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ABSTRACT

Previous algorithms for feedback-directed unit test generation iter-
atively create sequences of API calls by executing partial tests and
by adding new API calls at the end of the test. These algorithms
are challenged by a popular class of APIs: higher-order functions
that receive callback arguments, which often are invoked asyn-
chronously. Existing test generators cannot effectively test such
APIs because they only sequence API calls, but do not nest one call
into the callback function of another. This paper presents Nessie,
the first feedback-directed unit test generator that supports nesting
of API calls and that tests asynchronous callbacks. Nesting API calls
enables a test to use values produced by an API that are available
only once a callback has been invoked, and is often necessary to
ensure that methods are invoked in a specific order. The core con-
tributions of our approach are a tree-based representation of unit
tests with callbacks and a novel algorithm to iteratively generate
such tests in a feedback-directed manner. We evaluate our approach
on ten popular JavaScript libraries with both asynchronous and
synchronous callbacks. The results show that, in a comparison with
LambdaTester, a state of the art test generation technique that only
considers sequencing of method calls, Nessie finds more behavioral
differences and achieves slightly higher coverage. Notably, Nessie
needs to generate significantly fewer tests to achieve and exceed
the coverage achieved by the state of the art.
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1 INTRODUCTION

Test generation is an important technique to automatically test
libraries by creating unit-level tests. The generated tests typically
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consist of a sequence of calls to functions in an API under test. The
values passed as arguments to each function call in such a sequence
may be chosen randomly, or values returned by previous calls in
the sequence can be used, to facilitate the testing of dependent API
functions. Different test generators take different approaches for
selecting which functions to call and which arguments to pass into
them, e.g., random inputs [10, 12], feedback from executions [13,
29, 30], and symbolic reasoning [36, 40, 42].

However, existing work on test generation has ignored a broad
class of APIs: Functions that accept another function as a callback
argument and then invoke that other function asynchronously. The
key benefit of asynchronous callbacks is that they do not block
the main computation, which is useful, e.g., when accessing some
kind of resource or when triggering a long-running computation.
Asynchronous callbacks have been shown to be popular [14], but
also prone to mistakes and surprising behavior [28, 41]. While the
JavaScript community has started migrating to asynchronous APIs
that rely on promises [1, Section 25.6] and async/await [1, Section
25.7], a vast amount of JavaScript code still uses event-driven APIs
that invoke callback functions passed to them asynchronously.

We observe that existing test generators miss out on two op-
portunities for testing APIs with asynchronous callbacks. First,
in addition to sequencing function calls, one can also consider
nesting them, by placing an API call into a callback passed to
another API function under test. Such nesting enables a test to
use values produced by an API that are available only once a call-
back has been invoked; moreover, nesting is often necessary to
ensure a specific ordering of invocations to API functions. Sec-
ond, even the best existing test generator aimed at testing func-
tions with callbacks [35] supports only synchronous, but not asyn-
chronous callbacks. The table below compares our work with the
capabilities of two related techniques our work is inspired by:

Sequencing Nesting Synchronous Asynchronous

callbacks callbacks
Randoop [30] v
LambdaTester [35] v v
This work (Nessie) v v v v

To illustrate the challenges associated with testing asynchronous
APIs, consider a library for accessing JSON files. The API defines a
function exists for checking whether a JSON file with a specified
name exists, which produces a handle to that file if this is the
case. Moreover, there is a function read for parsing a JSON file
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represented by a given handle. In JavaScript, functions in event-
driven APIs typically take a callback as their last argument, which
is invoked with two arguments: (i) an object that indicates whether
an error has occurred (or null if no error occurred) and (ii) an object
representing the results of the operation. Hence, a typical use of
the library would look as follows:
let fileName = ...;
exists(fileName,
// asynchronously invoked callback function:
(err, fileHandle) => {

if (lerr) {
read(fileHandle,
// another callback function:
(err, jsonObj) => { ... })
3

b

The call to read is nested in the callback that is passed to exists,
to ensure that the read operation is executed after the exists opera-
tion has completed. Now suppose that the read operation contains
a bug that is triggered in certain cases where a valid file-handle
is passed (e.g., if the file’s permissions do not permit read access),
and suppose that we want to generate a test that invokes the read
function to expose the bug. Since file-handle objects are created
inside the library, it is unclear what the representation of these
objects looks like without analyzing or executing the library code.
While it is possible for a test generator to create suitable file-handle
objects using a purely random approach, the chances of successfully
creating a valid file-handle would be small. Therefore, the most
effective way to obtain a valid file-handle and expose the bug is
to invoke exists with some callback function f, and invoke read
with the file-handle that is passed to f as its second argument. That
is, we would generate a test where a call to read is nested in the
callback that is passed to exists, as in the above example.

Unfortunately, the state of the art test generator for testing func-
tions with callbacks [35] is unable to generate such a test for the
two reasons mentioned in the above table: First, it fails to identify
API functions that receive an asynchronously invoked callback
argument, and hence, never passes callbacks into such functions.
Second, it does not construct tests where a call to one API function
is nested inside the callback passed to another API function.

This paper presents Nessie, the first feedback-directed test gener-
ation technique that nests API calls into callbacks and that supports
asynchronous APIs. At the core of the approach is a novel tree-
based representation of test cases, which allows for growing a test
case by either sequencing API calls, i.e., adding sibling nodes, or
by nesting API calls, i.e., adding child nodes. We present an algo-
rithm for iteratively generating tree-shaped tests based on feedback
from executing already generated tests. The algorithm is supported
by an automated API discovery phase that determines which API
functions accept asynchronous or synchronous callbacks and by
guiding the test generator toward realistic API usages based on
nesting examples mined from existing API clients.

Our implementation targets JavaScript, where asynchronous
callbacks are particularly prevalent and where generating effective
tests is particularly challenging due to the absence of statically de-
clared types. Our evaluation applies Nessie to ten popular JavaScript
libraries that include a total of 356 API functions, 142 of which ex-
pect callbacks. Nessie’s API discovery phase detects 62% of the
API signatures with callback arguments that are mentioned in the
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API’'s documentation, and 106 undocumented API signatures with
callbacks, reflecting unexpected behavior. The coverage achieved
by Nessie converges significantly more quickly than with the state
of the art LambdaTester approach [35] and even reaches a slightly
higher coverage: On average, Nessie needs to generate only 136
tests to achieve the same coverage that LambdaTester achieves with
1,000 generated tests. We conjecture that this is the case because
the nesting of callback functions enables a more effective selection
of argument values in subsequent (nested) function calls. We also
compare the ability of Nessie and LambdaTester to detect situations
where tests generated for a given version of an API behave differ-
ently when run against the next version of that APL. On average,
Nessie detects 23% more behavioral differences than LambdaTester,
including a mix of bugs and intentional API changes. While these
differences can, in principle, all be detected without nesting API
calls, our approach finds them more effectively and efficiently due
to its ability to nest calls.
In summary, this paper contributes the following:

o The first automated test generator specifically aimed at APIs

that accept callbacks to be invoked asynchronously.

An algorithm for incrementally generating tests that not

only sequence API calls but also nest them inside callbacks.

e Empirical evidence demonstrating that: (i) the approach is
effective at exercising JavaScript APIs with asynchronous
callbacks, (ii) that it achieves modestly higher code coverage
and finds more behavioral differences than the state of the
art, and (iii) that it converges much more quickly than prior
work when it comes to achieving a specific level of coverage
or behavioral differences.

2 OVERVIEW OF NESSIE

This paper presents a test generation technique for testing higher-
order functions. A function is called a higher-order function if it
expects another function to be passed as an argument, or if it returns
a function. Our work targets functions f that receive a callback
function cb as an argument and then invoke the callback either
synchronously or asynchronously. Asynchronous invocation here
means that the execution of f causes cb to be invoked from the
main event loop at some later time.

Generating tests for asynchronous APIs involves several open
challenges. The first challenge is to find out which API functions
expect (a)synchronous callbacks and at what argument positions
these callbacks should be passed. Since JavaScript is dynamically
typed, our approach needs to infer the signatures of functions as
a prerequisite to generating effective tests. The second challenge
is about how to compose multiple API calls into a test. While ex-
isting work focuses on sequencing calls, i.e., one call statement
after another, sequencing alone is insufficient for testing asynchro-
nous higher-order functions. The third challenge is about how to
compose API calls in a realistic way. To increase the chances that
our approach nests API calls in ways that represent real-world API
usages, it requires some knowledge of typical API usages.

Our approach, illustrated in Figure 1, consists of three main com-
ponents that each address one of the challenges described above.
Given a set of API functions to test, the first step is an automated
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Figure 1: Overview of the approach.

API discovery, which probes the API functions under test to deter-
mine if and where they expect callback arguments. The discovered
information is stored as a set of abstract signatures, which record
whether the arguments are: (i) a synchronously invoked callback,
(ii) an asynchronously invoked callback, or (iii) a value that is not
a callback!. Then, the abstract signatures discovered in this phase
serve as input to a feedback-directed test generation algorithm, which
is the core of the approach. The test generation is centered around
a tree-based representation of test cases, called test case trees, which
the approach iteratively grows into full test cases. To inform deci-
sions about how API functions should be combined, the approach
also mines API usage patterns in existing open-source clients of
the libraries under test. This information is passed to the test gen-
erator and used to support nesting decisions. The end product of
this process is a set of test cases, which can be used in a variety of
applications, e.g., regression testing.

3 APIDISCOVERY

The first step in test generation is determining what to test: Given a
library under test, Nessie retrieves the set of all function properties
offered by the library object. As JavaScript is a dynamically typed
language, Nessie initially does not know anything about these func-
tions beyond their names. One possible approach to learn more
about the APIs would be to rely on optional type annotations, e.g.,
in the form of third-party TypeScript type declarations for popular
libraries.? However, not all JavaScript code comes with type annota-
tions [25] and even if it exists, an API's implementation may diverge
from its declared type [21]. Nessie addresses this problem through
an API discovery phase that probes API functions to determine at
what parameter positions they expect callbacks and whether these
are invoked synchronously or asynchronously. This information is
recorded as a set of abstract signatures, or simply signatures.

Definition 1 (Abstract signature). An abstract signature for a
function f is a tuple (arg, ..., argn), where each arg; is one of the
following three kinds of elements:

e async: an argument is an asynchronously invoked callback
e sync: an argument is a synchronously invoked callback
e the _ symbol: any non-callback argument

A single function may have zero, one, or multiple signatures.
Zero signatures indicates that the API discovery failed to find any
signatures for the function, in which case the approach falls back to

!Since we are targeting JavaScript, where functions can be invoked with any number
of arguments of any type, we do not attempt to track precise type information.
Zhttps://definitelytyped.org/
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a default test generation strategy that does not pass any callbacks.
Multiple signatures are inferred when functions are overloaded. For
example, the outputJson function from fs-extra has two signatures:
(_,async) and (_, _, async). The reason is that outputJson has an
optional second argument, and always takes a callback function as
the last argument.3 In our experience, such overloading is extremely
common in JavaScript APIs due to optional arguments preceding
the (final) callback argument.

To discover signatures for a given API function under test, Nessie
repeatedly? invokes the function with randomly generated argu-
ments. The approach alternates between generating calls with and
without a callback argument, and passes different numbers of argu-
ments. A generated test for a function api is structured as follows:

let callback = () => {console.log("Callback executed");}

try {
// try calling the specified API function
api(..., callback, ...);

console.log("API call executed");
} catch(e) {
console.log("Error in API call");

zonsole .log("Test executed");

During the execution of these tests, the print statements track if
and when callbacks are invoked, and whether the function termi-
nates successfully. We ignore erroneous executions, as they may
be due to incorrect arguments passed to the function. For non-
erroneous executions, the approach distinguishes three cases:

o acallback that executes after the test has executed is executed
asynchronously, so a signature is created with async at the
position of the callback argument and _ at all other positions,

o a callback that executes before the API call returns is executed
synchronously, so a signature is created with sync at the
callback position and _ at all other positions,

o if the callback is not executed or the test does not pass any
callback, a signature with _ symbols only is created.

We test with a single callback argument at a time, i.e., our approach
will not discover signatures with multiple callback arguments. The
rationale is that API functions with multiple callbacks are rela-
tively rare. Extending the algorithm to support multiple callbacks
is straightforward but increases the computational complexity of
API discovery. In general, the results of the API discovery phase
are unsound, because the approach does not guarantee to cover all
possible arguments or all paths through the API implementation.

The output of the API discovery is the set of discovered signa-
tures for each function offered by the library under test. When
generating tests, the number of arguments and callback positions
(if the function has any) used during test generation are informed
by these discovered signatures.

4 FEEDBACK-DIRECTED TEST GENERATION

The following describes the core algorithm of Nessie, which
generates tests cases that both sequence and nest API calls. The
algorithm is based on a tree-shaped representation of test cases
called a test case tree (Section 4.1), which serves as the basis for the
algorithm itself (Section 4.2).

Shttps://github.com/jprichardson/node-fs-extra/blob/HEAD/docs/output]son.md
4By default Nessie runs 50 tests per API function, each with a timeout of 2 seconds.
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// Omitted for clarity:
// * Try-catch around each call to an API function.
// % Print statements to log arguments and return values.

Ellen Arteca, Sebastian Harner, Michael Pradel, Frank Tip

// * Print statements to log control flow.

ensureFile(arg590,callback) |

0y

stat(arg593)|

let fs_extra = require("fs-extra");

var arg590 = "a/b/test";
var arg593 = null;

let r_126_0 = fs_extra.ensurefFile(arg590, cb(a, b, c, d, e) =>
let r_126_0_0 = fs_extra.readJson(arg590);
return false;

1

let r_126_1 = fs_extra.stat(arg593);

(a) Generated test.

¥

callback(a,b,c,d,e) | (O extension point

\:I call node

o

readJson(arg590) ‘

- [] callback node
—» contains edge

- ——-» argument edge
....... » extension edge

(b) Test case tree representation of the test, with extension points annotated.

Figure 2: Example of a generated test for the API functions of the fs-extra library and the corresponding test case tree.

4.1 Test Case Trees

To represent test cases that support both sequencing and nesting
of method calls, we define the text case tree, a novel intermediate
representation of test cases:

Definition 2 (Test case tree). Let V be a map of variable names
to non-callback values, called value pool, and S a map of function
names to abstract signatures. Then, a test case tree is an ordered
tree where nodes are either:

e a call node of the form r = api(ay, ..., ar), meaning that func-
tion api is invoked with arguments (ay, ..., ar) and yields re-
turn value r. If s; € {sync, async} for some signature (api +—
(s1,--»Sn)) € S, then a; may be a callback function. Other-
wise, a; € V or it is a return value of another call, or

e a callback node of the form cb(py, ..., px), meaning that call-
back function cb receives parameters p1, ..., pg.

Edges are either:

e a contains edge from a callback node to a call node, meaning
that there is a call in the body of the callback function, or

e an argument edge from a call node to a callback node, mean-
ing that a call is given a callback function as an argument.

The root node of a test case tree is a special callback node that
corresponds to the function that contains the entire test case. The
order of the call nodes under a callback node represents the sequen-
tial order in which calls occur in the body of a callback function.

Example. Figure 2 gives an example of a test case and its cor-
responding test case tree. Each API call in the test case in Fig-
ure 2a is represented by a call node in the test case tree of Fig-
ure 2b. The nodes for calls that receive callback arguments each
have a corresponding callback node as a child. E.g., the callback
given to ensureFile at line 11 is represented by the callback node
callback(a, b, ¢, d, e). Calls nested within the body of a call-
back function are represented as children of callback nodes. E.g.,
the call to readJson on line 12 corresponds to the lower-left call
node of the tree. The value pool of the test consists of two entries,
which map the variable names to their respectively assigned values
in lines 8 to 9.

A call in a test case can use as arguments only values that are
available at the call site according to the scoping rules of JavaScript.
We say that a test case is well-formed if, for all calls, its arguments
are bound to some declaration when the call is reached during the
execution of the test case. Given our tree representation of a test
case, a test case is well-formed if and only if the following holds:

Definition 3 (Well-formedness). In a well-formed test case tree,
each argument of a call node n is one of the following:

e A random primitive value, inserted by referring to one of
the entries in the value pool V.

e A random object value (array literal, object literal, or func-
tion), also inserted by referring to one of the entries in V.

e The return value r of a call node n’ that is a left sibling of n or
a left sibling of any ancestor call node of n (these represent
return values of calls executed before reaching the call in n).

e A parameter p; of a callback node on the path between the
root node and n (these represent formal parameters of a
surrounding callback function).

e A callback function cby, where n has a callback node that
represents cby as a child.

Example. Figure 2b shows a test case tree where all arguments
are well-defined. E.g., in the call of ensureFile, the first argument is
arg590, which is a randomly generated primitive value in the value
pool (a string literal, defined on line 8), and the second argument is
a callback node. In contrast, the call of stat could not use, e.g., a as
an argument because a is not in the parameter list of any callback
node on the path between stat’s node and the root node.

4.2 Test Generation Algorithm

Our algorithm creates test cases iteratively, by repeatedly extending
an existing test case with another call at extension points, which
represent locations in a given test case where a new call node could
be inserted. Given a test case tree, there is an extension point for
each callback node that is executed during test execution, which
adds another child node to the already existing child nodes, at the
right-most position. For callback nodes with no children, there is
an extension point for adding a first child node.
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Algorithm 1 Feedback-directed generation.

Input: Set F of API functions, map S from function names in F to
their discovered signatures, mined nesting examples M
Output: Set of tests T
:Te0
2: t < empty test case tree
3. E « {(t, root(t))}
4: while |T| < number of tests to generate do
5: (¢,n) «randomly pick from E
f < chooseFunction(t, n, F, M)
args « chooseArguments(t,n, f, S, M)
' « extend t with call to f(args) atn
feedback «— execute(t”)
10: T —Tu{t'}
11 if noExceptions(feedback) then
12: for each n’ € extensionPoints(feedback) do
13: E — E{(t',n")}

14: return T

> Generated test case trees

> Extension points

Y ® N

Example. Figure 2b shows the extension points of the test case
tree, as well as edges that would be added if the test is extended at
these points (labeled the extension edges). These extension points
correspond to adding a call right after lines 12 and 16 in Figure 2a.

Algorithm 1 summarizes our feedback-directed approach for
creating test cases. It maintains a set T of generated tests and a set
E of extension points. Each extension point is a pair (¢, n) of a test
case tree t and a node n in this tree, representing the callback node
where a new call node could be inserted. The main loop extends an
existing test with a new call at one of the extension points and adds
the test to T. The extended test ¢’ is then executed to gather feedback
about its execution. If no exception is thrown, each possible callback
node that is executed is kept as a possible extension point to create
a further test. The algorithm relies on helper functions for choosing
a function to call, choosing arguments to pass into the function,
and identifying future extension points, which we describe below.

Choosing a function to call. Given a specific extension point,
Algorithm 1 calls chooseFunction to pick a function to call by balanc-
ing two requirements. On the one hand, the generated tests should
cover as many functions as possible. On the other hand, we do not
want to prescribe a specific order in which functions are selected.
To this end, the approach assigns to each of the given functions a
weight and then takes a weighted, random decision. Initially, all
functions have uniformly distributed weights. When a function is
selected by chooseFunction, its weight is divided by a constant factor
(four in our current implementation). Note that this reduction is
done every time a function is chosen, i.e., if the same function is
chosen twice, its weight is divided by the constant factor twice. In
addition to the above, chooseFunction is guided by a mined model
of nested API functions, as explained in detail in Section 4.3.

Choosing arguments to pass into a function. Once a function has
been selected for testing, arguments need to be generated for it.
This is done by consulting the list of signatures produced by the
discovery phase. If multiple signatures exist for a function, one is
chosen at random. The signatures inform the test generation of
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the number of arguments that the function should be passed, and
which (if any) are callback arguments. If no signatures exist for the
function, a random number of arguments is selected (between 0 and
5), and arguments are generated randomly to fill these positions.
Note that, in these cases, no callback arguments are generated.

For non-callback arguments, the type is selected randomly from
the JavaScript primitive types (number, string, and boolean), object
literals, arrays, functions, and other. If the selected type is any of the
primitives, object, or array, then randomly generated values of this
type are used. If the selected type is function, an available function
is chosen from the API under test or the runtime environment (e.g.,
console. log). If the selected type is other, a variable that is available
at the current scope is selected, which includes return values from
previous API calls and arguments to previous callbacks in the test
case tree (Definition 3).

Nesting API calls helps with generating well-formed arguments,
as values (including objects) may get passed from outer to inner
calls, as illustrated in the motivating example in Section 1. In addi-
tion, since we are working with many file system-related libraries,
string primitive values are selected randomly from a pre-made list
of valid file names that correspond to a small hierarchy of directo-
ries and files generated during the setup of Nessie for the purposes
of the testing. Beyond these two points, we do not address the
problem of generating complex objects in this work.

Adding new extension points. After executing a generated test,
extensionPoints is called to identify where to extend the test in fu-
ture iterations. This function returns an extension point for each
callback node that has been executed, corresponding to the inser-
tion of a new child node to the right of its existing children (see
Figure 2b). There are two reasons for not adding an extension point:
exceptions thrown by the tested APIs and callback functions that
are never invoked. By examining feedback from test executions, the
algorithm avoids creating future tests that build on code that will
never execute. A single test may have multiple extension points
because more than one of its callbacks may execute. Note that
extension points are not removed after being used, so the set of
extension points grows monotonically, enabling for multiple new
tests to be derived from an extension point in a single base test.

4.3 Mining API Usages

Having an API call nested in the callback argument of another API
call implies a relationship between these calls. We define a notion
of a nesting example to formalize such relationships.

Definition 4 (Nesting example). A nesting example is tuple

outer oute

(ﬁmter; ( argl

oo AT, finner, (arg™, ..., argi™®"))

where:

® fouter is the name of a called API function,

e every argi”“te’ is either cbsyne O chasync (ie., a sync or async
callback argument) or _ (any non-callback argument),

® finner is the name of an API function invoked in the callback
given to fouter, and

o every arg}"”” is either outer@k (i.e., the same argument as
given to fourer at position k), cb@k (i.e., the kth parameter
of the callback function), or _ (i.e., any other argument).
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Example 4.1. The following nesting example can be mined from
Figure 2a: (ensureFile, (_, _, cbasync), readJson, (outer@0)).

Example 4.2. The following usage of the fs-extra API, where
the obj parameter of the callback passed to readJson serves as an
argument in a nested call to outputJson:

// read the contents of file.json and output it to output.json
readJson("file.json", function callback(err, obj) {

outputJson("output.json", obj);
12N

corresponds to: (readJson, (_, cbasync), outputjson, (cb@1,_)).

We developed a static analysis for mining nesting examples from
real-world uses of APIs by traversing the ASTs of existing API
clients. This analysis was implemented in CodeQL [15], using its
extensive facilities for static analysis. In particular, we use CodeQL’s
access path tracking to identify functions as originating from an
API import, and its single static assignment representation of local
variables to identify situations where the same argument is used
in an outer call and an inner call. For shared arguments that are
primitive values (e.g., the same string passed to both inner and outer
calls) the relationship is identified by checking for value equality.

The test generator uses the set of mined nesting examples in
chooseFunction. When selecting a function to be nested in the call-
back of some function f, the set of nesting examples is consulted
to find examples where fo,rr matches f. If such nesting examples
exist, then one of the corresponding finner functions is randomly
selected to be invoked inside f’s callback. Similarly, chooseArgu-
ment consults the selected nesting example to determine which
arguments (if any) to reuse from the outer function or from the
surrounding callback, and at what position(s).

If no relevant mined nesting examples are available, an inner
function is randomly selected. The test generator is configured
to only use mined data 50% of the time. If we only used nestings
that showed up in mined data, this would exclude many potentially
correct pairs that simply do not occur in the mined projects. Section
5 explores the effect of varying how often mined data is consulted
on the coverage achieved by the tests.

5 EVALUATION
Our evaluation aims to answer the following research questions:

e RQ1: How effective is the discovery phase at finding abstract
signatures of API functions?

e RQ2: How effective is Nessie at achieving code coverage?

e RQ3: How effective is Nessie at finding behavioral differ-
ences during regression testing?

e RQ4: What is the effect of varying the chance of choosing
nested function pairs based on the mined nesting examples?

e RQ5: What is the performance of Nessie?

Benchmarks. Table 1 shows the libraries we use as benchmarks
for our evaluation, along with the number of lines of code (LOC)
and the commit of the version we use. To select candidate libraries,
we first identified two domains of libraries that commonly have
asynchronous functionality: file systems and promises. We then
picked popular libraries in those domains that satisfied the base
requirements of: successfully installing/building, and having a test
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Table 1: Summary of projects used for evaluation.

Project LOC Cov. loading Commit Description

fs-extra 907 16.8%  6bffcd8 Extra file system methods

jsonfile 45 19.1% 9c6478a Read/write JSON files in Node.js

node-dir 285 5.9% a57c3bl Common directory/file operations

bluebird 3.3k 23.7% 6c8c069 Performance-oriented promises
760 22.2%  6bc7f52 Promise library

q
graceful-fs 439 25.3% ¢1b3777 Drop-in replacement for native fs

rsvp.js 579 16.4% 21e0c97 Tools for organizing async code
glob 845 11.0% 8315c2d Shell-style file pattern matching
zip-a-folder 24 16.0% 5089113 Zip/tar utility

memf's 2.4k 29.1%  ec83e6f In-memory file system

Table 2: Abstract signatures categorized manually (M) and
found by automated API discovery (A).

Signatures with callbacks | Signatures without callbacks

Project M A OnlyM OnlyA ‘ M A OnlyM Only A
fs-extra 21 88 3 70 | 45 361 21 337
jsonfile 4 8 0 4 8 12 4 8
node-dir 9 6 4 1 1 11 0 10
bluebird 25 22 7 4129 68 26 65
q 16 27 7 18 | 57 155 19 117
graceful-fs - 15 N/A NA | - 36 N/A N/A
rsvp.js 3 7 0 4110 31 3 24
glob 6 6 0 0 4 6 1 3
zip-a-folder 0 0 0 0 3 4 2 3
memf's 58 30 33 5157 62 56 61

suite, with tests that all pass®. As a point of reference, we measure
the statement coverage of the library code achieved by simply
loading the library (column “Cov. loading” in Table 1). To mine
nesting examples from existing API clients, we run the API usage
mining over a corpus of 10,000 JavaScript projects on GitHub, which
yields a set of 873 unique nestings of API functions in the libraries
under test.

Baselines and variants of the approach. We compare Nessie against
the state of the art approach LambdaTester [35] (LT). Because the
original LT does not support language features introduced in EC-
MAScript 6 and later, and because parts of the implementation
are specific to their benchmarks, we re-implement LT within our
testing framework. To better understand the value of nesting and se-
quencing, we evaluate two variants of Nessie: NES (seq), which uses
sequencing only, and NES (seq+nest), which uses both sequencing
and nesting.

5.1 RQ1: Effectiveness of Automated API
Discovery

To measure Nessie’s effectiveness at discovering the signatures
of API functions, we inspect the documentation of the libraries
and manually establish their signatures, and then compare these
signatures against those discovered through our automated API dis-
covery. As described in Section 3, if the approach does not discover
any valid signatures for an API function then a default “callback-
less” signature is assigned. We do not count this default signature
towards the total number of discovered signatures.

5To automate the process of determining which libraries satisfy these requirements,
we used npm-filter [8].
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Table 2 displays the results of this experiment. For each API,
we include the number of signatures found through manual docu-
mentation inspection and the number found through automated
discovery, both with and without callback arguments. We also in-
clude the number only found with one of these approaches. The first
row reads as follows: for fs-extra, manual analysis yields 21 signa-
tures with callback arguments, and automated discovery yields 88
signatures with callback arguments. Of those manually found, 3 are
not discovered automatically; of those automatically discovered, 70
are not found manually. The next four columns read the same way
but for signatures without callback arguments. Note that we do not
have results for graceful-fs, as it does not provide function-level
documentation.

We can summarize the effectiveness of the discovery phase by
computing the percentage of documented signatures that are found
with the automated approach. For the signatures with callback
arguments, we compute this as follows:

signatures only found manually

" total number of signatures found manually
3+4+7+7+33
=1- =|62%
21+4+9+25+16+3+6+58
With a similar computation, we see that the automated discovery

finds 38% of the documented signatures without callback argu-
ments.

Signatures found only manually. Nessie sometimes misses signa-
tures because the automated discovery may fail to generate valid
arguments, particularly in cases where arguments need to meet
specific conditions. For example, in the file system libraries, func-
tions without callback arguments often expect valid file names for
files with particular characteristics, and throw an error when this
is not the case (e.g., writeFileSync and readFileSync in jsonfile).
Another reason for signatures missed by the API discovery are func-
tions that take multiple callback arguments, which our algorithm
misses as it tests with only one callback at a time. Multiple callbacks
are the main cause of missed signatures in node-dir and memf's.

Signatures found only automatically. There are two main rea-
sons for finding signatures automatically that we missed during the
manual inspection of documentation. First, some functions are un-
documented, e.g., internal functions, aliases for the documented API
functions, or re-exported functions of the built-in fs module. For
example in fs-extra, writeJson can also be called with writeJSON.
Since the automated discovery reads the function properties of the
package on import, it tests all functions regardless of whether or
not they are presented to the user in the documentation. There are
also some internal functions that are present as properties on the
library import, such as _toUnixTimestamp on fs-extra and memfs.
Second, some API functions support more function signatures than
those that are documented. Since the discovery phase only consid-
ers a signature invalid if the API function call throws an error with
the tested arguments, a basic lack of error checking in the imple-
mentation can lead to extra signatures. For example, consider the
writeFile function in jsonfile. The documentation presents its sig-
nature as: writeFile(filename, obj, [options], callback). How-
ever, the automated discovery phase finds that (async) is a valid sig-
nature. This unexpected signature is because jsonfile.writeFile
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Figure 3: Cumulative coverage while generating 1,000 tests
for graceful-fs.

is implemented with universalify’s fromPromise function, which
executes the last argument if it is a callback, regardless of the other
arguments. Even though checking exposed APIs against documen-
tation is not the primary purpose of Nessie, we made pull requests
addressing this issue on both fs-extra® and jsonfile’.

Answer to RQ1: Automated discovery finds 62% of documented
signatures that expect callback arguments, and 38% of signatures
without callback arguments. It also discovers some undocumented
signatures, which in several cases reflect unexpected behavior.

5.2 RQ2: Coverage Achieved by Generated
Tests

To measure Nessie’s effectiveness at covering the statements of
the library under test, we generate 1,000 tests for each library and
compute the cumulative coverage. To compute coverage, we use
the Istanbul command line coverage tool nyc, even if the developers
include their own command for computing coverage, to ensure
consistency. We repeat this experiment with the two variants of
Nessie, NES (seq+nest) and NES (seq), and with the baseline LT
approach.

Figure 3 shows how cumulative coverage evolves while gen-
erating 1,000 tests for one package, graceful-fs. As a reference,
the horizontal line shows the coverage directly after loading the
library. The coverage follows a logarithmic shape: a steep increase
in coverage with the initial tests and an eventual convergence to
some coverage plateau, or at least, a leveling off of the curve. The
final coverage is fairly close between the two variants of Nessie,
but the combination of sequencing and nesting converges more
quickly. Moreover, Nessie achieves higher final coverage than LT.

The number of functions for which Nessie can generate tests
and for which LT cannot depends entirely on the API. Therefore,
the coverage improvements are quite variable across the packages
tested. We chose graceful-fs as the demonstrative example because
it shows both the plateauing of coverage and the relatively small

®https://github.com/jprichardson/node-fs-extra/pull/866
https://github.com/jprichardson/node-jsonfile/pull/146
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difference we generally see between Nessie with both nesting/se-
quencing and Nessie just sequencing. The same plot for all other
packages are in the supplementary material.

To quantify and summarize the coverage results for all libraries,
the left part of Table 3 shows the final coverage achieved after 1,000
tests. The right part of the table quantifies the comparison with
LT. We compute the number of tests required with Nessie to match
and exceed the coverage that LT achieves after 1,000 tests. The last
column shows the number of tests LT requires to reach the coverage
it keeps at 1000 tests (i.e., the beginning of the coverage plateau LT
reaches at 1000 tests). For example, for the fs-extra project, after
1,000 tests Nessie achieves a statement coverage of 37.2% with NES
(seq+nest) and 35.4% with NES (seq), while LT achieves 34.4%. NES
(seq+nest) matches and also exceeds LT’s coverage after only 311
tests; NES (seq) matches and also exceeds LT s coverage after 663
tests. Meanwhile, after 889 tests, LT reaches a coverage plateau that
it keeps until 1000 tests.

Overall, Nessie consistently achieves slightly higher coverage
than LT. Moreover, our approach reaches high coverage faster: It
matches and often also exceeds the coverage that LT has after
1,000 tests with substantially fewer tests than LT requires to reach
the same coverage. Comparing the two variants of Nessie, the
combination of sequencing and nesting is more effective.

Answer to RQ2: Nessie achieves a higher coverage than the state
of the art, and fewer tests are required to reach this coverage, in
particular, when the approach uses both sequencing and nesting.

5.3 RQ3: Finding Behavioral Differences
during Regression Testing

To answer RQ3, we use the tests generated by Nessie to find behav-
ioral differences in consecutive commits of the benchmark libraries.

5.3.1 Experimental Design. To compare the behavior of a library at
two commits, we generate 100 tests based on the code at the earlier
commit, and then run these tests with the code at both commits. We
use the mocha testing framework [2] to run our tests. This frame-
work can internally handle errors in a test, so that the remaining
tests are executed even if an error is thrown in one of them. Most
relevant for us, mocha handles errors thrown by asynchronously
invoked functions and logs this as an internal async error. To detect
behavioral differences, Nessie produces the following output during
test execution: values of all API function arguments before and after
a call; the name of the API function a callback is passed to and the
value of all parameters inside a callback being executed; the return
value of a successful API function call; the name of the API func-
tion in the event of a failing call. We compare the outputs of both
commits to identify the following kinds of behavioral differences:

o An API call resulting in an error in one commit successfully
executes in the other.

e A return value of an API call differs between commits.

e An argument to an API call or a parameter of a callback
differs between commits.

o A callback is called in one commit but not in the other.

e mocha reports an internal async error in one commit but not
in the other.
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Cumulative behavioral differences found for commit 2c38bf4 (jsonfile)
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Figure 4: Cumulative number of behavioral diffs, for specific
commit of jsonfile.

Some API updates result in an output difference that does not
indicate a relevant difference in functionality, e.g., due to function
renaming, a change in the supported version of Node.js, or syntax
errors resulting from migrating to strict mode. After manually
identifying these cases, we configure our analysis to ignore them
and do not count them in the experimental results.

To avoid double-counting the same behavioral difference being
exposed by multiple generated tests, we consider differences as
equivalent if they are due to the same kind of difference and arise
from the same API function. Since we are working with asynchro-
nous APIs, the exact ordering of calls may be non-deterministic,
possibly causing different outputs across repeated executions of the
same test. To avoid reporting scheduling differences as behavioral
differences we execute each test ten times for the same commit
and then compare the sets of observed outputs across commits. We
report a behavioral difference only if an output observed in one
commit is never observed in the other.

5.3.2  Quantitative Results. As a representative example, Figure 4
shows the cumulative number of detected behavioral differences
while generating 100 tests for a representative commit of jsonfile.
As can be seen in the figure, NES (seq+nest) is most effective, fol-
lowed by NES (seq), and then the existing LT technique.

Table 4 summarizes and quantifies these results across all li-
braries. For each library, we display the number of commit pairs
being compared. We aim to compare 100 commits (i.e., 99 pairs) per
library, but some of the repositories have less than 100 commits that
affect source files. The table reports the number of commit pairs in
which the approach detects a behavioral difference, with the average
number of unique (i.e., non-equivalent) differences in parentheses.
For example, the table’s first row reads: For fs-extra, we run the
regression testing over 99 pairs of commits. NES (seq+nest) spots
a behavioral difference in 17 of these pairs, with 2.8 unique differ-
ences per pair, on average. NES (seq) finds a difference in 14 of these
pairs (3.2 unique differences, on average), and LT in 10 of these (3.2
unique differences, on average). The results show the same trend as
that seen in RQ2: Nessie finds more behavioral differences than LT
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Table 3: Coverage after 1,000 tests and comparison with LambdaTester (LT).

Coverage after 1,000 tests

‘ Tests to match (exceed) 1,000 LT tests

Project NES (seq+nest) NES (seq) LT \ NES (seq+nest) NES (seq) ‘ LT
fs-extra 37.2% 354% 34.4% 311 (311) 663 (663) 889
jsonfile 87.2% 80.9% 80.9% 107 (209) 95 (N/A) 117
node-dir 32.5% 32.5% 32.5% 96 (N/A) 115 (N/A) 199
bluebird 48.0% 47.1% 47.1% 433 (433) 644 (N/A) 644

67.2% 66.4% 67.1% 103 (105) 765 (765) 980
graceful-fs 48.5% 47.0% 41.3% 49 (53) 49 (53) 534
rsvp. js 66.0% 66.0% 64.8% 177 (268) 196 (268) 325
glob 36.1% 36.1% 36.1% 3(25) 181 (N/A) 76
zip-a-folder 32.0% 24.0% 24.0% 1(793) 3 (N/A) 3
memf's 55.5% 48.3% 48.3% 84 (84) 702 (N/A) 702

Table 4: Pairs of commits checked via regression testing and
behavioral differences found.

Table 5: Manual analysis of behavioral differences found via
regression testing.

With diff. (avg. unique per diff)

Commit Project

Diagnosis Description of behavioral difference

Project Compared pairs  NES (seq+nest)  NES (seq) LT
fs-extra 99 17 (2.8) 14(32) 10(3.2)
jsonfile 44 12 (1.9) 9(2.0) 8 (1.9)
node-dir 29 8 (1.5) 6(2.3) 5(1.6)
bluebird 99 0(0.0) 0(0.0) 0(0.0)

99 92 (1.7) 69(1.7)  61(1.8)
graceful-fs 75 18 (1.1) 18 (1.1) 3(1.3)
rsvp.js 99 0(0.0) 0 (0.0) 0(0.0)
glob 99 4(15) 4(13) 4(1.0)
zip-a-folder 6 1(1.0) 1(1.0) 1(1.0)
memfs 99 14 (1.1) 14 (1.1) 0(0.0)

(166 vs. 92 in total), and the combination of nesting and sequencing
is worthwhile (166 vs. 135 differences in total).

5.3.3 Qualitative Results. To better understand the behavioral dif-
ferences that Nessie reveals, we manually inspect a random sample
of them. Table 5 summarizes the results. For each analyzed dif-
ference, we include a hyperlink to the commit introducing the
difference, the name of the project, a categorization of the differ-
ence, and a description of how it manifests. The categorizations we
use are as follows:

e Bug: This commit is introducing a bug.

e Bug fix: This commit is fixing a bug.

e Upgrade: This commit is an update/upgrade of the API,
including migration to newer APIs, updating method signa-
tures, and making functions async.

We find that Nessie detects a variety of different types of API func-
tionality changes. Interestingly, for several commits that introduce
a bug, Nessie later finds the “dual” commit that fixes that same bug.
To better understand the impact of nesting, we checked for each
inspected behavioral difference whether it could also be exposed
by a test case without nesting. Similar to the example mentioned
in the introduction, we find that creating a sequence-only test case
is, in principle, possible for each of the behavioral differences. The
key benefit provided by nesting is to more quickly cover a diverse
set of behaviors than with purely sequential tests, and hence, to
expose more behavioral differences in a given testing budget.

a149f82 fs-extra Bug outputJSON executes callback even with bad
arguments in newer commit

dba@cbb fs-extra Upgrade many API functions no longer error or return
different values in newer commit

03b2080 fs-extra Bug fix  exists returns callback argument return value
on error instead of undefined

df125be fs-extra Bug ensureSymLink executes the callback argument
even with incorrect arguments

3fc5894 fs-extra Bug fix  ensureFile throws error on incorrect argu-
ments instead of executing callback

ef9ade4 fs-extra Bug copyFile doesn’t throw error with incorrect
non-callback arguments

2e4fcae fs-extra Upgrade writev returns rejected promise instead of
throwing error on incorrect arguments

075c2d1 fs-extra Bug move and copy now executes the callback argu-
ment even with incorrect arguments

4a0ebe5 jsonfile Bug fix readFile executes callback in newer commit

b1f40ef jsonfile Upgrade readFileSync succeeds in newer commit (er-
rors in older commit)

4b90419 jsonfile Upgrade readFileSync errors in newer commit (suc-
ceeds in older commit)

995aa63 jsonfile Bug writeFile executes callback in newer commit

e3d86e0 jsonfile Bug read/writeFile execute callback even with
bad arguments in newer commit

10eed1d jsonfile Bug readFile sometimes errors in newer commit
(succeeds in older commit)

ebe5aal q Upgrade tap and any succeeds in newer commit (error
in older commit)

2a9%9a617 graceful-fs Bugfix  createReadStream succeeds in newer commit
(infinite loops in older commit)

4520242 graceful-fs Bug fix 1chmod is undefined on Linux in older commit;
succeeds in newer commit

5d961ab graceful-fs Bugfix  readFile sometimes executes callback in
newer commit

eaaboee glob Upgrade glob succeeds in newer commit (error in older
commit)

5d8a060 zip-a-folder Upgrade zipFolder executes callback in newer commit

Answer to RQ3: Nessie finds many behavioral differences between
versions of libraries, including accidentally introduced bugs, bug
fixes, and API upgrades. These differences are found most quickly
with generated tests that use both sequencing and nesting.

5.4 RQ4: Impact of Guidance by Mined Nesting
Examples

The API usage mining component of Nessie informs the choice of
which inner API function to call when nesting API functions. By
default, the mined nesting examples are consulted 50% of the time.
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https://github.com/isaacs/node-glob/commit/eaab0eeea4f821926c6b05a04f8ddf64d885b3f4
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Table 6: Coverage after 1,000 tests at different levels of using
mined nesting examples.

Test coverage, using % mined nestings

Project 0% 25% 50% 75% 100%
fs-extra 32.2% 33.6% 37.2% 33.0% 33.0%
jsonfile 87.2% 83.0% 87.2% 87.2% 87.2%
node-dir 32.5% 33.6% 32.5% 33.2% 33.2%
bluebird 45.7% 51.2% 48.0% 55.1% 48.4%
q 65.7% 66.4% 67.2% 66.3% 66.3%
graceful-fs 48.5% 48.5% 48.5% 48.5% 47.0%
rsvp.js 64.8% 65.0% 66.0% 58.2% 58.2%
glob 36.1% 36.1% 36.1% 36.1% 36.1%
zip-a-folder 24.0% 24.0% 32.0% 32.0% 24.0%
memf's 50.0 % 51.2% 55.5% 51.8% 51.8%

The following measures the effect of varying this percentage on the
coverage achieved by the generated tests. The experimental setup
is as in RQ2, but we consider the test generation to follow mined
nesting examples 0%, 25%, 50%, 75%, and 100% of the time.

Table 6 summarizes the result of this experiment by showing
the final coverage after generating 1,000 tests. The corresponding
coverage plots are in the supplementary material. The table’s first
row reads as follows: For fs-extra, the statement coverage when
using 0% mined nestings is 32.2%, when using 25% mined nestings it
is 33.6%, when using 50% mined nestings it is 37.2%, when using 75%
mined nestings it is 33.0%, and when using 100% mined nestings
it is 33.0%. For readability, we show the highest coverage for each
project in bold.

The results illustrate the value of using mined nesting examples:
50% mined nestings always leads to a coverage that is higher than
or at least as high as 0% and 100% mined nesting. This supports our
initial hypothesis that choosing informed nestings is more likely to
produce valid tests that will increase coverage. However, choosing
only mined nestings, i.e, 100%, risks to miss valid nestings that are
simply never seen during the API usage mining.

We currently do not have results on the impact of mined data use
on the regression tests. However, the increase in coverage caused
by mining API usages, which we observe for 6 of the 10 libraries,
suggests that mining may also help during regression testing.

Answer to RQ4: Choosing mined nestings some of the time results
in tests with higher coverage than those generated always or never
using the mined nestings. The optimal parameter depends on the
library under test, but 50% is an overall reasonable choice.

5.5 RQ5: Performance of Test Generation

We measure the time taken to generate 100 tests for each of three
approaches we consider, including the discovery phase. We run
these experiments on a machine with two 32-core 2.35GHz AMD
EPYC 7452 CPUs and 128GB RAM, running CentOS 7.8.2003 and
Node.js 14.16.1. Since Nessie is implemented in TypeScript, it is
single-threaded and so only uses one core. Depending on the library,
the test generation takes between 15 and 30 seconds. The results
show that the time required to generate 100 tests is fairly similar
across all three approaches.

Mining the nesting examples is an up-front cost. As described in
Section 4.3, we wrote a static analysis in CodeQL [15] to identify
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nesting examples; we ran this over a set of 13,580 JavaScript projects
on GitHub using npm-filter [8]. This process took around 20 hours.
This set of examples comes with the tool, and users of the tool
would only be required to rerun the mining of nesting examples
if they wanted to generate tests for APIs for which we did not
mine any nesting examples. The cost of mining nesting examples
depends only on the number of mined projects, and not on the
number of APIs being mined for.

Answer to RQ5: With 15 to 30 seconds per 100 tests, the approach
is efficient enough for practical use. Extending the set of mined
nesting examples takes time proportional to the number of projects
mined but is an up-front cost.

5.6 Threats to Validity

Internal validity. Our results may be influenced by several fac-
tors. First, our baseline is a re-implementation of LT [35] because
the original implementation was not functional on our benchmarks,
and their benchmarks do not contain asynchronous APIs. The re-
implementation is based on the original code, which is publicly
available, and we clarified questions on the code with the LT au-
thors. Second, our automated identification of equivalent behavioral
differences is approximate and may both over- and underapproxi-
mate a (theoretical) precise approach. Since the approximation is
likely the same for all evaluated approaches, it should not influence
the overall conclusions. Finally, the results of manually inspecting
and classifying behavioral differences is subject to our understand-
ing of the tested libraries. To mitigate this threat, we discussed all
cases among the authors.

External validity. The libraries used in the evaluation may not be
representative for the overall population of libraries with asynchro-
nous callbacks. As of July 2021, npmjs. com reports a total of 116,342
packages that are dependent on the packages used in the evaluation,
i.e., the benchmarks at least cover a relevant subset of all libraries.
Finally, our implementation targets JavaScript, and hence, we do
not claim our empirical results to generalize to other languages.
Because callbacks, both synchronous and asynchronous, exist in
various other languages, where they cause similar challenges for
test generators, we hope our conceptual contributions may inspire
future work for other languages.

6 RELATED WORK

Test generation for higher-order functions. There are several tech-
niques for automatically testing higher-order functions. Most closely
related is LambdaTester [35], which also targets JavaScript and has
inspired some of our design decisions. The main difference is that
Nessie tests functions with both asynchronous and synchronous
callbacks, enabled by our method for API discovery and through
the notion of a test case tree, which allows for nesting calls. Other
test generators can be roughly categorized into random testing and
solver-based, systematic testing. QuickCheck [11] is an example
of the former, as it creates callback functions that return a ran-
dom, type-correct value. Koopman and Plasmeijer [20] propose
systematic, syntax-driven generation of callback functions based
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on user-provided generators. A test generator for higher-order func-
tions in Racket relies on types and contracts of tested functions [19],
two kinds of information that rarely exist for JavaScript libraries.
Solver-based test generators include several variants of symbolic
and concolic execution adapted to higher-order functions [27, 44],
and work that performs a type-directed, enumerative search over
the space of test cases [37]. Palka et al. [31] propose to randomly
generate type-correct Haskell programs, including higher-order
functions, to test a Haskell compiler. All of the above approaches tar-
get functional languages, and none of them considers asynchronous
callbacks or produces nested callbacks.

Random test generation. Nessie builds upon a rich history of ran-
dom test generators, starting with Randoop [30], which introduced
feedback-directed random test generation. Our work also follows
this paradigm, but in contrast to Randoop, addresses challenges of
higher-order functions and those arising in a dynamically typed
language. EvoSuite [13] uses an evolutionary algorithm to continu-
ously improve randomly generated test cases. Beyond function-level
testing, application-level fuzzing has received significant attention,
including AFL® and its derivatives [9, 22], and combinations of
fuzzing with symbolic testing [39]. In contrast to the above greybox
or whitebox fuzzers, Nessie does not need to analyze the library
under test, but obtains feedback from the execution of the generated
tests and, optionally, uses existing API clients for guidance.

Asynchronous JavaScript. A study of callbacks in JavaScript code
finds that 10% of all functions take callback arguments, that the
majority of those callbacks are nested, and that the majority of call-
backs are asynchronous [14]. These results show that generating
tests without considering asynchronous callbacks (i.e., the tests that
prior work [35] is able to generate), fails to fully reflect the behavior
seen in real-world JavaScript code. Another study reports that most
of the concurrency bugs in Node.js are about usages of asynchro-
nous APIs [41]. Our work is about analyzing the implementation of
such APIs. Beyond JavaScript, a study of higher-order functions in
Scala finds that 7% of all functions are higher-order [43], suggesting
that the problem we address is relevant beyond JavaScript.

Alimadadi et al. [5] propose a dynamic analysis to trace and
visualize JavaScript executions, with a focus on asynchronous inter-
actions across the client and the server. Another dynamic analysis
detects promise-related anti-patterns [6]. Several techniques aim at
detecting races in JavaScript [3, 4, 32, 34, 45], where “race” means
that different asynchronously scheduled callbacks may be executed
in more than one order. These approaches are also motivated by
the challenges of asynchronous JavaScript but address problems
orthogonal to that addressed by Nessie.

There are several formalizations of different aspects of asynchro-
nous JavaScript, including an execution model of Node.js [23], a
model to reason about promises [24], and a calculus, semantics, and
implementation of a static analysis of asynchronous behavior [38].
The “callback graph” of the latter relates to our test case trees, but
it is created as part of a static analysis and captures a happens-
before-like relation, while test case trees serve as an intermediate
representation that represents sequencing and nesting.
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Program analysis for JavaScript. The popularity of JavaScript
has motivated a variety of dynamic and static analysis techniques,
and we refer to a survey for a comprehensive discussion [7]. Ex-
amples of techniques include dynamic analyses to detect type in-
consistencies [33], to detect inefficient code [16], to detect various
common programming mistakes [17], and to reason about taint
flows [18]. Work on reasoning about API changes and how they
affect clients [26] is a recent example of a static analysis. Similar
to Nessie, all these analyses take a pragmatic approach toward ad-
dressing the idiosyncrasies of JavaScript, without providing strong
soundness or completeness guarantees.

7 CONCLUSION

Effective test generation for APIs that make use of asynchronous
callback arguments is challenging, as the test generator must gen-
erate tests that combine multiple calls to related API functions in
meaningful ways. Generating only sequences of calls, as done in
existing test generators, is inadequate, as it is difficult for such an
approach to produce suitable values to invoke API functions with.

We presented Nessie, the first test generator aimed at APIs with
asynchronous callbacks, which relies on both sequencing and nest-
ing API calls to produce suitable values to invoke API functions
with. Here, nesting here means generated tests may contain API
calls inside the body of callbacks passed to other API calls. In an
empirical evaluation, Nessie is applied to ten popular JavaScript
libraries containing 142 API functions with callbacks, and its effec-
tiveness is compared to that of LambaTester, a state of the art test
generation technique that creates tests only by sequencing method
calls. Our results show that Nessie finds more behavioral differences
and achieves slightly higher coverage than LambdaTester. Notably,
it needs to generate significantly fewer tests to achieve and exceed
the coverage achieved by LambdaTester.

TOOL/DATA AVAILABILITY

A full working artifact, including all experimental data associated
with this research is available at: https://zenodo.org/record/5874851.
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