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Abstract—Event-driven programming is widely practiced in the
JavaScript community, both on the client side to handle UI events and
AJAX requests, and on the server side to accommodate long-running
operations such as file or network I/O. Many popular event-based APIs
allow event names to be specified as free-form strings without any
validation, potentially leading to lost events for which no listener has
been registered and dead listeners for events that are never emitted.
In previous work, Madsen et al. presented a precise static analysis for
detecting such problems, but their analysis does not scale because it
may require a number of contexts that is exponential in the size of the
program. Concentrating on the problem of detecting dead listeners, we
present an approach to learn how to use event-based APIs by first min-
ing a large corpus of JavaScript code using a simple static analysis to
identify code snippets that register an event listener, and then applying
statistical modeling to identify anomalous patterns, which often indicate
incorrect API usage. In a large-scale evaluation on 127,531 open-source
JavaScript code bases, our technique was able to detect 75 anomalous
listener-registration patterns, while maintaining a precision of 90.9% and
recall of 7.5% over a validation set, demonstrating that a learning-based
approach to detecting event-handling bug patterns is feasible. In an
additional experiment, we investigated instances of these patterns in 25
open-source projects, and reported 30 issues to the project maintainers,
of which 7 have been confirmed as bugs.

Index Terms—static analysis, JavaScript, event-driven programming,
bug finding, API modeling

1 INTRODUCTION

Event-driven programming has been the dominant
paradigm in JavaScript since its early days. This is quite
natural on the client side, since most web applications are
GUI-based and hence are centered around reacting to user
actions such as clicking a button or pressing a key. The W3C
UI Events standard [1] defines the low-level event API sup-
ported by all modern browsers, while popular libraries such
as jQuery [2], Angular [3] and React [4] provide higher-level
abstractions on top of it. Many other client-side APIs such as
Web Workers and Web Sockets are likewise programmed in
an event-driven style. On the desktop, the popular Electron
[5] framework enforces an architecture where applications
are split into a main process and a renderer process, which
communicate via an event-based API. Finally, the Node.js
platform [6], which is dominant in server-side JavaScript,
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advocates an asynchronous programming style centered
around a collection of event-based APIs for accessing re-
sources like the file system, the network, or databases.

The precise APIs implemented by individual platforms
and frameworks differ, but a common feature across all of
JavaScript is the notion of a central event loop that han-
dles event dispatching. Events are identified by an event
name and may optionally have a payload. When an event
happens, it is associated with a particular object, which is
known as the event target in many client-side frameworks
and the event emitter in Node.js. We will follow the latter
terminology in this paper. Client code can register listener
functions (or listeners for short) for a particular event on an
event emitter. When an event is emitted, all the listener
callbacks registered for it on the emitter object are run in
sequence. While many events are emitted by framework
code, application code can also emit events explicitly.

Most of the event-based APIs mentioned above are in-
trinsically dynamic and untyped. By “dynamic” we mean
that the association between events and listeners can change
over time, with new listeners being registered and exist-
ing listeners being removed throughout an event emitter’s
lifecycle. Indeed, it is common for listeners themselves to
register or remove listeners on their own or on other emit-
ter(s). By “untyped” we mean that event names are free-
form strings that are not validated in any way, and can be
associated with any emitter and any payload. In particular,
client applications can emit and listen for custom events on
emitters defined by a library.

While these two properties are prized by some for their
flexibility, they also give rise to several classes of subtle
bugs [7]. For example, if a listener registration misspells the
name of the event or registers the listener on the wrong
object, the listener will never be invoked. This is known as
a dead listener. Dead listeners can also arise if a listener is
registered at the wrong time, for instance after the event
has already been emitted. The dual of a dead listener is a
lost event, which can happen if an event emission misspells
the event name or emits it on the wrong object. Both dead
listeners and lost events are particularly hard to debug, as
they manifest in the lack of execution of the listener function
rather than an explicit error message.

In this paper, we concentrate mostly on dead-listener
bugs. Our goal is to detect such bugs automatically and
statically, i.e., without having to run the code under analysis.

Prior work by Madsen et al. [7] employs context-
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Fig. 1. Overview of approach: the top half depicts the model-construction pipeline, while the bottom half shows their potential applications. This
paper focuses on the shaded areas.

sensitive static analysis techniques to infer a semantic model
of event emission and listener registration to identify dead
listeners. Unfortunately, their analysis does not scale well
because it may require a number of contexts that is expo-
nential in the size of the program.

We propose instead to learn how to use event-based APIs
by first mining a large corpus of JavaScript code with a
simple static analysis to identify code snippets that register
an event listener, and then applying statistical modeling to
identify anomalous patterns. Intuitively, if we look at enough
code we would expect most API usages to correspond to
their designed use, so particularly rare patterns are likely
bugs. We formalize this concept of “particularly rare” as
thresholds in our statistical analysis, and identify patterns
that meet these thresholds as potential bugs. Using the same
thresholds, our approach also addresses the dual problem of
learning expected uses, with “particularly common” uses of
the APIs corresponding to the intended use.

Figure 1 visualizes our approach. The top of the figure
shows how models of event-driven APIs are constructed
in two steps: First, a data mining analysis is applied to
a large number of JavaScript projects to obtain a list of
event listener registrations. These are represented as listener-
registration pairs ha, ei, where a is an event-emitting API
endpoint symbolically represented by an access path [8] as
explained in Section 3, and e is the name of the event the
listener is registered for. The second step is classification, i.e.,
performing a statistical analysis of the occurrence distribu-
tions of e’s and a’s, and using this to identify pairs ha, ei
where the access path a and event e are rare relative to each
other. In other words, we look for cases where e is rarely
listened for on a, and a rarely registers a listener for e.

Considering one of these conditions in isolation, or only
the absolute number of occurrences of a pair, is not usually
sufficient, since the data may be too sparse to conclude that
it is anomalous. For example, a may be a rarely-used API, or
e may be a custom event that is used only by one particular

code base. If, however, both the event emitter and the event
name are rare for each other yet otherwise common, then
that is a strong indication that this pair represents a mistake.

Our statistical analysis has four parameters shown as
inputs to the classification stage in Figure 1: rarity thresholds
pa and pe defining when paths and events are considered
rare, respectively, and confidence thresholds pca and pce
defining the statistical confidence we demand for paths and
events to be considered rare, respectively. The output of
classification is a set of pairs learned to be expected, and a
set learned to be anomalous. Pairs are left unclassified if they
do not meet the thresholds for being common or rare.

These sets constitute API models, for those APIs ana-
lyzed. Once constructed, these API models can be used, e.g.,
in bug finding tools (see bottom left part of Figure 1), or for
smart completion in an IDE (see bottom right part). In this
work, we focus on the set of pairs that are learned to be
anomalous, as they are likely to indicate dead listener bugs.

The effectiveness of our approach crucially depends on
how we configure the threshold parameters for classifica-
tion. In our evaluation, we systematically explore the space
of possible configurations, computing for each of them the
set of anomalous listener-registration pairs from more than
532,000 pairs mined from over 127,500 open-source code
bases. To quantitatively assess the quality of the models
generated with a particular configuration, we then compute
the true-positive rate (the precision) and the percentage of
true positives detected (the recall) with respect to a validation
set of pairs that we semi-automatically labeled as correct or
incorrect according to the API documentation1.

In general, configurations with lower precision yield
higher recall. For practically useful tools, however, a preci-
sion of at least 90% is generally considered essential [9], [10].
Several configurations achieve this rate over the labeled set.

1. Event-listener registration pairs in the validation set may also be
designated as being imprecise, to reflect situations where the access
path is insufficiently precise to make a determination (see Section 6).
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To gain confidence that this is not simply an artifact of
the data, we performed a 10-fold cross-validation experi-
ment. We partitioned the labeled set into 10 sets; for each
set, we found the optimal configuration for the other 9 sets
(which together form the training data), and computed the
precision and recall of that configuration over the remain-
ing set (which comprises the validation data). Our results
show that the optimal configuration for the training data
consistently achieves good results over the validation data.

To qualitatively assess the usefulness of our approach,
we investigated uses of anomalous pairs in 25 open-source
projects, reporting 30 issues to the project maintainers. At
the time of writing, 7 of these have been confirmed as dead-
listener bugs, and two have been patched.

The rest of the paper is structured as follows. Section 2
provides background on event-driven JavaScript program-
ming and reviews a dead-listener bug in an open-source
project. Sections 3 and 4 explain our approach in detail,
while Section 5 covers the implementation. Sections 6 covers
experimental methodology used in an experimental evalua-
tion that is presented in Section 7. Next, Section 8 presents
a case study of false positives and false negatives observed
in our results, and discusses threats to validity. Section 9
discusses to what extent our techniques are applicable to
detecting lost events. Section 10 reviews related work, and
Section 11 concludes and outlines directions for future work.

The source code of our implementation, experimental
data, and reproduction instructions are available online at
https://github.com/emarteca/JSEventAPIModelling

2 BACKGROUND

We begin by recapitulating the basics of event-driven pro-
gramming in Node.js and some of the most common kinds
of mistakes programmers make when writing event-driven
code. We then show a concrete example of such a bug, based
on code we found using our approach in an open-source
project on GitHub, and finally explain how we go about
identifying this sort of bug automatically.

2.1 Event-driven programming in Node.js
All event emitters in Node.js are instances of the
EventEmitter class [11] or one of its subclasses. Listeners
are associated with an event by invoking one of several
listener registration methods (such as on or addListener);
these all take two arguments: an event name, which is a
free-form string, and the listener function itself. Events can
be emitted by invoking the emit method, which takes as
its first argument an event name; any further arguments
are passed as arguments to the listener functions associated
with the event.

A typical example of this event-driven style is
the request function from the http package in
the Node.js standard library. Normally invoked as
http.request(url, fn) where url is the URL to make
a request to, and fn is a listener function, it creates an event
emitter object of class http.ClientRequest representing
the pending request to url and associates fn with the
response event of the request.

When a response to the request is received, the
response event is emitted, causing fn to be invoked with

1 const http = require(’http’);
2 module.exports.request = (url) =>
3 new Promise((resolve, reject) => {
4 const req = http.request(url, res => {
5 res.on(’data’, /* omitted */);
6 res.on(’end’, () => {
7 /* omitted */
8 resolve( res);
9 });
10 res.on(’timeout’, () => reject(req)); // bug here
11 });
12 req.end();
13 });

Fig. 2. An example of a dead-listener bug

an argument that is an instance of http.IncomingMessage
representing the HTTP response. This object is itself an event
emitter, emitting data events when response data becomes
available and an end event once all data has been received.

If, on the other hand, the request times out before receiv-
ing a response, the request object emits a timeout event.

2.2 Motivating example

Consider the code shown in Figure 2, which is a con-
densed version of a bug our approach identified in the
min-req-promise npm package.

min-req-promise turns the somewhat intricate event-
based http.request API discussed above into a simpler
promise-based API. It exports a function request, which
returns a promise wrapped around a call to http.request.
The pending request (an instance of http.ClientRequest)
is stored in variable req (line 4), and a listener function is
passed to http.request on the same line, which associates
it with the response event on req. Finally, req.end() is
called on line 12 to dispatch the request. Once a response
arrives, the http library invokes the listener provided on
line 4, passing it a res object representing the response,
which is an instance of http.IncomingMessage. On this
object, handlers for three events are installed: data, end
and timeout. The first event is emitted whenever a chunk
of response data arrives, the second when the response has
been received in its entirety. For simplicity, we have omitted
the handler functions for these two events; the interested
reader is referred to the project’s GitHub page [12].

The third event, timeout, is the problematic one: this
event is actually never emitted by http.IncomingMessage
objects, so the listener on line 10 is dead code. There is
a timeout event on http.ClientRequest, however, so
presumably the event should have been registered on req,
not res. We contacted the author of min-req-promise,
who confirmed our analysis of the issue.

Note that there are no compile-time or runtime diag-
nostics to alert the developer to this problem: not only is it
very difficult to infer precise types for variables in JavaScript
in general, but there is not even anything semantically
wrong with registering a handler for a timeout event on
http.ClientRequest. While the http library will never
emit this event, client code could do so itself by calling the
emit method (although in this case it does not). Moreover,
since dead-listener bugs do not cause a crash at runtime,
they may go undetected for a long time: in the case of

https://github.com/emarteca/JSEventAPIModelling
https://www.npmjs.com/package/min-req-promise
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min-req-promise, the bug had been present since its initial
version (released in March 2018).

At present, the only way for a developer to detect this
sort of problem is to carefully reason about types and the
events they support (as we have done above), or to write
extensive unit tests to ensure all events are handled as
expected. In the above example, this would require adding
a test involving a request that times out, which is an edge
case that is easy to overlook.

Clearly, a more automated approach is desirable.

2.3 Automatically detecting dead listeners
We have argued that the dynamic nature of the JavaScript
event-driven APIs makes it unrealistic to detect dead listen-
ers at runtime. However, an approach based on static analy-
sis faces the usual dilemma of having to trade off precision
against performance: an imprecise analysis is likely to report
many false positives, while a very precise analysis will not
usually scale to realistic code bases.

Ideally, a static analysis would analyze client code as
in Figure 2 along with the implementation of the Node.js
standard libraries and any other third-party libraries it
depends on, derive a precise model of which types support
which events, and then flag dead listeners based on this
information. In practice, we know of no static analyzer for
JavaScript precise enough to derive such a model that scales
to the size and complexity of the libraries involved. As a
comparatively benign example, the Node.js http package
transitively depends on more than 60 modules, for a total of
around 20,000 lines of code. While this is quite manageable
for, say, type inference or taint tracking, it is out of reach for
techniques that precisely model event dispatch, such as that
of Madsen et al. [7].

The usual answer is to instead provide the analysis
with simplified models of the libraries involved. This is
indeed a good approach for frequently used and well-
documented packages like http, but the modern JavaScript
library landscape is vast, with npm alone hosting well over
one million packages. While many of these are very rarely
used, the number of popular packages is still too large to
allow manual modeling, especially since packages tend to
go in and out of style quite frequently.

2.4 Approach
Our proposed solution to this dilemma is to turn the
size of the JavaScript ecosystem to our advantage in a
two-step approach illustrated in Figure 1: first, we mine
large amounts of open-source code from GitHub and other
hosting platforms for real-world examples of event-listener
registrations; then we perform a statistical analysis to deter-
mine whether a certain pattern is rare and hence suggestive
of incorrect API usage, or whether is common and therefore
likely to be a correct use. This allows us to automatically
derive models instead of writing them by hand.

In the next two sections we explain the data mining and
classification steps in more detail.

3 DATA MINING
The mining step is implemented as a context- and flow-
insensitive static analysis that finds event-listener registra-
tions and records them as listener-registration pairs of the

form ha, ei where a represents the object on which the lis-
tener is registered, and e the event for which it is registered.

Both a and e need to be represented in a code base-
independent way to enable us to meaningfully collate re-
sults obtained on many different code bases.

For events, this is easy: e is the event name annotated
with the emitter package. For instance, timeout events on
a’s rooted in the http package are considered to be different
from timeout events rooted in the process package. This
is important, as events with the same name in different
packages may behave differently.

To represent event emitters, we use access paths similar
to those proposed by Mezzetti et al. [8]: starting from a pack-
age import, the access path records a sequence of property
reads, method calls and function parameters that need to be
traversed to reach a particular point in the program. More
precisely, a conforms to the following grammar:

a ::= require(m) an import of package m
| a.f property f of an object repre-

sented by a
| a() return value of a function repre-

sented by a
| a(i) ith argument of a function repre-

sented by a
| anew() instance of a class represented by

a

Note that access paths are always rooted at a package
import, so we can always tell which package any program
element derives from.

For instance, in Figure 2, the access path associated with
the variable req is require(http).request(), meaning that
req is initialized to the result of calling the method request
on the result of importing the http module.2

The access path of res, on the other hand, is
require(http).request(1)(0): starting from the import of
http, we look at a call to request as above, but instead
of considering the result we look instead at its second
argument, 3 which is the listener function on line 4, and then
the first argument to that function, which is the variable res.
As above, the value of the first argument to request is not
recorded in the access path.

Upon analyzing this snippet of code, we would record
three pairs of access paths and events, corresponding to the
three explicit event listener registrations:

1) hrequire(http).request(1)(0), datai, corresponds
to line 5

2) hrequire(http).request(1)(0), endi, corresponds
to line 6

3) hrequire(http).request(1)(0), timeouti,
corresponds to line 10

Our approach is based on the assumption that if such
pairs are collected over a lot of code, we are likely to see
many instances of the first two (correct) pairs, but few
instances of the last (incorrect) pair. This is indeed the case:
in our experiments (further detailed below) we found 996

2. Note that the argument to request is not recorded in the access
path; see also Section 8.

3. We index arguments starting from zero, so the argument at index
one is the second argument.
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instances of the first pair and 898 of the second, but only
one of the third.

To detect event-listener registrations, our analysis looks
for calls to methods named on, once, addListener,
prependOnceListener or prependListener (the stan-
dard Node.js listener registration methods), where the re-
ceiver can be represented by an access path, the first argu-
ment is a constant string (the event name), and the second
argument is a function (the callback).

3.1 Access Path Imprecision

Due to its simplicity, our mining analysis is fairly imprecise.
As we will show in Section 7, this does not matter: the
statistical analysis in the classification step compensates for
much of the imprecision and yields high-quality results.
There are two main sources of imprecision: our choice of
access paths to represent runtime objects, and the lack of
context and flow sensitivity of the analysis.

3.1.1 Imprecision due to access path representation
The formulation of access paths we use is attractive in its
simplicity, but it is imprecise because access paths are both
overapproximate (the same access path may represent many
different runtime objects) and non-canonical (two different
access paths may represent the same runtime object).

As an example of the former, consider again line 4 in
Figure 2. This line can equivalently be written like this:

1 const req = http.request(url);
2 req.on(’response’, res => { ... });

Here, the access path for res becomes
require(http).request().on(1)(0): it is the first parameter
of the second argument to on invoked on the result of
http.request. This does not record the other arguments
to on; so, the access path does not include the fact that
the first argument to on is response. While in actual
fact res is an instance of http.IncomingMessage since
the event listener is associated with event response,
the parameter of an event listener associated with, for
example, event socket has the same access path, but it is
an instance of net.Socket. This means that in some cases
we cannot determine event registration correctness based
purely on the object’s access path: for example, while both
http.IncomingMessage and net.Socket have a data
event, the former has an aborted event that the latter lacks.

As an example of the lack of canonicity of access paths,
note that the event registration method on returns the emit-
ter event on which it is invoked, so lines 5–10 of Figure 2
could be rewritten as a single statement with three chained
listener registrations:

1 res.on(’data’, /* omitted */)
2 .on(’end’, /* omitted */)
3 .on(’timeout’, () => reject(req));

While this does not affect the pair recorded
for the first registration, the second becomes
hrequire(http).request(1)(0).on(), endi. Seman-
tically, require(http).request(1)(0).on() and
require(http).request(1)(0) denote the same set of
concrete runtime objects, i.e., they are aliases.

1 var eos = function(stream, opts, callback) {
2 // ...
3 if ( isRequest( stream)) {
4 stream.on(’complete’, /* ... */ );
5 stream.on(’abort’, /* ... */);
6 }
7 // ...

Fig. 3. Listener registration with explicit type check

3.1.2 Access path alias removal
Such chained listener registrations are a very common pat-
tern in event-driven JavaScript, since all listener-registration
methods return their receiver object, that is, the event emit-
ter object itself. To mitigate the resulting aliasing, we replace
access paths representing the result of a listener-registration
method with the access path of the receiver object of the call.

For example, recall that the access path for res in
Figure 2 is require(http).request(1)(0). This means
that the access path for res.on(’data’, ...) is
require(http).request(1)(0).on(). Similarly, the access
path for res.on(’data’, ...).on(’end’, ...) is
require(http).request(1)(0).on().on(). However, the lat-
ter two access paths are aliases of the first one, so we
replace both of them with require(http).request(1)(0),
which enables our analysis to recognize that all three event
listeners are registered on the same API element.

Note that in general, cycles in the data-flow graph can
give rise to infinitely many access paths that all alias each
other. Such cycles are already detected and collapsed by the
access-path library used in our implementation.

3.1.3 Imprecision due to lack of context and flow sensitivity
The second source of imprecision is the lack of context and
flow sensitivity of the analysis, which may cause listener-
registration pairs to be reported that can never actually
happen at runtime.

A typical example of this is shown in Figure 3.4 The func-
tion eos accepts a variety of streams. Since the complete
and abort events are not emitted by all types of streams,
it first checks whether the stream is a request before regis-
tering listeners for these two events. Our analysis lacks flow
sensitivity, and hence reports complete and abort event
listeners being registered on all streams passed as arguments
to eos that do not support these events (in this particular ex-
ample, stream objects of class http.IncomingMessage).

Finally, note that our mining analysis does not account
for code that explicitly emits an event. This means that it
may report a pair ha, ei that is, in general, incorrect because
a is a library API that does not emit event e, but happens to
be a correct use for a particular code base, because that code
base explicitly emits e on a.

For example, consider Figure 4.5 On line 8, we see a
listener to response registered on the result of a call
to http.createServer(), which is an object that is an
instance of http.Server. According to the API documen-
tation of the http library, http.Server does not emit the
response event. However, on line 5, the client application

4. Adapted from the mafintosh/end-of-stream project on
GitHub

5. Adapted from the strongloop/strong-pm project on GitHub

https://github.com/mafintosh/end-of-stream
https://github.com/mafintosh/end-of-stream
https://github.com/strongloop/strong-pm
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1 var http = require(’http’);
2 var server = http.createServer();
3 var client = http.request();
4 client.on(’response’, function(rsp) {
5 server.emit(’response’, /* ... */)
6 });
7 server.once(’response’,
8 function(data) { /* ... */ });

Fig. 4. Explicit emission of non-standard event

itself emits a response on the server object, and hence
the response listener is not dead. The analysis could be
improved to suppress listener-registration pairs for which it
sees an explicit emit, but we decided against doing this in
the interest of simplicity.

These various sources of imprecision can make the data
produced by the mining step somewhat noisy, but the clas-
sification step mitigates this problem: its input is collected
from a large set of code bases, the majority of which do not
use intricate idioms like these.

4 CLASSIFICATION

Once we have collected a large corpus of listener-
registration pairs we want to classify them to identify pairs
that are likely to correspond to API misuses. We first de-
scribe the general intuition behind the approach, which we
make precise in a statistical analysis. We then explain how
this analysis is applied to classify pairs as anomalous, and
finally introduce a refinement to avoid misclassifications.

4.1 General intuition
As argued above, if the analyzed corpus is big enough,
buggy listener-registration pairs are likely to be relatively
rare. However, the converse is not true: there are at least two
cases where a rare listener-registration pair is not indicative
of a problem.

Rare event emitter

If an event emitter is infrequently used, for example because
it belongs to a rarely-used API or custom API extension, then
we will not see many listener registrations on this emitter
overall. In particular, any listener-registration pair involving
this emitter will appear to be rare (when compared to the
entire set of listener-registration pairs collected).

As an example, consider the following
listener registration from the GitHub project
martindale/soundtrack.io:

1 req.spotify.get(url).on(’complete’, /* omitted */)

Here, req is an instance of http.ClientRequest. Ob-
jects of this class do not normally have a spotify property.
This is a custom property added by soundtrack.io for
interacting with the Spotify API.6 Consequently, we see the
access path of this registration very infrequently; we only
encountered it twice in our evaluation.

Further study of the source code reveals that
req.spotify.get does, indeed, return an event emitter
that supports the complete event, so this listener registra-
tion is correct in this context.

6. Recall that in JavaScript the properties of an object are not fixed;
properties can be added, overwritten, and deleted dynamically.

Rare event name

The Node.js event API allows client code to emit and regis-
ter listeners for custom events. Hence, a listener-registration
pair may be infrequent simply because the event is a custom
event that is only used in one particular code base.

For example, the test suite of the emitter-listener
npm package [13] uses a custom event test on
http.ServerResponse objects. This is encountered three
times in this particular code base, and all three instances
correspond to correct usages of the custom event. We would
not expect this pair to appear anywhere else (and indeed we
did not find any other instances in our evaluation), but in
spite of its rarity it is a correct pair.

To avoid the above two situations, it is not enough to
consider the rarity of the pair when compared to all other
pairs. We want to only classify a listener-registration pair
ha, ei as anomalous (and hence potentially buggy) if both of
the following hold:

1) e is a rare event for a;
2) a is a rare access path for e.

The first condition excludes rare event emitters, as in
the example from martindale/soundtrack.io above:
the access path only occurs in two listener-registration
pairs, one of which registers the complete event. Hence
complete appears in 50% of all pairs involving the access
path, meaning that it is (intuitively) not a rare event for the
access path.

The second condition excludes rare event names, as in
the example from emitter-listener: the test event
only occurs in three listener-registration pairs,7 one of which
registers it on require(http).ServerResponsenew().
Hence this access path appears in 33% of all pairs involving
the test event, meaning that it is (intuitively) not a rare
access path for the event.

We now develop a statistical analysis to make this intu-
itive notion of rarity rigorous and effectively computable.

4.2 Statistical analysis
To motivate our statistical analysis, let us first consider the
problem of determining whether an access path a is rare for
an event e; the converse problem of determining whether an
event e is rare for an access path a is handled symmetrically.

To determine if an access path a is rare for an event
e, we would like to measure the probability p that for an
arbitrary listener-registration pair ha0, ei we find a0 = a.
If this probability is smaller than some rarity threshold pa,
then a is rare for e. For example, pa = 0.05 means that we
consider an access path a rare for an event e if it occurs in
less than 5% of all listener registrations involving e. Since it
is not a priori clear what value to choose for pa, we turn it
into a parameter of the statistical analysis. In Section 7 we
will empirically evaluate different choices for pa.

To determine how often a appears in pairs involving
e, we have to look at all ne pairs ha0, ei and count the
number where a0 = a. This is modeled as a sequence of ne

7. Recall that we disambiguate event names based on the root pack-
age of the access path we see them registered on. While many packages
have a test event, in this case we are only interested in test events
related to the http package.



7

experiments, and these experiments are independent, since
checking if one pair has an access path matching a has no
effect on the checking of any other pairs. Hence it makes
sense to model the probability p of such an a0 being the a we
are interested in as a binomial distribution. In general, the
binomial distribution describes the probability distribution
of the number of “successes” in a sequence of independent
experiments, where in this case success means a0 being a.

We cannot measure the probability p directly, since our
data set only covers a small fraction of the universe of
all existing or possible JavaScript code. Instead, we use a
confidence test to determine how likely it is, based on our
limited data set, that a is a rare access path for e, that is, that
the true (but unknown) probability p is smaller than pa.

As is usual for hypothesis tests, we will actually test the
converse: how unlikely it is that a is a common access path
for e, that is, that p � pa.

Since we model the probability of an access path oc-
curring with an event as a binomial distribution, we can
use the binomial cumulative distribution function (BCDF)
to implement this test [14]: for a series of ne independent
experiments, BCDF(k, ne, pa) is the likelihood that the prob-
ability of success is at least pa, assuming that at most k of
the experiments are successful.

In our setting, the ne experiments we consider are checks
of all listener registration pairs of the form ha0, ei, and k is
the number of pairs where a0 = a. As explained above, pa is
the rarity threshold we use to classify an access path as rare
for an event. If this likelihood BCDF(k, ne, pa) is less than
a (small) confidence threshold pca, then this means that based
on our data it is unlikely that p is at least pa, and so it is likely
that it is, in fact, less than pa.

As a concrete example, for the pair
hrequire(http).request(1)(0), timeouti corresponding
to the bug in Figure 2 we have ne = 216 and k = 2: the
timeout event occurs in 216 pairs, but only twice with
this access path. Intuitively, since we see this access path
in 2/216 pairs, we might expect a p value around 0.01, but
higher values like p > 0.05 seem unlikely.

Plugging in these values into the BCDF formula, we get
BCDF(2, 216, 0.05) ⇡ 0.001, meaning that based on our
observations the likelihood of p being greater than 0.05 is
0.1%. Turning this statement around, we are 99.9% certain
that a occurs in 5% or less of all access pairs involving
e. Now, to conclude that a is indeed rare for e (with the
rarity threshold pa = 0.05), we need this 99.9% certainty to
satisfy the chosen confidence threshold pca. If, for example,
we chose a pca = 0.05, the confidence threshold would be
95% and so we would conclude that a is rare for e.

This confidence threshold pca is also a parameter of the
statistical analysis, so that we ultimately end up with four
parameters: two rarity thresholds pa and pe, and two confi-
dence thresholds pca and pce, all of which range between 0
and 1 (as they represent probabilities).

The rarity threshold pa determines when we consider
an access path a to be rare for an event e, and the rarity
threshold pe determines when we consider an event e to
be rare for an access path a. The confidence threshold pca
determines how confident we want to be that a is actually
rare for e based on the data, and similarly for pce.

Putting it all together, then, we consider a listener-
registration pair ha, ei to be rare if both rarity tests succeed,
that is, if the following condition holds:

BCDF(k, na, pe) < pce ^ BCDF(k, ne, pa) < pca

4.3 Refining the statistical analysis

Applying this condition in practice, we noticed one particu-
lar scenario where it led to misclassifications: if for an event
e there are many pairs ha, ei, but each individual pair occurs
infrequently, we will end up classifying all access paths a
for this event as rare. This pattern arises, for instance, with
custom events used in tests.

As a concrete example, there are 522 ha, ei pairs register-
ing a listener for the doge event on an a rooted at the npm
package socket.io-client. This nonsensical event name
is commonly used for a placeholder or test event – this is
reflected in the data, as we see that these 522 pairs involve
520 unique paths, 519 of which occur in exactly one pair.
In other words, the usage of doge follows no discernible
pattern in the data.

For one of the pairs ha, dogei where a only oc-
curs once and a rarity threshold pa of 0.01, we get
BCDF(1, 522, 0.01) ⇡ 0.03, so we would conclude with 97%
confidence that a is rare for doge and might then label it
as anomalous. This is undesirable: we should not conclude
anything about this pair, since the data is too sparse.

We encode this into the statistical analysis by changing
the occurrence count k to not only count occurrences of
the pair ha, ei, but also occurrences of pairs ha0, ei where
a0 appears together with e as often or less often than a.

Formally, we write ke(a) for the number of times the pair
ha, ei occurs in the data (for which we used k above), and
then define

ke(dae) =
X

{ke(a0) | 0 < ke(a
0)  ke(a)}

Intuitively, this means that we are now not only taking
into account the absolute number of times we see a together
with e, but also how that number compares to that of other
as (on the same e). For example, for the 519 access paths
that only appear once together with doge, we now have
ke(dae) = 519, making them very unlikely to be considered
rare.

Defining ka(dee) symmetrically as the number of occur-
rences of pairs ha, e0i where e0 appears together with a as
often or less often than e, we refine the overall condition for
a pair ha, ei being classified as anomalous as follows:

BCDF(ka(dee), na, pe) < pce ^ BCDF(ke(dae), ne, pa) < pca

In particular, the single-occurrence access
paths above now fail the second condition since
BCDF(ke(dae), 522, 0.01) = BCDF(519, 522, 0.01) ⇡ 1,
that is, we are almost 100% confident that these access paths
do not meet the rarity threshold of 0.01.

It should be noted, however, that this formulation does
result in more false negatives: if any of these access paths is
actually incorrect, they will no longer be flagged. Since we
are mostly interested in automated bug detection, we are
willing to trade false positives for false negatives.
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5 IMPLEMENTATION

This section provides some details on the implementation of
the two stages of our approach.

For the mining stage, we implemented a static analysis
in QL [15] for identifying event registrations in JavaScript.
Extensive libraries for writing static analyzers in QL are
available as part of CodeQL [16], including, in particular,
an implementation of access paths, making it an ideal tool
for our purposes. The CodeQL access-path library already
performs elimination of cyclic access paths as described in
Section 3.1.2; we additionally implemented replacement of
chained listener registrations.

By writing the mining analysis in QL we were moreover
able to leverage LGTM.com [17], a cloud-based analysis
platform that, at the time of writing, makes over 130,000
open-source code bases available for analysis. Out of these,
around 127,500 contain at least some JavaScript code, which
we use as the basis of the evaluation in Section 7.

The statistical analysis detailed in Section 4 is imple-
mented in Python, using the pandas library [18], and the
SciPy library [19] for the statistical computations.

6 EXPERIMENTAL METHODOLOGY

This section covers a number of points related to the setup
and methodology used in the experimental evaluation that
we will report on in the next section.

To evaluate the statistical analysis that was presented
in Section 4, we need to compare its inferred classifica-
tions against a “ground truth” set of pairs with known
classifications. Here, the challenge is that the sheer size
of the data set precludes exhaustive manual validation.
Therefore, we adopted an approach in which a validation set
is constructed semi-automatically for those 18 packages for
which the largest number of event registrations were found
during the mining phase8, based on a manual analysis of
the API documentation. Section 6.1 reviews this approach.
Then, Section 6.2 defines how the usual notions of recall
and precision can be defined by correlating the results of the
statistical analysis with the validation set. Finally, Section 6.3
provides details on the configuration and thresholds used
for the data mining and statistical analysis.

6.1 Constructing a Validation Set
We construct a validation set of haccess path,eventi
pairs that are labeled in one of three ways:

• correct pairs reflect API usage that is correct to the
best of our knowledge,

• incorrect pairs reflect API usage that is incorrect to
the best of our knowledge, and

• imprecise pairs contain an imprecise access path,
meaning that the same pair can correspond to both
correct and incorrect usages (see Section 3.1.1).

To allow a meaningful comparison, the validation set only
contains pairs that are also present in the data set produced
by the mining stage. Since the labeling process relies on

8. http, net, fs, process, child_process, https, socket.io,
socket.io-client, stream, readable-stream, events,
cluster, zlib, ws, readline, http2, repl, tls

manual interpretation of API documentation, it is subject
to human error as discussed in Section 8.

We first consider how correct pairs in the validation set
are identified. For each of the packages under considera-
tion, we studied the documentation and made lists of the
events emitted and access paths exported by each API.
This manual analysis typically involves observing that a
specific API call returns an object (or receives an object
as an argument) that emits a specific set of events. For
example, the documentation for the http package9 states
that the request function exported by this package “re-
turns an instance of the http.ClientRequest class. The
ClientRequest instance is a writable stream.”, and that
writable-stream objects emit the error event. From this we
can conclude that objects represented by the access path
require(http).request() emit the error event, so the pair
hrequire(http).request(), errori reflects a correct use of
the http API.

Furthermore, the documentation for http states that,
in a successful HTTP request, events data and end
may be emitted on the object that is passed as the
first argument to the callback that is passed as the
second argument to request. From this, we conclude
that the pairs hrequire(http).request(1)(0), datai and
hrequire(http).request(1)(0), endi also reflect correct us-
age of the http package.

Next, we consider how a set of incorrect pairs for a
given API is added to the validation set. To this end,
we simply construct the set of all events that are not
emitted by the API itself, but that are emitted by some
other API in the same package. For example, from ex-
amining the http API documentation, it can be seen
that a call to http.createServer returns an object
that emits connection events. Since this event is not
documented as being emitted by the object that is re-
turned by http.request, the validation set contains a
pair hrequire(http).request(), connectioni that reflects
an incorrect use of the API.

Finally, the set of imprecise pairs is constructed by tak-
ing all pairs whose access path references the second call-
back parameter of the on method as well as a few other
methods used for event registration: as explained in Sec-
tion 3.1.1, these access paths do not include information
about which event the listener is being registered for, so
the access path may correspond to both correct and incor-
rect API usages. Taking the examples from Section 3.1.1,
the pairs hrequire(http).request().on(1)(0), responsei
and hrequire(http).request().on(1)(0), socketi are la-
beled as imprecise. For similar reasons we also mark access
paths involving the built-in JavaScript methods apply,
bind and call, which perform reflective operations on
functions, as imprecise. The entire generated model for
http can be found in the supplemental materials associated
with this paper10.

As mentioned above, all pairs in the validation set also
appear in the mined data set. However, the converse is not

9. See https://nodejs.org/api/http.html.
10. Moreover, all generated models, and the model-generating script

is available at: https://github.com/emarteca/JSEventAPIModelling.

https://nodejs.org/api/http.html
https://github.com/emarteca/JSEventAPIModelling
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true, mainly for two reasons11:

1) The access path may be rooted in the import of an
API that is not among the 18 packages considered
in the validation set.

2) The access path and/or the event are not mentioned
in the API documentation. This is, for example, the
case for custom API extensions or events like the
spotify property in the example in Section 4, or
for deprecated APIs that have been removed from
the documentation.

6.2 Measuring analysis quality
Given the validation set, we can now define the usual met-
rics for assessing the effectiveness of the statistical analysis.

A false positive is a pair haccess path,eventi that is
classified as anomalous by the statistical analysis but that is
labeled as correct or imprecise12 in the validation set. Con-
versely, a false negative is a pair that is labeled as incorrect
in the validation set but that the statistical analysis does not
classify as anomalous (i.e., we consider both the case where
the statistical analysis classifies it as expected and the case
where the statistical analysis has left it unclassified as false
negatives). Finally, a true positive is a pair that is labeled as
incorrect in the validation set and that the statistical analysis
also classifies as anomalous.

In Section 8.1 we investigate reasons for false positives
and false negatives that occur in the results of the statistical
analysis, and present a case study of some specific demon-
strative examples.

Based on these definitions, we now can now define the
recall of the statistical analysis as the percentage of pairs
labeled as incorrect in the validation set that are classified as
anomalous by the statistical analysis. Moreover, the precision
of the statistical analysis is defined as the percentage of
true positives among all anomalous pairs reported by the
statistical analysis.

6.3 Data Mining and Statistical Analysis
We ran the mining analysis on all 127,531 JavaScript projects
available on LGTM.com at the time of writing this paper.
With this, we collected a total of 532,004 ha, ei listener-
registration pairs (160,195 of which were unique), from
35,757 projects. The remaining projects did not use event-
based APIs recognized by the analysis.

Of this mined data, we have labeled 959 pairs as being
correct API uses, 4,323 pairs as having an imprecise access
path, and 399 as incorrect API uses, for a total of 5,681
labeled pairs forming our validation set.

Section 7 will explore how recall and precision of the
statistical analysis are affected by the selection of differ-
ent parameters for the rarity thresholds pa and pe and
the confidence thresholds pca and pce, and which con-
figurations generally yield the best tradeoff between re-
call and precision. For these experiments, we needed to

11. Supplemental materials provide some examples of pairs in our
mined data that are not included in the validation set.

12. We consider pairs that the statistical analysis classifies as being
anomalous but that are labeled as imprecise in the validation set as
false positives, to report the most pessimistic results for our technique.

choose a set of parameter values to test. For the rar-
ity thresholds pa and pe, we chose values from the
set {0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.25}. A value of
pa = 0.005, for instance, means that we consider an
access path to be rare for an event if it occurs in
less than 0.5% of all pairs with this event. For the
confidence thresholds we chose values from the set
{0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 1}. A value of pca =
0.005, for instance, means that we want to be 99.5% sure
that an a is rare for an e before classifying it as rare. The
extreme value of pa = 1 has the effect of classifying every a
as rare for e, thereby reducing the statistical analysis to just
checking whether events are rare for access paths (and vice
versa). This allows us to test the sensitivity of the statistical
analysis to the rarity of access paths and events individually.

Altogether, this results in a space of 4,096 configurations.

7 EVALUATION

To evaluate the practicality of our approach, we run the
statistical analysis over the mined data for each of the 4,096
configurations, and assess the results quantitatively and
qualitatively with the following research questions:

RQ1. Impact of configuration parameters on precision/recall:
How do precision/recall change as the configuration
parameters vary?

RQ2. Impact of training set selection on precision/recall: How
do precision/recall change as the training set selec-
tion varies?

RQ3. Impact of training set size on precision/recall: How
do precision/recall change as the training set size
varies?

RQ4. Utility of results: Does the approach identify practi-
cally relevant mistakes?

RQ5. Performance: Is the approach practical in terms of
performance/resources?

We now address each of these research questions in turn.

7.1 RQ1: Impact of configuration parameters on preci-
sion/recall
Since the goal is to automatically find dead listener patterns,
our approach has to achieve two things to be practically
useful: it should classify as anomalous as many as possible
listener-registration pairs that are labeled as incorrect in
the validation set, while at the same time minimizing the
number of pairs that are classified as anomalous that are
labeled as correct in the validation set. In other words, we
should maximize for both recall and precision.

How well the approach achieves these goals depends
on the parameters of the statistical analysis, so we sys-
tematically explore the space of parameter configurations
to find one that maximizes recall while maintaining an
acceptable precision rate (defined as 90% in accordance
with the literature [10], [9]). For each configuration we
run the classification to find anomalous listener-registration
pairs, and use the validation set described in Section 6.1 to
determine the precision and recall of the statistical analysis.

Figure 5 shows the results of this experiment. Unsur-
prisingly, there is an inverse correlation between the recall
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Fig. 5. Precision and recall for all configurations (blue dots); Pareto front in red

and precision: configurations that classify many pairs as
being anomalous have many true positives, but also many
false positives. Hence it is not meaningful to optimize either
metric in isolation.

Instead, we want to concentrate on the Pareto front [20,
Chapter 16], that is, the set of configurations for which there
is no other solution that is better on both metrics (the red
line in Figure 5): a configuration is in the Pareto front if
there is no configuration with the same (or higher) precision
that has a higher recall.

Altogether, there are eight configurations on the Pareto
front with precision of 80% or above, as detailed in Table 1.
For each configuration we show the values of the four pa-
rameters, the precision and recall, and the number of unique
true positives, false positives, and pairs in the validation
set that remain unclassified by the statistical analysis. We
also show the number of times these true positives occur
in the entire data set (roughly speaking, this is the number
of potential bugs the configuration finds) and the number
of projects they occur in. For example, the first row reads
as follows: a parameter configuration of pa, pe, pca, and pce
as 5%, 5%, 2%, and 10% respectively, results in a precision
of 100% and recall of 3.0% over the validation set. This
corresponds to 12 true positives (#TP), no false positives
(#FP), and no unclassified pairs (#UP); these true positive
pairs occur 23 times in the mined data (Occ TP), across 22
projects (#Proj).

To answer RQ1, then, we found that there are indeed
configurations with more than 90% precision. The fourth
row represents the configuration we consider optimal: This
is the configuration that yields the highest recall for a preci-
sion over 90%. The rarity thresholds pa and pe are 10% and

10%, and the confidence thresholds pca and pce are 3% and
1%, respectively. Over the validation set, this configuration
yields three false positives and 30 true positives, for a
precision of 90.9%. The true-positive pairs occur 75 times
in total across 64 projects. All the false positives for this
configuration were cases where the access path is overly
imprecise.

7.2 RQ2: Impact of training set selection on preci-
sion/recall

The configuration we identified as optimal in RQ1 performs
very well on the full validation set, but of course this does
not imply that it would do as well on another data set.
In order to address this concern without having to manu-
ally label even more pairs, we conducted a 10-fold cross-
validation experiment. We divided the data into 10 random
partitions. Then, we determine the best configuration (i.e.,
the highest recall with at least 90% precision) over nine of
these partitions (the training data) and validate them on
the remaining partition (the validation data). We repeat this
procedure ten times, once for each of the partitions as the
validation data.

The results of the experiment are shown in Table 2.
Each row represents the results of using a group of nine
partitions as the training data and the remaining partition as
the validation data. The second column shows the optimal
configuration over the training data. Columns 3-5 show the
precision, recall, and absolute true positive count on the
training data, while columns 6-8 show the same on the
validation set. For example, the first row reads as follows:
in the first round the optimal configuration on the training
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Configuration Results

(pa, pe, pca, pce) % Precision % Recall # TP # FP # UP Occ TP # Proj
(0.05, 0.05, 0.02, 0.1) 100.0 3.0 12 0 0 23 22
(0.1, 0.05, 0.05, 0.1) 95.8 5.8 23 1 0 57 48
(0.1, 0.05, 0.1, 0.1) 92.3 6.0 24 2 0 58 49
(0.1, 0.1, 0.03, 0.01) 90.9 7.5 30 3 1 75 64
(0.25, 0.04, 0.01, 0.005) 88.6 7.8 31 4 3 77 61
(0.25, 0.05, 0.01, 0.01) 86.5 8.0 32 5 3 79 63
(0.25, 0.01, 1, 0.04) 85.4 8.8 35 6 9 48 36
(0.25, 0.01, 1, 0.1) 84.8 9.8 39 7 12 55 41

TABLE 1
Configurations with �80% recall; optimal configuration highlighted in gray.

Round Configuration Training Validation

(pa, pe, pca, pce) % Precision % Recall # TP % Precision % Recall # TP
0 (0.25, 0.04, 0.01, 0.005) 90.6 8.1 29 87.5 5.0 2
1 (0.25, 0.04, 0.01, 0.005) 91.2 8.6 31 75.0 7.5 3
2 (0.1, 0.1, 0.03, 0.01) 92.0 6.4 23 87.5 17.5 7
3 (0.1, 0.05, 0.1, 0.1) 90.9 5.6 20 100.0 10.0 4
4 (0.1, 0.05, 0.1, 0.1) 91.7 6.1 22 100.0 5.0 2
5 (0.1, 0.1, 0.04, 0.01) 90.3 7.8 28 75.0 5.0 2
6 (0.25, 0.04, 0.01, 0.005) 90.0 7.5 27 80.0 10.0 4
7 (0.1, 0.1, 0.03, 0.02) 90.6 8.1 29 87.5 5.0 2
8 (0.1, 0.1, 0.03, 0.01) 90.3 7.8 28 100.0 5.0 2
9 (0.1, 0.1, 0.03, 0.02) 90.3 7.8 28 100.0 7.5 3

TABLE 2
Outcomes of cross-validation experiment

data was pa = 0.25, pe = 0.04, pca = 0.01, pce = 0.005,
which achieved a 90.6% precision with 8.1% recall, finding
29 true positive results. On the validation data, that same
configuration resulted in a precision of 87.5% and recall of
5.0%, with 2 true positive results.

We see consistent results with the cross-validation exper-
iment. Concretely: across the 10 rounds of the experiment,
in the training data we see an average precision of 90.8%
(standard deviation 0.7%) and an average recall of 7.4%
(standard deviation 1.0%). Then, in the validation data we
see an average precision of 86.3% (standard deviation 10.3%)
and an average recall of 7.8% (standard deviation 4.0%).
From this we see that not only is the quality of results
consistent between training runs, but that it also results in
consistent results on the validation data.

Looking at the configurations determined to be optimal,
we see a high occurrence rate of each of the parameters
determined optimal over the whole set. Concretely: the
optimal pa = 0.1 is found in 7 runs and pa = 0.25 (resulting
in a precision of 88.6% over the whole set) is found in the
other 3. Similarly, the optimal pe = 0.1 is found in 5 runs,
pca = 0.03 in 4 runs, and pce = 0.01 in 3 runs. In conclusion,
the choice of training data does not substantially affect the
choice of optimal configuration.

7.3 RQ3: Impact of training set size on precision/recall

Having shown that the selection of the training data does not
matter much, we will now explore the effect of the size of the
training data: how well does the statistical analysis perform
when trained over smaller data sets?

In order to test this, we designed an experiment where
we randomly sampled a given percentage of the data, and

then determined the optimal configuration on this subset13.
As before, we define “optimal” to mean the configuration
with the highest recall that achieves a precision of at least
90%. Then, we take this configuration and report the pre-
cision/recall it achieves over the whole data set. We repeat
this process 10 times for each percentage, and test this on
samples of 2%, 5%, 10%, 25%, and 50% of the total data.
For each of these sample percentage, we report the average
(harmonic mean) precision and recall computed over all 10
iterations.

Table 3 presents the results of this experiment, with
one row per sampling of a given percentage. For example,
the first row can be read as follows: for the first random
sampling of 2% of the data, the optimal configuration is
(0.25, 0.01, 1, 0.1). This achieves a precision of 100% and a
recall of 50% over the 2% subset, and a precision of 84.8%
and a recall of 9.8% over the whole dataset.

Considering only average precision and recall over the
whole dataset for the moment, we can see two interesting
trends: when training on 2% of the data, precision over
the whole dataset is fairly low at 82.4%, and so is recall
at 6.9%. As the amount of training data increases, precision
increases as well, reaching 91% for 25% of the data. Recall,
on the other hand, at first decreases, hitting a low of 3.6%
on 25% of the data, before slightly increasing again to 3.9%
at 50%. (Compare this to the 7.5% recall reported in RQ1
when training on all 100% of the data.) This suggests that
stable precision can already be achieved with relatively little
training data, but more data is needed to improve recall.

13. Alternatively, one could apply the analysis to a subset of projects
and examine the stability of the results. However, we decided against
this approach because the number of modeled API calls varies consid-
erably between projects.
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2% of data sampled for subset

On subset On whole set

Iter Optimal config % Precision % Recall % Precision % Recall
1 (0.25, 0.01, 1, 0.1) 100.0 50.0 84.8 9.8
2 (0.25, 0.01, 1, 0.1) 100.0 25.0 84.8 9.8
3 (0.25, 0.02, 1, 0.005) 100.0 71.4 78.1 12.5
4 (0.25, 0.005, 1, 0.1) 100.0 12.5 84.2 4.0
5 (0.25, 0.02, 1, 0.005) 100.0 42.9 78.1 12.5
6 (0.25, 0.005, 1, 0.1) 100.0 46.2 84.2 4.0
7 (0.25, 0.03, 1, 0.005) 100.0 41.7 71.8 15.3
8 (0.25, 0.01, 1, 0.05) 100.0 50.0 84.1 9.3
9 (0.25, 0.005, 1, 0.05) 100.0 14.3 93.3 3.5
10 (0.25, 0.01, 1, 0.02) 100.0 37.5 83.8 7.8

Average (harmean): 82.4 6.9
5% of data sampled for subset

Iter Optimal config % Precision % Recall % Precision % Recall
1 (0.25, 0.03, 0.005, 0.05) 100.0 25.0 87.5 7.0
2 (0.25, 0.04, 0.1, 0.005) 90.0 30.8 82.9 8.5
3 (0.1, 0.1, 0.02, 0.05) 100.0 21.1 81.6 7.8
4 (0.25, 0.02, 1, 0.03) 90.0 37.5 76.4 13.8
5 (0.04, 0.02, 0.005, 0.05) 100.0 7.1 100.0 1.3
6 (0.25, 0.02, 1, 0.1) 100.0 13.6 81.3 6.5
7 (0.25, 0.03, 0.05, 0.03) 100.0 10.0 81.1 7.5
8 (0.25, 0.005, 1, 0.01) 100.0 29.4 90.0 4.8
9 (0.25, 0.02, 1, 0.05) 100.0 36.4 80.6 6.3
10 (0.25, 0.02, 1, 0.1) 100.0 22.7 81.3 6.5

Average (harmean): 83.8 4.8
10% of data sampled for subset

Iter Optimal config % Precision % Recall % Precision % Recall
1 (0.1, 0.05, 0.05, 0.005) 100.0 5.1 95.2 5.0
2 (0.25, 0.005, 1, 0.05) 100.0 29.0 93.3 3.5
3 (0.1, 0.04, 0.05, 0.01 100.0 15.8 95.0 4.8
4 (0.25, 0.02, 0.1, 0.1) 100.0 13.5 81.3 6.5
5 (0.05, 0.1, 0.01, 0.01 92.9 33.3 90.5 4.8
6 (0.25, 0.005, 1, 0.03) 90.0 22.5 92.9 3.3
7 (0.25, 0.005, 1, 0.03) 100.0 31.3 92.9 3.3
8 (0.25, 0.005, 1, 0.1) 100.0 28.1 84.2 4.0
9 (0.25, 0.02, 0.1, 0.1) 100.0 13.9 81.3 6.5
10 (0.25, 0.03, 0.05, 0.03) 90.0 20.5 81.1 7.5

Average (harmean): 88.4 4.5
25% of data sampled for subset

Iter Optimal config % Precision % Recall % Precision % Recall
1 (0.04, 0.05, 0.1, 0.03) 92.3 10.4 90.5 4.8
2 (0.1, 0.01, 0.02, 0.05) 90.0 8.7 90.0 2.3
3 (0.25, 0.04, 0.1, 0.02) 92.6 21.6 81.0 8.5
4 (0.03, 0.03, 0.05, 0.04) 100.0 6.9 100.0 2.0
5 (0.25, 0.005, 1, 0.03) 90.0 12.0 92.9 3.3
6 (0.25, 0.005, 1, 0.04) 100.0 12.6 92.9 3.3
7 (0.25, 0.005, 1, 0.05) 100.0 15.2 93.3 3.5
8 (0.25, 0.03, 0.02, 0.02) 91.7 11.8 84.4 6.8
9 (0.25, 0.005, 1, 0.03) 90.9 9.8 92.9 3.3
10 (0.1, 0.05, 0.05, 0.05) 90.9 8.5 95.7 5.5

Average (harmean): 91.0 3.6
50% of data sampled for subset

Iter Optimal config % Precision % Recall % Precision % Recall
1 (0.05, 0.05, 0.1, 0.05) 100.0 7.0 92.9 3.3
2 (0.05, 0.05, 0.05, 0.1) 93.8 7.9 92.9 3.3
3 (0.02, 0.05, 0.1, 0.02) 100.0 5.9 100.0 1.8
4 (0.04, 0.05, 0.01, 0.02) 92.9 6.6 100.0 2.8
5 (0.25, 0.03, 0.02, 0.04) 94.4 8.1 84.8 7.0
6 (0.25, 0.04, 0.01, 0.005) 90.0 13.2 88.6 7.8
7 (0.25, 0.01, 1, 0.04) 92.6 12.6 85.4 8.8
8 (0.05, 0.05, 0.05, 0.04) 92.9 7.2 92.3 3.0
9 (0.25, 0.02, 0.1, 0.005) 91.3 10.2 81.5 5.5
10 (0.25, 0.04, 0.02, 0.005) 90.5 9.6 86.1 7.8

Average (harmean): 91.0 3.9
TABLE 3

Optimal configurations over smaller percentages of the data, and the corresponding precision/recall over the whole dataset
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Looking more closely at the individual configurations
determined to be optimal, we see that for 2% these configu-
rations always have pca = 1, meaning that all access paths
are considered rare, and the classification is entirely based
on pe and pce. As discussed in Section 4, this means that
the analysis will not handle custom events very well, and
end up spuriously classifying custom events on common
access paths as anomalous. This, it turn, leads to very
unstable precision, where 100% precision on the training
data dwindles to an average of only 82.4% over the whole
data set. At higher percentages, configurations with pca = 1
become increasingly rare, with only one left at 50%: as more
data becomes available, the approach learns to deal with
custom events better, and precision becomes more stable.

Finally, note that recall on the subset (third column)
varies wildly between different samplings at smaller per-
centages. This is because there are few labeled pairs in those
datasets (i.e., the validation data is small), meaning that
missing one or two pairs will significantly affect recall.

In conclusion, with small training sets the statistical
analysis converges to configurations that do not account
for custom events, leading to unstable precision and low
recall. As more data is provided, precision becomes better
and more stable, while recall is still far below what we can
achieve by training on 100% of the dataset.

7.4 RQ4: Utility of results
To qualitatively assess the usefulness of the approach, we
conducted a study involving finding bugs in open-source
projects. In this experiment, we examined 100 occurrences of
listener-registration pairs that were classified as anomalous
by the statistical analysis, and manually examined the code
from which the pair originated.

How easy it is to determine whether or not the listener
registration is actually a bug depends on the complexity of
the access path. If the access path is complex and involves
interprocedural flow, then it may be hard to determine what
events are emitted by the object on which the listener is
being registered. In general, however, we can leverage the
fact that we know in advance what the possible reasons for
false positives are. As discussed in Section 3.1.3, the lack of
flow sensitivity in the mining analysis means that we may
report access paths as having listeners registered on them
that are avoided in the program via explicit reflection on
the type of the access path. Similarly, the lack of context
sensitivity means we do not account for explicit emission of
events. When looking for false positives, developers could
look for explicit emission of the event in question, or for
cases where there is an explicit check of the type of the
access path before the listener is registered.

For very long access paths (which we define as having
at least five property reads, method calls, and/or functions
parameters separating it from the initial package import),
then manual analysis to determine if the pair was indicative
of a bug would be very time intensive; also, explaining this
error to the developers would have been complicated. For
expediency, in this experiment we decided to exclude such
cases, which accounted for 47 of the code snippets.

For the remaining 53 code snippets, the results can be
summarized as follows:

1 const HTTPS = require("https");
2
3 request(method, url, auth, body, file,
4 _route, short) {
5 const req = HTTPS.request( /* ... */ )
6 req.once("abort", () => { /* ... */ }
7 ).once("aborted", () => {/* ... */ }
8 );
9 req.once("response", (resp) => { /* ... */ });
10 }

Fig. 6. Condensed version of error in abalabahaha/eris

• 37 were identified as bugs in the code. 7 of these were
on dead or archived repos (where we define “dead”
as having not been contributed to since 2012); the
other 30 we reported.

• 5 had listeners registered on a function parameter,
which sometimes takes an object that emits the event
and sometimes does not. We decided not to report
these cases since they only manifest as a bug in
some program executions, and it would be difficult
to determine and explain to the developers in which
particular executions a bug could happen

• 6 were false positives because the listener registration
code was only executed if the access path was an
instance of a class that emits the relevant event (like
the example in Figure 3)

• 5 were false positives because the event was explic-
itly emitted (like the example in Figure 4)

Tables 3 and 4 in the supplementary materials include
details for each of the individual code snippets that we
examined.

For those results that appeared to represent real bugs in
the code in active projects, we submitted issues to report
them to the developers. Altogether, we reported 30 issues
across 25 different GitHub projects, 7 of which have been
confirmed by the developers as bugs,14 one where the de-
velopers did not remember what the code was supposed to
do, and 2 that were false positives (due to explicitly emitting
the event elsewhere in the project). We did not yet receive
a response for the remaining 20 issues. Links to all reported
issues are included in the supplemental materials.

Figure 6 shows a simplified version of one of the ac-
knowledged bugs from the project abalabahaha/eris, a
Node.js wrapper for interfacing with Discord. Here we see
the req variable created from a call to http.request,
which returns an instance of http.ClientRequest.
However, by examining the http API documentation,
we see that aborted is an event emitted by http-
.IncomingMessage, and not http.ClientRequest.
The developers confirmed this as a bug and fixed it by
registering the listener on resp instead (line 9), which had
been the original intention.

The full list of bugs reported can be found in the supple-
mental materials.

7.5 RQ5: Performance

Here, we discuss performance and resource requirements.

14. Two have been addressed, [21] and [22].

https://github.com/abalabahaha/eris
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Data mining and classification: Our approach involves
mining and classifying listener registration pairs from a
large number of projects. The data mining step requires
about 404 hours of compute time for the 127,531 projects in
the data set. Since LGTM.com runs queries concurrently, this
step was completed in about two days. The classification
stage is much faster: classifying the pairs for a given config-
uration takes only 35 to 40 seconds on commodity hardware.
We expect these steps to be applied infrequently as event-
driven APIs tend to evolve slowly, and our experimental
results suggest that the set of optimal analysis thresholds is
fairly stable.

Per-project costs: Once an API model has been con-
structed, it can be used for a variety of purposes, e.g., in a
bug-detection tool that flags uses of event-driven APIs that
are likely to be buggy, or in an IDE plugin for smart com-
pletion. Running the mining analysis on a single JavaScript
project is quite fast: for 52% of all projects in the data set,
the analysis takes ten seconds or less, with another 45%
taking between ten seconds and a minute. There are only
151 projects (0.1%) for which the analysis takes more than
ten minutes.

We consider these results to be encouraging as, while the
upfront cost of constructing an API model is quite high, our
experimental results suggest that the per-project costs are
sufficiently low to allow integration of our approach in a
realistic continuous-integration workflow.

8 DISCUSSION

This section reports on a case study in which we investi-
gated a few specific examples where the statistical analysis
produced false positives and false negatives, and considers
threats to the validity of our results.

8.1 Case study of false positives and false negatives
8.1.1 False negatives
False negatives are listener-registration pairs that are labeled
as incorrect in the validation set but that the statistical
analysis does not classify as anomalous. Whether or not a
given pair ha, ei is classified as anomalous by the statistical
analysis is entirely determined by the frequency with which
a, e, and the combination ha, ei occur in the mined data.
Pairs for which both the access path and the event occur
very frequently (but the pair itself is rare) will satisfy the
criteria for being classified as anomalous with more statis-
tical analysis parameter configurations than those incorrect
pairs that appear more rarely.

As an example, consider the pairs:

hrequire(net).createServer(), endi

and

hrequire(net).connect().setNoDelay(), secureConnecti,

which are both labeled as incorrect in the validation set:

1) For the first pair, the access path require(net).
createServer() occurs 1109 times, the event end
occurs 872 times, and they occur as a pair only twice
(in the net package). In other words, this rare pair is

made up of a very common access path and a very
common event; indeed, it meets the thresholds of all
of the statistical analysis parameter configurations
we tested. Therefore, this pair is always classified as
anomalous, i.e., it is a true positive.

2) For the second pair, the access path
require(net).connect().setNoDelay() occurs
twice, the event secureConnect occurs 26 times,
and they occur only once as a pair. Since the access
path is so rare, this incorrect pair represents 50%
of the uses of this access path, and therefore it
is very unlikely to be classified as anomalous by
the statistical analysis. Indeed, this pair is not
classified as anomalous with any of the parameter
configurations, unless the rarity of the access path is
not considered at all. Therefore, it is almost always
a false negative.

In other words, a false negatives may occur in cases where a
given access path or event is used rarely, making it difficult
for the statistical analysis to conclude that the particular
event-listener registration pair is rarer still.

8.1.2 False positives
The false positives that we observed correspond to event-
listener registration pairs that are labeled as correct in the
validation set but that show up rarely in the mined data
and thus get classified as anomalous.

As an example of a false positive, consider the pair
hrequire(process).stdin, draini which is one of the
three false positives that arises when the analysis is run
with the optimal configuration that achieves a precision
of 90.9%. In the mined data, we see the access path
require(process).stdin 1,948 times, the event drain 234
times, but this pair itself only shows up once (in access paths
rooted in process). The vast majority of the drain events
(209 of the 234) are seen with require(process).stdout.
This is because drain is an event on Writable streams
[23], and according to the documentation [24], [25]
process.stdout is either a net.Socket or a Writable
stream while process.stdin is either a net.Socket or
a Readable stream. Since net.Sockets are Duplex streams
(i.e., both readable and writable), according to the documen-
tation registering a listener for drain on process.stdin
is a correct use of the API. However, from the data it seems
that although this is a correct API usage, this use is rare,
and therefore it ends up being classified as anomalous by
the statistical analysis.

As another example of a false positive, consider
the pair hrequire(zlib).createGunzip(), draini. In the
mined data, the access path shows up 1,649 times, the
event 441 times, but the pair itself only once (in access
paths rooted in zlib). The most common events we see
with this access path are data (395 times), end (388 times),
error (364 times), and close (344 times). These are all
events emitted by objects of class stream.Readable [26].
This is noteworthy because, according to the documenta-
tion, zlib.createGunzip() returns a Gunzip object [27],
and this inherits from stream.Transform which is a Duplex
stream (i.e., both readable and writable) [28]. The drain
event is an event on writable streams only. So, it seems that
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although the streams returned by zlib.createGunzip() are
both readable and writable, they are almost always used as
readable streams, causing the statistical analysis to flag the
rare occurrence where this is not the case as anomalous.

8.2 Threats to Validity
We are aware of several potential threats to validity.

Our results depend on the set of code bases that have
been mined, and this set may not be representative. How-
ever, we simply used the set of all JavaScript projects on
LGTM.com that were available at the time of writing this
paper, which includes many popular open-source projects,
and projects added by users of LGTM.com. These code bases
were not specifically selected for this project, and provide a
reasonable sample of real-world JavaScript code.

Our measurements of precision and recall are based on
a relatively small set of listener-registration pairs that we
semi-automatically labeled as correct or incorrect (5,681 out
of 160,195 unique pairs) and might not generalize beyond
this set. Exhaustively labeling all pairs was infeasible, so we
focused on the most popular packages, to ensure that the
results are relevant for widely-used APIs. Cross-validation
showed that the choice of optimal configuration does not
crucially depend on the chosen training data set.

The semi-automatic labeling of pairs in the validation set
generation involved a review of API documentation by the
authors. Thus, there was potential for human error in this
process: if we misread the documentation, some pairs could
be mislabeled in the validation set. In practice, we saw no
examples of this in any of the pairs we examined.

The validation set is itself biased in that it contains a
relatively small number of pairs labeled as incorrect (399 out
of 5,681). This affects the accuracy of the reported precision
since we are much more likely to find that a pair classified as
anomalous by the statistical analysis is actually correct (and
hence a false positive) than incorrect (and hence a true pos-
itive). Consequently, our reported precision underestimates
the actual precision. Remedying this imbalance would only
improve the precision.

There is potential for bias in the generalization of our re-
sults from the 18 packages we model to other npm packages.
In particular, the results might be affected by the number of
events and emitters available in a package. However, the
18 packages in the validation set cover a range of different
scenarios in terms of the number of events, emitters, and
listener-registration pairs ha, ei that constitute correct usage
of the API. These values range from 102 correct usages over
12 access paths and 13 events with the stream package, to
77 correct usages over 15 access paths and 24 events with
the fs package, to only 2 correct usages over one access
path and 2 events with the http2 package. Table 7 in the
supplemental materials shows these values for all the pack-
ages in the validation set. Thus, we have some confidence
that the approach generalizes over packages with differing
numbers of events and emitter objects.

The values chosen for the parameters of the statistical
analysis obviously greatly influences the quality of results.
However, our evaluation considered a large number of dif-
ferent combinations, over which we determined the optimal
configuration for a particular set of conditions (here, for

a precision of at least 90%). Moreover, a cross-validation
experiment revealed the configuration parameters to be
quite stable across subsets of the data.

Finally, the static analysis used in the mining phase is
relatively simple and imprecise, e.g., due to inherent im-
precision of the access path representation. Our evaluation
accounted for this by considering all pairs involving impre-
cise access paths to be false positives. A more sophisticated
analysis using more precise access paths would also increase
the precision of the statistical analysis.

9 LEARNING LOST EVENTS

At first glance, it seems that we could apply this same learn-
ing approach to the dual problem of finding bug patterns
in lost events [7], those events which are emitted but never
listened for. We modified our static analysis to identify event
emissions instead of event registrations, and reran the data
mining to collect information on this dual problem, across
the same set of projects. From this analysis, we mined a total
of 22,900 ha, ei pairs (10,432 unique).

From this data, we determined that the learning ap-
proach cannot be effectively used to identify bug patterns
in lost events, since the vast majority of events emitted in
projects are custom events. The use of a custom event is
specific to the project it appears in, and so patterns observed
in other projects cannot be used to learn about its proper
use. We discussed this in Section 4.1 with respect to listener
registrations, but the same logic applies to event emissions.

For the remainder of this section, we discuss some details
about the data mined on events emitted.

Base event emitter: Of the 22,900 pairs mined,
we observed that 5,248 have an emitter access path of
require(events).EventEmitternew() and 1,220 have access
path require(events)new(). No other access paths occur
this frequently in our data set.

In code, these access paths correspond to
new require(’events’).EventEmitter() and
new require(’events’)() respectively. Looking at
the documentation of the EventEmitter class15, we see
that these are aliases, as the EventEmitter class is the
default export of the events package. Looking at the same
documentation, we see that there are only 2 events that
make up this API: newListener and removeListener.
Any other events emitted on objects that are instances of
EventEmitter are therefore custom events. With our data,
6,466 of these 6,468 pairs emit a custom event on objects of
the base event emitter class.

We examined what users actually do with the custom
events on base event emitters. From our exploration, a few
common patterns of how users build their own custom
event infrastructures on top of the base EventEmitter class
could be observed; examples of these are included below.

Developers often create custom EventEmitter classes ex-
tending the base EventEmitter class in a classic object-
oriented style. Consider the following demonstrative exam-
ple, condensed from the update manager class in vscode.

1 export class UpdateManager
2 extends events.EventEmitter {
3 // methods that emit and listen for custom events

15. https://nodejs.org/api/events.html#events class eventemitter

https://github.com/2947721120/vscode/blob/master/src/vs/workbench/electron-main/update-manager.ts
https://nodejs.org/api/events.html#events_class_eventemitter
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4 private initRaw(): void {
5 // ...
6 this.emit(’checking-for-update’);
7 }
8
9 public initialize(): void {
10 this.on(’checking-for-update’, /* ... */ );
11 }
12 }
13
14 export const Instance = new UpdateManager();

Since the access path representation does
not reason about the inheritance hierarchy, the
new UpdateManager() is represented abstractly as
require(events).EventEmitternew(). Other common
custom event usage patterns include extending the
EventEmitter prototype or including an EventEmitter
as a class field. In each of these cases, the developers are
encapsulating the base EventEmitter so as to build their
own custom event-based infrastructure.

There are a variety of ways developers make use of
custom event infrastructures in their code bases. Building
something on top of the base EventEmitter is one of the
most common patterns we observed, as we have discussed
above; after this, the next most frequently observed emitter
was objects of class socket.io Socket. Examining the docu-
mentation of the socket.io API about emitting events, we
see that there are no standard events. Therefore, all events
emitted on socket.io client or server based emitters are
custom events. This corresponds to 8,398 of the pairs (1,911
client-side and 6487 server-side).

Manual analysis of a subset of remaining pairs: So
far, we have determined that 14,866 or the 22,900 pairs
mined correspond to emissions of custom events on either
the base event emitter or via socket.io. This in turn does
not mean that the rest of the pairs in our dataset do not
correspond to custom events.

There are 2,668 unique pairs remaining. Of these, we
manually looked at a random sampling of 200, split across
all the APIs16. In this manual analysis, we found that 82.5%
correspond to custom events.

From this, we conclude that the vast majority of events
explicitly emitted correspond to custom events. As dis-
cussed, the use of a custom event is specific to the project
in which the custom emitter is defined and so patterns
observed in other projects cannot be used to learn about
its proper use. Therefore, our learning approach cannot be
effectively used to identify bug patterns in lost events.

10 RELATED WORK

A considerable amount of research has focused on de-
tecting and characterizing bugs in JavaScript applications,
including bug detection tools using static analysis [29] and
dynamic analysis [30], [31]; evaluations of the effectiveness
of type systems for preventing bugs [32]; development of
benchmarks [33]; and studies of real-world bugs [34].

The most closely related work to ours is by Madsen et
al. [7]. They describe a static analysis for detecting dead
listeners, lost events and other event-handling bugs based

16. All pairs manually analyzed are included in a table in the supple-
mental materials.

on the notion of an event-based call graph that augments
a traditional call graph with edges corresponding to event-
listener registration, event emission, and callback invoca-
tion. Event-handling bugs are detected by looking for pat-
terns in these augmented call graphs. Unfortunately, their
approach does not scale well because their context-sensitive
analysis employs notions of contexts corresponding to the
sets of events emitted and listeners registered, which may
be exponential in the size of the program. This exponential
behavior appears to manifest itself in practice, given that, on
their largest subject program (which is a mere 390 LOC), one
of their analyses incurs a running time of 17 seconds, and
the other one does not terminate at all. Our approach targets
only dead listeners, and only those cases where the event
the listener is meant to handle is never emitted (excluding
cases where it is emitted at a time when the listener is
not registered). This allows us to use a simple and scalable
static analysis in our mining phase, and rely on statistical
reasoning over a large data set to offset the noise.

Unfortunately, it is not possible to compare our tech-
nique directly against Madsen’s, given that their imple-
mentation was a proof-of-concept static analysis for a small
subset of ECMAScript 5. As such, it did not support modern
JavaScript features such as classes or promises, which are
pervasive in the subject applications that we analyzed. Fur-
thermore, upon inquiry, we were informed that Madsen’s
tool is no longer available [35]. That said, we investigated
the bugs reported in Madsen’s work and found that, of the
12 real-world bugs considered in their work, three are dead-
listener bugs of the kind that is targeted by our analysis, and
our optimal configuration identifies all of them. The others
concern dead emits, listeners for custom events, or listeners
that are dead due to the order in which they were added,
and are outside the scope of our work.

Our work also stands in a long line of research viewing
bugs as “deviant behavior”: statistical methods are used
to infer beliefs or rules that are implicit in the code, and
violations of these rules are flagged as likely defects.

Engler et al. [36] distinguish between “MUST beliefs”
and “MAY beliefs”. The former are directly implied by the
code, and often boil down to simple data-flow properties:
for example, dereferencing a pointer implies the belief that
it is not a null pointer, and a subsequent null check of the
same pointer is inconsistent with that belief. MAY beliefs,
on the other hand, are patterns such as two functions that
are often invoked in a particular order, which might reflect
an implicit rule (such as the second one freeing a resource
allocated by the first one), or might be a coincidence. They
use an analysis based on the z statistic to distinguish the
two. Our work also aims to infer a MAY belief, but of a
more complex kind than those considered by Engler, since
the relationship between event emitters and events is many-
to-many. Custom events pose an additional challenge that
requires more sophisticated statistical methods than the z
statistic.

The PR-Miner system [37] targets a broader class of rules:
using frequent itemset mining, it extracts association rules
A ) B, where A and B are sets of program elements
such as function calls. Such a rule expresses the observation
that functions containing all elements in A also contain all
elements in B, with a certain level of confidence. Violations
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of high-confidence rules are then likely to be bugs. Again,
the relationship between event emitters and events does not
immediately fit this pattern: association rules are “forall”
rules in the sense that if all elements in A are present then
all elements in B must be present. By contrast, we are
interested in “exists” rules in the sense that in any given
context a particular type of event emitter emits one event
from a certain set, but not necessarily all of them.

WN-Miner [38] and PF-Miner [39] focus more narrowly
on the problem of inferring temporal specifications, specif-
ically pairs of functions f and g such that g must always
be invoked after f , usually because it performs some sort
of cleanup. Acharya et al. [40] generalize this to inferring
partial orders between functions. Gruska et al. [41], on the
other hand, generalize in a different direction and employ
association rules of a similar kind as PR-Miner, but where
the sets A and B now contain candidate function pairs,
thus allowing inference of context-dependent specifications.
Murali et al. [42] apply a Bayesian framework for learn-
ing probabilistic API specifications, which is more robust
on noisy and heterogeneous data than more lightweight
approaches. Although dead-listener detection shares some
general principles with temporal-specification mining, the
concrete setup is rather different and it is not immediately
obvious that their techniques apply to our problem.

Monperrus et al. [43] propose type usages as a particu-
larly useful kind of specification to infer for object-oriented
programs: a type usage is a set of methods invoked on a
variable of a given type, all within the body of a method
with a given signature. They define a metric termed s-score,
which can be used to identify type usages that are them-
selves rare, but similar to a very common type usage. This
parallels our goal of finding rare event-emitter pairs where
a pair with a different event or a different emitter is very
common, although the technical details of our approach are
again somewhat more complex to deal with the problem of
custom events.

A significant amount of research has been devoted to the
detection of event races using static [44] and dynamic [45],
[46] analysis. Recent work has focused on event races that
have observable effects [47], by classifying event races [48],
and by developing specialized techniques focused on event
races that occur during page initialization [49] or that are
associated with AJAX requests [50]. The access paths used
in this paper are not precise enough to capture the order-
ing constraints necessary for event-race detection, so our
approach is not immediately applicable to this problem.

Other researchers have used statistical reasoning for
predicting properties of programs for use in bug finding.
Raychev et al. [51] derive probabilistic models from existing
data using structured prediction with conditional random
fields (CRFs). They apply their analysis to JavaScript pro-
grams to predict the names of identifiers and types of vari-
ables in new, unseen programs, and suggest that the com-
puted results can be useful for de-obfuscation and adding
or checking type annotations. Eberhardt et al. [52] apply
unsupervised machine learning to a large corpus of Java
and Python programs obtained from public repositories to
infer aliasing specifications for popular APIs, which are then
used to enhance a may-alias analysis that is applied to ap-
plications using such APIs. The resulting enhanced analysis

is demonstrated to lead to improvements in client analysis
such as typestate analysis (by eliminating a false positive
result) and taint analysis (by eliminating a false negative re-
sult). Chibotaru et al. [53] present a semi-supervised method
for inferring taint analysis specifications. A propagation
graph is inferred from each program in a dataset, and it is
assumed that a small number of nodes corresponding to API
functions is annotated as a source, sink, or sanitizer. To infer
situations where unannotated nodes also play one of these
roles, a set of linear constraints is derived from the propa-
gation graph so that the solution to constraints represents
the likelihood of unannotated nodes being a source, sink, or
sanitizer. The program properties these works are designed
to identify are API types and function signatures. They do
not discuss applications to message-passing systems like is
seen in event-driven programming.

Hanam et al. [54] present a technique for discovering
JavaScript bug patterns by analyzing many bug-fix commits.
They decompose commits into a set of language-construct
changes, represent these as feature vectors, and apply un-
supervised machine learning to identify bug patterns. The
identified patterns are low-level issues such as dereferenc-
ing undefined and incorrect error handling. They do not
discuss bug patterns related to event handling.

DeepBugs [55] aims to generate bug-fix changes auto-
matically. By applying simple program transformations to
code that is assumed to be correct, training data is obtained
for a classifier that distinguishes correct from anomalous
code. The approach is evaluated for three types of er-
rors (swapped function arguments, wrong binary operator,
wrong operand in binary operation), and detected dozens
of real bugs, with a false positive rate of around 30%. It
is unclear how well this approach would work for less
syntactic bugs like the dead-listener bugs we consider.

Ryu et al. [56] present the SAFE tools for detecting type
mismatch bugs that cause runtime errors (e.g., accesses to
undefined) in JavaScript web applications. They construct
simple models of browser runtime constructs such as the
HTML Document Object Model (DOM) through a dynamic
analysis; this is used as input for their bug detector. The
SAFE tools differ from our work in three key ways: most
importantly, the class of bugs SAFE tracks does not include
dead-listener bugs; also, their target runtime is the browser
while ours is Node.js; and, our analysis is purely static.

11 CONCLUSION

We have presented an approach for detecting dead listener
patterns in event-driven JavaScript programs that relies on a
combination of static analysis and statistical reasoning. The
static analysis computes a set of listener-registration pairs
ha, ei where a is an access path and e the name of an event,
reflecting the fact that a listener is registered for e on an ob-
ject represented by a. After applying the static analysis to a
large corpus of JavaScript applications, statistical modeling
is used to differentiate expected event listener registrations
that are commonly observed from rarely observed anoma-
lous cases that are likely to be incorrect. In a large-scale
evaluation on 127,531 open-source JavaScript code bases,
our technique was able to detect 75 anomalous listener-
registration patterns, while maintaining a precision of 90.9%
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and recall of 7.5% over a validation set, demonstrating that
a learning-based approach to detecting event-handling bug
patterns is feasible.

We report on several additional experiments to better
assess the impact of the data set analyzed by the statistical
analysis, the utility of the results, and the practicality of
the technique. One experiment revealed that the selection
of the particular subset of data that statistical analysis is
trained on does not substantially affect the choice of optimal
configuration. On the other hand, we found the size of the
subset used for training to have significant impact, with
smaller training set sizes generally resulting in classifiers
that have unstable precision and lower recall on the full
data set. Furthermore, we demonstrated that our approach
is effective at identifying buggy listener registrations in real
code bases: of the 30 issues we recently reported to develop-
ers of 25 open-source projects on GitHub, 7 were confirmed
as bugs. While the statistical analysis requires a significant
amount of compute time, we would expect this cost to
be incurred infrequently, as APIs tend to evolve slowly.
Checking a specific project for dead listeners typically takes
no more than a few minutes for all but the largest projects.

As future work, we plan to explore more precise notions
of access paths that would allow us to build distinct rep-
resentations for function calls where some arguments are
string literals and others are callbacks. In principle, this
would enable us to distinguish access paths in the presence
of nested event handlers.
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