or even directly as a
safety-critical controller for general dynamical systems.

A. Related Work

1) Graph Search-based and Sampling-based Approaches:
Motion planning techniques in real-world applications often
consider high-level path planning and low-level control syn-
thesis, given safety requirements and dynamical constraints.
Graph search-based and sampling-based approaches such
as PRM [1], A* [2], RRT* [3] have been explored, and
many variant approaches have also been proposed based on
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Fig. 1: Comparison of approaches using optimization-based tra-
jectory planning with obstacle avoidance. The proposed algorithm
developed in this paper allows fast optimization, which can be used
as an optimal controller or a trajectory planner for general nonlinear
systems with obstacle avoidance between polytopes.

them, which could be applied as efficient strategies for high-
dimensional kinematic planning. However, generally, these
algorithms assume that a low-level controller exists, and is
able to track kinematically feasible trajectories in real time.
This leads to trajectories that are dynamically infeasible
and results in large tracking errors on dynamical systems.
Other approaches such as kinodynamic RRT* [4], LQR-
RRT* [5] try to bridge the gap between path planning and
control synthesis by finding appropriate steering inputs to
go between two vertices in the sampling graph. However,
these approaches cannot do dynamic collision checking with
respect to the exact nonlinear dynamics of the robot. For
general dynamical systems, we still need to locally generate
a dynamically feasible and collision-free trajectory.

2) Optimization-based Control and Trajectory Planning:
We now narrow down our discussion to optimization-based
approaches for generating collision-free trajectories. The
existing methods in this sub-area can be classified under two
categories: those that generate obstacle avoidance behaviors
with additional cost terms, and those that apply constraints to
achieve a similar behavior. Additional cost terms were first
introduced under the philosophy of potential fields [6], and
were later generalized to be named as “barrier function” [7].
This approach has been applied to solve optimal control and
trajectory generation problems with broad applications [8]–
[12]. Other methods consider the obstacle avoidance criteria
as constraints in the optimization problem. An example
of such a constraint is the distance constraint, enforced
using inequality constraints on the distance function between
the robot and obstacles, where the robots and the obsta-
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cles are usually approximated as points [13], lines [14],
paraboloids [15], ellipsoids [16], or hyper-spheres [17]. The
distance functions for these shapes have analytical expres-
sions and are differentiable so that nonlinear optimization
(NLP) solvers can easily compute the gradients.

3) Obstacle Avoidance between Polytopes: When a tight-
fitting obstacle avoidance motion is expected, the above
over-approximations of the shape of the robot can lead to
deadlock maneuvers, shown in Fig. 1. A tight polytopic
approximation of the shape of the robot enables obstacle
avoidance maneuvers that are less conservative, see [18].
However, the distance function between two polytopes is
implicit and not analytic [19], and requires a large amount
of numerical computation [20], [21]. Moreover, this distance
function between polytopes is also non-differentiable with
respect to the robot’s configuration, which makes it hard to be
treated as a constraint directly for a nonlinear programming
problem. For collision avoidance between two polytopes,
mixed-integer programming [19], [22], [23] applies well
for linear systems but cannot be deployed as a real-time
controller or trajectory planner for general nonlinear systems
due to the added complexity from integer variables [24].
To handle the non-differentiability of the distance function
between two polytopes, a duality-based approach [25] is
introduced to reformulate constraints as a set of smooth non-
convex ones. However, obstacle avoidance behavior with this
method can only be achieved with a relatively long horizon
and needs to be solved offline for nonlinear systems [26]–
[29]. Recently, a dual optimization formulation [30] was
introduced to construct a differentiable control barrier func-
tion (CBF) [31] for polytopes, but it only optimizes one-
step control input and is only applicable for continuous-time
affine systems with a relative-degree of one. This formulation
could also run into a deadlock for general high relative-
degree systems.

4) Obstacle Avoidance with DCBFs: To resolve the prob-
lems mentioned above, it’s required to propose a computa-
tionally fast multi-step optimization formulation for systems
with nonlinear discrete-time dynamics. Recently, it has been
shown that considering discrete-time control barrier function
(DCBF) constraints instead of distance constraints can handle
this challenge, where the DCBF constraints can regulate
the obstacle avoidance behavior with a smaller horizon and
prevent local deadlock in trajectory generation, see [32].
The control and planning problems with one-step [33] or
multi-step [32] optimization using DCBF constraints have
been studied, and various applications on different platforms,
including car racing [17], autonomous vehicles [34], and
bipedal robots [35] have validated this approach. In the
work mentioned above, the robots and the obstacles are
only considered as points or hyper-spheres, while obstacle
avoidance constraint between polytopes is still an unsolved
problem in all previous work by using discrete-time control
barrier functions.

B. Contributions

The contributions of our paper are as follows:

• We formulate the dual form of the obstacle avoidance
constraint between polytopes as DCBF constraints for
safety. These proposed DCBF constraints are incorpo-
rated into an NMPC formulation which enables fast
online computation for control and planning for general
nonlinear dynamical systems.

• The proposed NMPC-DCBF formulation for polytopes
is validated numerically. Different convex and non-
convex shaped robots are shown to be able to navigate
with tight maneuvers through maze environments with
polytopic obstacles using fast real-time control and
trajectory generation.

II. BACKGROUND

In this section, we present a brief background on op-
timization formulations using discrete-time control barrier
functions and obstacle avoidance between polytopic sets.

A. Optimization Formulation using DCBFs

Consider a discrete-time dynamical system with states x ∈
X ⊂ Rn and inputs u ∈ U ⊂ Rm, as

xk+1 = f(xk, uk), (1)

where xk := x(k), uk := u(k), k ∈ Z+, U is a compact set
and f is continuous.

1) Discrete-time CBFs: Obstacle avoidance for safety for
this dynamical system is defined in terms of invariance of its
trajectories with respect to a connected set. In other words, if
the dynamical system (1) is safe with respect to a set S ⊂ X ,
then any trajectory starting inside S remains inside S. The set
S is defined as the 0-superlevel set of a continuous function
h : X → R as:

S := {x ∈ X ⊂ Rn : h(x) ≥ 0}. (2)

We refer to S as the safe set and it represents the region
outside the obstacle. h is defined as a discrete-time control
barrier function (DCBF) if ∀ x ∈ S,∃ u ∈ U such that

h(f(x, u)) ≥ γ(x)h(x), 0 ≤ γ(x) < 1, (3)

Let γk := γ(xk). Satisfying (3) implies h(xk+1) ≥ γkh(xk),
i.e., the lower bound of the DCBF decreases exponentially
with the decay rate γk [33]. Given a choice of γ(x), we
denote K(x) as

K(x) := {u ∈ U : h(f(x, u))− γ(x)h(x) ≥ 0}. (4)

Then, if x0 ∈ S and uk ∈ K(xk), then xk ∈ S for ∀ k ∈ Z+,
i.e., the resulting trajectory is safe [33].

Given a valid DCBF h [31], imposing DCBF constraint (3)
in an optimization problem could guarantee system safety,
i.e., collision-free trajectories. If γ(x) is close to 1, the sys-
tem converges to ∂S slowly but can easily become infeasible.
On the other hand, if γ(x) is close to 0, the constraint (3)
is feasible in a larger domain but can approach ∂S quickly
and become unsafe. The later proposed formulation in [32]
introduces a relaxing form of DCBF constraint as follows,

h(f(x, u)) ≥ ω(x)γ(x)h(x), 0 ≤ γ(x) < 1. (5)
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where the relaxing variable ω resolves the tradeoff between
feasibility and safety and is optimized with other variables
inside an optimization formulation.

When one-step control input is optimized [33], it could
lead to a deadlock situation such that the robot is safe
but unable to track the reference command. A nonlinear
model predictive control formulation [17] can overcome
these problems, shown as follows,

NMPC-DCBF [17]:

min
U,Ω

p(xt+N |t)+

N−1∑
k=0

q(xt+k|t, ut+k|t)+ψ(ωk) (6a)

s.t. xt|t = xt, (6b)
xt+k+1|t=f(xt+k|t, ut+k|t), k=0, ..., N−1 (6c)
ut+k|t ∈ U , xt+k|t ∈ X , k=0, ..., N−1 (6d)
h(xt+k+1|t) ≥ ωkγkh(xt+k|t), ωk ≥ 0

for k=0, ..., NCBF−1, (6e)

where xt+i|t and ut+i|t denote the predicted state and input
at time t+i evaluated at the current time t. N and NCBF ≤ N
denote the prediction and safety horizons respectively, which
allows us to control the optimization computation complex-
ity, and U = [uTt|t, ..., u

T
t+N−1|t]

T and Ω = [ω0, ..., ωNCBF−1]
are the joint input and relaxation variables respectively. p(·)
and q(·, ·) are the terminal and stage costs respectively, and
ψ is the penalty function for the relaxation variable.

The optimization formulation (6) can be regarded as a
control problem with U∗ = [u∗Tt|t, ..., u

∗T
t+N−1|t]

T as the
optimized control inputs, as well as a trajectory planning
problem with X∗ = [x∗Tt|t, ..., x

∗T
t+N |t]

T as the optimized
trajectory. From the joint optimal input vector U∗ the first
input u∗t|t is applied at time t ∈ Z+, and the optimization
(6) is solved again at time t+ 1 with xt+1.

B. Obstacle Avoidance between Polytopic Sets

In this work, we assume that there are NO static obstacles
together with a single controlled robot. We further assume
that the geometry of all the obstacles and the robot can be
over-approximated with a union of convex polytopes, which
is defined as a bounded polyhedron.

Let the state of the robot be x ∈ Rn with its discrete-time
dynamics as defined in (1) and the geometry of the robot
and obstacles be in a l-dimensional space. We denote the
geometry of the i-th static obstacle and the dynamic robot
at some state x ∈ X by the polytopes:

Oi := {y ∈ Rl : AOiy ≤ bOi} (7)

R(x) := {y ∈ Rl : AR(x)y ≤ bR(x)},

respectively, where bOi ∈ RsOi
, i ∈ {1, ...NO} and bR(x) ∈

RsR , and AR, bR are continuous. Inequalities on vectors are
enforced element-wise. We assume that Oi, i ∈ {1, ...NO}
and R(x) ∀ x ∈ X are bounded and non-empty. sOi , sR

represent the number of facets of polytopic sets for the i-th
obstacle and the robot, respectively.

Then Oi, ∀ i ∈ {1, ..., NO}, and R(x), ∀ x ∈ X ,
are non-empty, convex, and compact sets, and the minimum
distance between any pair (Oi,R(x)) is well-defined. The
minimum distance is 0 if and only if Oi and R(x) intersect.
The square of the minimum distance between Oi and R(x),
denoted by hi(x), can be computed using a QP as follows:

hi(x) = min
(yOi ,yR)∈R2l

‖yOi − yR‖22 (8a)

s.t. AOiyOi ≤ bOi , AR(x)yR ≤ bR(x). (8b)

where (8) is a convex optimization problem. To ensure
safe motion of the robot, we enforce DCBF constraints (3)
pairwise between each robot-obstacle pair. Then, the safe set
corresponding to the pair (Oi,R) is defined as:

Si := {x ∈ Rn : hi(x) > 0}c, (9)

where (·)c denotes the closure of a set. Enforcing the DCBF
constraint for each hi ensures that the state remains in Si for
all i, and thus the state remains in S := ∩NO

i=1Si. Note that,
due to the relaxation variable ω, enforcing multiple DCBF
constraints for each hi is equivalent to enforcing a single
DCBF constraint on h(x) := mini{hi(x)}. Thus, we focus
on how to enforce the DCBF constraint for a given pair
(Oi,R).

However, (3) requires computation of hi(f(x, u)) via
(8), which can only be solved numerically. This results in
an optimization formulation with non-differentiable implicit
constraints, which results in a significant increase in com-
putation time. In the following section we derive explicit
differentiable constraints which guarantee that the DCBF
constraint is satisfied without affecting the feasible set of
safe inputs K(x) ∀ x ∈ X .

III. OPTIMIZATION WITH DUAL DCBF CONSTRAINTS

In this section, we derive the duality-based optimization
which allows generating obstacle avoidance maneuvers for
the controlled robot in tight environments with obstacles.

A. Dual Optimization Problem
Corresponding to the minimization problem (8), we can

define a dual problem. The dual problem is always a convex
optimization problem, and a maximization problem if the
original primal problem is a minimization one. The dual for-
mulation of (8) can be explicitly computed as [36, Chap. 8]:

gi(x) = max
(λOi ,λR)

−λOibOi − λRbR(x) (10a)

s.t. λOiAOi + λRAR(x) = 0, (10b)

‖λOiAOi‖2 ≤ 1, λOi ≥ 0, λR ≥ 0. (10c)

Here λOiAOi represents the normal vector of the plane of
maximum separation between the polytopes.

The Weak Duality Theorem [36, Chap. 5] states that
gi(x) ≤ hi(x) holds for all optimization problems. Since
(8) is a convex optimization with linear constraints and has
a well-defined optimum solution in R+, the Strong Duality
Theorem [36, Chap. 5] also holds, which states that

gi(x) = hi(x). (11)
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B. Obstacle Avoidance with Dual Variables

In order to remove the implicit dependence of hi(x) on x
via (8), we enforce a constraint stronger than (3) which does
not require explicit computation of hi(x) via (8). The dual
formulation of (8), (10), can be used to achieve this.

Let ḡi(x, λOi , λR) be the cost corresponding to any feasi-
ble solution (λOi , λR) of (10). Since (10) is a maximization
problem and the Strong Duality Theorem (11) holds for the
primal problem (8),

ḡi(x, λ
Oi , λR) := −λOibOi−λRbR(x) ≤ hi(x). (12)

Then, at time k, we can enforce the stronger constraint

− λOibOi − λRbR(f(xk, u)) ≥ γkhi(xk) (13)

which, using (12), implies

hi(f(xk, u)) ≥ γkhi(xk), (14)

as required. Hence, the DCBF constraint can be enforced
by (13) subject to (f(xk, u), λOi , λR) being feasible, i.e.,
the stronger DCBF constraint (13) along with the feasibility
constraints (10b), (10c) should be satisfied

−λOibOi−λRbR(f(xk, u)) ≥ γkhi(xk), (15a)

λOiAOi+λRAR(f(xk, u))=0, (15b)

‖λOiAOi‖2 ≤ 1, λOi ≥ 0, λR ≥ 0. (15c)

By the Strong Duality Theorem (11), ∃ λOi∗, λR∗ satis-
fying (10b)-(10c) such that for all x ∈ X ,

ḡi(x, λ
Oi∗, λR∗) = −λOi∗bOi − λR∗bR(x) = hi(x). (16)

This means that for any fixed x ∈ X , the input u satisfies
the DCBF constraint (3) with the implicit definition of hi
if and only if the tuple (u, λOi∗, λR∗) satisfies (13). So, the
feasible set of inputs is not reduced at any x ∈ X .

C. Optimization Formulation

We adopt the philosophy of the NMPC-DCBF method
to enforce safety constraints between polytopes, as shown
in Sec. III-B, and construct a multi-step optimization for-
mulation. For simplicity of notation, we drop the explicit
dependence of hi(xt+k|t) on xt|t and [uTt|t, ..., u

T
t+k−1|t]

T .
Since hi(xt+k|t) is also not explicitly known at time t,
to impose DCBF constraints along the horizon, we extend
the idea in Sec. III-B by enforcing a constraint stronger
than hi(xt+k+1|t) ≥ γkhi(xt+k|t) which does not rely on
computations of hi(xt+k|t) and hi(xt+k+1|t) via (8).

The primal optimization problem (8) provides an upper
bound to hi(x), which can be used in the stronger DCBF
constraints. Let (yOi , yR) be any feasible solution of (8).
Since (8) is a minimization problem and its solution is well-
defined for all x ∈ X ,

h̄i(x, y
Oi , yR) := ‖yOi − yR‖22 ≥ hi(x). (17)

Then at time t, we can enforce

− λOibOi − λRbR(xt+k+1|t) ≥ γk‖yOi − yR‖22 (18)

which, using (12) and (17), implies

hi(xt+k+1|t) ≥ −λOibOi−λRbR(xt+k+1|t)

≥ γk‖yOi − yR‖22 ≥ γkhi(xt+k|t),
(19)

as required. Additionally, we can introduce the relaxation
variables without affecting the analysis in this section.

Then at time t, we first calculate the optimal solutions
(yOi∗
t , yR∗t ) to the minimum distance QP (8) using x = xt,

hence the NMPC-DCBF formulation for polytopes is shown
as follows:

NMPC-DCBF for Polytopes:

min
U,Ω

p(xt+N |t)+

N−1∑
k=0

q(xt+k|t, ut+k|t)+ψ(ωk) (20a)

s.t. xt|t = xt, yOi
0 = yOi∗

t , yR0 = yR∗t (20b)
xt+k+1|t = f(xt+k|t, ut+k|t), k=0, ..., N−1 (20c)
ut+k|t ∈ U , xt+k|t ∈ X , k=0, ..., N−1 (20d)

−λOi

k+1b
Oi−λRk+1b

R(xt+k+1|t) ≥ ωkγk‖yOi

k −y
R
k ‖22,

for k=0, ..., NCBF−1 (20e)

AR(xt+k+1|t)y
R
k ≤ bR(xt+k+1|t), A

OiyOi

k ≤ b
Oi ,

for k=1, ..., NCBF−1 (20f)

λOi

k AOi+λRk A
R(xt+k|t)=0, ‖λOi

k AOi‖2 ≤ 1,

for k=1, ..., NCBF (20g)

λOi

k+1 ≥ 0, λRk+1 ≥ 0, ωk ≥ 0,

for k=0, ..., NCBF−1 (20h)

The subscripts of λOi , λR, yOi , yR denote the time, (20e) is
the DCBF constraint between polytopes, (20f) is the primal
feasibility condition, and (20g)-(20h) are the dual feasi-
bility conditions. The initial conditions, system dynamics
constraints, and input and state constraints are represented
by (20b), (20c), and (20d) respectively. This NMPC-DCBF
formulation (20) corresponds to enforcing safety constraints
only between the pair (Oi,R) of polytopes. To enforce
DCBF constraints between every pair of robot and obstacle,
we introduce corresponding dual and primal variables and
enforce the constraints (20e)-(20h) for each pair.

D. Complexity and Performance

1) Exponential DCBF Constraint: To reduce complexity
of the NMPC-DCBF shown in (20), we can modify the
DCBF constraint hi(xt+k|t) ≥ ωkγkhi(xt+k−1|t) by rolling
out time k and removing the dependence on xt+k−1|t from
the LHS of the DCBF constraint, thus enforcing the follow-
ing exponential DCBF constraints:

hi(xt+k|t) ≥ ωk(Πk
j=0γj)hi(xt|t). (21)

The exponential decay rate Πk
j=0γj arises due to rolling out

the decay rate at time j, γj . The DCBF constraint (21)
only contains hi(xt|t) on the RHS for all k, which can
be explicitly computed at each time step using xt = xt|t.
Note that the RHS of the DCBF constraint (19) at time
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(a) Triangle-shaped robot (b) Rectangle-shaped robot (c) Pentagon-shaped robot (d) L-shaped robot

(e) Triangle-shaped robot (f) Rectangle-shaped robot (g) Pentagon-shaped robot (h) L-shaped robot

Fig. 2: Snapshots from simulation of tight maneuvers of obstacle avoidance with a controlled robot with different shapes in two maze
environments. The triangle has side lengths 0.133m, 0.133m, 0.1m; the rectangle has length 0.15m and width 0.06m; the symmetric
pentagon has length 0.16m and width 0.1m; and the L-shape has an arm length 0.114m, arm width 0.03m, with included angle of
101 deg. The corridors in both the maze environments have widths 0.15m, and every robot geometry has at least one dimension larger
than the corridor width. The grey dotted lines represent the global reference path, the blue lines represent the local reference trajectory
for the optimization, and the yellow lines represent the optimized trajectory at various time instances.

k ≥ 1 cannot be computed explicitly, since xt+k|t implicitly
depends on the control inputs. This leads to modifying (20e)
with,

− λOi

k bOi − λRk bR(xt+k|t) ≥ ωk(Πk
j=0γj)hi(xt|t) (22)

Such a formulation speeds up the computational time, as only
h(xt|t) needs to be calculated at each time t. This change
affects neither the feasibility nor the safety of the system.

2) Horizon Length Selection: Compared with distance
constraints, DCBF constraints allow effective obstacle avoid-
ance behavior with smaller horizon length. Our NMPC-
DCBF formulation does not require the obstacle avoidance
horizon length NCBF be equal to N , which additionally
reduces the complexity [32]. Additionally, maneuvers such as
deceleration for obstacle avoidance or reversing motion for
deadlock avoidance are motion primitives that only require
a small horizon in the MPC formulation. To sum up, DCBF
constraints with dual variables enable fast optimization for
obstacle avoidance between polytopes.

IV. NUMERICAL RESULTS

In this section, we consider an autonomous navigation
problem. We model the controlled robot with different
shapes, including triangle, rectangle, pentagon and L-shape.
The proposed optimization-based planning algorithm allows
us to successfully generate dynamically-feasible collision-
free trajectories even in tight maze environments, shown in
Fig. 2. Animation of the navigation problems can be found
in the video attachment.

1) Environment: The tight maze environment is described
by a combination of multiple convex obstacles, including
shapes like triangle, rectangle pentagon, etc. The controlled
robot is also modelled with different shapes, including tri-
angle, rectangle, pentagon and L-shape, whose orientation is
determined by the yaw angle. The L-shape is non-convex, but
can be represented by two convex polytopes. The dimensions
for each robot shape are mentioned in Fig. 2.

2) System Dynamics: The controlled robot is described
by the kinematic bicycle model, which is typical for testing
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trajectory planning algorithms in tight environments. The
continuous-time dynamics of the robot is given as follows,

ċx = v cos(φ), ċx = v sin(φ), v̇ = a, φ̇ =
v tan δ

l
, (23)

where system states are x = (cx, cy, v, φ) with (cx, cy) as the
center of rear axes, φ as yaw angle and v as the velocity, and
u = (a, δ) are inputs with steering angle δ and acceleration a.
The wheel base of the robot is l = 0.1m. The steering angle
and acceleration are limited between ±0.5rad and ±1m/s2.

3) Global Planning: The global path from the starting
position to the goal is generated using the A∗ algorithm.
The 2-D space is sub-divided into grids and obstacle collision
checks are performed at each grid point during the algorithm.
A safety margin, which is smaller than at least one dimension
of the robot, is used for the collision checks. Finally, the
generated optimal path is reduced to fewer waypoints using
line-of-sight reductions, similar to the θ∗ algorithm [37]. The
generated global path is not dynamically feasible, and is only
safe at the node points.

4) Local Trajectory Generation: The local trajectory
planning is formulated using the NMPC-DCBF formu-
lation (20) to track the local reference trajectory while
avoiding obstacles. The local reference trajectory X̄ =
[x̄Tt|t, x̄

T
t+1|t, ..., x̄

T
t+N |t]

T is generated from a start point with
a constant speed v0 and the same orientation as the global
planner. The start point is found by local projection from
the current robot’s position to the global path. For tracking
the local reference trajectory, the cost function (20) in the
optimizer is constructed with terminal cost, stage cost, and
relaxing cost function, respectively as

p(xt+N |t) =||xt+N |t − x̄t+N |t||2QT
, (24a)

q(xt+k|t, ut+k|t) =||xt+k|t − x̄t+k|t||2Q + ||ut+k|t||2R (24b)

+ ||ut+k|t − ut+k−1|t||2dR,
ψ(ωk) =pω(ωk − 1)2, (24c)

where ut−1|t = u∗t−1|t−1 represents the last optimized
control input. The dynamics constraints (20c) is applied
with the discrete-time forward Euler formulation from the
continuous-time dynamics (23). The input constraints (20d)
is imposed by the steering angle and acceleration limits
mentioned above. A prediction horizon of 11 is used, with the
DCBF horizon as 6, and the decay rate as 0.8. The obstacle
avoidance constraints (20e)-(20h) can be applied directly to
each pair of the convex-shaped (triangle, rectangle, pentagon)
robot and each convex obstacle. When the robot is non-
convex shaped (L-shape), these constraints are applied to the
convex parts of the robot and each convex obstacle.

To reduce the complexity of the optimization formulation,
we only consider the obstacles which are within a specified
radius from the robot at any given time. The radius is
calculated using the reference tracking velocity, prediction
horizon and the maximum deceleration of the robots.

5) Warm Start: The NMPC-DCBF formulation is a non-
convex optimization, and hence computationally challenging
to solve in general. Although the DCBF constraints help

to reduce the complexity, as discussed in Sec. III-D.2, it
still requires a good initial guess to lead to faster numerical
convergence. The initial guess trajectory and control inputs
are generated using a braking controller. An acceleration
input equal to the maximum deceleration is provided and
the steering angle is set to zero. Once the robot comes to a
halt, the acceleration input is also set to zero. The braking
control inputs, along with the trajectory generated from it are
provided as an initial guess to the optimization at each time
step. Since at each time step hi(xt|t) is solved using (10), the
dual optimal solution from this computation is provided as
an initial guess for the dual variables for the entire horizon.

6) Simulation Results: To evaluate the performance of
(20), we study the navigation problem with two differ-
ent maze environments with four choices of robot shapes.
The optimization problems are implemented in Python with
CasADi [38] as modelling language, solved with IPOPT [39]
on Ubuntu 18.04 with Intel Xeon E-2176M CPU with a
2.7GHz clock. From the snapshots we can observe tight-
fitting obstacle avoidance motion of the robot, and also re-
versing motion to avoid deadlock. These examples highlight
the safety and planning features of our implementation. We
also analyze the computational time of trajectory generation
using (20), which is shown in TABLE I. This illustrates that
optimization (20) can be solved sufficiently fast to be de-
ployed on different-shaped robots for trajectory generation in
different maze environments. The details of hyperparameter
selections can be found in the open-source repository.

The specific choice of the parameters in the optimization
formulation (20) can influence safety and deadlock behaviors
in the robot. Qualitatively, for safety, the reference tracking
velocity should be such that the robot can come to a
halt within the prediction horizon with the input as the
maximum deceleration. There is also a trade-off between
deadlock avoidance and safety: Higher value of the terminal
cost weight QT improves deadlock avoidance, but can also
increase velocity of the robot, leading to unsafe motion.

TABLE I: Solver time statistics of NMPC-DCBF with polytopes
(20).

Env Robot Shape median std min max

Maze 1

triangle (Fig. 2a) 51ms 19ms 14ms 149ms
rectangle (Fig. 2b) 49ms 25ms 15ms 185ms
pentagon (Fig. 2c) 71ms 15ms 15ms 272ms
L-shape (Fig. 2d) 85ms 13ms 13ms 215ms

Maze 2

triangle (Fig. 2e) 33ms 24ms 13ms 121ms
rectangle (Fig. 2f) 29ms 25ms 13ms 122ms
pentagon (Fig. 2g) 30ms 29ms 13ms 150ms
L-shape (Fig. 2h) 29ms 49ms 13ms 233ms

V. CONCLUSION

We proposed a nonlinear optimization formulation using
discrete-time control barrier function based constraints for
polytopes. The proposed formulation has been shown to
be applied as a fast optimization for control and planning
for general nonlinear dynamical systems. We validated our
approach on navigation problems with various robot shapes
in maze environments with polytopic obstacles.
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