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Abstract— This paper presents a novel planning and control
strategy for competing with multiple vehicles in a car racing
scenario. The proposed racing strategy switches between two
modes. When there are no surrounding vehicles, a learning-
based model predictive control (MPC) trajectory planner is
used to guarantee that the ego vehicle achieves better lap
timing performance. When the ego vehicle is competing with
other surrounding vehicles to overtake, an optimization-based
planner generates multiple dynamically-feasible trajectories
through parallel computation. Each trajectory is optimized un-
der a MPC formulation with different homotopic Bezier-curve
reference paths lying laterally between surrounding vehicles.
The time-optimal trajectory among these different homotopic
trajectories is selected and a low-level MPC controller with
control barrier function constraints for obstacle avoidance is
used to guarantee the system’s safety-critical performance. The
proposed algorithm has the capability to generate collision-free
trajectories and track them while enhancing the lap timing
performance with steady low computational complexity, outper-
forming existing approaches in both timing and performance
for an autonomous racing environment. To demonstrate the
performance of our racing strategy, we simulate with multiple
randomly generated moving vehicles on the track and test the
ego vehicle’s overtaking maneuvers.

I. INTRODUCTION

A. Motivation

Recently, autonomous racing is an active subtopic in the
field of autonomous driving research. In autonomous racing,
the ego car is required to drive along a specific track with
an aggressive behavior, such that it is capable of competing
with other agents on the same track. By overtaking other
leading vehicles and moving ahead, the ego vehicle can finish
the racing competition with a smaller lap time. While the
behavior of overtaking other vehicles has been studied in au-
tonomous driving on public roads, however, these techniques
are not effective on a race track. This is because autonomous
vehicles are guided by dedicated lanes on public roads to
succeed in lane follow and lane change behaviors, while the
racing vehicles compete in the limited-width tracks without
guidance from well-defined lanes. Existing work focuses on
a variety of algorithms for autonomous racing, but most of
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Fig. 1: Snapshots from simulation of the overtaking behavior.
The red vehicle is the ego vehicle, the orange line shows the
optimized trajectory from the planning strategy, and the dashed
black line is the reference Bezier-curve used for generating the
selected trajectory. Other vehicles are marked in blue with those in
the ego vehicle’s range of overtaking marked in green. The solid
blue line is the track’s boundary.

them could not provide a time-optimal behavior with high
update frequency in the presence of other moving agents on
the race track. In order to generate racing behaviors for the
ego racing car, we propose a racing algorithm for planning
and control that enables the ego vehicle to maintain time-
optimal maneuvers in the absence of local vehicles, and fast
overtake maneuvers when local vehicles exist.

B. Related Work

In recent years, researchers have been focusing on plan-
ning and control for autonomous driving on public roads.
For competitive scenarios like autonomous lane change or
lane merge, both model-based methods [1] and learning-
based methods [2] have been demonstrated to generate the
ego vehicle’s desired trajectory. Similarly, control using
model-based methods [3]–[5] and learning-based methods
[6] has also been developed. However, the criteria to evaluate
planning and control performance are different for car rac-
ing compared to autonomous driving on public roads. For
autonomous racing [7], when the ego racing car competes
with other surrounding vehicles, most on-road traffic rules
are not effective. Instead of maneuvers that offer a smooth
and safe ride, aggressive maneuvers that push the vehicle
to its dynamics limit [8] or even beyond its dynamics limit
[9] are sought to win the race. In order to quickly overtake
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surrounding vehicles, overtake maneuvers with tiny distances
between the cars and large orientation changes are needed.
Moreover, due to the bigger slip angle caused by changing
the steering orientation more quickly during racing, more
accurate dynamical models should be used for the design
of planners and controllers for autonomous racing. We next
enumerate the related work in several specific areas.

1) Planning Algorithms: For autonomous racing, the
planner is desired to generate a time-optimal trajectory.
Although some work using convex optimization problems
[15], [22]–[27] or Bayesian optimization (BO) [28] reduces
the ego vehicle’s lap time impressively, either no obstacles
[15], [23]–[28] or only static obstacles [22] are assumed to
be on the track. When moving vehicles exist on the track,
nonlinear dynamic programming (NLP) [19], graph-search
[12] and game theory [13], [14], [29] based approaches
have demonstrated their capabilities to generate collision-
free trajectories. Additionally, in order to improve the chance
of overtaking, offline policies are learnt for the overtake
maneuvers at different portions of a specific track [30].
However, these approaches don’t solve all challenges. For
instance, work in [14], [19], [29], [30] does not take lap
timing enhancement into account. In [12], the ego vehicle is
assumed to compete on a straight track with one constant-
speed surrounding vehicle. These assumptions are relatively
simple for a real car racing competition. In [13], it is assumed
that the planner knows the other vehicle’s strategy and
the complexity of the planner increases excessively when
multiple vehicles compete with each other on the track.

2) Control Algorithms: Researchers focus on enhancing
performance of the ego vehicle by achieving its speed and
steering limits through better control design, e.g., obtain-
ing the optimal lap time by driving fast. The majority of
existing work focuses on developing controllers with no
other vehicles on the track. The learning-based controllers
[16]–[18], [31] leverage the control input bounds to achieve
optimal performance in iterative tasks. Model-free methods
like Bayesian optimization (BO) [32], Gaussian processes
(GPs) [10], deep neural networks (DNN) [33], [34] and
deep reinforcement learning (DRL) [11], [35] have also been
exploited to develop controllers that result in agile maneuvers
for the ego car. To deal with other surrounding vehicles,
DRL has also been used in [36] to control the ego vehi-
cle during overtake maneuvers. Recently, model predictive
based controllers (MPC) with nonlinear obstacle avoidance
constraints have become popular to help the ego vehicle
avoid other vehicles in the free space. A nonconvex nonlinear
optimization based controller is implemented in [37] to help
the ego vehicle avoid static obstacles. Researchers in [38]
use mixed-integer quadratic programs (MIQP) to help the
ego vehicle compete with one moving vehicle. In [20],
GPs was applied to formulate the distance constraints of a
stochastic MPC controller with a kinematic bicycle model.
However, large slip angles under aggressive maneuvers will
cause a mismatch between the real dynamics model and
the kinematic model used in the controller, resulting in the
controller being unable to guarantee the system’s safety

in some cases. In [21], a safety-critical control design by
using control barrier functions is proposed to generate a
collision-free trajectory without a high-level planner, where
infeasibility could arise due to the high nonlinearity of
the optimization problem. Moreover, due to the lack of a
trajectory planner, deadlock could happen very often during
overtake maneuvers, such as in [20], [21]. A comparison
of various approaches and their features are enumerated in
TABLE I.

As mentioned above, all the previous work on planning
and control design for autonomous racing could not enhance
the lap timing performance and simultaneously compete with
multiple vehicles. Inspired by the work on iterative learning-
based control and optimization-based planning, we propose
a novel racing strategy to resolve the challenges mentioned
above with a steady low computational complexity.

C. Contribution

The contributions of this paper are as follows:

• We present an autonomous racing strategy that switches
between a learning-based MPC trajectory planner (in the
absence of surrounding vehicles) and an optimization-
based homotopic trajectory planner with a low-level
safety-critical controller (when the ego vehicle competes
with surrounding vehicles).

• The learning-based MPC approach guarantees time-
optimal performance in the absence of surrounding
vehicles. When the ego vehicle competes with sur-
rounding vehicles, multiple homotopic trajectories are
optimized in parallel with different geometric reference
paths and the best time-optimal trajectory is selected to
be tracked with an optimization-based controller with
obstacle avoidance constraints.

• We validate the robust performance together with steady
low computational complexity of our racing strategy in
numerical simulations where randomly moving vehicles
are generated on a simulated race track. It is shown that
our proposed strategy allows the ego vehicle to succeed
in overtaking tasks without deadlock when there are
multiple vehicles moving around the ego vehicle. We
also demonstrate that our strategy would work for
various racing environments.

II. BACKGROUND

In this section, we revisit the vehicle model and learning-
based MPC for iterative tasks. The learning-based MPC
will be used as the trajectory planner when no surrounding
vehicles exist.

A. Vehicle Model

In this work, we use a dynamic bicycle model with
decoupled Pacejka tire model under Frenet coordinates. The
system dynamics is described as follows,

ẋ = f(x, u), (1)
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Approach GP DRL Graph-Search Game Theory Model-Based
Publication [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] Ours
Lap Timing Yes Yes Yes Yes No Yes Yes Yes Yes No No No Yes
Static Agent No No Yes Yes Yes No No No No Yes Yes Yes Yes

Moving Agent No No One One Multiple No No No No Multiple One One Multiple
Update Frequency (Hz) N/A N/A 15 30 2 Offline 20 20 Offline <1 10 <10 >25

Planner No No Yes Yes Yes Yes No No No Yes Yes No Yes
Dynamics Accuracy N/A N/A Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes

TABLE I: A comparison of recent work on autonomous racing and their attributes. Lap timing indicates if the lap timing performance is
considered. Static and moving agent indicates if other static or moving agents are considered. Update frequency indicates the optimization
update frequency. Learning-based approaches like GP don’t have this attribute. Planner indicates if the approach has the planning part.
Dynamics accuracy indicates the dynamics model used in the controller, with “Yes”, “No”, “N/A” representing dynamic model, kinematic
model and model-free.

Fig. 2: Autonomous Racing Strategy: The system dynamics is identified through offline data collection via recursive tasks. For online
deployment, when no surrounding vehicles exist, the learning-based MPC trajectory planner is executed to guarantee time-optimal
trajectories. When there are surrounding vehicles, the best time-optimal trajectory is chosen among the n+1 trajectories that are optimized
in parallel with each optimization carried out for a particular homotopic trajectory around the n surrounding cars. The chosen trajectory
is then tracked with a safety-critical model predictive based controller.

where x and u show the state and input of the vehicle, f is
a nonlinear dynamic bicycle model in [39]. The definition of
state and input is as follows,

x = [vx, vy, ωz, eψ, sc, ey]T , u = [a, δ]T , (2)

where acceleration at vehicle’s center of gravity a and
steering angle δ are the system’s inputs. The curvilinear
distance travelled along the track’s center line is denoted
by sc, while ey and eψ show the deviation distance and
heading angle error between vehicle and the track’s center
line. The longitudinal velocity, lateral velocity and yaw rate,
are respectively denoted by vx, vy and ωz .

In this paper, this model (1) is applied for precise nu-
merical simulation using Euler discretization with sampling
time 0.001s (1000Hz). Through linear regression from the
simulated reference path, an affine time-invariant model

xt+1 = A(x̄)xt +B(x̄)ut (3)

will be used in the trajectory planner to avoid excessive
complexity from nonlinear optimization, where x̄ represents
the equilibrium point for the linearized dynamics. On the
other hand, an affine time-varying model

xt+1 = At(x̄k)xt +Bt(x̄k)ut + Ct(x̄k), (4)

is obtained, where matrices At(x̄k), Bt(x̄k), and Ct(x̄k)
are obtained at the local equilibrium point x̄k on reference
trajectory with iterative data which is close to xt. This
dynamics (4) will be used for the racing controller design
for better tracking performance.

B. Iterative Learning Control

A learning-based MPC [16], which improves the ego
vehicle’s lap timing performance through iterative tasks, will
be used in this paper. This has the following components:

1) Data Collection: The learning-based MPC optimizes
the lap timing through historical states and inputs from iter-
ative tasks. To collect initial data, a simple tracking controller
like PID or MPC can be used for the first several laps. During
the data collection process, after the j-th iteration (lap), the
controller will store the ego vehicle’s closed-loop states and
inputs as vectors. Meanwhile, through offline calculation,
every point of this iteration will be associated with a cost,
which describes the time to finish the lap from this point.

2) Online Optimization: After the initial laps, the
learning-based MPC optimizes the vehicle’s behavior based
on collected data. At each time step, the terminal constraint
is formulated as a convex set. This convex set includes the
states that can drive the ego vehicle to the finish line in the
previous laps. By constructing the cost function to create a
minimum-time problem, an open-loop optimized trajectory
can be generated. Since the cost function is based on the
previous states’ timing data, the vehicle is able to drive to
the finish line with time that is no greater than the time from
the same position during previous laps. As a result, the ego
vehicle will reach the time-optimal performance after several
laps.

More details of this method can be found in [16]. In our
work, this approach will be used for trajectory planning when
the ego vehicle has no surrounding vehicles. This helps with
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better lap timing in the absence of surrounding vehicles.
Notice that the data for iterative learning control will be
collected through offline simulation with no obstacles on the
track, as shown in Fig. 2.

III. RACING ALGORITHM

Having introduced the background on vehicle modeling
and learning-based MPC, we will next present an au-
tonomous racing strategy that can help the ego vehicle en-
hance lap timing performance while overtaking other moving
vehicles.

A. Autonomous Racing Strategy

There are two tasks in autonomous racing: enhancing the
lap timing performance and competing with other vehicles.
To deal with these two tasks, our proposed strategy will
switch between two different planning strategies. When
there are no surrounding vehicles, trajectory planning with
learning-based MPC is used to enhance the timing perfor-
mance through historical data. When there are surrounding
vehicles, an optimization-based trajectory planner optimizes
several homotopic trajectories in parallel around the sur-
rounding vehicles and a collision-free time-optimal trajectory
is selected among these, which is then tracked by a low-level
MPC controller. By adding obstacle avoidance constraints to
the low-level controller, it has the ability to guarantee the
system’s safety. The racing strategy is summarized in Fig. 2.
More details can be found in the full version [40].

B. Overtaking Planner

To determine if a surrounding vehicle is in the ego
vehicle’s range of overtaking, following condition must be
satisfied:

− εl ≤ sc,i − sc ≤ εl + γ|vx − vx,i| (5)

where sc and sc,i are ego vehicle’s and i-th surrounding
vehicle’s current traveling distance, vx and vx,i are ego
vehicle’s and i-th surrounding vehicle’s longitudinal speed.
l indicates the vehicle’s length. ε and γ are safety-margin
factor and prediction factor which we can tune for different
performance.

As shown in Fig. 3, when there are n vehicles in the ego
vehicle’s range of overtaking, there exists (n+1) potential ar-
eas with each area leading to paths with a different homotopy
that the ego vehicle can use to overtake these surrounding
vehicles. These n+1 areas are the one below the n-th vehicle,
the one above the 1st vehicle, and the ones between each
group of adjacent vehicles. We then solve n + 1 groups of
optimization-based trajectory planning problems in parallel,
enabling steady low computational complexity even when
competing with different numbers of surrounding vehicles.
To reduce each optimization problem’s computational com-
plexity, geometric paths with a distinct homotopy class that
laterally lay between vehicles or vehicle and track boundary
(black dashed curves in Fig. 3) are used as reference paths
in the optimization problems. By comparing the optimization
problems’ costs, the optimal trajectory is selected from the

Fig. 3: A typical overtaking scenario when there are n vehicles in
the range of overtaking. The ego vehicle and surrounding vehicles
are in red and green, respectively. The dashed green line is a time-
optimal trajectory calculated from the learning-based MPC. Blue
points are control points for Bezier-curves in two different cases.
Dashed black lines are n+1 groups of reference paths each with a
different homotopy. Dashed orange lines are optimized trajectories
for each optimization problem. The trajectory in area 2 is selected
as the best for its smoothness and reachability along the track.

n + 1 optimized solutions. For example, as the case shown
in Fig. 3, the dashed orange line in area 2 will be selected
since it avoids surrounding vehicles and finishes the overtake
maneuver with a smaller time. The function to minimize
during the selection is shown as follows,

Js(xt) = min
xt

−Ks(sct+N
− sct)−

Np∑
k=1

((sct+k

− sc,it+k
)2 + (eyt+k

− ey,it+k
)2 − l2 − d2) + b

(6)

where Ks is a scalar used in metric for timing and b is a
non-zero penalty cost if the new potential area of overtaking
is different from the area of overtaking in the last time
step. A bigger value of Ks is applied such that the ego
vehicle is optimized to reach a farther point during the
overtake maneuver, which results in a shorter overtaking time
since the planner’s prediction horizon and sampling time are
fixed. Additionally, the other terms in (6) prevents the ego
vehicle from changing direction abruptly during an overtake
maneuver and guarantees the ego vehicle’s safety.

Bezier-curves are widely used in path planning algorithms
in autonomous driving research [41]–[43] because it is easy
to tune and formulate. Third-order Bezier-curves are used
in this work. Each Bezier-curve is interpolated from four
control points, including shared start and end points with two
additional intermediate points, shown in Fig. 3. Specifically,
the start point for the Bezier curve is the ego vehicle’s current
position and end point is on the time-optimal trajectory
generated from learning-based MPC planner. The selection
of the end point makes the vehicle’s state as close as possible
to the time-optimal trajectory after the overtake behavior. To
make all curves smoother and have no or fewer conflicts
with surrounding vehicles, the other two control points will
be between the track’s boundary and the vehicle for Areas
1 and n+1, or between two adjacent vehicles as shown
in Fig. 3.These two intermediate control points will have
the same lateral deviation from the center line. The key
advantage of our selection of control points is that the
interpolated geometric curve won’t cross the connected lines
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between control points with its convexity, as shown in Fig. 3.
This property makes our reference paths collision-free with
respect to the surrounding vehicles in most cases, which
speeds up the computational time of the trajectory generation
in each area.

The details of the optimization formulation for trajectory
generation will be illustrated in the next section.

C. Trajectory Generation
After illustrating the planing strategy, this subsection will

present details about the optimization problem used for
trajectory generation for each potential area with different
homotopic paths that the ego vehicle can use to overtake the
surrounding vehicles.

The optimization problem is formulated as follows,

argmin
xt:t+Np|t,ut:t+Np−1|t

p(xt+N |t)+

Np−1∑
k=0

q(xt+k|t)

+

Np−1∑
k=1

r(xt+k|t, ut+k|t, xt+k−1|t, ut+k−1|t) (7a)

s.t. xt+k+1|t = Axt+k|t +But+k|t, k = 0, ..., Np−1, (7b)
xt+k+1|t ∈ X , ut+k|t ∈ U , k = 0, ..., Np−1, (7c)
xt|t = xt, (7d)
g(xt+k+1|t) ≥ d+ ε, k = 0, ..., Np−1, (7e)

where (7b), (7c), (7d) are constraints for system dynamics,
state/input bounds and initial condition. The system dynam-
ics constraint describes the affine linearized model described
in (3). The cost function (7a) is composed of three parts
along the horizon of length Np, the terminal cost p(xt+N |t),
the stage cost q(xt+k|t) and the state/input changing rate
cost r(xt+k|t, ut+k|t). The construction of cost function and
constraints in the optimization will be presented in detail in
the following subsections.

1) Terminal Cost: The terminal cost is related to the
ego vehicle’s traveling distance along the track during the
overtaking process, and is given by

p(xt+N |t) = Kd(sct+N|t − sct). (8)

This compares the open-loop predicted traveling distance at
the N -th step sct+N|t with the ego vehicle’s current traveling
distance sct . This works as the cost metric for timing during
the overtaking process.

2) Stage Cost: The stage cost introduces the lateral posi-
tion differences between the open-loop predicted trajectory
and other two paths along the horizon,

q(xt+k|t)=||xt+k|t−xR(sck )||
2
Q1

+||xt+k|t−xT (sck )||
2
Q2

, (9)

where xR and xT are the reference path and time-optimal
trajectories respectively in Frenet coordinates. The reference
path xR is the Bezier-curve in the corresponding area. The
time-optimal trajectory xT is generated by the learning-based
MPC trajectory planner used on a track without other agents,
as discussed in Sec. II-B. Note that sck is an initial guess
for the traveling distance at the k-th step, which is equal to
sck = sct + vxtk∆t, where a constant longitudinal speed is
assumed along the prediction horizon.

3) State/Input Changing Rate Cost: To make the pre-
dicted trajectory smoother, the state/input changing rate cost
r(xt+k|t, ut+k|t) is formulated as follows:

r(xt+k|t, ut+k|t, xt+k−1|t, ut+k−1|t)

=||xt+k|t − xt+k−1|t||2R1
+ ||ut+k|t − ut+k−1|t||2R2

.
(10)

4) Obstacle Avoidance Constraint: In order to generate a
collision-free trajectory, collision avoidance constraint (7e) is
added in the optimization problem. To reduce computational
complexity, only linear lateral position constraint will be
added when the ego vehicle overlaps with other vehicles
longitudinally. The inequality |sc(t) + vx(t)k∆t − sc,i(t +
k)| < l + ε will be used to check if the ego vehicle
is overlapping with other vehicles longitudinally along the
horizon. In (7e), g(x) = |ey,i−ey| shows the lateral position
difference, l and d are the vehicle’s length and width, and ε
is a safe margin.

After parallel computation, the optimized trajectory
x∗t:t+N |t with the minimum cost Js(xt) discussed in (6) will
be selected from among the n + 1 groups of optimization
problems. It will be tracked by the MPC controller intro-
duced in III-D.

D. Overtaking Controller

After introducing the algorithm for trajectory generation,
a low-level tracking controller with model predictive control
used for overtaking will be discussed in this part. The
constrained optimization problem is described as follows:

argmin
ũt:t+Nc−1|t,ω1:Nc−1

Nc−1∑
k=0

q̃(x̃t+k|t, ũt+k|t) + pω(1− ωk)2

(11a)
s.t. x̃t+k+1|t =At+k|tx̃t+k|t +Bt+k|tũt+k|t (11b)

+Ct+k|t, k = 0, ..., Nc−1,

x̃t+k+1|t ∈X , ũt+k|t ∈ U , k = 0, ..., Nc−1, (11c)
x̃t|t =x̃t, (11d)

h(x̃t+k+1|t) ≥γωkh(x̃t+k|t), k = 0, ..., Nc−1, (11e)

where (11b), (11c), (11d) describe the constraints for sys-
tem dynamics (4), input/state bounds and initial condi-
tions, respectively. The term q̃(x̃t+k|t, ũt+k|t) = ||x̃t+k|t −
x∗t+k|t||

2
Q̃1

+ ||ũt+k|t||2Q̃2
represents the stage cost, which

tracks the desired trajectory x∗t:t+N |t optimized by the tra-
jectory planner from Sec. III-C. Equation (11e) with 0 ≤
γ < 1 represents the discrete-time control barrier function
constraints [44] with relaxation ratio ωk, which could guar-
antee the system’s safety by guaranteeing h(x̃t+k|t) > 0
along the horizon with forward invariance. In this project,
h(x̃t+k|t) = (s̃c,i − s̃c)

2 + (ẽy,i − ẽy)2 − l2 − d2 is used
to represent the distance between the ego vehicle and other
vehicles. The optimization (11) allows us to find the optimal
control u∗t = ũt|t in a manner similar to MPC.

IV. RESULTS

Having illustrated our autonomous racing strategy in the
previous section, we now show the performance of proposed
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Speed Range [m/s] 0 - 0.4 0.4 - 0.8 0.8 - 1.2 1.2 - 1.6
mean [s] 1.613 2.312 3.857 13.095
min [s] 0.8 1.2 1.8 3.5
max [s] 3.6 5.2 21.6 36.1

TABLE II: Time taken to overtake the leading vehicle travelling
at different speeds. For each group of speed range of the leading
vehicles, 100 cases were simulated. The ego vehicle starts from the
track’s origin. One other vehicle starts from a random position in
the range of 10m ≤ sc,i ≤ 30m. The mean, min and max values
show the average overtaking time, minimum overtaking time and
maximum overtaking time for the corresponding group. In general,
it takes more time to overtake faster moving vehicles on this track
since they spend lesser time on the straight segments.

algorithm. The setup and results of numerical simulations
will be presented in the following part.

A. Simulation Setup

In all simulations, all vehicles are 1:10 scale RC cars with
a length of 0.4m and a width of 0.2m. Other vehicles drive
along trajectories with fixed lateral deviation. The track’s
width is set to 2 m. The horizon lengths for trajectory
planner and controller are Np = 12, Nc = 10 and shared
discretization time ∆t = 0.1s. In our custom-designed
simulator, both state and input noises are considered.

The optimization problems (7) and (11) are implemented
in Python with CasADi [45] used as modeling language, and
are solved with IPOPT [46] on Ubuntu 18.04 on a laptop with
a CPU i7-9850 processor at a 2.6Ghz clock rate.

B. Racing With Other Vehicles

Snapshots shown in Fig. 1 illustrate example of over-
taking behavior when the ego vehicle competes with three
surrounding vehicles. The animations of more challenging
overtaking behavior can be found on https://youtu.
be/1zTXfzdQ8w4. As shown in TABLE I, the proposed
racing planner could update at 25 Hz and could help the ego
vehicle overtake multiple moving vehicles. By switching to a
trajectory planning approach based on learning-based MPC,
the ego vehicle is able to reach its speed and steering limit
when there are no surrounding vehicles.

To better analyze the performance and limitations of our
autonomous racing strategy in different scenarios, random
tests are introduced under two groups. The first group of
simulation aims to show the overtaking time for passing one
leading vehicle with different speeds, and statistical results
are summarized in TABLE II. We can observe that when
the surrounding vehicles’ speed reaches between 1.2m/s and
1.6m/s, much more time is needed for the ego vehicle to
overtake the leading vehicle. This is because as the leading
vehicle’s speed increases, less space becomes available for
the ego vehicle to drive safely. Especially in a curve, the ego
vehicle’s speed limit decreases when less space can be used
to make a turn. Since more than half of our track is with
curves, the ego vehicle needs to wait for a straight segment
to accelerate to pass the leading vehicle.

The second group of simulation shows the proposed racing
strategy’s success rate to overtake multiple leading vehicles
in one lap, and statistical results are summarized in TABLE

Speed Range [m/s] 0 - 0.4 0.4 - 0.8 0.8 - 1.2 1.2 - 1.6
Single 100 % 100 % 96 % 84 %
Two 100 % 100 % 98 % 66 %

Three 100 % 98 % 84 % 36 %

TABLE III: Overtaking success rate for the ego vehicle after one
lap. For each group of speed range of the leading vehicles, 100 cases
were simulated. The ego vehicle starts from the track’s origin. Other
vehicles start from a random position in the range of 5m ≤ sc,i ≤
15m. One to three leading cars were simulated.

III. We can find that when more than one surrounding
vehicle exists, much more space would be occupied by
other vehicles. As a result, the ego vehicle might not have
enough space to accelerate to high speed to pass surrounding
vehicles. Although in these cases, the ego vehicle can not
overtake all surrounding vehicles after one lap, our proposed
racing strategy can still guarantee the ego vehicle’s safety
along the track.

During our simulation, the mean solver time for our
planner for single, two or three surrounding vehicles is
39.21ms, 39.41ms and 40.23ms. We also notice that when
the number of surrounding vehicles is larger than three,
the steady complexity still holds but the track becomes too
crowded for the ego vehicle to achieve a high success rate
of the overtaking maneuver. This validates the steady low
computational complexity of our proposed planning strategy
thanks to the parallel computation for multiple trajectory
optimizations.

C. Racing Without Other Vehicles

As discussed in Sec. III-A, when there are no other
surrounding vehicles, the ego vehicle adopts the learning-
based MPC formulation for trajectory generation and control.
In this paper, the learning-based MPC uses historical data
from two previous laps and the initial data is calculated
offline before the racing task. For the same setup as shown
in Fig. 1, the ego vehicle is simulated to race without other
agents. It’s found that the ego vehicle slows down when
there are surrounding vehicles. This is because the overtake
maneuver happens in a hairpin curve and the curve’s apex
is occupied by other moving vehicles, resulting in less space
being available for the ego vehicle and thus causing it to
slow down to avoid a potential collision. After it passes all
surrounding vehicles, the ego vehicle goes back to drive at its
speed and steering limit to achieve time-optimal behavior.

V. CONCLUSION

In this paper, we have presented an autonomous racing
strategy that enables an ego vehicle to enhance its lap timing
performance while overtaking other moving vehicles. We
have verified the performance of our proposed algorithm
through numerical simulation, where several surrounding
vehicles are simulated to start from random positions with
random speeds on a track. Moreover, interaction between
the ego vehicle and other surrounding vehicles will be
considered in the future work. For instance, autonomous
racing strategies such as blocking cars from overtaking are
envisaged for the future.
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tonomous overtaking in gran turismo sport using curriculum reinforce-
ment learning,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA), 2021, pp. 9403–9409.

[37] U. Rosolia, S. De Bruyne, and A. G. Alleyne, “Autonomous vehicle
control: A nonconvex approach for obstacle avoidance,” IEEE Trans-
actions on Control Systems Technology, vol. 25, no. 2, pp. 469–484,
2016.

[38] N. Li, E. Goubault, L. Pautet, and S. Putot, “Autonomous racecar
control in head-to-head competition using mixed-integer quadratic
programming,” Institut Polytechnique de Paris, Tech. Rep., 2021.

[39] R. Rajamani, Vehicle dynamics and control. Springer Science &
Business Media, 2011.

[40] S. He, J. Zeng, and K. Sreenath, “Competitive car racing with multiple
vehicles using a parallelized optimization with safety guarantee,” arXiv
preprint arXiv:2112.06435, 2021.

3450

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 13,2022 at 10:12:33 UTC from IEEE Xplore.  Restrictions apply. 



[41] L. Han, H. Yashiro, H. T. N. Nejad, Q. H. Do, and S. Mita,
“Bezier curve based path planning for autonomous vehicle in urban
environment,” in 2010 IEEE intelligent vehicles symposium. IEEE,
2010, pp. 1036–1042.

[42] J. Chen, P. Zhao, T. Mei, and H. Liang, “Lane change path planning
based on piecewise bezier curve for autonomous vehicle,” in Proceed-
ings of 2013 IEEE International Conference on Vehicular Electronics
and Safety. IEEE, 2013, pp. 17–22.

[43] X. Qian, I. Navarro, A. de La Fortelle, and F. Moutarde, “Motion plan-
ning for urban autonomous driving using bézier curves and mpc,” in
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